WorldWideScience

Sample records for acid stress response

  1. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  2. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    Science.gov (United States)

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  3. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  4. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    Directory of Open Access Journals (Sweden)

    Birk Tina

    2012-08-01

    Full Text Available Abstract Background During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investigate the response to acid stress of three sequenced C. jejuni strains with different acid tolerances using HCl and acetic acid. Results Two-dimensional gel electrophoresis was used for proteomic analysis and proteins were radioactively labelled with methionine to identify proteins only related to acid exposure. To allow added radioactive methionine to be incorporated into induced proteins, a modified chemically defined broth was developed with the minimal amount of methionine necessary for satisfactory growth of all strains. Protein spots were analyzed using image software and identification was done with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19, thioredoxin-disulfide (TrxB, a hypothetical protein Cj0706 (Cj0706, molybdenum cofactor biosynthesis protein (MogA, and bacterioferritin (Dps. Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using qRT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. Conclusions A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced during acid stress of C. jejuni. Both strain and acid type affected sensitivity and response.

  5. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    BACKGROUND: During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investig...... (Cj0706), molybdenum cofactor biosynthesis protein (MogA), and bacterioferritin (Dps). Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using q......RT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced...

  6. Plasma vanillylmandelic acid level as an index of psychological stress response in normal subjects.

    Science.gov (United States)

    Fukuda, M; Hata, A; Niwa, S; Hiramatsu, K; Honda, H; Nakagome, K; Iwanami, A

    1996-06-26

    The relationships between psychological stress responses and plasma levels of vanillylmandelic acid (VMA), 3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) were investigated in normal volunteers. Two questionnaires were used to measure stress: the Psychological Stress Response Scale (PSRS) and the State-Trait Anxiety Inventory (STAI). Plasma levels of VMA--but not MHPG, HVA, and 5-HIAA--showed significant positive correlations with PSRS emotional and cognitive-behavioral stress and STAI state anxiety. Significant positive correlations were also found between plasma levels of VMA and MHPG and psychological stress responses measured repeatedly in a longitudinal study of an Olympic swimmer. Plasma VMA measurements, which reflect the level of activity of the peripheral sympathetic nervous system, may provide a useful biochemical index of psychological stress responses in normal subjects.

  7. Arachidonic acid reduces the stress response of gilthead seabream Sparus aurata L.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Nixon, O.; Wendelaar Bonga, S.E.

    2004-01-01

    In this study the influence of the dietary level of the fatty acid arachidonic acid (ArA, 20:4n-6) was determined on the acute stress response and osmoregulation of adult gilthead seabream Sparus aurata L. Seabream were fed a diet containing either 0.9% or 2.4% of total fatty acids as ArA for 18 day

  8. Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches.

    Directory of Open Access Journals (Sweden)

    Junhua Jin

    Full Text Available Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR, caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR, and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing.

  9. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    Science.gov (United States)

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide.

  10. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  11. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen.

    Science.gov (United States)

    Shah, Devendra H; Casavant, Carol; Hawley, Quincy; Addwebi, Tarek; Call, Douglas R; Guard, Jean

    2012-03-01

    Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σ(S). Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.

  12. Good and bad protons: genetic aspects of acidity stress responses in plants.

    Science.gov (United States)

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.

  13. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  14. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  15. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Viswanathan Chinnusamy; Zhizhong Gong; Jian-Kang Zhu

    2008-01-01

    Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated spigenome will be of immense use to understand the plant development, stress adaptation and stress memory.

  16. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions

    Directory of Open Access Journals (Sweden)

    Valeria eMuñoz

    2015-11-01

    Full Text Available To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient and flacca (flc, ABA-deficient mutants together with the naphthalene/salicylate hydroxylase (NahG transgenic (SA-deficient line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1 and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3 expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1 was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress.

  17. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    Science.gov (United States)

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  18. In Vitro Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts.

    Science.gov (United States)

    Procházka, Erik; Escher, Beate I; Plewa, Michael J; Leusch, Frederic D L

    2015-10-19

    The process of disinfecting drinking water inadvertently leads to the formation of numerous disinfection byproducts (DBPs). Some of these are mutagenic, genotoxic, teratogenic, and cytotoxic, as well as potentially carcinogenic both in vivo and in vitro. We investigated the in vitro biological activity of five DBPs: three monohaloacetic acids (monoHAAs) [chloroacetic acid (CAA), bromoacetic acid (BAA), and iodoacetic acid (IAA)] and two novel halobenzoquinones (HBQs) [2,6-dichloro-p-benzoquinone (DCBQ) and 2,6-dibromo-p-benzoquinone]. We focused particularly on cytotoxicity and induction of two adaptive stress response pathways: the oxidative stress responsive Nrf2/ARE and DNA-damage responsive p53 pathways. All five DBPs were cytotoxic to the Caco-2 cell line after a 4 h exposure, and all DBPs induced both of the adaptive stress response pathways, Nrf2/ARE and p53, in the micromolar range, as measured by two β-lactamase-based reporter gene assays. The decreasing order of potency for all three endpoints for the five DBPs was IAA ∼ BAA > DCBQ ∼ DBBQ > CAA. Induction of oxidative stress was previously proposed to be the molecular initiating event (MIE) for both classes of DBPs. However, comparing the levels of activation of the two pathways uncovered that the Nrf2/ARE pathway was the more sensitive endpoint for HAAs, whereas the p53 pathway was more sensitive in the case of HBQs. Therefore, the DNA damage-responsive p53 pathway may be an important piece of information to fill in a gap in the adverse outcome pathway framework for the assessment of HBQs. Finally, we cautiously compared the potential risk of the two novel HBQs using a benchmarking approach to that of the well-studied CAA, which suggested that their relative risk may be lower than that of BAA and IAA.

  19. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope

  20. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs.

    Directory of Open Access Journals (Sweden)

    Matthias Nemeth

    Full Text Available Unsaturated fatty acids (UFAs, such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3, walnuts (high in omega-6, or peanuts (high in omega-9 per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling

  1. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions

    Science.gov (United States)

    de Ollas, Carlos; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-01-01

    Phytohormones are key players in signaling environmental stress conditions. Hormone profiling together with proline accumulation were studied in leaves and roots of different mutant lines of Arabidopsis. Regulation of proline accumulation in this system seems complex and JA-deficient (jar1-1) and JA-insensitive (jai1) lines accumulating high levels of proline despite their very low ABA levels seems to discard an ABA-dependent response. However, the pattern of proline accumulation in jai1 seedlings parallels that of ABA. Under stress conditions, there is an opposite pattern of ABA accumulation in roots of jar1-1/coi1-16 (in which ABA only slightly increase) and jai1 (in which ABA increase is even higher than in WT plants). This also makes JA-ABA crosstalk complex and discards any lineal pathway that could explain this hormonal interaction. PMID:26340066

  2. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    Directory of Open Access Journals (Sweden)

    Vaimiti Dubousquet

    2016-10-01

    Full Text Available Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA, which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress.

  3. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    Science.gov (United States)

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.

    2016-01-01

    ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058

  4. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.

    Science.gov (United States)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-02-28

    Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2).

  5. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jinying Zheng

    2016-01-01

    Full Text Available The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD. We investigated the effects of docosahexaenoic acid (DHA on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM or fructose plus 4-phenylbutyric acid (PBA for 24 h. Intracellular triglyceride (TG accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC, two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α and acyl-CoA oxidase 1 (ACOX1. DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78, total inositol-requiring kinase 1 (IRE1α and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.

  6. RESPONSE OF SPECKLED SPUR-FLOWER TO SALINITY STRESS AND SALICYLIC ACID TREATMENT

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2015-11-01

    Full Text Available One of the limitations to using ornamental plants in green areas is too high salinity and alkalization of the soil. The adverse effect of salinity on plant growth and development may be effectively reduced by application of salicylic acid. Plectranthus ciliatus is an attractive bed plant with ornamental leaves, recommended for growing in containers, hanging baskets, or sunny borders. The aim of this study was to investigate the response of P. ciliatus to salicylic acid and calcium chloride. The plants were grown in pots in a glasshouse and were sprayed with solution of 0.5 mM salicylic acid and watered with 200 mM calcium chloride. The application of salicylic acid resulted in an increased weight of the aboveground parts, higher stomatal conductance and leaf greenness index and enhanced leaf content of nitrogen, potassium, iron and zinc. Salinity-exposed plants were characterized by reduced weight, stomatal conductance and leaf greenness index. Salt stress caused also a drop in leaf content of nitrogen, potassium and iron, and an increase in calcium, sodium, chlorine, copper and manganese concentration. Salicylic acid seemed to relieve salinity-mediated plant stress.

  7. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  8. Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis▿†

    OpenAIRE

    Wilks, Jessica C.; Kitko, Ryan D.; Cleeton, Sarah H.; Lee, Grace E.; Ugwu, Chinagozi S.; Jones, Brian D.; BonDurant, Sandra S; Slonczewski, Joan L.

    2008-01-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived

  9. The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ting; LIN Jie; SHAO Xue-feng; OU Xiao-ming; WANG Zong-hua; LU Guo-dong

    2009-01-01

    Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection.

  10. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    Science.gov (United States)

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants.

  11. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil

    Institute of Scientific and Technical Information of China (English)

    HE You-lan; LIU Ai-qin; Mulualem Tigabu; WUPeng-fei; MA Xiang-qing; WANG Chen; Per Christer Oden

    2013-01-01

    Pinus massoniana Lamb.is a major timber species widely planted in the South China,where the soil is acidic and deficient in phosphorus (P) due to fixation by aluminum and iron.Understanding the physiological responses to rhizospheric insoluble P is essential for enhancing plantation productivity.Thus,a sand culture experiment was conducted with four levels of P treatment (0,5,20 g insoluble P and 10 g soluble P),and 11 P.massoniana elite families.Physiological responses were measured after two months of stress.Compared to the normal soluble P treatment,the insoluble P treatment significantly reduced the proline content and the APase activity in the needles,while it significantly increased the catalase activity by 1.3-fold and malondialdehyde content by 1.2-fold.Soluble protein content was unaffected by the treatments,but chlorophyll content was significantly lower in P-deprived treatment compared with soluble and insoluble P treatments.These physiological responses also exhibited highly significant variation among families (p < 0.01).The findings suggest that increased catalase activities in the presence of insoluble P might be involved in the activation of an anti-oxidation defense mechanism that scavenges the reactive oxygen species elicited by the stress.And this response has a strong genetic control that can be exploited to identify desirable genotypes.

  12. Dietary fatty acids and the stress response of fish : arachidonic acid in seabream and tilapia

    NARCIS (Netherlands)

    Anholt, Rogier Daniël van

    2004-01-01

    A key factor in the production of fish in commercial aquaculture is the optimization of the artificial diets, not only to achieve optimal growth, but also to maximize fish health. Evidence is accumulating that dietary lipids, particularly the fatty acid composition, can have a direct effect on the f

  13. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs

    OpenAIRE

    Matthias Nemeth; Eva Millesi; Karl-Heinz Wagner; Bernard Wallner

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But on...

  14. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.

    Science.gov (United States)

    Park, Sang-Wook; Li, Wei; Viehhauser, Andrea; He, Bin; Kim, Soonok; Nilsson, Anders K; Andersson, Mats X; Kittle, Joshua D; Ambavaram, Madana M R; Luan, Sheng; Esker, Alan R; Tholl, Dorothea; Cimini, Daniela; Ellerström, Mats; Coaker, Gitta; Mitchell, Thomas K; Pereira, Andy; Dietz, Karl-Josef; Lawrence, Christopher B

    2013-06-04

    The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-Oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.

  15. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  16. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids.

    Science.gov (United States)

    de Carvalho, Carla C C R; Fischer, Martin A; Kirsten, Sandra; Würz, Birgit; Wick, Lukas Y; Heipieper, Hermann J

    2016-12-01

    Mycolata form a group of Gram-positive bacteria with unique cell envelope structures that are known for their high tolerance against antibiotics and both aromatic and aliphatic hydrocarbons. An important part of the unique surface structure of the mycolata is the presence of long chain α-alkyl-β-hydroxy fatty acids, the mycolic acids. In order to investigate the adaptive changes in the mycolic acid composition, we investigated the composition of mycolic acids during the response both to osmotic stress caused by NaCl and to 4-chlorophenol in Rhodococcus opacus PWD4. This bacterium was chosen as it is known to adapt to different kinds of stresses. In addition, it is a potential biocatalyst in bioremediation as well as for biotechnological applications. In the present study, cells of R. opacus PWD4, grown in liquid cultures, responded to toxic concentrations of NaCl by increasing the ratio between mycolic acids and membrane phospholipid fatty acids (MA/PLFA-ratio). Cells reacted to both NaCl and 4-chlorophenol by decreasing both the average chain length and the unsaturation index of their mycolic acids. These changes in mycolic acid composition correlated with increases in cell surface hydrophobicity and saturation of membrane fatty acids, demonstrating the relation between mycolic acid and phospholipid synthesis and their contribution to cell surface properties of R. opacus PWD4.

  17. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  18. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds.

    Science.gov (United States)

    Alonso-Ramírez, Ana; Rodríguez, Dolores; Reyes, David; Jiménez, Jesús Angel; Nicolás, Gregorio; López-Climent, María; Gómez-Cadenas, Aurelio; Nicolás, Carlos

    2009-07-01

    Exogenous application of gibberellic acid (GA(3)) was able to reverse the inhibitory effect of salt, oxidative, and heat stresses in the germination and seedling establishment of Arabidopsis (Arabidopsis thaliana), this effect being accompanied by an increase in salicylic acid (SA) levels, a hormone that in recent years has been implicated in plant responses to abiotic stress. Furthermore, this treatment induced an increase in the expression levels of the isochorismate synthase1 and nonexpressor of PR1 genes, involved in SA biosynthesis and action, respectively. In addition, we proved that transgenic plants overexpressing a gibberellin (GA)-responsive gene from beechnut (Fagus sylvatica), coding for a member of the GA(3) stimulated in Arabidopsis (GASA) family (FsGASA4), showed a reduced GA dependence for growth and improved responses to salt, oxidative, and heat stress at the level of seed germination and seedling establishment. In 35S:FsGASA4 seeds, the improved behavior under abiotic stress was accompanied by an increase in SA endogenous levels. All these data taken together suggest that this GA-responsive gene and exogenous addition of GAs are able to counteract the inhibitory effects of these adverse environmental conditions in seed germination and seedling growth through modulation of SA biosynthesis. Furthermore, this hypothesis is supported by the fact that sid2 mutants, impaired in SA biosynthesis, are more sensitive to salt stress than wild type and are not affected by exogenous application of GA(3).

  19. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.

    Science.gov (United States)

    Bernardo, Ruben T; Cunha, Diana V; Wang, Can; Pereira, Leonel; Silva, Sónia; Salazar, Sara B; Schröder, Markus S; Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Aoyama, Toshihiro; Sá-Correia, Isabel; Azeredo, Joana; Butler, Geraldine; Mira, Nuno Pereira

    2017-01-05

    To thrive in the acidic vaginal tract, Candida glabrata has to cope with high concentrations of acetic acid. The mechanisms underlying C. glabrata tolerance to acetic acid at low pH remain largely uncharacterized. In this work, the essential role of the CgHaa1 transcription factor (encoded by ORF CAGL0L09339g) in the response and tolerance of C. glabrata to acetic acid is demonstrated. Transcriptomic analysis showed that CgHaa1 regulates, directly or indirectly, the expression of about 75% of the genes activated under acetic acid stress. CgHaa1-activated targets are involved in multiple physiological functions including membrane transport, metabolism of carbohydrates and amino acids, regulation of the activity of the plasma membrane H(+)-ATPase, and adhesion. Under acetic acid stress, CgHaa1 increased the activity and the expression of the CgPma1 proton pump and contributed to increased colonization of vaginal epithelial cells by C. glabrata CgHAA1, and two identified CgHaa1-activated targets, CgTPO3 and CgHSP30, are herein demonstrated to be determinants of C. glabrata tolerance to acetic acid. The protective effect of CgTpo3 and of CgHaa1 was linked to a role of these proteins in reducing the accumulation of acetic acid inside C. glabrata cells. In response to acetic acid stress, marked differences were found in the regulons controlled by CgHaa1 and by its S. cerevisiae ScHaa1 ortholog, demonstrating a clear divergent evolution of the two regulatory networks. The results gathered in this study significantly advance the understanding of the molecular mechanisms underlying the success of C. glabrata as a vaginal colonizer.

  20. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.

    Science.gov (United States)

    Guerreiro, Joana F; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-12-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.

  1. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  2. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  3. [The ABC of abscisic acid action in plant drought stress responses].

    Science.gov (United States)

    Leung, Jeffrey; Valon, Christiane; Moreau, Bertrand; Boeglin, Martin; Lefoulon, Cécile; Joshi-Saha, Archana; Chérel, Isabelle

    2012-01-01

    The combined daily consumption of fresh water ranges from 200 to 700 liters per capita per day in most developed countries, with about 70% being used for agricultural needs. Unlike other resources such as the different forms of energy, water has no other alternatives. With the looming prospect of global water crisis, the recent laudable success in deciphering the early steps in the signal transduction of the "stress hormone" abscisic acid (ABA) has ignited hopes that crops can be engineered with the capacity to maintain productivity while requiring less water input. Although ABA was first discovered in plants, it has resurfaced in the human brain (and many other non-plant organisms : sea sponge, some parasites, hydra to name a few), suggesting that its existence may be widespread. In humans, more amazingly, ABA has shown anti-inflammatory and antiviral properties. Even its receptors and key signaling intermediates have homologs in the human genome suggesting that evolution has re-fashioned these same proteins into new functional contexts. Thus, learning about the molecular mechanisms of ABA in action using the more flexible plant model will be likely beneficial to other organisms, and especially in human diseases, which is topical in the medical circle. ABA can accumulate up to 10 to 30-fold in plants under drought stress relative to unstressed conditions. The built up of the hormone then triggers diverse adaptive pathways permitting plants to withstand temporary bouts of water shortage. One favorite experimental model to unravel ABA signaling mechanisms in all of its intimate detail is based on the hormone's ability to elicit stomatal closure - a rapid cellular response of land plants to limit water loss through transpiration. Each microscopic stoma, or pore, is contoured by two specialized kidney-shaped cells called the guard cells. Because land plants are protected by a waxy cuticle impermeable to gas exchange, the stomatal pores are thus the primary portals for

  4. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    Science.gov (United States)

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  5. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Institute of Scientific and Technical Information of China (English)

    Lu; Tian; Liang; Wu

    2012-01-01

    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  6. Effect of exogenous application of salicylic acid on the drought stress responses ofGardenia jasminoides

    Institute of Scientific and Technical Information of China (English)

    XiaMei Yao; Jing Ma; Jing Ji; Chun Ou; WenQiang Gao

    2016-01-01

    The alleviative effects of exogenous salicylic acid (SA) on plants against drought stress were assessed inGardenia jasminoides seedlings treated with different concentrations of SA. Drought stress was simulated to a moderate level by 15% polyethylene glycol (PEG) 6000 treatment.Seedlings exposed to 15% PEG for 14 days exhibited a decrease in aboveground and underground dry mass, seedling height, root length, relative water content, photosynthetic pigment content, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency. In PEG-stressed plants, the levels of proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage rose significantly, whereas antioxidative activity, including superoxide, peroxidase, and catalase activities, declined in leaves. However, the presence of SA provided an effective method of mitigating PEG-caused physiological stresses on G. jasminoides seedlings, which depended on SA levels. PEG-treated plants exposed to SA at 0.5–1.0 mmol/L signif-icantly eased PEG-induced growth inhibition. Application of SA, especially at concentrations of 0.5–1.0 mmol/L, considerably improved photosynthetic pigments, photosynthesis, antioxidative activity, relative water content, and proline accumulation, and decreased MDA content, H2O2 content, and electrolyte leakage. By contrast, the positive effects were not evident, or even more severe, in PEG+SA4 treatment. Based on these physiological and biochemical data, a suitable concentration of SA, potential growth regulators, could be applied to enhance the drought tolerance of G. jasminoides.

  7. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    Science.gov (United States)

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops.

  8. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  9. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

    Science.gov (United States)

    Šeme, H; Gjuračić, K; Kos, B; Fujs, Š; Štempelj, M; Petković, H; Šušković, J; Bogovič Matijašić, B; Kosec, G

    2015-01-01

    Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application.

  10. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  11. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine.

    Science.gov (United States)

    Toumi, Imene; Moschou, Panagiotis N; Paschalidis, Konstantinos A; Bouamama, Badra; Ben Salem-Fnayou, Asma; Ghorbel, Abdel Wahed; Mliki, Ahmed; Roubelakis-Angelakis, Kalliopi A

    2010-05-01

    Polyamines (PAs) have been suggested to be implicated in plant responses to abiotic and biotic stress. Grapevine is a model perennial plant species whose cultivars respond differently to osmotic stress. In this study, we used two cultivars, one sensitive (S) and one tolerant (T) to drought. In adult vines subjected to drought under greenhouse conditions, total PAs were significantly lower in the control T- and higher in the control S-genotype and significantly increased or decreased, respectively, post-treatment. Soluble Put and Spd exhibited the greatest increase on d 8 post-treatment in the T- but not in the S-genotype, which accumulated soluble Spm. Abscisic acid (ABA) was differentially accumulated in T- and S-genotypes under drought conditions, and activated the PA biosynthetic pathway, which in turn was correlated with the differential increases in PA titers. In parallel, polyamine oxidases (PAOs) increased primarily in the S-genotype. ABA at least partially induced PA accumulation and exodus into the apoplast, where they were oxidized by the apoplastic amine oxidases (AOs), producing H2O2, which signaled secondary stress responses. The results here show that the ABA signaling pathway integrates PAs and AOs to regulate the generation of H2O2, which signals further stress responses or the PCD syndrome.

  12. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Science.gov (United States)

    Lindberg, Lina; Santos, Aline Xs; Riezman, Howard; Olsson, Lisbeth; Bettiga, Maurizio

    2013-01-01

    When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1), while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1) acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large

  13. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Directory of Open Access Journals (Sweden)

    Lina Lindberg

    Full Text Available When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D and Zygosaccharomyces bailii (CBS7555 cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP2C 2.2× and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP2C 2.7×, when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to

  14. Response of peroxidase and catalase to acid rain stress during seed germination of rice, wheat, and rape

    Institute of Scientific and Technical Information of China (English)

    Lihong WANG; Xiaohua HUANG; Qing ZHOU

    2008-01-01

    Seed germination of plants with various acid-resistance display different responses to acid rain. To understand the reason why such differences occur, the effects of simulated acid rain (pH 2.5-5.0) on the activities of peroxidase (ROD) and catalase (CAT) during seed ger-mination of rice (O. sativa),-wheat (T. aestivum), and rape (B. chinensis var. oleifera) were investigated. Results indi-cated that the maximum change in activities of CAT and POD by acid rain treatment with different acidity and time in relation to the referent treatment without acid rain, was in the order: rice (28.8%, 31.7%)wheat (4.0)>rape (5.0). Moreover, the change in activity of POD was higher than that of CAT, which showed that POD was more sensitive to acid rain stress than CAT. The difference in the ability of POD and CAT in removing free radicals was one reason why the germina-tion indexes of these three species behaved differently.

  15. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis.

    Science.gov (United States)

    Straus, Marco R; Rietz, Steffen; Ver Loren van Themaat, Emiel; Bartsch, Michael; Parker, Jane E

    2010-05-01

    Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.

  16. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Science.gov (United States)

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Angela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A S; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  17. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  18. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  19. Long-Chain Bases, Phosphatidic Acid, MAPKs and Reactive Oxygen Species as Nodal Signal Transducers in stress responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mariana eSaucedo-Garcia

    2015-02-01

    Full Text Available Due to their sessile condition, plants have developed sensitive, fast and successful ways to contend to environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases (MAPK and non-protein, smaller molecules, such as long chain bases, phosphatidic acid and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very different stimuli and evoke very different responses. These pleiotropic effects may be explained by the possibility that every one of these four mediators can be expressed from different sources, cellular location, temporality or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.

  20. Transcriptome analysis of sorbic acid-stressed Bacillus subtilis reveals a nutrient limitation response and indicates plasma membrane remodeling

    NARCIS (Netherlands)

    A. ter Beek; B.J.F. Keijser; A. Boorsma; A. Zakrzewska; R. Orij; G.J. Smits; S. Brul

    2008-01-01

    The weak organic acid sorbic acid is a commonly used food preservative, as it inhibits the growth of bacteria, yeasts, and molds. We have used genome-wide transcriptional profiling of Bacillus subtilis cells during mild sorbic acid stress to reveal the growth-inhibitory activity of this preservative

  1. [Acid stress response of Salmonella and its relationship with virulence--a review].

    Science.gov (United States)

    Ren, Jie; Zhao, Mingwen; Yao, Yufeng

    2014-04-01

    As successful enteric bacteria, Salmonella spp. has to overcome the extreme acid condition in the stomach before invading into host intestinal epithelial cells. Salmonella spp. has evolved an adaptation to its replicative niche in the acidic environment. This review summarizes acid resistant characteristics of Salmonella, and introduces several mechanisms to acid resistance, including keeping internal pH homeostatic, synthesizing acid shock protein through several regulatory pathways and altering membrane character. The achievements will be significant for understanding and controlling Salmonella infections in the future.

  2. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1995-05-09

    Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

  3. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  4. Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells

    NARCIS (Netherlands)

    Ishola, D. A.; Post, J. A.; van Timmeren, M. M.; Bakker, S. J. L.; Goldschmeding, R.; Koomans, H. A.; Braam, B.; Joles, J. A.

    2006-01-01

    Albumin induces oxidative stress and cytokine production in proximal tubular cells (PTECs). Albumin-bound fatty acids (FAs) enhance tubulopathic effects of albumin in vivo. We proposed that FA aggravation of albumin-induced oxidative stress in PTECs might be involved. We hypothesized that mitochondr

  5. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  6. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis.

    Science.gov (United States)

    De Biase, Daniela; Lund, Peter A

    2015-01-01

    Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.

  7. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    , and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid...... morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death...

  8. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae

    Science.gov (United States)

    Dong, Yachen; Hu, Jingjin; Fan, Linlin; Chen, Qihe

    2017-01-01

    As a typical harmful inhibitor in cellulosic hydrolyzates, acetic acid not only hinders bioethanol production, but also induces cell death in Saccharomyces cerevisiae. Herein, we conducted both transcriptomic and metabolomic analyses to investigate the global responses under acetic acid stress at different stages. There were 295 up-regulated and 427 down-regulated genes identified at more than two time points during acetic acid treatment (150 mM, pH 3.0). These differentially expressed genes (DEGs) were mainly involved in intracellular homeostasis, central metabolic pathway, transcription regulation, protein folding and stabilization, ubiquitin-dependent protein catabolic process, vesicle-mediated transport, protein synthesis, MAPK signaling pathways, cell cycle, programmed cell death, etc. The interaction network of all identified DEGs was constructed to speculate the potential regulatory genes and dominant pathways in response to acetic acid. The transcriptional changes were confirmed by metabolic profiles and phenotypic analysis. Acetic acid resulted in severe acidification in both cytosol and mitochondria, which was different from the effect of extracellular pH. Additionally, the imbalance of intracellular acetylation was shown to aggravate cell death under this stress. Overall, this work provides a novel and comprehensive understanding of stress responses and programmed cell death induced by acetic acid in yeast. PMID:28209995

  9. Auxin response under osmotic stress.

    Science.gov (United States)

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment.

  10. N-Aroyl Indole Thiobarbituric Acids as Inhibitors of DNA Repair and Replication Stress Response Polymerases

    Science.gov (United States)

    Coggins, Grace E.; Maddukuri, Leena; Penthala, Narsima R.; Hartman, Jessica H.; Eddy, Sarah; Ketkar, Amit; Crooks, Peter A.; Eoff, Robert L.

    2013-01-01

    Using a robust and quantitative assay, we have identified a novel class of DNA polymerase inhibitors that exhibits some specificity against an enzyme involved in resistance to anti-cancer drugs, namely human DNA polymerase eta (hpol η). In our initial screen, we identified the indole thiobarbituric acid (ITBA) derivative 5-((1-(2-bromobenzoyl)-5-chloro-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (ITBA-12) as an inhibitor of the Y-family DNA member hpol η, an enzyme that has been associated with increased resistance to cisplatin and doxorubicin treatments. An additional seven DNA polymerases from different sub-families were tested for inhibition by ITBA-12. Hpol η was the most potently inhibited enzyme (30 ± 3 μM), with hpol β, hpol γ and hpol κ exhibiting comparable but higher IC50 values of 41 ± 24 μM, 49 ± 6 μM and 59 ± 11 μM, respectively. The other polymerases tested had IC50 values closer to 80 μM. Steady-state kinetic analysis was used to investigate the mechanism of polymerase inhibition by ITBA-12. Based on changes in the Michaelis constant, it was determined that ITBA-12 acts as an allosteric (or partial) competitive inhibitor of dNTP binding. The parent ITBA scaffold was modified to produce 20 derivatives and establish structure-activity relationships by testing for inhibition of hpol η. Two compounds with N-naphthoyl Ar-substituents, ITBA-16 and ITBA-19, were both found to have improved potency against hpol η with IC50 values of 16 ± 3 μM and 17 ± 3 μM, respectively. Moreover, the specificity of ITBA-16 was improved relative to ITBA-12. The presence of a chloro substituent at position 5 on the indole ring appears to be crucial for effective inhibition of hpol η, with the indole N-1-naphthoyl and N-2-naphthoyl analogs being the most potent inhibitors of hpol η. These results provide a framework from which second-generation ITBA derivatives may be developed against specialized polymerases that are involved in

  11. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  12. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  13. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  14. Redox Signaling and CBF-Responsive Pathway are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    2016-10-01

    Full Text Available Salicylic acid (SA plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus. Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-ɑ-aminooxy-β-phenylpropionic acid (AOPP increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon.

  15. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Science.gov (United States)

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  16. Effects of supplemental ascorbic acid on humeral immune response in broilers reared under heat-stress condition

    Directory of Open Access Journals (Sweden)

    Vahel J. A. Amedy,

    2011-07-01

    Full Text Available An experiment was conducted to evaluate the efficacy of supplemental ascorbic acid (Vitamin C on the haemagglutination inhibition (HI and enzyme linked immune sorbent assay (ELISA antibody titer of the commercial broiler chicks vaccinated against Newcastle disease (ND virus, reared under heat stress condition. A total of 420, one day-old broiler chicks were randomly divided into 4 groups and kept under elevated summer temperature and treated with four levels of added ascorbic acid i.e., 0 (control group, 200, 400, 600 mg/kg in diets for 28 days, from 21 to 49 days of experimental period. HI antibody titer and ELISA antibody titer against ND virus were significantly (P<0.05 higher at 600 mg/kg Vitamin C in the diet than the others treatments. Apparently, adding ascorbic acid at 600 mg/kg in the diet could improve humoral immunity in broilers reared under heat stress.

  17. The Transcription Factor p8 Regulates Autophagy in Response to Palmitic Acid Stress via a Mammalian Target of Rapamycin (mTOR)-independent Signaling Pathway.

    Science.gov (United States)

    Jia, Sheng-Nan; Lin, Cheng; Chen, Dian-Fu; Li, An-Qi; Dai, Li; Zhang, Li; Zhao, Ling-Ling; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2016-02-26

    Autophagy is an evolutionarily conserved degradative process that allows cells to maintain homoeostasis in numerous physiological situations. This process also functions as an essential protective response to endoplasmic reticulum (ER) stress, which promotes the removal and degradation of unfolded proteins. However, little is known regarding the mechanism by which autophagy is initiated and regulated in response to ER stress. In this study, different types of autophagy were identified in human gastric cancer MKN45 cells in response to the stress induced by nutrient starvation or lipotoxicity in which the regulation of these pathways is mammalian target of rapamycin (mTOR)-dependent or -independent, respectively. Interestingly, we found that p8, a stress-inducible transcription factor, was enhanced in MKN45 cells treated with palmitic acid to induce lipotoxicity. Furthermore, an increase in autophagy was observed in MKN45 cells stably overexpressing p8 using a lentivirus system, and autophagy induced by palmitic acid was blocked by p8 RNAi compared with the control. Western blotting analyses showed that autophagy was regulated by p8 or mTOR in response to the protein kinase-like endoplasmic reticulum kinase/activating transcription factor 6-mediated ER stress of lipotoxicity or the parkin-mediated mitochondrial stress of nutrient starvation, respectively. Furthermore, our results indicated that autophagy induced by palmitic acid is mTOR-independent, but this autophagy pathway was regulated by p8 via p53- and PKCα-mediated signaling in MKN45 cells. Our findings provide insights into the role of p8 in regulating autophagy induced by the lipotoxic effects of excess fat accumulation in cells.

  18. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.

    Science.gov (United States)

    Yıldız, Mustafa; Akçalı, Nermin; Terzi, Hakan

    2015-05-01

    To evaluate the mitigating effects of exogenous lipoic acid (LA) on NaCl toxicity, proteomic, biochemical and physiological changes were investigated in the leaves of canola (Brassica napus L.) seedlings. Salinity stress decreased the growth parameters and contents of ascorbate (AsA) and glutathione (GSH), and increased the contents of malondialdehyde (MDA), proline, cysteine and the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). The foliar application of LA alleviated the toxic effects of salinity stress on canola seedlings and notably decreased MDA content and increased growth parameters, cysteine content, and activities of CAT and POD. In the proteomic analyses, total proteins from the leaves of control, LA, NaCl and NaCl+LA treated-seedlings were separated using two-dimensional gel electrophoresis (2-DE). A total of 28 proteins were differentially expressed. Of these, 21 proteins were successfully identified by MALDI-TOF/TOF MS. These proteins had functions related to photosynthesis, stress defense, energy metabolism, signal transduction, protein folding and stabilization indicating that LA might play important roles in salinity through the regulation of photosynthesis, stress defense and signal transduction related proteins. The proteomic findings have provided new insight to reveal the effect of LA on salinity stress for the first time.

  19. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis.

    Science.gov (United States)

    Bao, Yan; Song, Wei-Meng; Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis.

  20. Molecular Cloning and Characterization of Three Novel Genes Related to Fatty Acid Degradation and Their Responses to Abiotic Stresses in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    DONG Jia; WEI Li-bin; HU Yan; GUO Wang-zhen

    2013-01-01

    Fatty acid metabolism is responsible not only for oilseed metabolism but also for plant responses to abiotic stresses. In this study, three novel genes related to fatty acid degradation designated GhACX, Gh4CL, and GhMFP, respectively, were isolated from Gossypium hirsutum acc. TM-1. The phylogenetic analysis revealed that amino acid sequences of GhACX and GhMFP have the highest homology with those from Vitis vinifera, and Gh4CL has a closer genetic relationship with that from Camellia sinensis. Tissue-and organ-specific analysis showed that the three genes expressed widely in all the tested tissues, including ovules and fiber at different developing stages, with expressed preferentially in some organs. Among them, GhACX showed the most abundant transcripts in seeds at 25 d post anthesis (DPA), however, GhMFP and Gh4CL have the strongest expression level in ovules on the day of anthesis. Based on real-time quantitative RT-PCR, the three genes were differentially regulated when induced under wounding, methyl jasmonate (MeJA), cold, and abscisic acid (ABA) treatments. The characterization and expression pattern of three novel fatty acid degradation related genes will aid both to understand the roles of fatty acid degradation related genes as precursor in stress stimuli and to elucidate the physiological function in cotton oilseed metabolism.

  1. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Directory of Open Access Journals (Sweden)

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  2. The influence of DHEA pretreatment on prepulse inhibition and the HPA-axis stress response in rat offspring exposed prenatally to polyriboinosinic-polyribocytidylic-acid (PIC).

    Science.gov (United States)

    Maayan, Rachel; Ram, Edward; Biton, Doron; Cohen, Hagit; Baharav, Ehud; Strous, Rael D; Weizman, Abraham

    2012-07-11

    Prenatal exposure to maternal infection may be associated with the development of neurodevelopmental disorders as well as increased susceptibility to the development of schizophrenia. Prenatal administration of polyriboinosinic-polyribocytidilic-acid, mimicking RNA virus exposure, has been shown to induce schizophrenia-like behavioral, neurochemical and neuorophysiological abnormalities in rodent offspring. In the present study PIC prenatal administration at gestation day 15 was associated with alterations in the acoustic-startle-response/prepulse-inhibition [ASR/PPI] and the HPA-axis stress response in rat offspring on day 90. We show that pretreatment with dehydroepiandrosterone (DHEA) reverses PIC-related ASR/PPI disruption in female rats and normalizes HPA-axis stress response in a united group of male and female rats. Further research in both animal and human studies is recommended in order to confirm these preliminary findings and their application to the understanding and management of schizophrenia and related conditions.

  3. Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress

    Science.gov (United States)

    Chand, Naila; Naz, Shabana; Khan, Ajab; Khan, Sarzamin; Khan, Rifat Ullah

    2014-12-01

    This research was conducted to investigate the effect of supplementation of zinc (Zn) and ascorbic acid (AA) in heat-stressed broilers. A total of 160-day-old broiler chicks of approximately the same weight and appearance were divided into four treatment groups (control, T1, T2, and T3). Control group was fed a standard diet without any supplementation. T1 was supplemented with Zn at the rate of 60 mg/kg of feed, T2 was supplemented with 300 mg/kg of feed AA, and T3 was supplemented with combination of Zn and AA. From week 3 to 5, heat stress environment was provided at the rate of 12 h at 25 °C, 3 h at 25 to 34 °C, 6 h at 34 °C, and 3 h at 34 to 25 °C daily. The results revealed that feed intake, body weight and feed conversion ratio (FCR), and weight of thymus, spleen, and bursa of Fabricius improved significantly ( P treatments. Antibody titer against Newcastle disease (ND), infectious bursal disease (IBD), and infectious bronchitis (IB) increased significantly ( P < 0.05) in T2 and T3 groups. However, total leucocytes count, lymphocytes, and monocytes increased ( P < 0.05) in all treated groups compared to control. The results indicated that the supplementation of Zn or AA alone or in combination improved the performance and immune status of broilers reared under heat stress.

  4. Stress Physiology of Lactic Acid Bacteria.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  5. Stress Responses in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Frees, Dorte; Ingmer, Hanne

    2016-01-01

    stress responses allowing it to sense and adapt to its very different niches. The stress responses often involve dramatic cellular reprogramming, and the technological advances provided by the access to whole genome sequences have let to an unprecedented insight into the global reorganization of gene...... and protein expression following stress-exposure. Characterization of global gene responses has been very helpful both in identifying regulators sensing specific environmental stress signals and overlaps between different stress responses. In this chapter we review the recent progress in our understanding...... of the specific and general S. aureusstress responses, with a special emphasis on how stress responses contribute to virulence and antibiotic resistance in this important human pathogen....

  6. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid.

    Science.gov (United States)

    Labarthe, François; Khairallah, Maya; Bouchard, Bertrand; Stanley, William C; Des Rosiers, Christine

    2005-03-01

    The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 microM). (13)C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 +/- 118 vs. 825 +/- 44 mU/min, P citric acid cycle flux (16 +/- 1 vs. 44 +/- 4%, P acid contribution to energy metabolism (23.7 +/- 1.3 vs. 15.8 +/- 0.8%, P acid oxidation to energy production by MCFA supplementation.

  7. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  8. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  9. Role of Hyperhomocysteinemia in the Regulation of Oxidative Stress and Inflammatory Responses in the Kidney: Protective Effect of Folic Acid Supplementation

    Science.gov (United States)

    Hwang, Sun-Young

    Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) level, is an independent risk factor for cardiovascular disease. Folic acid supplementation can effectively reduce blood Hcy levels. Recent studies have demonstrated that hyperhomocysteinemia is also associated with kidney disease. However, the underlying mechanisms remain unclear. The overall objective of the study was to investigate the biochemical and molecular mechanisms of Hcy-induced kidney injury and the effect of folic acid supplementation on Hcy-induced kidney injury. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 12 weeks. An elevation of serum total Hcy level was observed in hyperhomocysteinemic rats. Hyperhomocysteinemia-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation resulted in oxidative stress in the kidney. Reduction of oxidative stress by inhibiting superoxide anion production effectively ameliorated hyperhomocysteinemia-induced kidney injury. Inflammatory responses such as increased chemokine expression have been implicated as one of the mechanisms of kidney disease. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that is involved in the inflammatory response in kidney disease. Nuclear factor-kappa B (NF-kappaB) plays an important role in upregulation of MCP-1 expression. We investigated the effect of hyperhomocysteinemia on MCP-1 expression and the molecular mechanism responsible for such an effect in rat kidneys as well as in human kidney proximal tubular cells.

  10. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    Directory of Open Access Journals (Sweden)

    Shakilur Rahman

    2011-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC Coville (creosote bush. It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA. Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer.

  11. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin.

    Science.gov (United States)

    Rahman, Shakilur; Ansari, Rizwan Ahmed; Rehman, Hasibur; Parvez, Suhel; Raisuddin, Sheikh

    2011-01-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC) Coville (creosote bush). It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer.

  12. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice.

    Science.gov (United States)

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-12-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.

  13. Responses of antioxidant enzyme and photosynthesis in rape seedling to the combined stresses of acid rain and ultraviolet-B radiation

    Institute of Scientific and Technical Information of China (English)

    LIANG Chan-juan; HUANG Xiao-hua; TAO Wen-yi; ZHOU Qing

    2005-01-01

    Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR +UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation.According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability,M DA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B > UV-B > AR.

  14. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

  15. Neuronal responses to physiological stress

    Directory of Open Access Journals (Sweden)

    Konstantinos eKagias

    2012-10-01

    Full Text Available Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. Physiological stress can be divided into three different aspects: environmental stress, intrinsic developmental stress and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature and redox state for example, trigger molecular events that enable an organism to adapt, survive and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, which result from an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.

  16. Characterization of VuMATE1 expression in response to iron nutrition and aluminum stress reveals adaptation of rice bean (Vigna umbellata to acid soils through cis regulation

    Directory of Open Access Journals (Sweden)

    Meiya eLiu

    2016-04-01

    Full Text Available Rice bean (Vigna umbellata VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acidic soils where Al stress imposed but Fe deficiency pressure released.

  17. Individual heat stress response

    NARCIS (Netherlands)

    Havenith, G.

    1997-01-01

    In 5 experiments, heterogeneous subject groups (large variations in _VO2 max, regular daily activity level, mass, body surface area (AD), % body fat, and AD/mass ratio) were tested for their physiological response while exercising on a cycle ergometer at a relative (45% _VO2 max; REL) or an absolute

  18. Stress disrupts response memory retrieval.

    Science.gov (United States)

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2013-08-01

    Stress effects on memory are well-known. Most studies, however, focused on the impact of stress on hippocampus-dependent 'declarative' memory processes. Less is known about whether stress influences also striatum-based memory processes, such as stimulus-response (S-R) memory. First evidence from rodent experiments shows that glucocorticoid stress hormones may enhance the consolidation of S-R memories. Whether stress affects also S-R memory retrieval remains largely elusive. Therefore, we tested in the present experiment in humans the effect of stress on the retrieval of S-R memories. Healthy men and women were trained to locate three objects in an S-R version of a virtual eight-arm radial maze. One week later, participants underwent a stressor or a control condition before their memory of the S-R task was tested. Our results showed that participants (n=43) who were exposed to the stressor before retention testing made significantly more errors in this test trial, suggesting that stress impaired S-R memory retrieval. Moreover, high cortisol concentrations were associated with reduced S-R memory. These findings indicate that stress may affect memory retrieval processes in humans beyond hippocampal 'declarative' memory.

  19. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses.

    Directory of Open Access Journals (Sweden)

    Cathryn L Haigh

    Full Text Available Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS, as previously reported, and a further interaction with phosphatidic acid (PA was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation. Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.

  20. Rhythmic changes in ascorbic acid production in ozone-sensitive and tolerant soybean leaves in response to ozone stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.H.

    1986-04-01

    Relationships between foliar ozone (O/sub 3/) tolerance and leaf ascorbic acid (AA) concentrations in O/sub 3/-susceptible (O/sub 3/-S) Hark and O/sub 3/-resistant (O/sub 3/-R) Hood soybean cultivars were examined by high-performance liquid chromatography. Plants were grown in charcoal filtered (CF) and non-filtered (NF) air and leaf samples were analyzed at 4 h intervals during a 24 h period. Ascorbic acid concentrations showed a significant 24 h rhythm; during the day time, the highest AA levels in leaves coincided with the highest concentrations of photochemical oxidants in the atmosphere at 2:00 pm. In CF air both O/sub 3/-S and O/sub 3/-R cultivars showed AA production rhythms. In NF air the O/sub 3/-R cultivars retained this rhythm, but the O/sub 3/-S cultivar did not. Results indicated that superior O/sub 3/ tolerance in the Hood cultivar (compared with Hark) was associated with much greater increases in endogenous levels of AA which may scavenge free radicals and thereby protect cells from injury by O/sub 3/ or other oxyradical products.

  1. Response of Fe-S cluster assembly machinery of Escherichia coli to mechanical stress in a model of amino-acid crystal fermentation.

    Science.gov (United States)

    Okutani, Satoshi; Iwai, Takayoshi; Iwatani, Shintaro; Matsuno, Kiyoshi; Takahashi, Yasuhiro; Hase, Toshiharu

    2015-09-01

    During amino-acid crystal fermentation, mechanical stress on bacterial cells caused by crystal collision often impacts negatively on bacterial growth and amino-acid production. When Escherichia coli cells were cultivated under mechanical stress of polyvinyl chloride particles as a model of the crystal fermentation, activities of iron-sulfur (Fe-S) cluster-containing enzymes were apparently decreased. Based on an assumption that function of Fe-S cluster assembly machinery would be elevated to recover the enzyme activities in such stressed cells, we analyzed levels of various components of Fe-S cluster assembly machinery by western blotting. It was found that the expression of HscA, a chaperon component of the machinery, was up-regulated and that shorter forms of HscA with the N-terminal region truncated were accumulated, suggesting an important role of HscA against the mechanical stress. An overexpression of HscA gene in E. coli cells gave a positive effect on rescue of the stress-induced decrease of the activity of Fe-S cluster-containing enzyme. These results may provide a new strategy to alleviate the mechanical stress during the amino-acid crystal fermentation.

  2. Plant Responses to Nanoparticle Stress

    Directory of Open Access Journals (Sweden)

    Zahed Hossain

    2015-11-01

    Full Text Available With the rapid advancement in nanotechnology, release of nanoscale materials into the environment is inevitable. Such contamination may negatively influence the functioning of the ecosystems. Many manufactured nanoparticles (NPs contain heavy metals, which can cause soil and water contamination. Proteomic techniques have contributed substantially in understanding the molecular mechanisms of plant responses against various stresses by providing a link between gene expression and cell metabolism. As the coding regions of genome are responsible for plant adaptation to adverse conditions, protein signatures provide insights into the phytotoxicity of NPs at proteome level. This review summarizes the recent contributions of plant proteomic research to elaborate the complex molecular pathways of plant response to NPs stress.

  3. Acid Tolerance Response of Anaerobic Sludge with Butyric Acid Stress during the Enhanced Biohydrogen Process%生物产氢过程中厌氧污泥耐酸响应的生物化学机制

    Institute of Scientific and Technical Information of China (English)

    孟影; 张光生; 王爱杰; 严群

    2012-01-01

    During the anaerobic digestion of biomass,large amounts of organic acids were produced. This results in an inhibitory effect on anaerobic microbiology,which in turn inhibits large-scale production of hydrogen. In this study, butyric acid was use as stress on the sludge, and it was found that the production rates of butyric acid, acetic acid and hydrogenwas reached at 400 mmol/mol, 1100 mmol/mol, 3690 mL/mol, respectively, which was higher 110%, 54% and 65% than that of the corresponding values in the control group. Moreover, glutamate acid decarboxylase (GAD) activity, dehydrogenase activity and the content of DNA was in-creased to 11. 6 ,μm/(g · TS · h), 6982. 12 μg TF/(g · TS · h) 14. 72 ng/mL, with an increment of 48%, 50%, 10.7%, respectively, and the content of extracellular polymeric substances (EPS) have improved significantly, loose bound protein, loose bound polysaccharide, tight bound protein and tight bound polysaccharide content were 147%, 34. 8%, 35%, 21. 6% higher than that of the control. The results demonstrate that the appropriate concentration of butyric acid stress on sludge can excite acid tolerance response (Acid tolerance response, ATR) and to improve acid tolerance of sludge, and improve the efficiency of anaerobic hydrogen production.%生物质厌氧发酵产氢过程中积累的大量酸性物质,会对厌氧微生物产生抑制作用,进而制约氢气的持续产生.作者采用不同浓度丁酸对污泥进行胁迫,结果表明:当丁酸胁迫质量浓度为6 g/L时,污泥厌氧发酵过程中丁酸、乙酸以及氢气产量最高,分别达到1 071 mmol/mol,462mmol/mol和3 690 mL/mol,比对照组分别提高了110%,54%和65%;此外,产氢过程中谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)、脱氢酶以及DNA总量活性最高达到11.6μmol/(g·TS·h),6 982.12 μg TF/(g·TS·h),14.72 ng/mL,相对于对照组分别提高了48%,50%,10.7%;同时,经过酸胁迫后,

  4. Various levels and forms of dietary α-lipoic acid in broiler chickens: Impact on blood biochemistry, stress response, liver enzymes, and antibody titers.

    Science.gov (United States)

    Kim, D W; Mushtaq, M M H; Parvin, R; Kang, H K; Kim, J H; Na, J C; Hwangbo, J; Kim, J D; Yang, C B; Park, B J; Choi, H C

    2015-02-01

    The present experiment was conducted to evaluate the impact of various levels and forms of α-lipoic acid (ALA) on blood biochemistry, immune and stress response, and antibody titers in broiler chickens. The four levels (7.5, 15, 75, and 150 ppm) and 2 sources (powder, P-ALA and encapsulated, E-ALA) of ALA along with negative (C-) and positive control (C+; contains antibiotics) diets consisted of 10 dietary treatments, and these treatments were allocated to 1,200 1-d-old chicks and were replicated 12 times with 10 birds per replicate. Among the blood biochemistry parameters, creatinine levels were almost 3 times lower in E-ALA-supplemented diets compared to the C- diet (0.09 vs. 0.25 mg/dL; P0.05). The concentration of cortisol was reduced in chickens fed ALA-supplemented diets as compared to the C- diet (Pstress in broiler chickens. The encapsulated form of ALA was more effective than the powder form.

  5. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    Science.gov (United States)

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress.

  6. Combinatorial stress responses: direct coupling of two major stress responses in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daniel R. Brown

    2014-09-01

    Full Text Available Nitrogen is an essential element for all life, and this is no different for the bacterial cell. Numerous cellular macromolecules contain nitrogen, including proteins, nucleic acids and cell wall components. In Escherichia coli and related bacteria, the nitrogen stress (Ntr response allows cells to rapidly sense and adapt to nitrogen limitation by scavenging for alternative nitrogen sources through the transcriptional activation of transport systems and catabolic and biosynthetic operons by the global transcriptional regulator NtrC. Nitrogen-starved bacterial cells also synthesize the (pppGpp effector molecules of a second global bacterial stress response - the stringent response. Recently, we showed that the transcription of relA, the gene which encodes the major (pppGpp synthetase in E. coli, is activated by NtrC during nitrogen starvation. Our results revealed that in E. coli and related bacteria, NtrC functions in combinatorial stress and serves to couple two major stress responses, the Ntr response and stringent response.

  7. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens;

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  8. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses.

    Science.gov (United States)

    Moons, Ann

    2008-12-01

    The role of plant pleiotropic drug resistance (PDR) type ATP-binding cassette (ABC) transporters remains poorly understood. We characterized the expression of the rice pleiotropic drug resistance (PDR) gene family in roots, where PDR transporters are believed to have major functions. A prototypical oligonucleotide array was developed containing 70-mers chosen in the gene-specific 3' untranslated regions of the rice PDR genes, other full-molecule rice ABC transporter genes and relevant marker genes. Jasmonates, which are involved in plant defense and secondary metabolism, proved major inducers of PDR gene expression. Over half of the PDR genes were JA-induced in roots of rice; OsPDR9 to the highest level. Salicylic acid, involved in plant pathogen defense, markedly induced the expression of OsPDR20. OsPDR20 was cDNA cloned and characterized. Abscisic acid, typically involved in water deficit responses, particularly induced OsPDR3 in roots and shoot and OsPDR6 in rice leaves. OsPDR9 and OsPDR20 were furthermore up-regulated in response to dithiothreitol- or glutathione-induced redox perturbations. Exogenous application of the weak organic acids lactic acid, malic acid, and citric acid differentially induced the expression of OsPDR3, OsPDR8, OsPDR9 and OsPDR20 in rice seedling roots. This transcriptional survey represents a guide for the further functional analysis of individual PDR transporters in roots of rice.

  9. Subjective Stress, Salivary Cortisol, and Electrophysiological Responses to Psychological Stress

    OpenAIRE

    Qi, Mingming; Gao, Heming; Guan, Lili; Liu, Guangyuan; Yang, Juan

    2016-01-01

    The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition) or without a time limit (the control condition). The results showed that participants reported higher levels of stress, anxiety,...

  10. Effects of {sup 12}C{sup 6+} ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jing [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang, Zhenhua; Wu, Zhenhua [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Lu, Jiang [Key Laboratory of Xinjiang Phytomedicine Resources, College of Pharmacy, Shihezi University, Shihezi 832002 (China); Di, Cuixia; Zhou, Xin [Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang, Xiaowei [Key Laboratory of Xinjiang Phytomedicine Resources, College of Pharmacy, Shihezi University, Shihezi 832002 (China)

    2013-05-15

    Highlights: • Carbon ion radiation increased the oxidative stress in zebrafish embryos. • Carbon ion radiation induced transcriptional level effects. • The transcriptional level displayed more sensitivity to low dose radiation than the antioxidant enzyme activities. • FA induced radioprotective effects by the inhibition of oxidative stress. - Abstract: The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1 Gy, 3 Gy and 7 Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn–sod, Mn–sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better

  11. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  12. Agreeableness, Extraversion, Stressor and Physiological Stress Response

    OpenAIRE

    Xiaoyuan Chu; Zhentao Ma; Yuan Li; Jing Han

    2015-01-01

    Based on the theoretical analysis, with first-hand data collection and using multiple regression models, this study explored the relationship between agreeableness, extraversion, stressor and stress response and figured out interactive effect of agreeableness, extraversion, and stressor on stress response. We draw on the following conclusions: (1) the interaction term of stressor (work) and agreeableness can negatively predict physiological stress response; (2) the interaction term of stresso...

  13. Stress responses in probiotic Lactobacillus casei.

    Science.gov (United States)

    Hosseini Nezhad, Marzieh; Hussain, Malik Altaf; Britz, Margaret Lorraine

    2015-01-01

    Survival in harsh environments is critical to both the industrial performance of lactic acid bacteria (LAB) and their competitiveness in complex microbial ecologies. Among the LAB, members of the Lactobacillus casei group have industrial applications as acid-producing starter cultures for milk fermentations and as specialty cultures for the intensification and acceleration of flavor development in certain bacterial-ripened cheese varieties. They are amongst the most common organisms in the gastrointestinal (GI) tract of humans and other animals, and have the potential to function as probiotics. Whether used in industrial or probiotic applications, environmental stresses will affect the physiological status and properties of cells, including altering their functionality and biochemistry. Understanding the mechanisms of how LAB cope with different environments is of great biotechnological importance, from both a fundamental and applied perspective: hence, interaction between these strains and their environment has gained increased interest in recent years. This paper presents an overview of the important features of stress responses in Lb. casei, and related proteomic or gene expression patterns that may improve their use as starter cultures and probiotics.

  14. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged ...

  15. All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress.

    Science.gov (United States)

    Tokarz, Paulina; Piastowska-Ciesielska, Agnieszka Wanda; Kaarniranta, Kai; Blasiak, Janusz

    2016-06-14

    Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids-which regulates cell proliferation, differentiation, and the visual cycle in the retina-was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD.

  16. Stress responses and pre-eclampsia.

    Science.gov (United States)

    Redman, C W G

    2013-04-01

    Biological stress may affect individual cells, tissues or whole organisms, arising from disturbed homoeostasis of any cause. Stress is rarely localised. Because biological systems are closely integrated, it spreads to involve other systems. Stress responses are highly integrated and work to restore homoeostasis. Different response pathways overlap and interlink. If the responses fail or decompensate, distress ensues, of which the end-stage is death. Pre-eclampsia results from a series of biological stresses, possibly from conception, which become established by abnormal placentation and affect the mother, her foetus and her placenta. The stresses involve dialogue between mother and placenta. Even a normal placenta imposes substantial stress on maternal systems. When placental growth and perfusion is abnormal (poor placentation) then the placenta, particularly its outer trophoblast layer, becomes stressed - loosely denoted hypoxic damage or oxidative stress. Signals from the placenta spread the stress to the mother, who develops signs of pre-eclampsia. Cellular stress sensors initiate stress responses. Different stresses may trigger similar responses in specific cell types. The first cell response is reduced protein synthesis. However some synthetic pathways are spared or activated to produce stress signals. In relation to pre-eclampsia and the placenta, an excessive release of sFlt-1 a soluble decoy receptor for vascular endothelial growth factor (VEGF) is a trophoblast related stress signal. SFlt1 perturbs the angiogenic balance in the maternal circulation and is considered to cause many of the specific features of the maternal syndrome in pre-eclampsia. Three key points will be emphasised. First, multiple stressors, not simply hypoxia, stimulate the release of sFlt-1 from trophoblast. Second, sFlt-1 is only one of the group of stress signals delivered by trophoblast to the mother. Third, sFlt-1 is not the only trophoblast derived factor to perturb the maternal

  17. Oxidative stress response in sugarcane

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Soares Netto

    2001-12-01

    Full Text Available Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.A resposta ao estresse oxidativo não é bem conhecida em plantas como em bactérias, leveduras e humanos. Por exemplo, assume-se que óxido nítrico tem várias fun

  18. PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation

    Directory of Open Access Journals (Sweden)

    Ranford-Cartwright Lisa

    2009-05-01

    Full Text Available Abstract Background Post-transcriptional control of gene expression is suspected to play an important role in malaria parasites. In yeast and metazoans, part of the stress response is mediated through phosphorylation of eukaryotic translation initiation factor 2α (eIF2α, which results in the selective translation of mRNAs encoding stress-response proteins. Methods The impact of starvation on the phosphorylation state of PfeIF2α was examined. Bioinformatic methods were used to identify plasmodial eIF2α kinases. The activity of one of these, PfeIK1, was investigated using recombinant protein with non-physiological substrates and recombinant PfeIF2α. Reverse genetic techniques were used to disrupt the pfeik1 gene. Results The data demonstrate that the Plasmodium falciparum eIF2α orthologue is phosphorylated in response to starvation, and provide bioinformatic evidence for the presence of three eIF2α kinases in P. falciparum, only one of which (PfPK4 had been described previously. Evidence is provided that one of the novel eIF2α kinases, PfeIK1, is able to phosphorylate the P. falciparum eIF2α orthologue in vitro. PfeIK1 is not required for asexual or sexual development of the parasite, as shown by the ability of pfeik1- parasites to develop into sporozoites. However, eIF2α phosphorylation in response to starvation is abolished in pfeik1- asexual parasites Conclusion This study strongly suggests that a mechanism for versatile regulation of translation by several kinases with a similar catalytic domain but distinct regulatory domains, is conserved in P. falciparum.

  19. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  20. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), ...

  1. Process Control Minitoring by Stress Response

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Stahl, David A.

    2006-04-17

    Environmental contamination with a variety of pollutants hasprompted the development of effective bioremediation strategies. But howcan these processes be best monitored and controlled? One avenue underinvestigation is the development of stress response systems as tools foreffective and general process control. Although the microbial stressresponse has been the subject of intensive laboratory investigation, theenvironmental reflection of the laboratory response to specific stresseshas been little explored. However, it is only within an environmentalcontext, in which microorganisms are constantly exposed to multiplechanging environmental stresses, that there will be full understanding ofmicrobial adaptive resiliency. Knowledge of the stress response in theenvironment will facilitate the control of bioremediation and otherprocesses mediated by complex microbial communities.

  2. Acid stress in the pathology of asthma.

    Science.gov (United States)

    Ricciardolo, Fabio L M; Gaston, Benjamin; Hunt, John

    2004-04-01

    Although alteration of airway pH may serve an innate host defense capacity, it also is implicated in the pathophysiology of obstructive airway diseases. Acid-induced asthma appears in association with gastroesophageal reflux after accidental inhalation of acid (fog, pollution, and workplace exposure) and in the presence of altered airway pH homeostasis. Endogenous and exogenous exposures to acids evoke cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucous, fluid, and nitric oxide. Abnormal acidity of the airways is reflected in exhaled breath assays. The intimate mechanisms of acid-induced airway obstruction are dependent on activation of capsaicin-sensitive sensory nerves. Protons activate these nerves with the subsequent release of tachykinins (major mediators of this pathway) that, in conjunction with kinins, nitric oxide, oxygen radicals, and proteases, modulate diverse aspects of airway dysfunction and inflammation. The recognition that acid stress might initiate or exacerbate airway obstructive symptomatology has prompted the consideration of new therapies targeting pH homeostasis.

  3. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  4. Soybean toxin (SBTX impairs fungal growth by interfering with molecular transport, carbohydrate/amino acid metabolism and drug/stress responses.

    Directory of Open Access Journals (Sweden)

    Janne K S Morais

    Full Text Available Soybean toxin (SBTX is an antifungal protein from soybeans with broad inhibitory activity against the growth and filamentation of many fungi, including human and plant pathogenic species such as Candida albicans, Candida parapsilosis, Aspergillus niger, Penicillium herquei, Cercospora sojina and Cercospora kikuchii. Understanding the mechanism by which SBTX acts on fungi and yeasts may contribute to the design of novel antifungal drugs and/or the development of transgenic plants resistant to pathogens. To this end, the polymorphic yeast C. albicans was chosen as a model organism and changes in the gene expression profile of strain SC5314 upon exposure to SBTX were examined. Genes that were differentially regulated in the presence of SBTX were involved in glucose transport and starvation-associated stress responses as well as in the control of both the induction and repression of C. albicans hyphal formation. Transmission electron microscopy showed that C. albicans cells exposed to SBTX displayed severe signs of starvation and were heavily granulated. Our data were indicative of C. albicans cell starvation despite sufficient nutrient availability in the medium; therefore, it can be speculated that SBTX blocks nutrient uptake systems. Because neither the starvation signal nor the alkaline response pathway lead to the induction of hyphae, we hypothesise that conflicting signals are transmitted to the complex regulatory network controlling morphogenesis, eventually preventing the filamentation signal from reaching a significant threshold.

  5. Soybean toxin (SBTX) impairs fungal growth by interfering with molecular transport, carbohydrate/amino acid metabolism and drug/stress responses.

    Science.gov (United States)

    Morais, Janne K S; Bader, Oliver; Weig, Michael; Oliveira, Jose Tadeu A; Arantes, Mariana R; Gomes, Valdirene M; Da Cunha, Maura; Oliveira, Hermogenes D; Sousa, Daniele O B; Lourencao, Andre L; Vasconcelos, Ilka M

    2013-01-01

    Soybean toxin (SBTX) is an antifungal protein from soybeans with broad inhibitory activity against the growth and filamentation of many fungi, including human and plant pathogenic species such as Candida albicans, Candida parapsilosis, Aspergillus niger, Penicillium herquei, Cercospora sojina and Cercospora kikuchii. Understanding the mechanism by which SBTX acts on fungi and yeasts may contribute to the design of novel antifungal drugs and/or the development of transgenic plants resistant to pathogens. To this end, the polymorphic yeast C. albicans was chosen as a model organism and changes in the gene expression profile of strain SC5314 upon exposure to SBTX were examined. Genes that were differentially regulated in the presence of SBTX were involved in glucose transport and starvation-associated stress responses as well as in the control of both the induction and repression of C. albicans hyphal formation. Transmission electron microscopy showed that C. albicans cells exposed to SBTX displayed severe signs of starvation and were heavily granulated. Our data were indicative of C. albicans cell starvation despite sufficient nutrient availability in the medium; therefore, it can be speculated that SBTX blocks nutrient uptake systems. Because neither the starvation signal nor the alkaline response pathway lead to the induction of hyphae, we hypothesise that conflicting signals are transmitted to the complex regulatory network controlling morphogenesis, eventually preventing the filamentation signal from reaching a significant threshold.

  6. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    Science.gov (United States)

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  7. Tomato ABSCISIC ACID STRESS RIPENING (ASR gene family revisited.

    Directory of Open Access Journals (Sweden)

    Ido Golan

    Full Text Available Tomato ABSCISIC ACID RIPENING 1 (ASR1 was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each, whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons. ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA. Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  8. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  9. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  10. EFFECTS OF ASCORBIC ACID AND ACETYLSALICYLIC ACID SUPPLEMENTATION ON THE PERFORMANCE OF BROILER CHICKS EXPOSED TO HEAT STRESS

    Directory of Open Access Journals (Sweden)

    B. Anwar, S. A. Khan, A. Aslam, A. Maqbool1 and K. A. Khan

    2004-07-01

    Full Text Available A total of 100, day-old broiler chicks were randomly divided into 5 equal groups and kept under elevated temperature (93-97oF to see the effect of ascorbic acid and acetylsalicylic acid on the feed conversion ratio (FCR, immune status and ratio of weight of bursa, thymus and spleen to body weight. Heat stress increased the FCR but decreased the immune response and ratio of bursa, thymus and spleen to body weight of the birds. Ascorbic acid and acetylsalicylic acid supplementation during heat stress had beneficial effects on FCR, immune status and ratio of bursa, thymus and spleen to body weight. Grossly, bursa, thymus and spleen of heat stressed birds were atrophied but in ascorbic acid and acetylsalicylic acid supplemented birds these organs were not atrophied. No specific histopathological changes were observed in all groups.

  11. Endocannabinoids and the cardiovascular response to stress.

    Science.gov (United States)

    O'Sullivan, Saoirse E; Kendall, Patrick J; Kendall, David A

    2012-01-01

    Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.

  12. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  13. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses.

    Science.gov (United States)

    Atkinson, Nicky J; Lilley, Catherine J; Urwin, Peter E

    2013-08-01

    In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.

  14. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.;

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehens...

  15. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  16. Transcriptional Regulation of Arabidopsis in Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Zhulong Chan

    2012-01-01

    biotic stress related genes were significantly changed by Sha ecotype effect.Several metabolic pathways such as tricarboxylic acid cycle and redox,and the Gene Ontology terms involved in oxidation and defense response were enriched by both salinity and ecotype effects.All these results indicated that the all transgenic plants and Sha ecotype were possibly preconditioned to salt stress.These comparative transcriptomic and analytical results also confirm the complexity of salt stress tolerance mechanisms,and they suggest additional targets for improving tolerance.

  17. Oxidative stress response in Paracoccidioides brasiliensis.

    Science.gov (United States)

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  18. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  19. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  20. The Effect of Acid Stress Treatment on Viability and Membrane Fatty Acid Composition of Oenococcus oeni SD-2a

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-ying; LI Hua; WANG Hua; LI Zhong-chao; WANG Ai-lian

    2009-01-01

    To obtain ready-to-use wine malolactic starter cultures with high viability, the effects of acid stress treatments on the growth, inoculation viability, freeze-drying viability, and membrane fatty acid composition of the native Oenococcus oeni SD-2a strain were studied. The results showed that pH 3.5 and 3.2 adaptive treatments did not strongly decrease cell biomass but increased distinctly inoculation viability and freeze-drying viability. Concerning the membrane fatty acid composition, it was observed that acid stress conditions increased significantly the relative concentration of lactobacillic acid (C19cycl 1) and the unsaturated:saturated fatty acid ratio in cell membrane lipids. We assumed that acid-induced cross protective responses could be used in preparing ready-to-use O. oeni SD-2a malolactic starter cultures, and the accumulation of lactobacillic acid in the membrane of O. oeni SD-2a cells appears as an acid stress response mechanism,which might be related with the enhanced viability.

  1. The Progress of Proteomics Technology and Its Application in Lactic Acid Bacteria's Responses to Environmental Stress%蛋白组学技术在乳酸菌环境胁迫应激研究中的应用

    Institute of Scientific and Technical Information of China (English)

    周方方; 吴正钧; 艾连中; 刘振民

    2012-01-01

    文中介绍了蛋白质组学新技术原理及常用技术路线,着重论述了该技术对乳酸菌在各种不同环境胁迫应激研究中的应用,从酸胁迫、冷胁迫、胆盐胁迫、渗透压胁迫及氧化胁迫等方面分别做了应用分析,并对该技术在分子生物学领域尤其是乳酸菌分子生物学研究方面未来的发展做了展望。%The progress of proteomics technology was reviewed in this paper. The application of proteomics tech- nology to analyze the response of lactic acid bacteria to environmental stress was also summarized. The predominant environmental stress factors influencing the physiology of Lactic acid bacteria including acidity stress, cold stress, bile salt stress, osmotic stress and oxidative stress were discussed. Development and future direction were also suggested for proteomics technology in the field of molecular biology, especially in lactic acid bacteria molecular biology.

  2. Long Term Salinity Stress Reveals Variety Specific Differences in Root Oxidative Stress Response

    Institute of Scientific and Technical Information of China (English)

    Prasad SENADHEERA; Shamala TIRIMANNE; Frans J M MAATHUIS

    2012-01-01

    Salinity stress induces oxidative stress caused by reactive oxygen species (ROS):superoxide radicals,hydrogen peroxide (H2O2) and hydroxyl radicals.Activities of both enzymatic and non-enzymatic components of the antioxidant system and related growth parameters were studied in the roots of the salt tolerant rice variety FL478 and the sensitive variety IR29 in response to long term stress (12 d) induced by 50 mmol/L NaCl.The comparative study showed that FL478maintained higher relative growth rate and lower Na+/K+ in the roots than IR29 due to a higher membrane stability index that effectively exclude Na+.Lower TBARS (thiobarbituric acid reactive substance) content in FL478 roots indicated that its membrane was relatively unaffected by ROS despite high H2O2 content recorded under the salinity stress.Relatively higher superoxide dismutase activity along with a parallel increase in transcript level of superoxide dismutase (Os07946990) in FL478 indicated that this protein might make a vital contribution to salt stress tolerance.Although the content of ascorbic acid remained unchanged in FL478,the activity of ascorbic peroxidases (APOXs) was reduced comparably in the both varieties.Transcriptomic data showed that a larger number of peroxidase genes were upregulated in FL478 compared to IR29 and several of which might provide engineering targets to improve rice salt tolerance.

  3. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  4. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    OpenAIRE

    Rapala-Kozik Maria; Wolak Natalia; Kujda Marta; Banas Agnieszka K

    2012-01-01

    Abstract Background Recent reports suggest that vitamin B1 (thiamine) participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds duri...

  5. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    Science.gov (United States)

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes.

  6. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  7. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  8. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    Science.gov (United States)

    Jandric, Zeljkica; Gregori, Christa; Klopf, Eva; Radolf, Martin; Schüller, Christoph

    2013-01-01

    Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway. PMID:24324463

  9. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    Directory of Open Access Journals (Sweden)

    Zeljkica eJandric

    2013-11-01

    Full Text Available Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in Candida glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologues CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species, and required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway.

  10. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Science.gov (United States)

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  11. Response to temperature stress in rhizobia.

    Science.gov (United States)

    Alexandre, Ana; Oliveira, Solange

    2013-08-01

    It is well established that soil is a challenging environment for bacteria, where conditions may change rapidly and bacteria have to acclimate and adapt in order to survive. Rhizobia are an important group of soil bacteria due to their ability to establish atmospheric nitrogen-fixing symbioses with many legume species. Some of these legumes are used to feed either humans or cattle and therefore the use of rhizobia can reduce the need for synthetic N-fertilizers. Several environmental factors shape the composition and the activity of rhizobia populations in the rhizosphere. Soil pH and temperature are often considered to be the major abiotic factors in determining the bacterial community diversity. The present review focuses on the current knowledge on the molecular bases of temperature stress response in rhizobia. The effects of temperature stress in the legume-rhizobia symbioses are also addressed.

  12. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  13. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    Science.gov (United States)

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications.

  14. The early stress responses in fish larvae.

    Science.gov (United States)

    Pederzoli, Aurora; Mola, Lucrezia

    2016-05-01

    During the life cycle of fish the larval stages are the most interesting and variable. Teleost larvae undergo a daily increase in adaptability and many organs differentiate and become active. These processes are concerted and require an early neuro-immune-endocrine integration. In larvae communication among the nervous, endocrine and immune systems utilizes several known signal molecule families which could be different from those of the adult fish. The immune-neuroendocrine system was studied in several fish species, among which in particular the sea bass (Dicentrarchus labrax), that is a species of great commercial interest, very important in aquaculture and thus highly studied. Indeed the immune system of this species is the best known among marine teleosts. In this review the data on main signal molecules of stress carried out on larvae of fish are considered and discussed. For sea bass active roles in the early immunological responses of some well-known molecules involved in the stress, such as ACTH, nitric oxide, CRF, HSP-70 and cortisol have been proposed. These molecules and/or their receptors are biologically active mainly in the gut before complete differentiation of gut-associated lymphoid tissue (GALT), probably acting in an autocrine/paracrine way. An intriguing idea emerges from all results of these researches; the molecules involved in stress responses, expressed in the adult cells of the hypothalamic-pituitary axis, during the larval life of fish are present in several other localizations, where they perform probably the same role. It may be hypothesized that the functions performed by hypothalamic-pituitary system are particularly important for the survival of the larva and therefore they comprises several other localizations of body. Indeed the larval stages of fish are very crucial phases that include many physiological changes and several possible stress both internal and environmental.

  15. Lifestyle, stress and cortisol response: Review I: Mental stress

    OpenAIRE

    Fukuda, Sanae; Morimoto, Kanehisa

    2001-01-01

    The incidences of diseases related to mental stress are increasing in Japan. Mental stress, unacknowledged for long periods, has been shown to lead to the development of a number of diseases. Thus, an index for mental stress is important to induce awareness of its presence. We focused on the relationship between cortisol and mental stress in this review. We will discuss both the usefulness and problems of cortisol as a mental stress index by summarizing the relationship between cortisol and m...

  16. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium.

    Science.gov (United States)

    Fernández, Ana; Alvarez-Ordóñez, Avelino; López, Mercedes; Bernardo, Ana

    2009-08-01

    In this study the adaptative response to heat (70 degrees C) of Enterococcus faecium using fresh and refrigerated (at 4 degrees C for up to 1 month) stationary phase cells grown in Brain Heart Infusion (BHI) buffered at pH 7.4 (non-acid-adapted cells) and acidified BHI at pH values of 6.4 and 5.4 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids (acid-adapted cells) was evaluated. In all cases, the survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetic. The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, whereas the subsequent cold storage of cells reduced E. faecium thermal tolerance. Fresh acid-adapted cells showed t(2.5)-values (time needed to obtain an inactivation level of 2.5 log10 cycles) ranging from 2.57 to 9.51 min, while non-acid-adapted cells showed t(2.5)-values of 1.92 min. The extent of increased heat tolerance varied with the acid examined, resulting in the following order: citric > or = acetic > malic > or = lactic > hydrochloric > or = ascorbic. In contrast, cold storage progressively decreased E. faecium thermal resistance. The t(2.5) values found at the end of the period studied were about 2-3-fold lower than those corresponding to non-refrigerated cells, although this decrease was more marked (about 5-fold) when cells were grown in buffered BHI and BHI acidified at pH 5.4 with hydrochloric acid. These findings highlight the need for a better understanding of microbial response to various preservation stresses in order to increase the efficiency of thermal processes and to indicate the convenience of counterbalancing the benefits of the hurdle concept.

  17. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  18. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  19. Folinic acid-responsive seizures initially responsive to pyridoxine.

    Science.gov (United States)

    Nicolai, Joost; van Kranen-Mastenbroek, Vivianne H J M; Wevers, Ron A; Hurkx, Wilfred A P T; Vles, Johan S H

    2006-02-01

    This report presents a male who developed clonic seizures on the day he was born. The next day, the diagnosis of pyridoxine-dependent seizures was made. However, contradictory to this diagnosis, seizures reappeared despite treatment with pyridoxine. Seizures ceased after folinic acid was initiated. The clinical and biochemical characteristics of folinic acid-responsive seizures are reviewed. Treatment with folinic acid should be considered in neonatal seizures of unknown origin that do not respond to pyridoxine, or manifest a transient response to pyridoxine.

  20. Personality traits modulate emotional and physiological responses to stress.

    Science.gov (United States)

    Childs, Emma; White, Tara L; de Wit, Harriet

    2014-09-01

    An individual's susceptibility to psychological and physical disorders associated with chronic stress exposure, for example, cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined the relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardized laboratory psychosocial stress task, the Trier Social Stress Test. Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the Trier Social Stress Test. Individuals with high agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease.

  1. Salicylic acid ameliorates the adverse effect of salt stress on strawberry

    OpenAIRE

    Karlidag,Huseyin; Yildirim,Ertan; Turan, Metin

    2009-01-01

    Strawberry is considered as a salinity sensitive species and is adversely affected in response to the salt stress in terms of growth and yield. Pot experiments were conducted to determine the effect of exogenous salicylic acid (SA) application on physiology, growth, chlorophyll and mineral content of strawberry grown under salt stress and greenhouse conditions. Strawberry plants were treated with SA at different concentrations (0.0, 0.25, 0.50 and 1.00 mM). Salinity treatments were establishe...

  2. Avaliação de genótipos de aveia branca sob estresse de ácidos orgânicos Responses of white oat genotypes to stresses of organic acids

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2009-01-01

    Full Text Available A ocorrência de condições anaeróbias nos solos hidromórficos, associada com a presença de matéria orgânica favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas, principalmente ácidos orgânicos de cadeia curta. O objetivo do trabalho foi avaliar a resposta de 20 genótipos de aveia (Avena sativa L. aos ácidos acético, propiônico e butírico. O trabalho foi executado em sistema de hidroponia com três doses (0; 3 e 6 mM da mistura dos três ácidos na relação 6:3:1 respectivamente. O delineamento utilizado foi em blocos casualizados com três repetições em esquema fatorial. As variáveis mensuradas foram: comprimento de raízes (CR e parte aérea (CPA, número de raízes (NR e matéria seca de raízes (MSR e parte aérea (MSPA. Foram procedidas análise de variância e ajustes de regressão. Os efeitos de interação entre doses x genótipos para as variáveis CR e MSR revelaram significância e as regressões estabelecidas para estas variáveis, revelaram dois genótipos com estabilidade de crescimento radicular (OR-3 e FAPA-5 e três com estabilidade de acúmulo de matéria seca (OR-3, UFRGS-17 e UPF-15 frente ao estresse por ácidos orgânicos. A caracterização destes genótipos à ação fitotóxica dos ácidos orgânicos é importante fonte de recursos aos programas de melhoramento genético que visem obter genótipos com elevada capacidade produtiva, em solos de várzea do Sul do Brasil sob plantio direto ou cultivo mínimo.The association of anaerobic conditions with high organic matter content in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances, especially short chain organic acids. The objective of this investigation was to evaluate the response of 20 oat (Avena sativa L. genotypes to the exposure of acetic, propionic and butyric acids in hydroponic system. Three doses (0; 3 and 6 mM of a mixture of the three acids at a 6

  3. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  4. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    Science.gov (United States)

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  5. The plant heat stress transcription factors (HSFs: structure, regulation and function in response to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Meng eGuo

    2016-02-01

    Full Text Available Abiotic stresses such as high temperature, salinity and drought adversely affect the survival, growth and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs, including heat stress transcription factors (HSFs. HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps. In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  6. Personality traits modulate emotional and physiological responses to stress

    OpenAIRE

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease.

  7. Citraturic response to oral citric acid load

    Science.gov (United States)

    Sakhaee, K.; Alpern, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    It is possible that some orally administered citrate may appear in urine by escaping oxidation in vivo. To determine whether this mechanism contributes to the citraturic response to potassium citrate, we measured serum and urinary citrate for 4 hours after a single oral load of citric acid (40 mEq.) in 6 normal subjects. Since citric acid does not alter acid-base balance, the effect of absorbed citrate could be isolated from that of alkali load. Serum citrate concentration increased significantly (p less than 0.05) 30 minutes after a single oral dose of citric acid and remained significantly elevated for 3 hours after citric acid load. Commensurate with this change, urinary citrate excretion peaked at 2 hours and gradually decreased during the next 2 hours after citric acid load. In contrast, serum and urinary citrate remained unaltered following the control load (no drug). Differences of the citratemic and citraturic effects between phases were significant (p less than 0.05) at 2 and 3 hours. Urinary pH, carbon dioxide pressure, bicarbonate, total carbon dioxide and ammonium did not change at any time after citric acid load, and did not differ between the 2 phases. No significant difference was noted in serum electrolytes, arterialized venous pH and carbon dioxide pressure at any time after citric acid load and between the 2 phases. Thus, the citraturic and citratemic effects of oral citric acid are largely accountable by provision of absorbed citrate, which has escaped in vivo degradation.

  8. Role of shame and body esteem in cortisol stress responses.

    Science.gov (United States)

    Lupis, Sarah B; Sabik, Natalie J; Wolf, Jutta M

    2016-04-01

    Studies assessing the role of shame in HPA axis reactivity report mixed findings. Discrepancies may be due to methodological difficulties and inter-individual differences in the propensity to experience shame in a stressful situation. Hence, the current study combined self-report of shame and facial coding of shame expressions and assessed the role of body esteem as a moderator of the shame-stress link. For this, 44 healthy students (24F, age 20.5 ± 2.1 years) were exposed to an acute psychosocial stress paradigm (Trier Social Stress Test: TSST). Salivary cortisol levels were measured throughout the protocol. Trait shame was measured before the stress test, and state shame immediately afterwards. Video recordings of the TSST were coded to determine emotion expressions. State shame was neither associated with cortisol stress responses nor with body esteem (self-report: all ps ≥ .24; expression: all ps ≥ .31). In contrast, higher trait shame was associated with both negative body esteem (p = .049) and stronger cortisol stress responses (p = .013). Lastly, having lower body esteem predicted stronger cortisol stress responses (p = .022); however, it did not significantly moderate the association between shame indices and cortisol stress responses (all ps ≥ .94). These findings suggest that body esteem and trait shame independently contribute to strength of cortisol stress responses. Thus, in addition to trait shame, body esteem emerged as an important predictor of cortisol stress responses and as such, a potential contributor to stress-related negative health outcomes.

  9. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  10. Weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    ter Beek, A.S.

    2009-01-01

    Weak organic acids are commonly used food preservatives that protect food products from bacterial contamination. A variety of spore-forming bacterial species pose a serious problem to the food industry by causing extensive food spoilage or even food poisoning. Understanding the mechanisms of bacteri

  11. Stressors, Resources, and Stress Responses in Pregnant African American Women

    Science.gov (United States)

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low stress responses (4 women). Patterns of stress responses were seen in psychological stress and cervical remodeling (attenuation or cervical length). All women in the high stress responses group had high depression and/or low psychological well-being and abnormal cervical remodeling at one or both data collection times. All but 1 woman had at least 3 sources of stress (racial, neighborhood, financial, or network). In contrast, 3 of the 4 women in the low stress responses group had only 2 sources of stress (racial, neighborhood, financial, or network) and 1 had none; these women also reported higher perceived support. The findings demonstrate the importance of periodically assessing stress in African American women during pregnancy, particularly related to their support network as well as the positive supports they receive. PMID:23360946

  12. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  13. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  14. Waterborne aripiprazole blunts the stress response in zebrafish

    Science.gov (United States)

    Barcellos, Heloísa Helena De Alcantara; Kalichak, Fabiana; da Rosa, João Gabriel Santos; Oliveira, Thiago Acosta; Koakoski, Gessi; Idalencio, Renan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Piato, Angelo L.; Barcellos, Leonardo José Gil

    2016-11-01

    Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.

  15. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.

    Science.gov (United States)

    Babst, Benjamin A; Chen, Han-Yi; Wang, Hong-Qiang; Payyavula, Raja S; Thomas, Tina P; Harding, Scott A; Tsai, Chung-Jui

    2014-08-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.

  16. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  17. Origins of asymmetric stress-strain response in phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  18. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  19. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism.

    Science.gov (United States)

    Kissoudis, Christos; Sunarti, Sri; van de Wiel, Clemens; Visser, Richard G F; van der Linden, C Gerard; Bai, Yuling

    2016-09-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.

  20. Immune responses to stress in rheumatoid arthritis and psoriasis

    NARCIS (Netherlands)

    Brouwer, S.J. dr; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Joosten, I.; Radstake, T.R.; Jong, E.M. de; Schalkwijk, J.; Donders, A.R.; Eijsbouts, A.M.M.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.

    2014-01-01

    OBJECTIVE: Stress is one of the factors that may exacerbate the progression of chronic inflammatory diseases such as RA and psoriasis. We exploratively compared the effects of acute stress on levels of circulating cytokines involved in disease progression and/or the stress response in patients with

  1. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  2. Regulation of Stress Responses and Translational Control by Coronavirus

    Science.gov (United States)

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  3. Regulation of Stress Responses and Translational Control by Coronavirus

    Directory of Open Access Journals (Sweden)

    To Sing Fung

    2016-07-01

    Full Text Available Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed.

  4. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    to affect lifespan. The progress in modern genetic techniques has allowed researchers to test this idea. The general stress response involves the expression of stress proteins, such as chaperones and antioxidative proteins, downregulation of genes involved in energy metabolism and the release of protective......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  5. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  6. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    Science.gov (United States)

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress.

  7. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  8. Stress in university students and cardiovascular response to academic stressors

    OpenAIRE

    Guimarães,Teresa; Silva, Ana Patrícia; Monteiro, Iolanda; Gomes, Rui

    2014-01-01

    Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 1...

  9. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.;

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  10. Effect of single or combined climatic and hygienic stress in four layer lines: 2. Endocrine and oxidative stress responses.

    Science.gov (United States)

    Star, L; Decuypere, E; Parmentier, H K; Kemp, B

    2008-06-01

    Effects of long-term climatic stress (heat exposure), short-term hygienic stress [lipopolysaccharide (LPS)], or combined exposure to these stressors on endocrine and oxidative stress parameters of 4 layer lines (B1, WA, WB, and WF) were investigated. The lines were earlier characterized for natural humoral immune competence and survival rate. Eighty hens per line were randomly divided over 2 identical climate chambers and exposed to constant high temperature (32 degrees C) or a control temperature (21 degrees C) for 23 d. Half of the hens housed in each chamber were i.v. injected with LPS at d 1 after the start of the heat stress period. The effect of heat, LPS, or combined exposure on plasma levels of corticosterone, 3,5,3'-triiodothyronine (T(3)), glucose, uric acid (UA), and TBA reacting substances (TBARS) were investigated. Except for UA, there were no interactions between heat stress and LPS administration. Heat stress enhanced levels of corticosterone, glucose, and TBARS, whereas levels of T(3) and UA were decreased. The T(3) levels, however, were enhanced by LPS administration, whereas levels of UA were decreased. Administration of LPS had no effect on levels of corticosterone and TBARS. Because both stressors caused a reduction in feed intake, it is assumed that changes in most of the plasma levels of the endocrine and oxidative stress parameters are related with the reduction in feed intake. Neither natural humoral immune competence nor survival rate, for which the lines have been characterized, was indicative for the endocrine and oxidative stress responses to different stressors. The present data suggest that hens were able to cope with single or combined heat stress and LPS administration and that heat stress and LPS administration acted like 2 independent stressors. Furthermore, the 4 layer lines differed in response patterns and response levels; line WB was physiologically most sensitive to environmental changes.

  11. Response of agricultural soils to acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, M.F.; Wagner, C.K.

    1982-07-01

    Proceedings of the workshop, Response of Agricultural Soils to Acid Deposition, which was held May 12-13 1981, in Columbus, Ohio, and which evaluated the potential beneficial and harmful impacts of atmospheric acid deposition on agricultural soils are presented. Those issues requiring further research are also identified. Five working papers and a literature review prepared by soils specialists are included as is a summary of conclusions reached by the participants. Each of the five working papers has been abstracted and indexed individually for ERA/EDB. (JGB)

  12. Acid-stress effects on stream biology

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, J. (Kalmar Univ. (Sweden). Dept. of Natural Sciences); Degerman, E. (Inst. of Freshwater Research, Drottningholm (Sweden)); Gerhardt, A. (Lund Univ. (Sweden). Dept. of Ecology); Johansson, Catarina (Statistics Sweden, Stockholm (Sweden)); Lingdell, P.E. (Gunilbo, Skinnskatteberg (Sweden)); Muniz, I. (Norvegian Inst. for Nature Research (NINA), Oslo (Norway))

    1993-01-01

    This paper reports and discusses the results of Swedish freshwater acidification research, for the period 1988.1993 and earlier. Changed biotic patterns are exemplified by increased occurrence of those green algae that indicate an increase in nutrients, reduced species richness of invertebrates, a general shift in proportion from invertebrate grazers towards shredders, decreasing populations of fish. Impact on birds appears less validated. The mechanisms for the changes in individual, population and community levels include elevated hydrogen, aluminium and cadmium concentrations that affect ion balance and respiration in fish and invertebrates, but also various behavior patterns, and development stages. Al can ameliorate low pH temporarily but does not biomagnify along food chains, and neither predatory insects nor flycatchers seem to accumulate Al. Iron precipitation can affect feeding ability and respiration of mayfly nymphs. That humic substances may mitigate metals still seems uncertain for fish and invertebrates. Generally, most changes in the biotic patterns of streams seem to be related to abiotic impact routes. Relevant and sufficient knowledge seems to be lacking in three research fields of acidification impact on streams; viz. increasing occurrence of green algae in acidified streams; role of invertebrates in decomposition of leaves in acid waters; and recovery processes of fish and invertebrates after liming. (94 refs., 4 figs.)

  13. Detection of Acid Rain Stress Effect on Plant Using Hyperspectral Data in Three Gorges Region,China

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaodong; JIANG Hong; YU Shuquan; ZHOU Guomo

    2008-01-01

    This paper aims to use hyperspectral data to detect the spectral change caused by acid stress to a native forest type in the Three Gorges region of China.For this purpose,a ground-based hyperspectral experiment was conducted at the Three Gorges region to detect acid deposition that caused Masson pine (Pinus massoniana) forest degradation.Continuum removal method was used to isolate wavebands more responsive to stress in wavelengths 450-750nm.The differences in chlorophyll concentrations and needle thickness caused by acidic stress are found to be explicable to the different spectral reflectance patterns in the visible and near-infrared wavelengths.Two new chlorotic indices were utilized to explain the stress-caused leaf chiorosis.The comparison of simulated vegetation indices and principal component analysis (PCA) results suggests that it would be possible to monitor acid rain stress effect on forest ecosystem from some wider spectral regions.

  14. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2007-10-01

    Full Text Available Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE. We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation.

  15. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  16. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper, the analy......Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper......-performance liquid chromatography with coulometric detection. In a parallel experiment, stability of human plasma samples treated as above and stored at -80°C for five years was tested in a cohort of 131 individuals. No degradation or shift in the equilibrium between ascorbate and dehydroascorbic acid was observed...

  17. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  18. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Cuypers, Ann [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Havaux, Michel [Commissariat a l' Energie Atomique (CEA)/Cadarache, Direction des Sciences du Vivant, Departement d' Ecophysiologie Vegetale et de Microbiologie, Laboratoire d' Ecophysiologie de la Photosynthese, 13108 Saint-Paul-lez-Durance (France); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco [Hasselt University, Environmental Biology, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 {mu}M uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 {mu}M uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress

  19. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress

    DEFF Research Database (Denmark)

    Efler, Petr; Kilstrup, Mogens; Johnsen, Stig;

    2015-01-01

    Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium Lacto...... the phenotype of the ΔtrxA mutant matches established functions of WCGPC-type Trx while TrxD appears to play a more restricted role in stress resistance of Lac. lactis....

  20. Effects of orthostasis on endocrine responses to psychosocial stress.

    Science.gov (United States)

    Nater, Urs M; Ditzen, Beate; Strahler, Jana; Ehlert, Ulrike

    2013-12-01

    Standardized psychological procedures have been designed to induce physiological stress responses. However, the impact of standing (orthostasis) on the physiological reaction after psychological stress remains unclear. The purpose of the current analysis was to examine and quantify the relative contribution of orthostasis to the physiological stress response by comparing a "standing with stress" to a "standing without stress" condition. We investigated the effect of standing with and without stress on responses of the sympathetic-adrenomedullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis using a standardized psychosocial stress protocol (Trier Social Stress Test) and a non-stress condition in a repeated measures design. Subjects (N=30) were exposed to both conditions in randomized order and had to maintain a standing, upright position for 10minutes. In the "standing with stress" condition, significant increases in repeatedly assessed plasma norepinephrine (NE) and epinephrine (EP), as well as in saliva cortisol were found, while in the "standing without stress" condition, no significant changes in plasma epinephrine and saliva cortisol were observed. Calculations of the relative contribution of orthostasis to physiological stress responses revealed that 25.61% of the NE increase, 82.94% of the EP increase, and 68.91% of the cortisol increase, could be attributed to psychosocial stress adjusted for the effects of orthostasis and basal endocrine output. Although these results are indicative for a marked endocrine reaction that is caused by psychosocial stress alone, our findings show that the contribution of orthostasis must be taken into account when interpreting endocrine data collected in a psychosocial stress test.

  1. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress.

    Science.gov (United States)

    Li, Yan; Wang, Nian; Zhao, Fengtao; Song, Xuejiao; Yin, Zhaohua; Huang, Rong; Zhang, Chunqing

    2014-07-01

    Plants are often subjected to iron (Fe)-deficiency stress because of its low solubility. Plants have evolved two distinct strategies to solubilize and transport Fe to acclimate to this abiotic stress condition. Transcriptomic profiling analysis was performed using Illumina digital gene expression to understand the mechanism underlying resistance responses of roots to Fe starvation in maize, an important Strategy II plant. A total of 3,427, 4,069, 4,881, and 2,610 genes had significantly changed expression levels after Fe-deficiency treatments of 1, 2, 4 or 7 days, respectively. Genes involved in 2'-deoxymugineic acid (DMA) synthesis, secretion, and Fe(III)-DMA uptake were significantly induced. Many genes related to plant hormones, protein kinases, and protein phosphatases responded to Fe-deficiency stress, suggesting their regulatory roles in response to the Fe-deficiency stress. Functional annotation clustering analysis, using the Database for Annotation, Visualization and Integrated Discovery, revealed maize root responses to Fe starvation. This resulted in 38 functional annotation clusters: 25 for up-regulated genes, and 13 for down-regulated ones. These included genes encoding enzymes involved in the metabolism of carboxylic acids, isoprenoids and aromatic compounds, transporters, and stress response proteins. Our work provides integrated information for understanding maize response to Fe-deficiency stress.

  2. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia.

  3. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    Science.gov (United States)

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activ...

  4. Morphologic effects of the stress response in fish.

    Science.gov (United States)

    Harper, Claudia; Wolf, Jeffrey C

    2009-01-01

    Fish and other aquatic animals are subject to a broad variety of stressors because their homeostatic mechanisms are highly dependent on prevailing conditions in their immediate surroundings. Yet few studies have addressed stress as a potential confounding factor for bioassays that use fish as test subjects. Common stressors encountered by captive fish include physical and mental trauma associated with capture, transport, handling, and crowding; malnutrition; variations in water temperature, oxygen, and salinity; and peripheral effects of contaminant exposure or infectious disease. Some stress responses are detectable through gross or microscopic examination of various organs or tissues; as reported in the literature, stress responses are most consistently observed in the gills, liver, skin, and components of the urogenital tract. In addition to presenting examples of various stressors and corresponding morphologic effects, this review highlights certain challenges of evaluating stress in fish: (1) stress is an amorphous term that does not have a consistently applied definition; (2) procedures used to determine or measure stress can be inherently stressful; (3) interactions between stressors and stress responses are highly complex; and (4) morphologically, stress responses are often difficult to distinguish from tissue damage or compensatory adaptations induced specifically by the stressor. Further investigations are necessary to more precisely define the role of stress in the interpretation of fish research results.

  5. Stress Response and Perinatal Reprogramming: Unraveling (Maladaptive Strategies

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2016-01-01

    Full Text Available Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (maladaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.

  6. Biochemical Measurements of the Human Stress Response

    Science.gov (United States)

    1984-03-01

    8217 Unclassified SECUVRTY CIASuI1CATION OF THIS PAGA (Wtwn Paso ?,,rd) Item 19(Continued) simulation xIress vanillylmandelic acid Item 20 (Continued) in...NE), dopamine (DA), and serotonin (5HT). The metabolic end products of these neurotransmitters are vanillylmandelic acid (VMA) and 4-hydroxy-3...Ebert, M. H. Conversion of MHPG to vanillylmandelic acid . Archives of General Psychiatry, 1980, 37, 1095-1098. Brown, G., Ebert, M. H., Hunt, R

  7. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  8. Involvement of Histone Modifications in Plant Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Lianyu Yuan; Xuncheng Liu; Ming Luo; Songguang Yang; Keqiang Wu

    2013-01-01

    As sessile organisms, plants encounter various environmental stimuli including abiotic stresses during their lifecycle. To survive under adverse conditions, plants have evolved intricate mechanisms to perceive external signals and respond accordingly. Responses to various stresses largely depend on the plant capacity to modulate the transcriptome rapidly and specifically. A number of studies have shown that the molecular mechanisms driving the responses of plants to environmental stresses often depend on nucleosome histone post-translational modifications including histone acetylation, methylation, ubiquitination, and phosphorylation. The combined effects of these modifications play an essential role in the regulation of stress responsive gene expression. In this review, we highlight our current understanding of the epigenetic mechanisms of histone modifications and their roles in plant abiotic stress response.

  9. Post-stress rumination predicts HPA axis responses to repeated acute stress.

    Science.gov (United States)

    Gianferante, Danielle; Thoma, Myriam V; Hanlin, Luke; Chen, Xuejie; Breines, Juliana G; Zoccola, Peggy M; Rohleder, Nicolas

    2014-11-01

    Failure of the hypothalamus-pituitary-adrenal (HPA) axis to habituate to repeated stress exposure is related with adverse health outcomes, but our knowledge of predictors of non-habituation is limited. Rumination, defined as repetitive and unwanted past-centered negative thinking, is related with exaggerated HPA axis stress responses and poor health outcomes. The aim of this study was to test whether post-stress rumination was related with non-habituation of cortisol to repeated stress exposure. Twenty-seven participants (n=13 females) were exposed to the Trier Social Stress Test (TSST) twice on consecutive afternoons. Post-stress rumination was measured after the first TSST, and HPA axis responses were assessed by measuring salivary cortisol 1 min before, and 1, 10, 20, 60, and 120 min after both TSSTs. Stress exposure induced HPA axis activation on both days, and this activation showed habituation indicated by lower responses to the second TSST (F=3.7, p=0.015). Post-stress rumination after the first TSST was associated with greater cortisol reactivity after the initial stress test (r=0.45, pHPA axis responses. This finding implicates rumination as one possible mechanism mediating maladaptive stress response patterns, and it might also offer a pathway through which rumination might lead to negative health outcomes.

  10. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  11. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  12. Field evaluation of an acid rain-drought stress interaction.

    Science.gov (United States)

    Banwart, W L

    1988-01-01

    Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.

  13. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  14. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  15. Physiological Response of Cotton (Gossypium hirsutum L.) Seedling to Exog-enous Salicylic Acid under Low Temperature Stress%低温胁迫下棉花幼苗对外源水杨酸的生理响应

    Institute of Scientific and Technical Information of China (English)

    辛慧慧; 李防洲; 侯振安; 冶军; 康文晶; 罗建

    2014-01-01

    Alleviating effect of exogenous salicylic acid on the cotton seedling under low temperature stress was elucidated by foliar-sprayed with different concentrations of salicylic acid. The results showed that 0.6-0.8 mmol·L-1 salicylic acid pretreatment could signiifcantly reduce the accumulation of the relative conductivity (REC) and malondialdehyde (MDA) content in the cotton seedling, which alleviated the oxidative damage of low temperature on plasma membrane. And the salicylic acid pretreatment could improve the activities of su-peroxide dismutase (SOD), peroxidase (POD), catalase (CAT), and the contents of soluble sugar, soluble pro-tein, proline to adapt to low temperature environment.%以棉花幼苗为试材,通过叶面喷施不同浓度水杨酸的处理方法,研究外源水杨酸对低温胁迫下棉花幼苗的缓解效应。结果表明,0.6~0.8 mmol·L-1水杨酸预处理可以显著降低棉花幼苗叶片相对电导率(REC)和丙二醛(MDA)的积累量,从而缓解低温对质膜的过氧化伤害,并通过提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性和可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质的含量来适应低温环境。

  16. Engineering of synthetic, stress-responsive yeast promoters

    Science.gov (United States)

    Rajkumar, Arun S.; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K.; Keasling, Jay D.

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest. PMID:27325743

  17. Engineering of synthetic, stress-responsive yeast promoters.

    Science.gov (United States)

    Rajkumar, Arun S; Liu, Guodong; Bergenholm, David; Arsovska, Dushica; Kristensen, Mette; Nielsen, Jens; Jensen, Michael K; Keasling, Jay D

    2016-09-30

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synthetic promoters for budding yeast Saccharomyces cerevisiae that are inducible under acidic conditions (pH ≤ 3). Using available expression and transcription factor binding data, literature on transcriptional regulation, and known rules of promoter architecture we improved the low-pH performance of the YGP1 promoter by modifying transcription factor binding sites in its upstream activation sequence. The engineering strategy outlined for the YGP1 promoter was subsequently applied to create a response to low pH in the unrelated CCW14 promoter. We applied our best promoter variants to low-pH fermentations, enabling ten-fold increased production of lactic acid compared to titres obtained with the commonly used, native TEF1 promoter. Our findings outline and validate a general strategy to iteratively design and engineer synthetic yeast promoters inducible to environmental conditions or stresses of interest.

  18. Association between neuroticism and amygdala responsivity emerges under stressful conditions.

    Science.gov (United States)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-05-15

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas individual differences in neuroticism are thought to modulate the effect of stress on mental health, the mechanistic link between stress, neuroticism and amygdala responsivity is unknown. Thus, we studied the relationship between experimentally induced stress, individual differences in neuroticism, and amygdala responsivity. To this end, fearful and happy faces were presented to a large cohort of young, healthy males (n=120) in two separate functional MRI sessions (stress versus control) in a randomized, controlled cross-over design. We revealed that amygdala reactivity was modulated by an interaction between the factors of stress, neuroticism, and the emotional valence of the facial stimuli. Follow-up analysis showed that neuroticism selectively enhanced amygdala responses to fearful faces in the stress condition. Thus, we show that stress unmasks an association between neuroticism and amygdala responsivity to potentially threatening stimuli. This effect constitutes a possible mechanistic link within the complex pathophysiology of affective disorders, and our novel approach appears suitable for further studies targeting the underlying mechanisms.

  19. Influence of surface stresses on indentation response

    Science.gov (United States)

    Buchwald, J.; Mayr, S. G.

    2015-03-01

    Surface stresses lead to an effective change in the elastic constants of thin films and at surfaces. The development of modern scanning probe techniques like contact resonance atomic force microscopy empowers the experimenter to measure at scales where these effects become increasingly relevant. In this paper we employ a computational multiscale approach where we compare density functional theory (DFT) and molecular dynamics simulations as tools to calculate the thin-film/surface elastic behavior for silicon and strontiumtitanate. From the surface elastic constants gained by DFT calculations we develop a continuum finite-element multilayer model to study the impact of surface stresses on indentation experiments. In general the stress field of an indenter and thus the impact of surface stresses on the indentation modulus depends on its contact radius and on its particular shape. We propose an analytical model that describes the behavior of the indentation modulus as a function of the contact radius. We show that this model fits well to simulation results gained for a spherical and a flat punch indenter. Our results demonstrate a surface-stress-induced reduction of the indentation modulus of about 5% for strontiumtitanate and 6% for silicon for a contact radius of {{r}c}=5 \\text{nm}, irrespective of the indenter shape.

  20. Folinic acid-responsive neonatal seizures.

    Science.gov (United States)

    Torres, O A; Miller, V S; Buist, N M; Hyland, K

    1999-08-01

    We report three cases of folinic acid-responsive intractable neonatal seizures. All patients were born at term following normal gestation and delivery. In the first infant, seizures began on the 5th day of life and were unresponsive to phenobarbital, pyridoxine, and valproate, but stopped within 24 hours of initiation of folinic acid treatment at the age of 6 months. Her sibling had died at age 6 months with intractable seizures. In the second infant, seizures began in the 2nd hour of life. These were initially controlled with phenobarbital; however, at 3 months of age she developed status epilepticus refractory to anticonvulsants, steroids, and pyridoxine and she required repeated induction of pentobarbital coma. Seizures stopped within 24 hours of starting folinic acid. Seizures and encephalopathy were noted in the third infant on the 2nd day of life. These were controlled with phenobarbital, but at 8 weeks of age seizures recurred and were difficult to control despite the addition of phenytoin. Immediately after folinic acid was initiated the seizures stopped. Breakthrough seizures in all patients have responded to increases in folinic acid; two of the three remain on standard anticonvulsants. All patients have global developmental delay. Cranial magnetic resonance imaging in the second patient shows diffuse atrophy, and in the third patient shows increased signal on T2 images in the white matter of the frontal and parietal lobes. Analysis of cerebrospinal fluid from these patients using high-performance liquid chromatography with electrochemical detection has consistently revealed an as-yet unidentified compound, which can be used as a marker for this condition. We suggest that cerebrospinal fluid be analyzed for the presence of this compound and a trial of folinic acid be considered in neonates with unexplained early onset intractable seizures.

  1. Lipoxygenase-allene oxide synthase pathway in octocoral thermal stress response

    Science.gov (United States)

    Lõhelaid, H.; Teder, T.; Samel, N.

    2015-03-01

    Marine ecosystems are sensitive to elevated seawater temperature, with stony corals serving as model organisms for temperature-imposed declines in population viability and diversity. Several stress markers, including heat shock proteins, have been used for the detection and prediction of stress responses in stony corals. However, the stress indicators in soft corals remain elusive. In higher animals and plants, oxylipins synthesized by fatty acid di- and monooxygenases contribute to stress-induced signaling; however, the role of eicosanoid pathways in corals remains unclear. The eicosanoid gene specific to corals encodes for a natural fusion protein of allene oxide synthase and lipoxygenase ( AOS- LOX). In this work, using the easily cultivated soft coral Capnella imbricata as the stress response model, we monitored the expression of the AOS-LOX and the formation of arachidonic acid metabolites in response to an acute rise in water temperature. Gene expression profiles of two 70 kDa heat shock proteins ( Hsps: Hsp70 and Grp78) were used as a positive control for the stress response. In comparison with normal seawater temperature (23 °C), AOS- LOXa and Hsps were all up-regulated after modest (28 °C) and severe (31 °C) temperature elevation. While the up-regulation of AOS- LOXa and Grp78 was more sensitive to moderate temperature changes, Hsp70s were more responsive to severe heat shock. Concurrently, endogenous and exogenous AOS-LOXa-derived eicosanoids were up-regulated. Thus, together with the up-regulation of AOS- LOX by other abiotic and biotic stress stimuli, these data implicate AOS-LOX as part of the general stress response pathway in corals.

  2. Stress Response and Translation Control in Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Susana López

    2016-06-01

    Full Text Available The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle.

  3. Stress Response and Translation Control in Rotavirus Infection

    Science.gov (United States)

    López, Susana; Oceguera, Alfonso; Sandoval-Jaime, Carlos

    2016-01-01

    The general stress and innate immune responses are closely linked and overlap at many levels. The outcomes of these responses serve to reprogram host expression patterns to prevent viral invasions. In turn, viruses counter attack these cell responses to ensure their replication. The mechanisms by which viruses attempt to control host cell responses are as varied as the number of different virus families. One of the most recurrent strategies used by viruses to control the antiviral response of the cell is to hijack the translation machinery of the host, such that viral proteins are preferentially synthesized, while the expression of the stress and antiviral responses of the cell are blocked at the translation level. Here, we will review how rotaviruses, an important agent of acute severe gastroenteritis in children, overcome the stress responses of the cell to establish a productive infectious cycle. PMID:27338442

  4. Stress Generation and Adolescent Depression: Contribution of Interpersonal Stress Responses

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2011-01-01

    This research examined the proposal that ineffective responses to common interpersonal problems disrupt youths' relationships, which, in turn, contributes to depression during adolescence. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their primary female caregivers participated in a three-wave longitudinal study. Youth completed a…

  5. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    OpenAIRE

    Wu Liyou; Luo Feng; Harris Daniel P; Yang Yunfeng; Parsons Andrea B; Palumbo Anthony V; Zhou Jizhong

    2008-01-01

    Abstract Background Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways. Results We conducted physiological and transcriptomic studies to characterize Fur in Shewanella oneidensis, with regard to its roles in iron and acid tolerance response. A S. oneidensisf...

  6. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

    Science.gov (United States)

    Ricciardi, Annamaria; Parente, Eugenio; Guidone, Angela; Ianniello, Rocco Gerardo; Zotta, Teresa; Abu Sayem, S M; Varcamonti, Mario

    2012-07-02

    Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L

  7. Endocrinological Responses to Exercise in Stressful Environments,

    Science.gov (United States)

    1987-03-16

    workers (5,6,30) described an elevated epinephrine and . hydroxymethcxymandelic acid excretion upon exposure to a simulated altitude of 4000 m; these...large as steers (8). In humans Guilland et al. (67) have reported that urinary levels of epinephrine, norepinephrine, metanephrine, and vanillylmandelic ... acid were increased during exercise at high altitude; the increments were maximal above 6000 m, and persisted during the descent to sea level. Even

  8. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  9. Stearic acid protects primary cultured cortical neurons against oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Ze-jian WANG; Cui-ling LIANG; Guang-mei LI; Cai-yi YU; Ming YIN

    2007-01-01

    Aim: To observe the effects of stearic acid against oxidative stress in primary cultured cortical neurons. Methods: Cortical neurons were exposed to glutamate,hydrogen peroxide (H202), or NaN3 insult in the presence or absence of stearic acid. Cell viability of cortical neurons was determined by MTT assay and LDH release. Endogenous antioxidant enzymes activity[superoxide dismutases (SOD),glutathione peroxidase (GSH-Px), and catalase (CAT)] and lipid peroxidation in cultured cortical neurons were evaluated using commercial kits. {3-[1(p-chloro-benzyl)-5-(isopropyl)-3-t-butylthiondol-2-yl]-2,2-dimethylpropanoic acid, Na}[MK886; 5 pmol/L; a noncompetitive inhibitor of proliferator-activated receptor(PPAR)α], bisphenol A diglycidyl ether (BADGE; 100 μmol/L; an antagonist of PPARγ), and cycloheximide (CHX; 30 μmol/L, an inhibitor of protein synthesis)were tested for their effects on the neuroprotection afforded by stearic acid.Western blotting was used to determine the PPARγ protein level in cortical neurons.Results: Stearic acid dose-dependently protected cortical neurons against glutamate or H202 injury and increased glutamate uptake in cultured neurons.This protection was concomitant to the inhibition of lipid peroxidation and to the promotion activity of Cu/Zn SOD and CAT in cultured cortical neurons. Its neuroprotective effects were completely blocked by BADGE and CHX. After incubation with H2O2 for 24 h, the expression of the PPARγ protein decreased significantly (P<0.05), and the inhibitory effect of H2O2 on the expression of PPARγ can be attenuated by stearic acid. Conclusion: Stearic acid can protect cortical neurons against oxidative stress by boosting the internal antioxidant enzymes.Its neuroprotective effect may be mainly mediated by the activation of PPARγ and new protein synthesis in cortical neurons.

  10. Acute Stress Response in Critically Ill Children

    NARCIS (Netherlands)

    M. den Brinker (Marieke)

    2006-01-01

    textabstractThe understanding of the endocrine changes in critically ill children is important, as it provides insights in the pathophysiology of the acute stress in children and its differences compared with adults. Furthermore, it delineates prognostic factors for survival and supports the rati

  11. Quantification of Bacillus cereus stress responses

    NARCIS (Netherlands)

    Besten, den H.M.W.

    2010-01-01

    The microbial stability and safety of minimally processed foods is controlled by a deliberate combination of preservation hurdles. However, this preservation strategy is challenged by the ability of spoilage bacteria and food-borne pathogens to adapt to stressing environments providing cell robustne

  12. Cell Wall Metabolism in Response to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Hyacinthe Le Gall

    2015-02-01

    Full Text Available This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic, transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i an increased level in xyloglucan endotransglucosylase/hydrolase (XTH and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  13. Cortisol stress responses and children's behavioral functioning at school

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    The present study investigated whether cortisol stress responses of 6-year-olds were associated with their behavioral functioning at school. Additionally, the moderating role of stress in the family environment was examined. To this end, 149 healthy children (Magen=n6.09 years; 70 girls) participate

  14. Differentiating anticipatory from reactive cortisol responses to psychosocial stress

    NARCIS (Netherlands)

    Engert, V.; Efanov, S.I.; Duchesne, A.; Vogel, S.; Corbo, V.; Pruessner, J.C.

    2013-01-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "bes

  15. Traumatic Experience in Infancy: How Responses to Stress Affect Development

    Science.gov (United States)

    Witten, Molly Romer

    2010-01-01

    Responses to traumatic stress during the earliest years of life can change quickly and can be difficult to identify because of the young child's rapid rate of development. The symptoms of traumatic stress will depend on the child's developmental level and individual coping styles, as well as the quality and nature of the child's most important…

  16. Quorum Sensing Enhances the Stress Response in Vibrio cholerae▿

    OpenAIRE

    Joelsson, Adam; Kan, Biao; Zhu, Jun

    2007-01-01

    Vibrio cholerae lives in aquatic environments and causes cholera. Here, we show that quorum sensing enhances V. cholerae viability under certain stress conditions by upregulating the expression of RpoS, and this regulation acts through HapR, suggesting that a quorum-sensing-enhanced stress response plays a role in V. cholerae environmental survival.

  17. Personality, Stressful Life Events, and Treatment Response in Major Depression

    Science.gov (United States)

    Bulmash, Eric; Harkness, Kate L.; Stewart, Jeremy G.; Bagby, R. Michael

    2009-01-01

    The current study examined whether the personality traits of self-criticism or dependency moderated the effect of stressful life events on treatment response. Depressed outpatients (N = 113) were randomized to 16 weeks of cognitive-behavioral therapy, interpersonal psychotherapy, or antidepressant medication (ADM). Stressful life events were…

  18. The psychophysiological stress response in psoriasis and rheumatoid arthritis

    NARCIS (Netherlands)

    Brouwer, S.J.M. de; Middendorp, H. van; Stormink, C.; Kraaimaat, F.W.; Sweep, F.C.; Jong, E.M.G.J. de; Schalkwijk, J.; Eijsbouts, A.M.M.; Donders, A.R.T.; Kerkhof, P.C.M. van de; Riel, P.L.C.M. van; Evers, A.W.M.

    2014-01-01

    BACKGROUND: Psychosocial stress can be a risk factor for the maintenance and exacerbation of chronic inflammatory diseases, such as psoriasis and rheumatoid arthritis (RA). OBJECTIVES: To gain insight into the specificity of the psychophysiological stress response during chronic inflammation, we ass

  19. W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Zhao-Shi Xu; Li Liu; Zhi-Yong Ni; Pei Liu; Ming Chen; Lian-Cheng Li; Yao-Feng Chen; You-Zhi Ma

    2009-01-01

    Protein kinases play crucial roles In response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5' cDNA ends (5'-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1029-bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonata, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexprassing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions.

  20. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis.

    Science.gov (United States)

    Park, Jung-Eun; Park, Ju-Young; Kim, Youn-Sung; Staswick, Paul E; Jeon, Jin; Yun, Ju; Kim, Sun-Young; Kim, Jungmook; Lee, Yong-Hwan; Park, Chung-Mo

    2007-03-30

    Plants constantly monitor environmental fluctuations to optimize their growth and metabolism. One example is adaptive growth occurring in response to biotic and abiotic stresses. Here, we demonstrate that GH3-mediated auxin homeostasis is an essential constituent of the complex network of auxin actions that regulates stress adaptation responses in Arabidopsis. Endogenous auxin pool is regulated, at least in part, through negative feedback by a group of auxin-inducible GH3 genes encoding auxin-conjugating enzymes. An Arabidopsis mutant, wes1-D, in which a GH3 gene WES1 is activated by nearby insertion of the (35)S enhancer, exhibited auxin-deficient traits, including reduced growth and altered leaf shape. Interestingly, WES1 is also induced by various stress conditions as well as by salicylic acid and abscisic acid. Accordingly, wes1-D was resistant to both biotic and abiotic stresses, and stress-responsive genes, such as pathogenesis-related genes and CBF genes, were upregulated in this mutant. In contrast, a T-DNA insertional mutant showed reduced stress resistance. We therefore propose that GH3-mediated growth suppression directs reallocation of metabolic resources to resistance establishment and represents the fitness costs of induced resistance.

  1. Stability analysis of Reynolds stress response functional candidates

    Energy Technology Data Exchange (ETDEWEB)

    Dafinger, M.; Hallatschek, K. [Max-Planck-Institute for Plasma Physics, EURATOM-IPP Association, Garching (Germany); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2013-04-15

    Complete information on the behavior of zonal flows in turbulence systems is coded in the turbulent stress response to the respective flow pattern. We show that turbulence stress response functionals containing only the linear first order wavenumber dependence on the flow pattern result in unstable structures up to the system size. A minimal augmentation to reproduce the flow patterns observed in turbulence simulations is discussed.

  2. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  3. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  4. Plant Responses to Salt Stress: Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    Jose Ramón Acosta-Motos

    2017-02-01

    Full Text Available This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

  5. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  6. Research Progress in Tomato Responses to Abiotic Stress

    Institute of Scientific and Technical Information of China (English)

    Jianing XU; Gang LIU; Liyun ZHANG

    2016-01-01

    Tomato is a kind of vegetable with high economic benefits in protected farmland.Accounting for 30% of vegetable planting area in the entire protected farmland,tomato plays an essential role in cultivation of protected vegetable.Different abiotic stresses have different degrees of influence on growth and development,yield,and fruit quality of tomatoes.Therefore,finding out life activity rules of tomatoes under different abiotic stresses will be of great significance to breeding for stress tolerance and increasing tomato yield and income.This paper made an overview of research progress in tomato responses to abiotic stress in growth and development,physiology and biochemistry,and gene regulation.

  7. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  8. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  9. Environmental stress responses in Lactococcus lactis

    NARCIS (Netherlands)

    Sanders, JW; Venema, G; Kok, J

    1999-01-01

    Bacteria can encounter a variety of physical conditions during their life, Bacterial cells are able to survive these (often adverse) conditions by the induction of specific or general protection mechanisms. The lactic acid bacterium Lactococcus lactis is widely used for the production of cheese. Bef

  10. Heart rate variability response to mental arithmetic stress in patients with schizophrenia Autonomic response to stress in schizophrenia

    NARCIS (Netherlands)

    Castro, Mariana N.; Vigo, Daniel E.; Weidema, Hylke; Fahrer, Rodolfo D.; Chu, Elvina M.; De Achaval, Delfina; Nogues, Martin; Leiguarda, Ramon C.; Cardinali, Daniel P.; Guinjoan, Salvador N.

    2008-01-01

    Background: The vulnerability-stress hypothesis is an established model of schizophrenia symptom formation. We sought to characterise the pattern of the cardiac autonomic response to mental arithmetic stress in patients with stable schizophrenia. Methods: We performed heart rate variability (HRV) an

  11. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights into ...... through ubiquitination. The wide range of biotic and abiotic stresses that affect crop plants limits agricultural production.......Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...

  12. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  13. Genes Acting on Transcriptional Control during Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Glacy Jaqueline da Silva

    2014-01-01

    Full Text Available Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses.

  14. Dynamics of telomerase activity in response to acute psychological stress

    Science.gov (United States)

    Epel, Elissa S.; Lin, Jue; Dhabhar, Firdaus S.; Wolkowitz, Owen M.; Puterman, E; Karan, Lori; Blackburn, Elizabeth H.

    2010-01-01

    Telomerase activity plays an essential role in cel0l survival, by lengthening telomeres and promoting cell growth and longevity. It is now possible to quantify the low levels of telomerase activity in human leukocytes. Low basal telomerase activity has been related to chronic stress in people and to chronic glucocorticoid exposure in vitro. Here we test whether leukocyte telomerase activity changes under acute psychological stress. We exposed 44 elderly women, including 22 high stress dementia caregivers and 22 matched low stress controls, to a brief laboratory psychological stressor, while examining changes in telomerase activity of peripheral blood mononuclear cells (PBMC). At baseline, caregivers had lower telomerase activity levels than controls, but during stress telomerase activity increased similarly in both groups. Across the entire sample, subsequent telomerase activity increased by 18% one hour after the end of the stressor (p<0.01). The increase in telomerase activity was independent of changes in numbers or percentages of monocytes, lymphocytes, and specific T cell types, although we cannot fully rule out some potential contribution from immune cell redistribution in the change in telomerase activity. Telomerase activity increases were associated with greater cortisol increases in response to the stressor. Lastly, psychological response to the tasks (greater threat perception) was also related to greater telomerase activity increases in controls. These findings uncover novel relationships of dynamic telomerase activity with exposure to an acute stressor, and with two classic aspects of the stress response -- perceived psychological stress and neuroendocrine (cortisol) responses to the stressor. PMID:20018236

  15. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    Science.gov (United States)

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  16. Expression Profiling of Abiotic Stress-Inducible Genes in response to Multiple Stresses in Rice (Oryza sativa L. Varieties with Contrasting Level of Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Supratim Basu

    2014-01-01

    Full Text Available The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive, Pokkali, and Nonabokra (both salt tolerant. The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously.

  17. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  18. Crop and medicinal plants proteomics in response to salt stress

    Directory of Open Access Journals (Sweden)

    Keyvan eAghaei

    2013-01-01

    Full Text Available Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

  19. Stressed out? Associations between perceived and physiological stress responses in adolescents : The TRAILS study

    NARCIS (Netherlands)

    Oldehinkel, Albertine J.; Ormel, Johan; Bosch, Nienke M.; Bouma, Esther M. C.; Van Roon, Arie M.; Rosmalen, Judith G. M.; Riese, Harriette

    2011-01-01

    Studies regarding the interrelation of perceived and physiological stress indices have shown diverging results. Using a population sample of adolescents (N=715, 50.9% girls, mean age 16.11 years, SD=0.59), we tested three hypotheses: (1) perceived responses during social stress covary with concurren

  20. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Gefke, Maria; Christensen, Niels Juel; Bech, Per

    2017-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL......, CO as well as plasma levels of NE, E and PRA remained unchanged by changes in stress level. Day-night reduction in SAP was significantly larger during moderate stress and high-salt intake; however, no significant difference was observed during daytime and night-time. Individual increase in mental...

  1. Transcript changes in Vibrio cholerae in response to salt stress.

    Science.gov (United States)

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.

  2. Plant transcriptomics and responses to environmental stress: an overview

    Indian Academy of Sciences (India)

    Sameen Ruqia Imadi; Alvina Gul Kazi; Mohammad Abass Ahanger; Salih Gucel; Parvaiz Ahmad

    2015-09-01

    Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant’s response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.

  3. Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum.

    Science.gov (United States)

    Dileo, Matthew V; Pye, Matthew F; Roubtsova, Tatiana V; Duniway, John M; Macdonald, James D; Rizzo, David M; Bostock, Richard M

    2010-09-01

    Plants respond to changes in the environment with complex signaling networks, often under control of phytohormones that generate positive and negative crosstalk among downstream effectors of the response. Accordingly, brief dehydration stresses such as salinity and water deficit, which induce a rapid and transient systemic increase in levels of abscisic acid (ABA), can influence disease response pathways. ABA has been associated with susceptibility of plants to bacteria, fungi, and oomycetes but relatively little attention has been directed at its role in abiotic stress predisposition to root pathogens. This study examines the impact of brief salinity stress on infection of tomato and chrysanthemum roots by Phytophthora spp. Roots of plants in hydroponic culture exposed to a brief episode of salt (sodium chloride) stress prior to or after inoculation were severely diseased relative to nonstressed plants. Tomato roots remained in a predisposed state up to 24 h following removal from the stress. An increase in root ABA levels in tomato preceded or temporally paralleled the onset of stress-induced susceptibility, with levels declining in roots prior to recovery from the predisposed state. Exogenous ABA could substitute for salt stress and significantly enhanced pathogen colonization and disease development. ABA-deficient tomato mutants lacked the predisposition response, which could be restored by complementation of the mutant with exogenous ABA. In contrast, ethylene, which exacerbates disease symptoms in some host-parasite interactions, did not appear to contribute to the predisposition response. Thus, several lines of evidence support ABA as a critical and dominant factor in the salinity-induced predisposition to Phytophthora spp. infection.

  4. the response of plants to drought stress

    Directory of Open Access Journals (Sweden)

    Rys Magdalena

    2015-08-01

    a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

  5. The role of the HvNAC6 transcription factor in response to biotic and abiotic stress in barley

    DEFF Research Database (Denmark)

    Chen, Yan-Jun

    -mediated transformation methods could be used to study stress responses at the whole-plant level. The abscisic acid (ABA) and salicylic acid (SA) levels were measured during Bgh infection to investigate the involvement of these hormones and TF in the basal resistance. HvNAC6 RNAi plants were also subjected to dehydration...

  6. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  7. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Ming-Yi JIANG; Yi-Feng ZHOU; You-Liang LIU

    2005-01-01

    It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production.In the present study, the relationships between salt-induced ABA and polyamine accumulation were investigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine :biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and αdifluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H+-ATPase and H+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.

  8. Comparison of Proteome Response to Saline and Zinc Stress in Lettuce

    Directory of Open Access Journals (Sweden)

    Luigi eLucini

    2015-04-01

    Full Text Available Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress-related effects, from those changes specifically related to zinc.The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances, revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation (through formation of glutamine synthetase were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level, heat shock proteins and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one.Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e. proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones and terpenoids biosynthesis.Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case

  9. Contrasting urban and rural heat stress responses to climate change

    Science.gov (United States)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  10. [Relationship between simulated acid rain stress and leaf reflectance].

    Science.gov (United States)

    Song, Xiao-dong; Jiang, Hong; Yu, Shu-quan; Zhou, Guo-mo; Jiang, Zi-shan

    2010-01-01

    Acid rain is a worldwide environmental problem. Serious acid rain pollution in subtropical China has constituted a potential threat to the health of the local forest. In the present paper, the changing properties of the chlorophyll concentration and spectral reflectance at the visible wavelengths for the six subtropical broad-leaved tree species leaves under simulated acid rain (SAR) treatment with different pH levels were studied. With the increasing strength of the SAR, the chlorophyll concentrations of the experimental species under pH 2.5 and pH 4.0 treatment were higher than that under pH 5.6; the spectral reflectance at the visible wavelengths for pH 2.5 and pH 4.0 were lower than that for pH 5.6 in general; while there weren't significant differences between pH 2.5 and pH 4.0. After the treatment with different levels of SAR, the differences in spectral reflectance at the visible wavelengths mainly focused around the green peak and red edge on the reflectance curve. The subtropical broad-leaved tree species studied were relatively not sensitive to acid rain stresses; some stronger acid rain may accelerate the growth of the tree species used here to some extent.

  11. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    Directory of Open Access Journals (Sweden)

    Parida Swarup K

    2012-08-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure in rice. Results Of the 384 putative SNPs assayed, we successfully validated and genotyped 362 (94.3%. Of these 325 (84.6% showed polymorphism among the 91 rice genotypes examined. Physical distribution, degree of allele sharing, admixtures and introgression, and amino acid replacement of SNPs in 263 abiotic and 62 biotic stress-responsive genes provided clues for identification and targeted mapping of trait-associated genomic regions. We assessed the functional and adaptive significance of validated SNPs in a set of contrasting drought tolerant upland and sensitive lowland rice genotypes by correlating their allelic variation with amino acid sequence alterations in catalytic domains and three-dimensional secondary protein structure encoded by stress-responsive genes. We found a strong genetic association among SNPs in the nine stress-responsive genes with upland and lowland ecological adaptation. Higher nucleotide diversity was observed in indica accessions compared with other rice sub-populations based on different population genetic parameters. The inferred ancestry of 16% among rice genotypes was derived from admixed populations with the maximum between upland aus and wild Oryza species. Conclusions SNPs validated in biotic and abiotic stress-responsive rice genes can be used in association analyses to identify candidate genes and develop functional markers for stress tolerance in rice.

  12. Phosphatidic acid: a multifunctional stress-signalling lipid in plants.

    NARCIS (Netherlands)

    C. Testerink; T. Munnik

    2005-01-01

    Phosphatidic acid (PA) has only recently been identified as an important signaling molecule in both plants and animals. Nonetheless, it already promises to rival the importance of the classic second messengers Ca(2+) and cAMP. In plants, its formation is triggered in response to various biotic and a

  13. Response to osmotic stress and temperature of the fungus Ustilago maydis.

    Science.gov (United States)

    Salmerón-Santiago, Karina Gabriela; Pardo, Juan Pablo; Flores-Herrera, Oscar; Mendoza-Hernández, Guillermo; Miranda-Arango, Manuel; Guerra-Sánchez, Guadalupe

    2011-10-01

    Ustilago maydis is a fungal pathogen which is exposed during its life cycle to both abiotic and biotic stresses before and after the infection of maize. To cope with extreme environmental changes, microorganisms usually accumulate the disaccharide trehalose. We have investigated both the accumulation of trehalose and the activity of trehalase during the adaptation of U. maydis haploid cells to thermal, sorbitol, and NaCl stresses. Sorbitol and sodium chloride induced sustained accumulation of trehalose, while a transient increase was observed under heat stress. Sorbitol stressed cells showed higher trehalase activity compared with control cells and to those stressed by NaCl and high temperature. Addition of cycloheximide, a protein synthesis inhibitor, did not affect the trehalose accumulation during the first 15 min, but basal levels of trehalose were reached after the second period of 15 min. The proteomic analysis of the response of U. maydis to temperature, sorbitol, and salt stresses indicated a complex pattern which highlights the change of 18 proteins involved in carbohydrate and amino acid metabolism, protein folding, redox regulation, ion homeostasis, and stress response. We hypothesize that trehalose accumulation during sorbitol stress in U. maydis might be related to the adaptation of this organism during plant infection.

  14. Fatty acids and oxidative stress in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tonello Lucio

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categories: mental retardation; autistic disorder; Rett's disorder; attention-deficit hyperactivity disorder; delirium; dementia; amnestic disorders; alcohol-related disorders; amphetamine (or amphetamine-like-related disorders; hallucinogen-related disorders; nicotine-related disorders; opioid-related disorders; schizophrenia and other psychotic disorders; mood disorders; anxiety disorders; sexual dysfunctions; eating disorders; and sleep disorders. Conclusion Most psychiatric disorders are associated with increased oxidative stress. Patients suffering from that subgroup of these psychiatric disorders in which there is increased lipid peroxidation might therefore benefit from fatty acid supplementation (preferably with the inclusion of an antioxidant-rich diet while patients suffering from all these psychiatric disorders might benefit from a change to a whole-food plant-based diet devoid of refined carbohydrate products.

  15. The auditory startle response in post-traumatic stress disorder

    NARCIS (Netherlands)

    Siegelaar, S. E.; Olff, M.; Bour, L. J.; Veelo, D.; Zwinderman, A. H.; van Bruggen, G.; de Vries, G. J.; Raabe, S.; Cupido, C.; Koelman, J. H. T. M.; Tijssen, M. A. J.

    2006-01-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex

  16. Determination of Nucleic Acid Hydration Using Osmotic Stress

    Science.gov (United States)

    Rozners, Eriks

    2010-01-01

    Understanding the role water plays in biological processes requires detailed knowledge of the phenomena of biopolymer hydration. Crystal structures have identified exact sites occupied by the water molecules in immediate hydration layers. NMR and molecular modeling have provided information on dynamics of water molecules occupying these sites. However, these studies give little information on the thermodynamic contribution of water molecules to conformational equilibria and recognition affinity. This unit describes probing of nucleic acid hydration using osmotic stress, a method that provides thermodynamic information complementary to crystallography, NMR and molecular modeling. Osmotic stress monitors the depression of melting temperature upon decreasing the water activity and calculates the number of thermodynamically unique water molecules associated with the double helix and released from the single strands upon melting. PMID:21154532

  17. Mechanistic insights into aging, cell cycle progression, and stress response

    Directory of Open Access Journals (Sweden)

    Troy Anthony Alan Harkness

    2012-06-01

    Full Text Available The longevity of an organism depends on the health of its cells. Throughout life cells are exposed to numerous intrinsic and extrinsic stresses, such as free radicals, generated through mitochondrial electron transport, and ultraviolet irradiation. The cell has evolved numerous mechanisms to scavenge free radicals and repair damage induced by these insults. One mechanism employed by the yeast Saccharomyces cerevisiae to combat stress utilizes the Anaphase Promoting Complex (APC, an essential multi-subunit ubiquitin-protein ligase structurally and functionally conserved from yeast to humans that controls progression through mitosis and G1. We have observed that yeast cells expressing compromised APC subunits are sensitive to multiple stresses and have shorter replicative and chronological lifespans. In a pathway that runs parallel to that regulated by the APC, members of the Forkhead box (Fox transcription factor family also regulate stress responses. The yeast Fox orthologues Fkh1 and Fkh2 appear to drive the transcription of stress response factors and slow early G1 progression, while the APC seems to regulate chromatin structure, chromosome segregation, and resetting of the transcriptome in early G1. In contrast, under non-stress conditions, the Fkhs play a complex role in cell cycle progression, partially through activation of the APC. Direct and indirect interactions between the APC and the yeast Fkhs appear to be pivotal for lifespan determination. Here we explore the potential for these interactions to be evolutionarily conserved as a mechanism to balance cell cycle regulation with stress responses.

  18. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  19. Gene Response to Salt Stress in Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Shen Xin; Thomas Teichmenn; Wang Yiqin; Bai Genben; Yu Guangjun; Wang Shasheng

    2003-01-01

    Through construction of a subtracted cDNA library and library screening, a number of salt-induced cDNA fragmentshave been cloned from Populus euphratica. Based on the results of DNA sequencing and Northern analysis, the gene response ofPopulus euphratica to salt stress is discussed. It is indicated that in response to salt treatment the transcription level for some genes ofPopulus euphratica increases by about 1.5 times and significant difference between the responses to osmotic stress and to ion stresshas been observed in gene activity.

  20. The STATs in cell stress-type responses

    Directory of Open Access Journals (Sweden)

    Best James

    2004-08-01

    Full Text Available Abstract In the early 1990's, a new cell signaling pathway was described. This new paradigm, now known as the JAK/STAT pathway, has been extensively investigated in immune-type cells in response to interferons and interleukins. However, recent evidence suggests that the JAK/STAT pathway also mediates diverse cellular responses to various forms of biological stress including hypoxia/reperfusion, endotoxin, ultraviolet light, and hyperosmolarity. The current literature describing the JAK/STAT pathway's role in cellular stress responses has been reviewed herein, but it is clear that our knowledge in this area is far from complete.

  1. The effect of music on the human stress response.

    Directory of Open Access Journals (Sweden)

    Myriam V Thoma

    Full Text Available BACKGROUND: Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor. It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. METHODS: Sixty healthy female volunteers (mean age = 25 years were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1 relaxing music ('Miserere', Allegri (RM, 2 sound of rippling water (SW, and 3 rest without acoustic stimulation (R. Salivary cortisol and salivary alpha-amylase (sAA, heart rate (HR, respiratory sinus arrhythmia (RSA, subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. RESULTS: The three conditions significantly differed regarding cortisol response (p = 0.025 to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026 baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. CONCLUSION: Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery, and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  2. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb. in response to high-temperature stress

    Directory of Open Access Journals (Sweden)

    Tao eHu

    2015-06-01

    Full Text Available When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as ‘stress memory’. However, there is insufficient information about is known about plants’ stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4 relative to the first stress (S1, and basal transcript levels during the recovery states (R1, R2 and R3. Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid, sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose, amino acids (serine, proline, pyroglutamic acid, glycine, alanine and one fatty acid (butanoic acid in pre-acclimated plants. These discoveries involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process.

  3. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed.

  4. Assessing coral stress responses using molecular biomarkers of gene transcription.

    Science.gov (United States)

    Morgan, M B; Vogelien, D L; Snell, T W

    2001-03-01

    We present a method for detecting rapid changes in coral gene expression at the messenger ribonucleic acid (mRNA) level. The staghorn coral Acropora cervicornis was exposed to 1 and 10 microg/L permethrin and 25 and 50 microg/L copper for 4 h. Using differential display polymerase chain reaction (PCR), mRNA associated with each toxicant exposure were reverse transcribed into complementary DNA (cDNA) fragments that were subsequently amplified and isolated. Six differentially expressed cDNA fragments were further developed into molecular probes that were used in Northern dot blots to determine the change in transcription levels of target transcripts. Changes in mRNA abundance were quantified by densitometry of chemiluminescence of digoxigenin-labeled probes hybridizing to target mRNA transcripts. The six gene probes showed varying degrees of sensitivity to the toxicants as well as specificity between toxicants. These probes were hybridized in Southern blots to genomic DNA from A. formosa sperm, which lacks zooxanthellae, to demonstrate that the genes coding for the mRNA transcripts produced are found within the coral genome. The gene probes developed in this study provide coral biologists with a new tool for coral assessment. Gene probes are sensitive, toxicant-specific biomarkers of coral stress responses with which gene sequence information can be obtained, providing a mechanism for identifying the stressor altering the gene expression.

  5. Towards establishment of a rice stress response interactome.

    Directory of Open Access Journals (Sweden)

    Young-Su Seo

    2011-04-01

    Full Text Available Rice (Oryza sativa is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.

  6. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  7. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

    Science.gov (United States)

    Wase, Nishikant; Black, Paul N; Stanley, Bruce A; DiRusso, Concetta C

    2014-03-01

    Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.

  8. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  9. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  10. Yokukansan inhibits neuronal death during ER stress by regulating the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Toru Hiratsuka

    Full Text Available BACKGROUND: Recently, several studies have reported Yokukansan (Tsumura TJ-54, a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer's disease (AD. Endoplasmic reticulum (ER stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death. METHODS: We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein. RESULTS: Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu, a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs. CONCLUSIONS: Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD.

  11. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis.

    Science.gov (United States)

    Blomster, Tiina; Salojärvi, Jarkko; Sipari, Nina; Brosché, Mikael; Ahlfors, Reetta; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2011-12-01

    Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.

  12. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms.

    Science.gov (United States)

    Zhao, Lijuan; Ortiz, Cruz; Adeleye, Adeyemi S; Hu, Qirui; Zhou, Hongjun; Huang, Yuxiong; Keller, Arturo A

    2016-09-06

    There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.

  13. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  14. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  15. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  16. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  17. Swim stress differentially blocks CRF receptor mediated responses in dorsal raphe nucleus.

    Science.gov (United States)

    Lamy, Christophe M; Beck, Sheryl G

    2010-10-01

    Modulation of the serotonergic (5-HT) neurotransmitter system arising from the dorsal raphe nucleus (DR) is thought to support the behavioral effects of swim stress, i.e., immobility. In vivo pharmacological and anatomical studies suggest that corticotropin-releasing factor (CRF) and γ-aminobutyric acid (GABA) synaptic transmission closely interact to set the response of the DR to swim stress. To investigate the cellular basis of these physiological mechanisms the effects of ovine CRF (oCRF) on GABA(A)-dependent miniature inhibitory postsynaptic currents (mIPSCs) in 5-HT and non-5-HT DR neurons in acute mesencephalic slices obtained from rats either naïve or 24h after a 15 min swim stress session were tested. In this study, the effect of swim stress alone was to decrease the holding current, i.e., hyperpolarize the neuron, and to increase the amplitude and charge of mIPSCs recorded from non-5-HT neurons. Ovine CRF (10 nM) induced an increase in mIPSC frequency in 5-HT neurons recorded from naïve rats, an effect that was suppressed by swim stress. The inward current elicited by oCRF in both 5-HT and non-5-HT neurons was also blocked by swim stress. Ovine CRF increased mIPSCs amplitude and charge in both 5-HT and non-5-HT neurons, but this effect was not modified by swim stress. In concert with our previous findings that swim stress decreased input resistance, action potential threshold and action potential duration and increased glutamatergic synaptic activity the overall primary effect of swim stress is to increase the excitability of 5-HT neurons. These data provide a mechanism at the cellular level for the immobility induced by swim stress and identifies critical components of the raphe circuitry responsible for the altered output of 5-HT neurons induced by swim stress.

  18. Influence of fatty acids on pressor responses to catecholamines.

    Science.gov (United States)

    Chopde, C T; Brahmankar, D M; Jadhav, S S; Hardas, A P; Dorle, A K

    1975-01-01

    Lauric, Myristic and Palmitic acids had no appreciable effect whereas Stearic, Oleic and Linoleic acids caused some reduction in dog blood pressure. Pressor responses to epinephrine and nor-epinephrine were potentiated whereas the depressor response to isoproterenol was reduced during the infusion of fatty acids in dogs. ACTH alone, which causes mobilization of free fatty acids had no appreciable effect on blood pressure responses to catecholamines, however, its administration followed by salicylate produced marked potentiation of the pressor responses to epinephrine and nor-epinephrine; the depressor response to isoproterenol was reduced.

  19. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  20. Orientational Polarizability and Stress Response of Biological Cells

    Science.gov (United States)

    Safran, S. A.; de, R.; Zemel, A.

    We present a theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes random forces as well as forces that arise from the deformation of the matrix and those due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate both the static and high frequency limits of the orientational response in terms of the cellular polarizability. For systems in which the forces due to regulation and activity dominate the mechanical forces, we show that there is a non-linear dynamical response which, in the high frequency limit, causes the cell to orient nearly perpendicular to the direction of the applied stress.

  1. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women.

  2. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata

    KAUST Repository

    DeSalvo, MK

    2010-03-08

    The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their dinoflagellate endosymbionts Symbiodinium spp. Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of cellular processes that are specific to coral–algal symbioses. In the present study, we utilized a cDNA microarray containing 2059 genes of the threatened Caribbean elkhorn coral Acropora palmata to identify genes that are differentially expressed upon thermal stress. Fragments from replicate colonies were exposed to elevated temperature for 2 d, and samples were frozen for microarray analysis after 24 and 48 h. Totals of 204 and 104 genes were differentially expressed in samples that were collected 1 and 2 d after thermal stress, respectively. Analysis of the differentially expressed genes indicates a cellular stress response in A. palmata involving (1) growth arrest, (2) chaperone activity, (3) nucleic acid stabilization and repair, and (4) removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and endosymbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are compared with those from a previous coral microarray study of thermal stress in Montastraea faveolata, and point to an overall evolutionary conserved bleaching response in scleractinian corals.

  3. Fibroblast growth factor 8 deficiency compromises the functional response of the serotonergic system to stress.

    Directory of Open Access Journals (Sweden)

    Leah R Brooks

    Full Text Available Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR, play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8. In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1 an exaggerated response of DR anxiety-promoting circuits and 2 a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.

  4. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase1[OPEN

    Science.gov (United States)

    Thatcher, Louise F.

    2017-01-01

    Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells. PMID:28209841

  5. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  6. Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Berenice K. de Alcântara

    2015-06-01

    Full Text Available Lipid peroxidation and root elongation of Eucalyptus grandis × Eucalyptus camaldulensis were studied under stress conditions in response to aluminum (Al, a metal known to limit agricultural productivity in acidic soils primarily due to reduced root elongation. In Brazil, the Grancam 1277 hybrid (E. grandis × E. camaldulensis has been planted in the "Cerrado", a region of the country with a wide occurrence of acidic soils. The present study demonstrated that the hybrid exhibited root growth reduction and increased levels of lipid peroxidation after 24h of treatment with 100 µM of Al, which was followed by a reduction in lipid peroxidation levels and the recovery of root elongation after 48h of Al exposure, suggesting a rapid response to the early stressful conditions induced by Al. The understanding of the temporal dynamics of Al tolerance may be useful for selecting more tolerant genotypes and for identifying genes of interest for applications in bioengineering.

  7. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  8. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Aldred, S.; Bosch, J.A.; Wadley, A.J.; Veldhuijzen van Zanten, J.J.C.S.

    2013-01-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male

  9. Oxidative stress response pathways: Fission yeast as archetype.

    Science.gov (United States)

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  10. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  11. Environmental Stress Response and Adaptation Mechanisms in Rhizobia

    Directory of Open Access Journals (Sweden)

    Sanja Kajić

    2016-11-01

    Full Text Available Rhizobia are bacteria that can fixate atmospheric nitrogen in association within the root or the stem nodules of legume plants and transform atmospheric nitrogen to ammonia. Soil environmental conditions are critical factors for the persistence and survival of rhizobia in the soil. The changes in the rhizosphere environment can affect both growth and saprophytic competence, which will influence competitiveness and persistence. Environmental stress imposes a major threat to symbiotic nitrogen fixation and agriculture that can be limited by soil and climatic factors such as salinity, drought, temperature, acidity/alkalinity and heavy metals. In this review we present several different mechanisms in rhizobia adaptation under stress factors.

  12. A simple melatonin treatment protocol attenuates the response to acute stress in the sole Solea senegalensis

    DEFF Research Database (Denmark)

    Gesto, Manuel; Álvarez-Otero, Rosa; Conde-Sieira, Marta

    2016-01-01

    Several compounds have been tested in fish in order to attenuate the effects of different stressors, most often following previous observations in mammals. The hormone melatonin (MEL) and the amino acid L-tryptophan have been tested for this purpose with different degree of success. In Senegalese...... sole (Solea senegalensis) we have previously observed that during prolonged exposure to relatively mild stressors, the presence of MEL in the water helped to reduce the stress response. Here, we aimed to investigate the potential anti-stress effects of a short melatonin exposure that could be easily...

  13. Response to stress in Drosophila is mediated by gender, age and stress paradigm.

    Science.gov (United States)

    Neckameyer, Wendi S; Nieto-Romero, Andres R

    2015-01-01

    All living organisms must maintain equilibrium in response to internal and external challenges within their environment. Changes in neural plasticity (alterations in neuronal populations, dendritic remodeling, and synaptic turnover) are critical components of the homeostatic response to stress, which has been strongly implicated in the onset of affective disorders. However, stress is differentially perceived depending on the type of stress and its context, as well as genetic background, age and sex; therefore, an individual's maintenance of neuronal homeostasis must differ depending upon these variables. We established Drosophila as a model to analyze homeostatic responses to stress. Sexually immature and mature females and males from an isogenic wild-type strain raised under controlled environmental conditions were exposed to four reproducible and high-throughput translatable stressors to facilitate the analysis of a large number of animals for direct comparisons. These animals were assessed in an open-field arena, in a light-dark box, and in a forced swim test, as well as for sensitivity to the sedative effects of ethanol. These studies establish that immature and mature females and males represent behaviorally distinct populations under control conditions as well as after exposure to different stressors. Therefore, the neural substrates mediating the stress response must be differentially expressed depending upon the hormonal status of the brain. In addition, an adaptive response to a given stressor in one paradigm was not predictive for outcomes in other paradigms.

  14. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Taylor, Holly A; Kanarek, Robin B

    2014-01-01

    Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST) is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT) and a computerized mental arithmetic task (MAT). These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA), and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  15. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Directory of Open Access Journals (Sweden)

    Grace E Giles

    Full Text Available Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT and a computerized mental arithmetic task (MAT. These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA, and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  16. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  17. Renal Function and Cardiovascular Response to Mental Stress

    Science.gov (United States)

    Seliger, Stephen L.; Katzel, Leslie I.; Fink, Jeffrey C.; Weir, Matthew R.; Waldstein, Shari R.

    2008-01-01

    Background/Aims Cardiovascular reactivity (CVR), defined as an exaggerated hemodynamic response to mental stress, is a putative vascular risk factor and may reflect sympathetic hyperactivity. Chronic kidney disease (CKD) is also associated with sympathetic hyperactivity and vascular risk, but its relationship with CVR is unknown. Methods CVR was assessed in 107 individuals without overt cardiovascular disease or diabetes. Blood pressure and heart rate responses were elicited by three experimental tasks designed to evoke mental stress. Glomerular filtration rate (eGFR) was estimated using the MDRD formula. General linear models estimated the association between renal function and CVR, adjusting for potential confounders. Results Mean age was 66 years and 11% had eGFR of <60 ml/min/1.73 m2. After multivariate adjustment, a low eGFR was associated with a greater stress response of systolic blood pressure, heart rate, and pulse pressure. Associations were only partially attenuated after adjustment for lipids and glucose tolerance. When considered as a continuous variable, lower eGFR was associated with a greater blood pressure response after adjustment for glycemia. Conclusion Although there were relatively few participants with CKD, these results suggest a relationship between CKD and greater CVR. Further investigation is warranted into factors that mediate this relationship and potential clinical consequences of this exaggerated response to stress in CKD. PMID:18025779

  18. Dysregulation of the stress response in asthmatic children.

    Science.gov (United States)

    Priftis, K N; Papadimitriou, A; Nicolaidou, P; Chrousos, G P

    2009-01-01

    The stress system co-ordinates the adaptive responses of the organism to stressors of any kind. Inappropriate responsiveness may account for increased susceptibility to a variety of disorders, including asthma. Accumulated evidence from animal models suggests that exogenously applied stress enhances airway reactivity and increases allergen-induced airway inflammation. This is in agreement with the clinical observation that stressful life events increase the risk of a new asthma attack. Activation of the hypothalamic-pituitary-adrenal (HPA) axis by specific cytokines increases the release of cortisol, which in turn feeds back and suppresses the immune reaction. Data from animal models suggest that inability to increase glucocorticoid production in response to stress is associated with increased airway inflammation with mechanical dysfunction of the lungs. Recently, a growing body of evidence shows that asthmatic subjects who are not treated with inhaled corticosteroids (ICS) are likely to have an attenuated activity and/or responsiveness of their HPA axis. In line with this concept, most asthmatic children demonstrate improved HPA axis responsiveness on conventional doses of ICS, as their airway inflammation subsides. Few patients may experience further deterioration of adrenal function, a phenomenon which may be genetically determined.

  19. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.

  20. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    Science.gov (United States)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was

  1. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    Science.gov (United States)

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-03

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

  2. Reactive oxygen species in response of plants to gravity stress

    Science.gov (United States)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  3. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast.

    Science.gov (United States)

    Henry, Susan A; Gaspar, Maria L; Jesch, Stephen A

    2014-05-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.

  4. Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice

    Institute of Scientific and Technical Information of China (English)

    Ji-Ping Gao; Dai-Yin Chao; Hong-Xuan Lin

    2007-01-01

    Abiotic stress is the main factor negatively affecting crop growth and productivity worldwide. The advances in physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to stresses. Rice plants are sensitive to various abiotic stresses. In this short review, we present recent progresses in adaptation of rice to salinity, water deficit and submergence. Many studies show that salt tolerance is tightly associated with the ability to maintain ion homeostasis under salinity. Na+ transporter SKC1 unloads NaMrom xylem, plasma membrane NaVHTantiporter SOS1 excludes sodium out of cytosol and tonoplast Na+/H+antiporter NHX1 sequesters Na+ into the vacuole. Silicon deposition in exodermis and endodermis of rice root reduces sodium transport through the apoplastic pathway. A number of transcription factors regulate stress-inducible gene expression that leads to initiating stress responses and establishing plant stress tolerance. Overexpression of some transcription factors, including DREB/CBF and MAC, enhances salt, drought, and cold tolerance in rice. A variant of one of ERF family genes, Sub1A-1, confers immersion tolerance to lowland rice. These findings and their exploitation will hold promise for engineering breeding to protect crop plants from certain abiotic stresses.

  5. Proteomic Analysis of Tomato Seedlings Response to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Xue Zhao; Feng Han; Shihua Shen

    2012-01-01

    The two species (Solanum pimpinellifolium-PI and S.lycopersicum-MM) of tomato showed marked differences in their responses to NaCI stress.PI appeared to be more tolerant to salt than MM.Comparative two-dimensional electrophoresis revealed that 187 and 110 protein spots were differentially expressed in the roots of PI and MM,respectively,in response to salt stress.Out of these spots,a total of 96 and 61 proteins were identified by MALDI-TOF MS analysis.The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive species; metabolism of energy,signal transduction; protein synthesis,cell growth and differentiation et al.The role of some of the proteins involved in the antioxidant defense mechanism,ion transport and compartmentalization of ions,and cell signaling pathways were discussed.Collectively,this work suggest that PI has more efficient antioxidant and defense machinery than MM,and that this is important for adapting to salt stress and for withstanding the oxidative stress imposed by high salt levels.

  6. Neural regulation of the stress response: glucocorticoid feedback mechanisms

    Directory of Open Access Journals (Sweden)

    J.P. Herman

    2012-04-01

    Full Text Available The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA axis, driven by a neural signal originating in the paraventricular nucleus (PVN. Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

  7. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  8. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  9. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  10. REM SLEEP REBOUND AS AN ADAPTIVE RESPONSE TO STRESSFUL SITUATIONS

    Directory of Open Access Journals (Sweden)

    Deborah eSuchecki

    2012-04-01

    Full Text Available Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a form to cope with the adverse stimuli. Chronic stress, conversely, has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, which confer more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the REM phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior.

  11. Response and energy dissipation of rock under stochastic stress waves

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; BIAN Li

    2007-01-01

    The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis When the stochastic stress waves transnut through rocks,the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods.The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods.The results show the harder the rock, the less absorption of energy,the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock.When the whole stress energy doubles either by doubling the duration time or byincreasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to me whole stress energy (i.e.energy dissipation ratio)is decreased to 10%-15%. When doubling the duration time.the cutoff frequency to fracture rock remains constant.However, with the increase of the amplitude of stress wave. the cutoff frequency increases accordingly.

  12. ROLE OF ASCORBIC ACID ON GERMINATION INDEXES AND ENZYME ACTIVITY OF VICIA FABA SEEDS GROWN UNDER SALINITY STRESS

    OpenAIRE

    Awatif A. Mohsen; Mohsen K. H. Ebrahim; Wael F. S. Ghoraba

    2014-01-01

    The present work aimed to investigate changes in growth and some metabolic activities in NaCl-stressed bean seedlings, and assessing the role of ascorbic acid to alleviate these changes. The germination was carried out to study the response of presoaked faba bean seeds (Vicia faba cv. Misr 2) in freshly prepared ascorbic acid (50 ppm ≈ 0.3 mM; as recommended dose as described by El-Tayeb, 1995) or distilled water (control) for 4 hrs at natural environmental conditions, to salinity stress duri...

  13. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  14. Stress and fear responses in the teleost pallium

    DEFF Research Database (Denmark)

    Silva, Patricia Isabel da Mota E.; Martins, C.I.M.; Khan, Uniza Wahid;

    2015-01-01

    combining skin extract with other challenges are needed to reveal neuroendocrine effects associated with this predator cue. Confinement stress resulted in an elevation of cortisol and serotonin (5-hydroxytryptamine, 5-HT) metabolism in both Dl and Dm. A similar tendency was observed in fish exposed...... been found in the teleost telencephalon. The dorsolateral (Dl) and dorsomedial (Dm) regions of the pallium are thought to perform hippocampus and amygdala-like functions respectively. To what degree these regions are involved in the neuroendocrine responses to stress and predator cues however remains...... largely unknown. In the present study the involvement of Dl and Dm in such responses was investigated by exposing Nile tilapia (Oreochromis niloticus) to a standardized confinement stress and to skin extract from conspecifics. Nile tilapia develops a characteristic anticipatory behaviour to hand feeding...

  15. Husbandry of zebrafish, Danio rerio, and the cortisol stress response.

    Science.gov (United States)

    Pavlidis, Michail; Digka, Nikoletta; Theodoridi, Antonia; Campo, Aurora; Barsakis, Konstantinos; Skouradakis, Gregoris; Samaras, Athanasios; Tsalafouta, Alexandra

    2013-12-01

    The effect of common husbandry conditions (crowding, social environment, water quality, handling, and background color) on the cortisol stress response in adult zebrafish, Danio rerio, was investigated to check the usefulness of zebrafish as a model organism in aquaculture research. In addition, a noninvasive methodology for assessing stress was evaluated. Zebrafish showed a fast cortisol response with high values at 30 min that returned to basal levels within 2 h of poststress. There was a significant positive correlation between trunk cortisol concentrations and the free water cortisol rate (r(2)=0.829-0.850, pzebrafish. It is concluded that adult laboratory zebrafish had a preference for a transparent or black background aquarium, at a number of 10 individuals per 2 L of available water volume, to express their normal behavior and avoid increased cortisol stress reaction.

  16. Enterovirus Control of Translation and RNA Granule Stress Responses

    Directory of Open Access Journals (Sweden)

    Richard E. Lloyd

    2016-03-01

    Full Text Available Enteroviruses such as poliovirus (PV and coxsackievirus B3 (CVB3 have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs and processing bodies (P-bodies, PBs, which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  17. Enterovirus Control of Translation and RNA Granule Stress Responses

    Science.gov (United States)

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  18. Phosphate-dependent root system architecture responses to salt stress

    NARCIS (Netherlands)

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  19. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Science.gov (United States)

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  20. Stress response signaling and virulence: insights from entomopathogenic fungi.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2015-08-01

    The Ascomycete fungal insect pathogens, Beauveria and Metarhizium spp. have emerged as model systems with which to probe diverse aspects of fungal growth, stress response, and pathogenesis. Due to the availability of genomic resources and the development of robust methods for genetic manipulation, the last 5 years have witnessed a rapid increase in the molecular characterization of genes and their pathways involved in stress response and signal transduction in these fungi. These studies have been performed mainly via characterization of gene deletion/knockout mutants and have included the targeting of general proteins involved in stress response and/or virulence, e.g. catalases, superoxide dismutases, and osmolyte balance maintenance enzymes, membrane proteins and signaling pathways including GPI anchored proteins and G-protein coupled membrane receptors, MAPK pathways, e.g. (i) the pheromone/nutrient sensing, Fus3/Kss1, (ii) the cell wall integrity, Mpk1, and (iii) the high osmolarity, Hog1, the PKA/adenyl cyclase pathway, and various downstream transcription factors, e.g. Msn2, CreA and Pac1. Here, we will discuss current research that strongly suggests extensive underlying contributions of these biochemical and signaling pathways to both abiotic stress response and virulence.

  1. Oxidative stress response pathways: Fission yeast as archetype

    DEFF Research Database (Denmark)

    Papadakis, Manos A.; Workman, Christopher

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transc...

  2. Phospholipid signaling responses in salt-stressed rice leaves

    NARCIS (Netherlands)

    Darwish, E.; Testerink, C.; Khalil, M.; El-Shihy, O.; Munnik, T.

    2009-01-01

    Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32 P-orthophosphate and the lipids extracted and analyzed

  3. The insect capa neuropeptides impact desiccation and cold stress responses

    Science.gov (United States)

    Background: Insects are so successful because of great resistance to environmental stress, yet little is known about how such responses may be mediated by the neuroendocrine system. Results: We provide evidence that the capability (capa) neuropeptide gene and peptide are critical mediators of desic...

  4. Genetic mapping of abiotic stress responses in sorghum

    Science.gov (United States)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  5. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Kelly Lynn Hagberg

    2016-11-01

    Full Text Available Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the Nitrogen Stress Response (NSR and Phosphate Stress Response (PSR have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.

  6. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    Science.gov (United States)

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika; Kahn, Michael L.

    2016-01-01

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation. PMID:27965651

  7. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    Science.gov (United States)

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  8. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses

    Institute of Scientific and Technical Information of China (English)

    Shangguo Feng; Runqing Yue; Sun Tao Yanjun Yang; Lei Zhang; Mingfeng Xu; Huizhong Wang; Chenjia Shen

    2015-01-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The respon-siveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  9. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available There is collecting evidence suggesting that the process of chromatin remodeling such as changes in histone acetylation contribute to the formation of stress-related memory. Recently, the ventrolateral orbital cortex (VLO, a major subdivision of orbitofrontal cortex (OFC, was shown to be involved in antidepressant-like actions through epigenetic mechanisms. Here, we further investigated the effects of the histone deacetylase inhibitor (HDACi valproic acid (VPA on stress-related memory formation and the underlying molecular mechanisms by using the traditional two-day forced swimming test (FST. The results showed that VPA significantly increased the immobility time on day 2 when infused into the VLO before the initial forced swim stress on day 1. The learned immobility response to the stress was associated with increased phosphorylation of extracellular signal-regulated kinase (ERK in VLO and hippocampus on the first day. The levels of phosphorylated ERK (phospho-ERK in VLO and hippocampus were significantly decreased when retested 24 h later. The pretreatment with intra-VLO VPA infusion further reduced the activation of ERK on day 2 and day 7 compared with the saline controls. Moreover, the VPA infusion pretreatment also induced a significantly decreased BDNF level in the VLO on day 2, whereas no change was detected in the hippocampus. These findings suggest that VPA enhance the memories of emotionally stressful events and the ERK activity is implicated in stimulating adaptive and mnemonic processes in case the event would recur.

  10. A proteomic analysis of salt stress response in seedlings of two African rice cultivars.

    Science.gov (United States)

    Damaris, Rebecca Njeri; Li, Ming; Liu, Yanli; Chen, Xi; Murage, Hunja; Yang, Pingfang

    2016-11-01

    Salt stress is one of the key abiotic stresses threatening future agricultural production and natural ecosystems. This study investigates the salt stress response of two rice seedlings, which were screened from 28 Kenya rice cultivars. A proteomic analysis was carried out and Mapman bin codes employed in protein function categorization. Proteins in the redox, stress, and signaling categories were identified, and whose expression differed between the salt tolerant and the salt sensitive samples employed in the present study. 104 and 102 root proteins were observed as significantly altered during salt stress in the tolerant and sensitive samples, respectively and 13 proteins were commonly expressed. Among the 13 proteins, ketol-acid reductoisomerase protein was upregulated in both 1 and 3days of salt treatment in the tolerant sample, while it was down-regulated in both 1 and 3days of salt treatment in the sensitive sample. Actin-7, tubulin alpha, V-type proton ATPase, SOD (Cu-Zn), SOD (Mn), and pyruvate decarboxylase were among the observed salt-induced proteins. In general, this study improves our understanding about salt stress response mechanisms in rice.

  11. Action of jasmonates in plant stress responses and development--applied aspects.

    Science.gov (United States)

    Wasternack, Claus

    2014-01-01

    Jasmonates (JAs) are lipid-derived compounds acting as key signaling compounds in plant stress responses and development. The JA co-receptor complex and several enzymes of JA biosynthesis have been crystallized, and various JA signal transduction pathways including cross-talk to most of the plant hormones have been intensively studied. Defense to herbivores and necrotrophic pathogens are mediated by JA. Other environmental cues mediated by JA are light, seasonal and circadian rhythms, cold stress, desiccation stress, salt stress and UV stress. During development growth inhibition of roots, shoots and leaves occur by JA, whereas seed germination and flower development are partially affected by its precursor 12-oxo-phytodienoic acid (OPDA). Based on these numerous JA mediated signal transduction pathways active in plant stress responses and development, there is an increasing interest in horticultural and biotechnological applications. Intercropping, the mixed growth of two or more crops, mycorrhization of plants, establishment of induced resistance, priming of plants for enhanced insect resistance as well as pre- and post-harvest application of JA are few examples. Additional sources for horticultural improvement, where JAs might be involved, are defense against nematodes, biocontrol by plant growth promoting rhizobacteria, altered composition of rhizosphere bacterial community, sustained balance between growth and defense, and improved plant immunity in intercropping systems. Finally, biotechnological application for JA-induced production of pharmaceuticals and application of JAs as anti-cancer agents were intensively studied.

  12. Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.).

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie; Aquea, Felipe; Nunes-Nesi, Adriano; Alberdi, Miren; Arce-Johnson, Patricio

    2011-09-01

    Aluminium (Al) stress is an important factor limiting crop yields in acid soils. Despite this, very little is known about the mechanisms of resistance to this stress in woody plants. To understand the mechanisms of Al-toxicity and response in blueberries, we compared the impact of Al-stress in Al-resistant and Al-sensitive genotypes using Vaccinium corymbosum L. (Ericaceae) as a plant model. We investigated the effect of Al-stress on the physiological performance, oxidative metabolism and expression of genes that encode antioxidant enzymes in two V. corymbosum cultivars maintained hydroponically with AlCl(3) (0 and 100 μM). Microscopic analyses of Al-treated root tips suggested a higher degree of Al-induced morphological injury in Bluegold (sensitive genotype) compared to Brigitta (resistant genotype). Furthermore, the results indicated that Brigitta had a greater ability to control oxidative stress under Al-toxicity, as reflected by enhancement of several antioxidative and physiological properties (radical scavenging activity: RSA, superoxide dismutase: SOD and catalase: CAT; maximum quantum yield: Fv/Fm, effective quantum yield: ФPSII, electron transport rate: ETR and non-photochemical quenching: NPQ). Finally, we analyzed the expression of genes homologous to GST and ALDH, which were identified in a global expression analysis. In the resistant genotype, the expression of these genes in response to Al-stress was greater in leaves than in roots.

  13. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress.

    Science.gov (United States)

    Valente, Caroline; Pasqualim, Patrícia; Jacomasso, Thiago; Maurer, Juliana Bello Baron; Souza, Emanuel Maltempi de; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Carnieri, Eva Gunilla Skare; Cadena, Sílvia Maria Suter Correia

    2012-12-01

    In this study, the responses of plant uncoupling mitochondrial protein (PUMP) and alternative oxidase (AOX) in mitochondria from embryogenic cells of A. angustifolia subjected to cold stress (4°C for 24 h or 48 h) is reported. In the mitochondria of stressed cells, PUMP activity increased by approximately 45% (at 24h and 48 h), which was determined by measuring the oxygen consumption after the addition of linoleic acid and the inhibition by BSA and ATP. PUMP activation was confirmed using transmembrane electrical potential (Δψ) assays. Immunoblot assays showed an increase of PUMP expression by 40% and 150% after 24h and 48 h of cold stress, respectively. AOX activity, measured under conditions similar to those of the PUMP assays, was only slightly increased in the mitochondria from stressed cells (at 24h and 48 h), as demonstrated by oxygen consumption experiments. Cell viability was unaffected by cold stress, indicating that the effects on PUMP and AOX were not caused by cell death. These results show that the main response of this gymnosperm to cold stress is the activation of PUMP, which suggests that this protein may be involved in the control of reactive oxygen species generation, which has been previously associated with this condition.

  14. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    Science.gov (United States)

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

  15. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  16. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    Science.gov (United States)

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  17. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Guifeng Liu

    2012-01-01

    Full Text Available The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  18. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge

    Science.gov (United States)

    Japanese quail selected for divergent corticosterone (Cort) response to restraint stress were evaluated for their susceptibility to heat stress and challenge with Escherichia coli. These quail lines are designated as the high stress (HS), low stress (LS), and the random-bred control (CS) lines. Hea...

  19. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    Science.gov (United States)

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  20. Alternative Strategy for Alzheimer’s Disease: Stress Response Triggers

    Directory of Open Access Journals (Sweden)

    Joan Smith Sonneborn

    2012-01-01

    Full Text Available Stress resistance capacity is a hallmark of longevity protection and survival throughout the plant and animal kingdoms. Latent pathway activation of protective cascades, triggered by environmental challenges to tolerate heat, oxygen deprivation, reactive oxygen species (ROS, diet restriction, and exercise provides tolerance to these stresses. Age-related changes and disease vulnerability mark an increase in damage, like damage induced by environmental challenges. An alternative approach to immunotherapy intervention in Alzheimer’s Disease is the use of mimetics of stress to upregulate endogenous protective cascades to repair age damage, shift the balance of apoptosis to regeneration to promote delay of onset, and even progression of Alzheimer’s disease memory dysfunction. Mimetics of environmental stress, hormetic agents, and triggers, endogenous or engineered, can “trick” activation of expression patterns of repair and rejuvenation. Examples of known candidate triggers of heat response, endogenous antioxidants, DNA repair, exercise, hibernation, and telomeres are available for AD intervention trials. Telomeres and telomerase emerge as major regulators in crossroads of senescence, cancer, and rejuvenation responsive to mimetics of telomeres. Lessons emerge from transgenic rodent models, the long-lived mole rat, clinical studies, and conserved innate pathways of stress resistance. Cross-reaction of benefits of different triggers promises intervention into seemingly otherwise unrelated diseases.

  1. Transcriptional regulation of the stress response by mTOR.

    Science.gov (United States)

    Aramburu, Jose; Ortells, M Carmen; Tejedor, Sonia; Buxadé, Maria; López-Rodríguez, Cristina

    2014-07-01

    The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.

  2. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays.

    Science.gov (United States)

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-11-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.

  3. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  4. Gene Networks in Plant Ozone Stress Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    Agnieszka Ludwikow; Jan Sadowski

    2008-01-01

    For many plant species ozone stress has become much more severe in the last decade. The accumulating evidence for the significant effects of ozone pollutant on crop and forest yield situate ozone as one of the most important environmental stress factors that limits plant productivity woddwide. Today, transcdptomic approaches seem to give the best coverage of genome level responses. Therefore, microarray serves as an invaluable tool for global gene expression analyses, unravelling new information about gene pathways, in-species and crose-species gene expression comparison, and for the characterization of unknown relationships between genes. In this review we summadze the recent progress in the transcdptomics of ozone to demonstrate the benefits that can be harvested from the application of integrative and systematic analytical approaches to study ozone stress response. We focused our consideration on microarray analyses identifying gene networks responsible for response and tolerance to elevated ozone concentration. From these analyses it is now possible to notice how plant ozone defense responses depend on the interplay between many complex signaling pathways and metabolite signals.

  5. Assessing the Neuroendocrine Stress Response in the Functional Neuroimaging Context

    Science.gov (United States)

    King, Anthony P.; Liberzon, Israel

    2009-01-01

    Neural regulation of stress responses, and the feedback of stress hormones to the brain, reflect complex brain-body interactions that may underlie the effects of psychological stress on health. Elucidating the brain circuitry involved in the cortical control of limbic-hypothalamic-pituitary-adrenal axis, and the cortical “targets” of cortisol that in turn modulates brain function, requires careful assessment of glucocorticoid hormones, in the context of the neuroimaging paradigms. Here we discuss approaches for assessment of endocrine function in the context of neuroimaging, including methods of blood and saliva specimen collection, and methods for drug/hormone administration. We also briefly discuss important temporal considerations, including appropriate timing of sample collections for hormones with different time-courses of activation (e.g. ACTH vs. cortisol), the pharmacokinetics of both endogenous hormones and administered agents, and circadian considerations. These are crucial to experimental designs of rhythmic hormonal systems and multiple feedback loops. We briefly address psychological/behavioral ‘activation’ paradigms used for inducing endogenous LHPA axis responses within or in proximity to scanner, as well as strategies for administration of exogenous hormones or secretagogues. Finally, we discuss some of the analyses issues in terms of hormone responses (e.g. response and area under curve, diurnal variability) and strategies for linking measured levels of peripheral humoral factor to brain activity (e.g. hormone responses as between subject regressors of BOLD activations, hormone levels as within subject regressors in analyses of covariance of brain activity over time, etc.). PMID:19481160

  6. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    Science.gov (United States)

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  7. Transgenerational stress memory is not a general response in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ales Pecinka

    Full Text Available Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions.

  8. TRANSCRIPTOMIC CHANGES DRIVE PHYSIOLOGICAL RESPONSES TO PROGRESSIVE DROUGHT STRESS AND REHYDRATION IN TOMATO

    Directory of Open Access Journals (Sweden)

    Paolo eIovieno

    2016-03-01

    Full Text Available Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation and chlorophyll fluorescence, abscisic acid (ABA and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting and photosystem I and II category induced by drought stress. Gene ontology (GO categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included

  9. Oxidative stress response of Deinococcus geothermalis via a cystine importer.

    Science.gov (United States)

    Kim, Minwook; Jeong, Sunwook; Lim, Sangyong; Sim, Jeonggu; Rhie, Ho-Gun; Lee, Sung-Jae

    2017-02-01

    A cystine-dependent anti-oxidative stress response is characterized in Deinococcus geothermalis for the first time. Nevertheless, the same transcriptional directed Δdgeo_1985F mutant strain was revealed to have an identical phenotype to the wild-type strain, while the reverse transcriptional directed Δdgeo_1985R mutant strain was more resistant to oxidative stress at a certain concentration of H2O2 than the wild-type strain. The wild-type and mutant strains expressed equal levels of superoxide dismutase and catalase under H2O2-induced stress. Although the expression levels of the general DNA-damage response-related genes recA, pprA, ddrA, and ddrB were up-regulated by more than five-fold in the wild-type strain relative to the Δdgeo_1985R mutant strain, the mutant strain had a higher survival rate than the wild-type under H2O2 stress. The Δdgeo_1985R mutant strain highly expressed a cystine-transporter gene (dgeo_1986), at levels 150-fold higher than the wild-type strain, leading to the conclusion that this cystine transporter might be involved in the defensive response to H2O2 stress. In this study, the cystine transporter was identified and characterized through membrane protein expression analysis, a cystine-binding assay, and assays of intracellular H2O2, cysteine, and thiol levels. The genedisrupted mutant strain of the cystine importer revealed high sensitivity to H2O2 and less absorbed cystine, resulting in low concentrations of total thiol. Thus, the absorbed cystine via this cystine-specific importer may be converted into cysteine, which acts as a primitive defense substrate that non-enzymatically scavenges oxidative stress agents in D. geothermalis.

  10. How are neuroticism and depression related to the psychophysiological stress response to acute stress in healthy older people?

    Science.gov (United States)

    Puig-Perez, Sara; Villada, Carolina; Pulopulos, Matias M; Hidalgo, Vanesa; Salvador, Alicia

    2016-03-15

    Neuroticism and depressive symptomatology have been related to a heightened and diminished physiological stress response, which may partly explain their negative relationship with health and wellbeing. Identifying factors that may increase disease vulnerability is especially relevant in older people, whose physiological systems decline. With this in mind, we investigated the influence of neuroticism and depression on the psychophysiological stress response in healthy older people (from 55 to 76years old). A total of 36 volunteers were exposed to a stressful task (Trier Social Stress Test, TSST), while 35 volunteers performed a control non-stressful task. The physiological stress response was assessed through measures of cortisol, alpha-amylase, heart rate (HR). Our results showed that, neuroticism was not related to physiological stress response. However, depression was related to higher cortisol response and lower HR reactivity in the stress condition. In summary, emotional states such as depressive mood seem to amplify the cortisol stress response and reduce the cardiovascular response, whereas more stable dispositions such as neuroticism did not affect stress response in older people. These findings confirm, in healthy older people, the adverse effects of depression, acting on different subsystems of the stress response.

  11. Molecular Responses of Groundnut (Arachis hypogea L. to Zinc Stress

    Directory of Open Access Journals (Sweden)

    A. John De Britto

    2013-08-01

    Full Text Available Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary and environmental reasons. The interference of germination related proteins by heavy metals has not been well documented at the proteomic and genomic level. In the current study, molecular responses of germinating groundnut seeds were investigated under Zinc stress. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under Zinc stress. Restriction digestion banding pattern of EcoRI and Hind III enzymes showed distinct banding pattern in the treated plants.

  12. Ethylene is involved in stress responses induced by fusicoccin in sycamore cultured cells.

    Science.gov (United States)

    Malerba, Massimo; Crosti, Paolo; Cerana, Raffaella

    2010-11-15

    The phytohormone ethylene is involved in many physiological and developmental processes of plants, as well as in stress responses and in the development of disease resistance. Fusicoccin (FC) is a well-known phytotoxin, that in sycamore (Acer pseudoplatanus L.) cultured cells, induces a set of stress responses, including synthesis of ethylene. In this study, we investigated the possible involvement of ethylene in the FC-induced stress responses of sycamore cells by means of Co(2+), a well-known specific inhibitor of ethylene biosynthesis. Co(2+) inhibited the accumulation of dead cells in the culture, the production of nitric oxide (NO) and of the molecular chaperone Binding Protein (BiP) in the endoplasmic reticulum induced by FC. By contrast, Co(2+) was ineffective on the FC-induced accumulation of cells with fragmented DNA, production of H(2)O(2) and release of cytochrome c from the mitochondrion, and only partially reduced the accumulation of regulative 14-3-3 proteins in the cytosol. In addition, we compared the effect of FC on the above parameters with that of the ethylene-releasing compound ethephon (2-chloroethane phosphonic acid). The results suggest that ethylene is involved in several stress responses induced by FC in sycamore cells, including a form of cell death that does not show apoptotic features and possibly involves NO as a signaling molecule.

  13. Mitigating effects of salicylic acid against herbicidal stress

    Directory of Open Access Journals (Sweden)

    Singh N. B.

    2012-11-01

    Full Text Available Background, the context and purpose of the study: Pendimethalin [N-(1-ethyl propyl-2, 6-dinitro-3, 4 xylidine] is one of the most commonly used herbicides. It induces harmful effect on non-target plants besides controlling the weed emergence. Salicylic acid (SA plays an important role in abiotic stress tolerance. Present study was to assess the comparative efficacy of SA in combination with different concentrations of pendimethalin on black gram (Vigna mungo. The seeds of test plant were treated with field relevant concentrations (2, 5 and 10 ppm of pendimethalin (P and in combination with SA (0.5 mM to observe effect of SA against herbicide toxicity. Experiment was performed in petri dish as well as in pot culture. The toxic effect of pendimethalin and SA on seed germination (SG, radicle length (RL and mitotic index (MI was evaluated in petri dish culture. Seedling height, pigments, protein, sugar contents and lipid peroxidation (LP of 15 days old seedling were measured in pot culture. Total antioxidants (TA were monitored as plant defence against oxidative stress. Results, the main findings: Results showed that SG and seedling growth of Vigna mungo decreased under P1, P2 and P3 treatments. RL and MI were also reduced significantly (p<0.05 in treatments with herbicide and reduction was more pronounced in P3 treatment. A slight increase of SG and seedling growth was observed in P2 treatment compared to P1. Herbicide treatment remarkably declined pigment, protein and sugar contents of the seedlings when compared with control. TA and malondialdehyde (MDA content increase significantly under pendimethalin treated seedlings. Combined treatment (P+SA elevated growth of the seedlings. As a consequence of herbicidal stress, SA enhanced SG, RL, MI, pigment, protein and sugar content significantly. Under combined treatments,LP and TA were decreased when compared with pendimethalin treatment. Conclusions, brief summary and potential implications: SA

  14. Family business: multiple members of major phytohormone classes orchestrate plant stress responses.

    Science.gov (United States)

    Erb, Matthias; Glauser, Gaetan

    2010-09-10

    Low-molecular-weight compounds such as jasmonic, abscisic and salicylic acids are commonly thought to be regulators of plant stress responses. However, it is becoming clear that these molecules, often referred to as phytohormones, are only a part of bigger groups of compounds with biological activity. We propose that the concept of "hormone families" may help to better understand plant physiological responses by taking into account not only the alleged main regulators, but also their precursors, conjugates and catabolites. Novel approaches to profile potentially active compounds in plants are discussed.

  15. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses.

    Science.gov (United States)

    Myers, Brent; Scheimann, Jessie R; Franco-Villanueva, Ana; Herman, James P

    2017-03-01

    In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.

  16. Saturated fatty acids trigger TLR4-mediated inflammatory response.

    Science.gov (United States)

    Rocha, D M; Caldas, A P; Oliveira, L L; Bressan, J; Hermsdorff, H H

    2016-01-01

    Toll-like receptors (TLR) mediate infection-induced inflammation and sterile inflammation by endogenous molecules. Among the TLR family, TLR4 is the best understood. However, while its downstream signaling pathways have been well defined, not all ligands of TLR4 are currently known. Current evidence suggests that saturated fatty acids (SFA) act as non-microbial TLR4 agonists, and trigger its inflammatory response. Thus, our present review provides a new perspective on the potential mechanism by which SFAs could modulate TLR4-induced inflammatory responses: (1) SFAs can be recognized by CD14-TLR4-MD2 complex and trigger inflammatory pathways, similar to lipopolysaccharide (LPS). (2) SFAs lead to modification of gut microbiota with an overproduction of LPS after a high-fat intake, enhancing this natural TLR4 ligand. (3) In addition, this metabolic endotoxemia leads to an oxidative stress thereby producing atherogenic lipids - oxLDL and oxidized phospholipids - which trigger CD36-TLR4-TLR6 inflammatory response. (4) Also, the high SFA consumption increases the lipemia and the mmLDL and oxLDL formation through oxidative modifications of LDL. The mmLDL, unlike oxLDL, is involved in activation of the CD14-TLR4-MD2 inflammatory pathway. Those molecules can induce TLR4 inflammatory response by MyD88-dependent and/or MyD88-independent pathways that, in turn, promotes the expression of proinflammatory transcript factors such as factor nuclear kappa B (NF-κB), which plays a crucial role in the induction of inflammatory mediators (cytokines, chemokines, or costimulatory molecules) implicated in the development and progression of many chronic diseases.

  17. Effect of Dietary Conjugated Linoleic Acid Supplementation on Early Inflammatory Responses during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Na-Young Park

    2010-01-01

    Full Text Available Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA, a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage. We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.

  18. Mongolian Almond (Prunus mongolica Maxim: The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.

    Directory of Open Access Journals (Sweden)

    Jǖgang Wang

    Full Text Available Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts up-regulated and 44.25% (1,489 transcripts down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution

  19. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  20. Characterization of the physiological stress response in lingcod

    Science.gov (United States)

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  1. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  2. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  3. The plant response:stress in the daily environment

    Institute of Scientific and Technical Information of China (English)

    FERGUSON Ian B.

    2004-01-01

    @@STRESS IS NORMAL Like animals, plants have evolved to survive in almost every climatic and environmental niche available. They have, however, evolved more sophisticated and varied methods to enable them to survive environmental changes in light, temperature, atmosphere composition, water and nutrients and salinity. This, in part, is necessary because of the sessile nature of plants; they do not have the ability to move to more favourable environments. Stress conditions that plants encounter are not always as rare or unusual as we might at first think. The most common environmental variables, necessary for growth, can impose significant stresses on the plant. But should we think of these as unusual and extreme or just part of the normal diurnal responses experienced by the plant?

  4. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    Science.gov (United States)

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress.

  5. Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil

    Institute of Scientific and Technical Information of China (English)

    Chunyan Yin; Ying Teng; Yongming Luo; Peter Christie

    2012-01-01

    A proteomic analysis of wheat defense response induced by the widely used organophosphorus nematicide fosthiazate is reported.Seed germination and two-dimensional gel electrophoresis (2-DE) experiments were performed using a Chinese wheat cultivar,Zhenmai No.5.Root and shoot elongation decreased but thiobarbituric acid reactive substances (TBARS) content in embryos increased with increasing pesticide concentration.More than 1000 protein spots were reproducibly detected in each silver-stained gel.Thirty-seven protein spots with at least 2-fold changes were identified using MALDI-TOF MS/MS analysis.Of these,24 spots were up-regulated and 13 were down-regulated.Proteins identified included some well-known classical stress responsive proteins under abiotic or biotic stresses as well as some unusual responsive proteins.Ten responsive proteins were reported for the first time at the proteomic level,including fatty acyl CoA reductase,dihydrodipicolinate synthase,DEAD-box ATPase-RNA-helicase,fimbriata-like protein,waxy B1,rust resistance kinase Lrl0,putative In2.1 protein,retinoblastoma-related protein 1,pollen allergen-like protein and S-adenosyl-Lmethionine:phosphoethanolamine N-methyltransferase.The proteins identified were involved in several processes such as metabolism,defense/detoxification,cell structure/cell growth,signal transduction/transcription,photosynthesis and energy.Seven candidate proteins were further analyzed at the mRNA level by RT-PCR to compare transcript and protein accumulation patterns,revealing that not all the genes were correlated well with the protein level.Identification of these responsive proteins may provide new insight into the molecular basis of the fosthiazate-stress response in the early developmental stages of plants and may be useful in stress monitoring or stress-tolerant crop breeding for environmentally friendly agricultural production.

  6. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    Science.gov (United States)

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  7. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway.

  8. Stress responses of the oil-producing green microalga Botryococcus braunii Race B.

    Science.gov (United States)

    Cornejo-Corona, Ivette; Thapa, Hem R; Browne, Daniel R; Devarenne, Timothy P; Lozoya-Gloria, Edmundo

    2016-01-01

    Plants react to biotic and abiotic stresses with a variety of responses including the production of reactive oxygen species (ROS), which may result in programmed cell death (PCD). The mechanisms underlying ROS production and PCD have not been well studied in microalgae. Here, we analyzed ROS accumulation, biomass accumulation, and hydrocarbon production in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. We also identified and cloned a single cDNA for the B. braunii ortholog of the Arabidopsis gene defender against cell death 1 (DAD1), a gene that is directly involved in PCD regulation. The function of B. braunii DAD1 was assessed by a complementation assay of the yeast knockout line of the DAD1 ortholog, oligosaccharyl transferase 2. Additionally, we found that DAD1 transcription was induced in response to SA at short times. These results suggest that B. braunii responds to stresses by mechanisms similar to those in land plants and other  organisms.

  9. Insights into Vibrio parahaemolyticus CHN25 Response to Artificial Gastric Fluid Stress by Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2014-12-01

    Full Text Available Vibrio parahaemolyticus is the causative agent of food-borne gastroenteritis disease. Once consumed, human acid gastric fluid is perhaps one of the most important environmental stresses imposed on the bacterium. Herein, for the first time, we investigated Vibrio parahaemolyticus CHN25 response to artificial gastric fluid (AGF stress by transcriptomic analysis. The bacterium at logarithmic growth phase (LGP displayed lower survival rates than that at stationary growth phase (SGP under a sub-lethal acid condition (pH 4.9. Transcriptome data revealed that 11.6% of the expressed genes in Vibrio parahaemolyticus CHN25 was up-regulated in LGP cells after exposed to AGF (pH 4.9 for 30 min, including those involved in sugar transport, nitrogen metabolism, energy production and protein biosynthesis, whereas 14.0% of the genes was down-regulated, such as ATP-binding cassette (ABC transporter and flagellar biosynthesis genes. In contrast, the AGF stress only elicited 3.4% of the genes from SGP cells, the majority of which were attenuated in expression. Moreover, the number of expressed regulator genes was also substantially reduced in SGP cells. Comparison of transcriptome profiles further revealed forty-one growth-phase independent genes in the AGF stress, however, half of which displayed distinct expression features between the two growth phases. Vibrio parahaemolyticus seemed to have evolved a number of molecular strategies for coping with the acid stress. The data here will facilitate future studies for environmental stresses and pathogenicity of the leading seafood-borne pathogen worldwide.

  10. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L. seedlings

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-11-01

    Full Text Available Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L. plants as experimental material to investigate whether alkali stress exerts varied effects on ion balance and metabolism in old and young leaves of cotton plants exposed to alkali stress. Moreover, we compared the functions of young and old leaves in alkali tolerance. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable pigment accumulation and tricarboxylic acid cycle (TCA, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

  11. Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress.

    Science.gov (United States)

    Longhi, Catia; Ammendolia, Maria Grazia; Conte, Maria Pia; Seganti, Lucilla; Iosi, Francesca; Superti, Fabiana

    2014-09-01

    It has been suggested that the rarity of human listeriosis due to Listeria ivanovii reflects not only host tropism factors but also the rare occurrence of this species in the environment, compared with Listeria monocytogenes. In the present study we evaluate the effects on the reference strain L. ivanovii ATCC 19119 behaviour of two combined stresses, low iron availability and acid environment, that bacteria can encounter in the passage from saprophytic life to the host. In these conditions, L. ivanovii evidenced a different behaviour compared to L. monocytogenes exposed to similar conditions. L. ivanovii was not able to mount an acid tolerance response (ATR) even if, upon entry into the stationary phase in iron-loaded medium, growth phase-dependent acid resistance (AR) was evidenced. Moreover, bacteria grown in iron excess and acidic pH showed the higher invasion value in Caco-2 cells, even though it was not able to efficiently multiply. On the contrary, low iron and acidic conditions improved invasion ability in amniotic WISH cells.

  12. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Science.gov (United States)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  13. Influence of temperature on acid-stress adaptation in Listeria monocytogenes

    Science.gov (United States)

    Several factors play critical roles in controlling the induction of acid-stress adaptation in L. monocytogenes. Our findings show that temperature plays a significant role in the induction of acid-stress adaptation in Listeria monocytogenes and two distinct patterns were observed: (I) Presence of su...

  14. Particle shape effects on the stress response of granular packings.

    Science.gov (United States)

    Athanassiadis, Athanasios G; Miskin, Marc Z; Kaplan, Paul; Rodenberg, Nicholas; Lee, Seung Hwan; Merritt, Jason; Brown, Eric; Amend, John; Lipson, Hod; Jaeger, Heinrich M

    2014-01-01

    We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

  15. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362.

  16. Stress induced hypertensive response: should it be evaluated more carefully?

    Directory of Open Access Journals (Sweden)

    Kucukler Nagehan

    2011-08-01

    Full Text Available Abstract Various diagnostic methods have been used to evaluate hypertensive patients under physical and pharmacological stress. Several studies have shown that exercise hypertension has an independent, adverse impact on outcome; however, other prognostic studies have shown that exercise hypertension is a favorable prognostic indicator and associated with good outcome. Exercise hypertension may be encountered as a warning signal of hypertension at rest and future hypertensive left ventricular hypertrophy. The results of diagnostic stress tests support that hypertensive response to exercise is frequently associated with high rate-pressure product in hypertensives. In addition to the observations on high rate-pressure product and enhanced ventricular contractility in patients with hypertension, evaluation of myocardial contractility by Doppler tissue imaging has shown hyperdynamic myocardial function under pharmacological stress. These recent quantitative data in hypertensives suggest that hyperdynamic myocardial function and high rate-pressure product response to stress may be related to exaggerated hypertension, which may have more importance than that it has been already given in clinical practice.

  17. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  18. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-12-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves. These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  19. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-01-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves.These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  20. Peripheral vascular responses to heat stress after hindlimb suspension

    Science.gov (United States)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  1. Roles of horseradish peroxidase in response to terbium stress.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Qing

    2014-10-01

    The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb(3+)) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb(3+) treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb(3+), these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb(3+) stress. These roles were closely related to the dose of Tb(3+), duration of stress, and growth stages of horseradish.

  2. Calcium affecting protein expression in longan under simulated acid rain stress.

    Science.gov (United States)

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  3. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  4. The effects of exogenous putrescine on sex-specific responses of Populus cathayana to copper stress.

    Science.gov (United States)

    Chen, Lianghua; Wang, Ling; Chen, Fugui; Korpelainen, Helena; Li, Chunyang

    2013-11-01

    We used the dioecious tree, Populus cathayana, as a model species to study plants' physiological and biochemical responses to copper (Cu) stress, exogenous putrescine (Put) treatment and their interaction. Although males accumulated higher Cu concentrations in leaves than did females under Cu stress, they did not suffer more damage than females, as reflected by changes in gas exchange, pigment contents, membrane lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and protein oxidation (carbonyl). Higher Cu tolerance of males was correlated with a higher H2O2 scavenging ability and proline responses, and a better maintenance of non-protein thiols (NP-SHs) and spermine (Spm) contents. We also discovered that mitigation effects of exogenous Put on Cu stress occurred, as visible as a recovery of the total chlorophyll content, and lower TBARS and carbonyl under interaction treatment when compared to Cu stress alone. Exogenous Put decreased the Cu concentration in leaves of both sexes, but to different degrees. Such effects of exogenous Put suggested that Put may play important roles in the stabilization of membrane integrity and protein structures, and it may modulate the uptake and transportation of Cu. Our results indicated that (1) males are more tolerant to Cu stress than females; (2) Put could mitigate Cu toxicity in P. cathayana, but to a different degree in males and females; (3) males are better candidates than females for Cu extraction and phytoremediation.

  5. Integrated stress response of vertebrates is regulated by four eIF2α kinases

    Science.gov (United States)

    Taniuchi, Shusuke; Miyake, Masato; Tsugawa, Kazue; Oyadomari, Miho; Oyadomari, Seiichi

    2016-01-01

    The integrated stress response (ISR) is a cytoprotective pathway initiated upon phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α) residue designated serine-51, which is critical for translational control in response to various stress conditions. Four eIF2α kinases, namely heme-regulated inhibitor (HRI), protein kinase R (PKR), PKR-like endoplasmic reticulum kinase, (PERK) and general control non-depressible 2 (GCN2), have been identified thus far, and they are known to be activated by heme depletion, viral infection, endoplasmic reticulum stress, and amino acid starvation, respectively. Because eIF2α is phosphorylated under various stress conditions, the existence of an additional eIF2α kinase has been suggested. To validate the existence of the unidentified eIF2α kinase, we constructed an eIF2α kinase quadruple knockout cells (4KO cells) in which the four known eIF2α kinase genes were deleted using the CRISPR/Cas9-mediated genome editing. Phosphorylation of eIF2α was completely abolished in the 4KO cells by various stress stimulations. Our data suggests that the four known eIF2α kinases are sufficient for ISR and that there are no additional eIF2α kinases in vertebrates. PMID:27633668

  6. Magnitude-dependent response of osteoblasts regulated by compressive stress

    Science.gov (United States)

    Shen, Xiao-qing; Geng, Yuan-ming; Liu, Ping; Huang, Xiang-yu; Li, Shu-yi; Liu, Chun-dong; Zhou, Zheng; Xu, Ping-ping

    2017-01-01

    The present study aimed to investigate the role of magnitude in adaptive response of osteoblasts exposed to compressive stress. Murine primary osteoblasts and MC3T3-E1 cells were exposed to compressive stress (0, 1, 2, 3, 4, and 5 g/cm2) in 3D culture. Cell viability was evaluated, and expression levels of Runx2, Alp, Ocn, Rankl, and Opg were examined. ALP activity in osteoblasts and TRAP activity in RAW264.7 cells co-cultured with MC3T3-E1 cells were assayed. Results showed that compressive stress within 5.0 g/cm2 did not influence cell viability. Both osteoblastic and osteoblast-regulated osteoclastic differentiation were enhanced at 2 g/cm2. An increase in stress above 2 g/cm2 did not enhance osteoblastic differentiation further but significantly inhibited osteoblast-regualted osteoclastic differentiation. This study suggested that compressive stress regulates osteoblastic and osteoclastic differentiation through osteoblasts in a magnitude-dependent manner. PMID:28317941

  7. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings

    Institute of Scientific and Technical Information of China (English)

    GE Cai-lin; WANG Ze-gang; WAN Ding-zhen; DING Yan; WANG Yu-long; SHANG Qi; LUO Shi-shi

    2009-01-01

    A proteomic approach including two-dimensional electrophoresis and mass spectrometric (MALDI-TOF MS) analyses was used to investigate the responses to cadmium (Cd) stress in seedlings of rice (Oryza sativa L.) varieties Shanyou 63 and Aizaizhan. Cd stress significantly inhibited root and shoot growth, and affected the global proteome in rice roots and leaves, which induced or upregulated the expression of corresponding proteins in rice roots and leaves when rice seedlings were exposed to 0.1 or 1.0 mmol/L Cd. The Cd-induced proteins are involved in chelation and compartmentation of Cd, elimination of active oxygen free radicals, detoxification of toxic substances, degradation of denatured proteins or inactivated enzymes, regulation of physiologic metabolism and induction of pathogenesis-related proteins. Comparing the Cd-induced proteins between the two varieties, the β-glucosidase and pathogenesis-related protein family 10 proteins were more drastically induced by Cd stress in roots and leaves of Aizaizhan, and the UDP-glucose protein transglucosylase and translational elongation factor Tu were induced by 0.1 mmol/L Cd stress in roots of Shanyou 63. This may be one of the important mechanisms for higher tolerance to Cd stress in Shanyou 63 than in Aizaizhan.

  8. Cardiolipin at the heart of stress response across kingdoms.

    Science.gov (United States)

    de Paepe, Rosine; Lemaire, Stéphane D; Danon, Antoine

    2014-05-20

    Cardiolipin is a key phospholipid most specifically found in the membrane of mitochondria in yeasts, plants, and animals. Cardiolipins are essential for the maintenance, the integrity, and the dynamics of mitochondria. In most eukaryotes mitochondria play a central role in the response and adaptation to stress conditions especially through their importance in the control of programmed cell death. To assess the impact of the absence of cardiolipin, knock-down of the expression of cardiolipin synthase, the last enzyme of cardiolipin synthesis pathway in eukaryotes has been performed in yeasts, animals, and plants. These studies showed that cardiolipin is not only important for mitochondrial ultrastructure and for the stability of respiratory complexes, but it is also a key player in the response to stress, the formation of reactive oxygen species, and the execution of programmed cell death.

  9. Behaviour and stress responses in horses with gastric ulceration

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Poulsen, Janne Møller; Luthersson, Nanna

    2012-01-01

    Only little is known about behaviour and stress responses in horses with gastric ulceration, despite the high prevalence of this condition. Our objectives in the present study was to (i) describe the severity of gastric ulceration in horses, housed under relatively standardised conditions, and (ii......) to investigate whether horses with severe glandular gastric ulceration have increased baseline and response concentration of stress hormones and behave differently than control horses. We investigated stomachs of 96 horses at one stud, and compared an ulcer group (n = 30; with severe lesions in the glandular.......2% and non-glandular lesions in 40.6% of the horses. The amount of starch in the feed (P = 0.006) and paternal stallion (P = 0.031) influenced ulceration in the non-glandular region only; it should be noted that our study does not allow for separating hereditary from environmental influences, as offspring...

  10. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  11. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    Science.gov (United States)

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  12. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus

    OpenAIRE

    2014-01-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated ...

  13. MOF maintains transcriptional programs regulating cellular stress response.

    Science.gov (United States)

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  14. Stress Response of Offshore Structures by Equivalent Polynomial Expansion Techniques

    DEFF Research Database (Denmark)

    Sigurdsson, Gudfinnur; Nielsen, Søren R.K.

    This paper concerns an investigation of the effects of nonlinearity of drag loading on offshore structures excited by 2D wave fields, where the nonlinear term in the Morison equation is replaced by an equivalent cubic expansion. The equivalent cubic expansion coefficients for the equivalent drag...... model are obtained using the least mean square procedure. Numerical results are given. The displacement response and stress response processes obtained using the above loading model are compared with simulation results and those obtained from equivalent linearization of the drag term....

  15. STRESS-RESPONSE IN LACTOCOCCUS-LACTIS - CLONING, EXPRESSION ANALYSIS, AND MUTATION OF THE LACTOCOCCAL SUPEROXIDE-DISMUTASE GENE

    NARCIS (Netherlands)

    SANDERS, JW; LEENHOUTS, KJ; HAANDRIKMAN, AJ; VENEMA, G; KOK, J

    1995-01-01

    In an analysis of the stress response of Lactococcus lactis, three proteins that were induced under low pH culture conditions were detected. One of these was identified as the lactococcal superoxide dismutase (SodA) by N-terminal amino acid sequence analysis. The gene encoding this protein, designat

  16. Characterization of Brucella suis clpB and clpAB Mutants and Participation of the Genes in Stress Responses

    Science.gov (United States)

    Ekaza, Euloge; Teyssier, Jacques; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Köhler, Stephan

    2001-01-01

    Pathogens often encounter stressful conditions inside their hosts. In the attempt to characterize the stress response in Brucella suis, a gene highly homologous to Escherichia coli clpB was isolated from Brucella suis, and the deduced amino acid sequence showed features typical of the ClpB ATPase family of stress response proteins. Under high-temperature stress conditions, ClpB of B. suis was induced, and an isogenic B. suis clpB mutant showed increased sensitivity to high temperature, but also to ethanol stress and acid pH. The effects were reversible by complementation. Simultaneous inactivation of clpA and clpB resulted in a mutant that was sensitive to oxidative stress. In B. suis expressing gfp, ClpA but not ClpB participated in degradation of the green fluorescent protein at 42°C. We concluded that ClpB was responsible for tolerance to several stresses and that the lethality caused by harsh environmental conditions may have similar molecular origins. PMID:11274130

  17. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3.

    Science.gov (United States)

    Liu, Xiaoguang; Wu, Yan; Chen, Yuanyuan; Xu, Fang; Halliday, Nigel; Gao, Kexiang; Chan, Kok Gan; Cámara, Miguel

    2016-04-01

    The σ(S) subunit RpoS of RNA polymerase functions as a master regulator of the general stress response in Escherichia coli and related bacteria. RpoS has been reported to modulate biocontrol properties in the rhizobacterium Serratia plymuthica IC1270. However, the role of RpoS in the stress response and biofilm formation in S. plymuthica remains largely unknown. Here we studied the role of RpoS from an endophytic S. plymuthica G3 in regulating these phenotypes. Mutational analysis demonstrated that RpoS positively regulates the global stress response to acid or alkaline stresses, oxidative stress, hyperosmolarity, heat shock and carbon starvation, in addition to proteolytic and chitinolytic activities. Interestingly, rpoS mutations resulted in significantly enhanced swimming motility, biofilm formation and production of the plant auxin indole-3-acetic acid (IAA), which may contribute to competitive colonization and environmental fitness for survival. These findings provide further insight into the strain-specific role of RpoS in the endophytic strain G3 of S. plymuthica, where it confers resistance to general stresses encountered within the plant environment. The heterogeneous functionality of RpoS in rhizosphere and endophytic S. plymuthica populations may provide a selective advantage for better adaptation to various physiological and environmental stresses.

  18. Involvement of endoplasmic reticulum stress in formalin-induced pain is attenuated by 4-phenylbutyric acid

    Science.gov (United States)

    Zhou, Fan; Zhang, Wei; Zhou, Jianmei; Li, Meirong; Zhong, Feng; Zhang, Yun; Liu, Yuezhu; Wang, Yaping

    2017-01-01

    Background Endoplasmic reticulum (ER) stress is involved in many neurological and inflammatory responses. Peripheral inflammatory responses can induce central sensitization and trigger inflammatory pain. However, there is little research on the relationship between ER stress and inflammatory pain. In this study, we examined whether the ER stress response is involved in peripheral inflammatory pain using a formalin-induced rat pain model. Methods Rats were divided into the following five groups: control, formalin, formalin + vehicle, formalin + 4-phenylbutyric acid (4-PBA) (40 mg/kg) and formalin + 4-PBA (100 mg/kg). Formalin-induced pain was assessed behaviorally by recording licking activity. The expression levels of immunoglobulin-binding protein (BIP), activating transcription factor-6 (ATF6), phosphorylated inositol-requiring enzyme-1 (p-IRE1), phosphorylated protein kinase RNA-like ER kinase (p-PERK) and c-fos were quantitatively assessed by Western blot, and the distribution of BIP, ATF6 and c-fos in the lumbar enlargement of spinal cord were identified by immunohistochemistry in spinal dorsal horn slices. In addition, the concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) in the spinal cord were tested by biochemical measurement and enzyme-linked immunosorbent assay (ELISA), respectively. Results Intraperitoneal injection of 4-PBA at the dose of 100 mg/kg before formalin injection significantly decreased nociceptive behavior in the second phase compared with control, formalin, formalin + vehicle and formalin + 4-PBA (40 mg/kg) (Ppain and that inhibition of ER stress may attenuate central sensitization induced by peripheral inflammatory stimulation. PMID:28360534

  19. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    KAUST Repository

    Khraiwesh, Basel

    2015-11-30

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

  20. Identification of Novel Stress-responsive Transcription Factor Genes in Rice by cDNA Array Analysis

    Institute of Scientific and Technical Information of China (English)

    Cong-Qing Wu; Hong-Hong Hu; Ya Zeng; Da-Cheng Liang; Ka-Bin Xie; Jian-Wei Zhang; Zhao-Hui Chu; Li-Zhong Xiong

    2006-01-01

    Numerous studies have shown that array of transcription factors has a role in regulating plant responses to environmental stresses. Only a small portion of them however, have been identified or characterized.More than 2 300 putative transcription factors were predicted in the rice genome and more than half of them were supported by expressed sequences. With an attempt to identify novel transcription factors involved in the stress responses, a cDNA array containing 753 putative rice transcription factors was generated to analyze the transcript profiles of these genes under drought and salinity stresses and abscisic acid treatment at seedling stage of rice. About 80% of these transcription factors showed detectable levels of transcript in seedling leaves. A total of 18 up-regulated transcription factors and 29 down-regulated transcription factors were detected with the folds of changes from 2.0 to 20.5 in at least one stress treatment.Most of these stress-responsive genes have not been reported and the expression patterns for five genes under stress conditions were further analyzed by RNA gel blot analysis. These novel stress-responsive transcription factors provide new opportunities to study the regulation of gene expression in plants under stress conditions.

  1. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata.

    Science.gov (United States)

    Gugger, Paul F; Peñaloza-Ramírez, Juan Manuel; Wright, Jessica W; Sork, Victoria L

    2016-12-21

    Reduced water availability during drought can create major stress for many plant species. Within a species, populations with a history of seasonal drought may have evolved the ability to tolerate drought more than those in areas of high precipitation and low seasonality. In this study, we assessed response to water stress in a California oak species, Quercus lobata Née, by measuring changes in gene expression profiles before and after a simulated drought stress treatment through water deprivation of seedlings in a greenhouse setting. Using whole-transcriptome sequencing from nine samples from three collection localities, we identified which genes are involved in response to drought stress and tested the hypothesis that seedlings sampled from climatically different regions of the species range respond to water stress differently. We observed a surprisingly massive transcriptional response to drought: 35,347 of 68,434 contigs (52%) were differentially expressed before versus after drought treatment, of which 18,111 were down-regulated and 17,236 were up-regulated. Genes functionally associated with abiotic stresses and death were enriched among the up-regulated genes, whereas metabolic and cell part-related genes were enriched among the down-regulated. We found 56 contigs that exhibited significantly different expression responses to the drought treatment among the three populations (treatment × population interaction), suggesting that those genes may be involved in local adaptation to drought stress. These genes have stress response (e.g., WRKY DNA-binding protein 51 and HSP20-like chaperones superfamily protein), metabolic (e.g., phosphoglycerate kinase and protein kinase superfamily protein), transport/transfer (e.g., cationic amino acid transporter 7 and K(+) transporter) and regulatory functions (e.g., WRKY51 and Homeodomain-like transcriptional regulator). Baseline expression levels of 1310 unique contigs also differed among pairs of populations, and they

  2. Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates

    Science.gov (United States)

    Cunha, Diana V.; Salazar, Sara B.; Lopes, Maria M.; Mira, Nuno P.

    2017-01-01

    During colonization of the vaginal tract Candida glabrata cells are challenged with the presence of acetic acid at a low pH, specially when dysbiosis occurs. To avoid exclusion from this niche C. glabrata cells are expected to evolve efficient adaptive responses to cope with this stress; however, these responses remain largely uncharacterized, especially in vaginal strains. In this work a cohort of 18 vaginal strains and 2 laboratory strains (CBS138 and KUE100) were phenotyped for their tolerance against inhibitory concentrations of acetic acid at pH 4. Despite some heterogeneity has been observed among the vaginal strains tested, in general these strains were considerably more tolerant to acetic acid than the laboratory strains. To tackle the mechanistic insights behind this differential level of tolerance observed, a set of vaginal strains differently tolerant to acetic acid (VG281∼VG49 < VG99 < VG216) and the highly susceptible laboratory strain KUE100 were selected for further studies. When suddenly challenged with acetic acid the more tolerant vaginal strains exhibited a higher activity of the plasma membrane proton pump CgPma1 and a reduced internal accumulation of the acid, these being two essential features to maximize tolerance. Based on the higher level of resistance exhibited by the vaginal strains against the action of a β-1,3-glucanase, it is hypothesized that the reduced internal accumulation of acetic acid inside these strains may originate from them having a different cell wall structure resulting in a reduced porosity to undissociated acetic acid molecules. Both the vaginal and the two laboratory strains were found to consume acetic acid in the presence of glucose indicating that metabolization of the acid is used by C. glabrata species as a detoxification mechanism. The results gathered in this study advance the current knowledge on the mechanisms underlying the increased competitiveness of C. glabrata in the vaginal tract, a knowledge that can

  3. Differential oxidative stress responses in castor semilooper, Achaea janata.

    Science.gov (United States)

    Pavani, Ayinampudi; Chaitanya, R K; Chauhan, Vinod K; Dasgupta, Anwesha; Dutta-Gupta, Aparna

    2015-11-01

    Balance between reactive oxygen species (ROS) and the antioxidant (AO) defense mechanisms is vital for organism survival. Insects serve as an ideal model to elucidate oxidative stress responses as they are prone to different kinds of stress during their life cycle. The present study demonstrates the modulation of AO enzyme gene expression in the insect pest, Achaea janata (castor semilooper), when subjected to different oxidative stress stimuli. Antioxidant enzymes' (catalase (Cat), superoxide dismutase (Sod), glutathione-S-transferase (GST) and glutathione peroxidase (Gpx)) partial coding sequences were cloned and characterized from larval whole body. Tissue expression studies reveal a unique pattern of AO genes in the larval tissues with maximum expression in the gut and fat body. Ontogeny profile depicts differential expression pattern through the larval developmental stages for each AO gene studied. Using quantitative RT-PCR, the expression pattern of these genes was monitored during sugar-induced (d-galactose feeding), infection-induced (Gram positive, Gram negative and non-pathogenic bacteria) and pesticide-induced oxidative stress (Bt Cry toxin). d-Galactose feeding differentially modulates the expression of AO genes in the larval gut and fat body. Immune challenge with Escherichia coli induces robust upregulation of AO genes when compared to Bacillus coagulans and Bacillus cereus in the larval fat body and gut. Cry toxin feeding predominantly induced GST upregulation in the gut. The current study suggests that though there are multiple ways of generation of oxidative stress in the insect, the organism tailors its response by insult- and tissue-specific recruitment of the antioxidant players and their differential regulation for each inducer.

  4. Cell identity regulators link development and stress responses in the Arabidopsis root.

    Science.gov (United States)

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.

  5. ABA biosynthesis defective mutants reduce some free amino acids accumulation under drought stress in tomato leaves in comparison with Arabidopsis plants tissues

    Directory of Open Access Journals (Sweden)

    Adnan Ali Al.Asbahi

    2012-05-01

    Full Text Available The ability of plants to tolerate drought conditions is crucial for plant survival and crop production worldwide. The present data confirm previous findings reported existence of a strong relation between abscisic acid (ABA content and amino acid accumulation as response water stress which is one of the most important defense mechanism activated during water stress in many plant species. Therefore, free amino acids were measured to determine any changes in the metabolite pool in relation to ABA content. The ABA defective mutants of Arabidopsis plants were subjected to leaf dehydration for Arabidopsis on Whatman 3 mm filter paper at room temperature while, tomato mutant plants were subjected to drought stresses for tomato plants by withholding water. To understand the signal transduction mechanisms underlying osmotic stress-regulating gene induction and activation of osmoprotectant free amino acid synthesizing genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in ABA biosynthesis under drought stress conditions. The present results revealed an accumulation of specific free amino acid in water stressed tissues in which majority of free amino acids are increased especially those playing an osmoprotectant role such as proline and glycine. Drought stress related Amino acids contents are significantly reduced in the mutants under water stress condition while they are increased significantly in the wild types plants. The exhibited higher accumulation of other amino acids under stressed condition in the mutant plants suggest that, their expressions are regulated in an ABA independent pathways. In addition, free amino acids content changes during water stress condition suggest their contribution in drought toleration as common compatible osmolytes.

  6. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  7. The role of cyclooxygenase-2/prostanoid pathway in visceral pain induced liver stress response in rats

    Institute of Scientific and Technical Information of China (English)

    PISTON Donald; WANG Shan; FENG Yi; YE Ying-jiang; ZHOU Jing; JIANG Ke-wei; XU Feng; ZHAO Yong; CUI Zhi-rong

    2007-01-01

    Background Cyclooxygenase (COX) is the rate-limiting enzyme in the production of prostanoids from arachidonic acid.COX-2 is the inducible enzyme in the COX family, together with the prostanoids forms the COX-2/prostanoid pathway.Research showed that the COX-2/prostanoid pathway is activated in hepatic diseases and liver stress reaction, such as fibrogenesis, portal hypertension, carcinogenesis, and ischemic/reperfusion injury. But there was no report on visceral pain induced liver stress. This study was to investigate the role of the COX-2/prostanoid pathway in liver stress response in rat acute colitis visceral pain liver stress model.Methods Fifty-three male SD rats were randomly divided into Naive, Model, NS398 treatment, and Morphine treatment groups. The rat acute colitis visceral pain liver stress model was established under anesthesia by the colonic administration of 0.5 ml of 6% acetic acid using a urethral catheter. NS398 and morphine were administrated 30 minutes prior to model establishment in NS398 and Morphine treatment groups respectively. Spontaneous activities and pain behavior were counted and the extent of colonic inflammation was assessed histologically. Liver tissue levels of Glutathione-S-Transferase (GST) activity, COX-2 mRNA, prostaglandin E2 (PGE2), thromboxane B2 (TXB2) and 6-Ketone-prostaglandin F1α (6-K-PGF1α) contents were assessed.Results Thirty minutes after the colonic administration of acetic acid, a significant decrease in spontaneous activities and an increase in pain behaviors were observed in Model group (P<0.01 and P<0.05 respectively), accompanied by colonic inflammation. Liver GST activity levels significantly dropped (P<0.05). Liver COX-2 mRNA expression significantly increased, accompanied by an increase in liver concentrations of PGE2 and TXB2, but no obvious change in 6-K-PGF1α concentrations. NS398 and morphine both ameliorated post-stress liver GST activity (P<0.05 and P<0.01respectively), decreased stress

  8. Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium.

    Science.gov (United States)

    Huang, He; Wang, Yi; Wang, Shunli; Wu, Xuan; Yang, Ke; Niu, Yajing; Dai, Silan

    2012-09-01

    The plant-specific NAC (NAM, ATAF, and CUC) transcription factor family plays a vital role in various plant growth and developmental processes as well as in stress resistance. Using RNA sequencing, we found that the ClNAC genes (ClNAC1-44) were the most strongly up-regulated transcription factor family in Chrysanthemum lavandulifolium leaves under salt treatment. We carried out reverse transcriptase polymerase chain reaction to monitor ClNAC genes response against multiple stresses and hormonal treatments including salt, drought, cold, heat, abscisic acid and salicylic acid treatments. The results showed that 35 ClNAC genes were differentially expressed in different organ, and 32 ClNAC genes could respond to at least 2 kinds of treatments. Quantitative real time polymerase chain reaction showed that 10 ClNAC genes belonging to 7 different subfamilies could respond to at least 5 kinds of treatments. Over 50-fold variation in transcriptional levels of ClNAC17 and ClNAC21 genes was observed under 6 different types of treatments. In the present study, high-level expression of ClNAC genes under abiotic stresses and hormonal treatments suggests that the NAC transcription factors play important roles in abiotic stress tolerance and adaptation.

  9. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.

    Science.gov (United States)

    Wang, Yong Xin

    2013-11-01

    Relying on the regulation of transcription factors, plants resist to various abiotic and biotic stresses. NAC (NAM, ATAF1/2, CUC2) are one of the largest families of plant-specific transcription factors and known to play important roles in plant development and response to environmental stresses. A new NAC gene was cloned on the basis of 503 bp EST fragment from the SSH cDNA library of Medicago sativa. It was 1,115 bp including an 816 bp ORF and encodes 271 amino acids. A highly conserved region is located from the 7th amino acid to the 315th amino acid in its N-terminal domain. The NAC protein is subcellularly localized in the nucleus of onion epidemical cells and possible functions as a transcription factor. The relative quantitative real-time RT-PCR was performed at different stress time. The results revealed that the transcription expression of NAC gene could be induced by drought, high salinity and ABA. The transgenic Arabidopsis with NAC gene has the drought tolerance better than the wild-type.

  10. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  11. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  12. Naturalistic Stress and Cortisol Response to Awakening: Adaptation to Seafaring

    Science.gov (United States)

    Liberzon, Jonathan; Abelson, James L.; King, Anthony; Liberzon, Israel

    2008-01-01

    Study of the hypothalmic-pituitary adrenal (HPA) axis has been critical to advancing our understanding of human adaptation to stress. The cortisol response to awakening (CRA) is a potentially useful measure for understanding group and individual differences in HPA axis regulation. In this study, the CRA was examined in the context of a naturalistic stressor – a six-week voyage of work and study aboard an oceangoing ship, including both experienced and novice sailors. Thirty-one subjects provided weekday and weekend baseline CRA data onshore prior to boarding, followed by three CRAs at sea and one shore leave CRA. Subjective measures of sleep, stress and control were also collected. Results suggest that novice sailors' cortisol response to awakening was elevated at sea relative to both a shoreside weekend and a shore leave during the voyage, but the most striking elevation was found during a workday onshore. Inexperienced students' profiles changed differently over the course of the voyage from those of professional crew. CRAs were not affected by sleep variables and were not predicted by subjective ratings. These data support the value of the cortisol response to awakening as a neuroendocrine marker of HPA regulatory responses to a naturalistic stressor, influenced by changes in work and living environment, and perhaps prior experience with the stressor. PMID:18657911

  13. Oxidative stress response induced by atrazine in Palaemonetes argentinus: the protective effect of vitamin E.

    Science.gov (United States)

    Griboff, Julieta; Morales, David; Bertrand, Lidwina; Bonansea, Rocío Inés; Monferrán, Magdalena Victoria; Asis, Ramón; Wunderlin, Daniel Alberto; Amé, María Valeria

    2014-10-01

    The widespread contamination and persistence of the herbicide atrazine residues in the environment resulted in the exposure of non-target organisms. The present study was undertaken to investigate the effect of atrazine in the response of oxidative stress biomarkers in the freshwater shrimp Palaemonetes argentinus and the protective effect of vitamin-E against atrazine-induced toxicity. Therefore, two batches of P. argentinus were fed for 21 days with a commercial food enriched in proteins (D1) or with D2, composed of D1 enriched with vitamin-E (6.8 and 16.0mg% of vitamin-E, respectively). Subsequently, half of the individuals of each group were exposed to atrazine (0.4mgL(-1)) for 24h and the others remained as controls. Atrazine promoted oxidative stress response in P. argentinus fed with D1 as indicated by enhanced H2O2 content and induction of superoxide dismutase, glutathione-S-transferases and glutathione reductase. This antioxidant activity would prevent the increment of thiobarbituric acid reactive substances in the shrimp tissues. P. argentinus fed with D2 reversed the response of the biomarkers measured. However, the activation of antioxidants response had an energetic cost, which was revealed by a decrease in lipids storage in shrimps. These results show the modulatory effect of vit-E on oxidative stress and its potential use as an effective antioxidant to be applied in chemoprotection strategies during aquaculture.

  14. Proteome analysis of alfalfa roots in response to water deifcit stress

    Institute of Scientific and Technical Information of China (English)

    Rahman Md Atikur; Kim Yong-Goo; AlamIftekhar; LIU Gong-she; Lee Hyoshin; Lee Jeung Joo; Lee Byung-Hyun

    2016-01-01

    To evaluate the response of alfalfa to water deifcit (WD) stress, WD-induced candidates were investigated through a proteomic approach. Alfalfa seedlings were exposed to WD stress for 12 and 15 days respectively, folowed by 3 days re-watering. Water deifcit increased H2O2content, lipid peroxidation, DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity, and the free proline level in alfalfa roots. Root proteins were extracted and separated by two-dimentional polyacrylamide gel electrophoresis (2-DE). A total of 49 WD-responsive proteins were identiifed in alfalfa roots; 25 proteins were reproducibly found to be up-regulated and 24 were down-regulated. Two proteins, namely cytosolic ascorbate peroxidase (APx2) and putative F-box protein were newly detected on 2-DE maps of WD-treated plants. We identiifed several proteins including agamous-like 65, albumin b-32, inward rectifying potassium channel, and auxin-independent growth promoter. The identiifed proteins are involved in a variety of celular functions including calcium signaling, abacisic acid (ABA) biosynthesis, reactive oxygen species (ROS) regulation, transcription/ translation, antioxidant/detoxiifcation/stress defense, energy metabolism, signal transduction, and storage. These results indicate the potential candidates were responsible for adaptive response in alfalfa roots.

  15. Folinic acid-responsive seizures initially responsive to pyridoxine.

    NARCIS (Netherlands)

    Nicolai, J.; Kranen-Mastenbroek, V.H. van; Wevers, R.A.; Hurkx, W.A.; Vles, J.S.

    2006-01-01

    This report presents a male who developed clonic seizures on the day he was born. The next day, the diagnosis of pyridoxine-dependent seizures was made. However, contradictory to this diagnosis, seizures reappeared despite treatment with pyridoxine. Seizures ceased after folinic acid was initiated.

  16. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.

  17. "Stress entropic load" as a transgenerational epigenetic response trigger.

    Science.gov (United States)

    Bienertová-Vašků, Julie; Nečesánek, Ivo; Novák, Jan; Vinklárek, Jan; Zlámal, Filip

    2014-03-01

    Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.

  18. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    Science.gov (United States)

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  19. Mitochondrial Composition,Function and Stress Response in Plants

    Institute of Scientific and Technical Information of China (English)

    Richard P.Jacoby; Lei Li; Shaobai Huang; Chun Pong Lee; A.Harvey Millar; Nicolas L.Taylor

    2012-01-01

    The primary function of mitochondria is respiration,where catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation.In plants,mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves.This review begins with outlining current models of mitochondrial composition in plant cells,with an emphasis upon the assembly of the complexes of the classical electron transport chain (ETC).Next,we focus upon the comparative analysis of mitochondrial function from different tissue types.A prominent theme in the plant mitochondrial literature involves linking mitochondrial composition to environmental stress responses,and this review then gives a detailed outline of how oxidative stress impacts upon the plant mitochondrial proteome with particular attention to the role of transition metals.This is followed by an analysis of the signaling capacity of mitochondrial reactive oxygen species,which studies the transcriptional changes of stress responsive genes as a framework to define specific signals emanating from the mitochondrion.Finally,specific mitochondrial roles during exposure to harsh environments are outlined,with attention paid to mitochondrial delivery of energy and intermediates,mitochondrial support for photosynthesis,and mitochondrial processes operating within root cells that mediate tolerance to anoxia and unfavorable soil chemistries.

  20. Motivation, stress, anxiety, and cortisol responses in elite paragliders.

    Science.gov (United States)

    Filaire, Edith; Alix, Deborah; Rouveix, Matthieu; Le Scanff, Christine

    2007-06-01

    In this study metamotivational dominance (measured with the Telic Dominance Scale), precompetition anxiety (evaluated with the CSAI-2), perceived stress (measured with the Perceived Stress Scale), and cortisol responses by 10 paragliding competitors prior to and following a paragliding competition were examined. Saliva was collected for each subject for cortisol analysis on eight occasions: during a resting day (baseline values) and prior to and after competition. Analysis indicated subjects were all paratelic-dominant (characterized by a desire for high arousal, a focus on the present). Scores were high on the Perceived Stress Scale and cognitive nxiety (a telic emotion). Cortisol values showed a significant increase early on the day of the competition and remained elevated all the day, with highest concentrations at the start. Participants' cognitive anxiety and cortisol responses were significantly correlated .79 just before the jump and the direction of the cognitive anxiety was rated as facilitative of performance. These results may suggest that the more frequently the subject is playful in life, the more cortisol they produce when aroused in a less frequent telic state.

  1. Yeast responses to stresses associated with industrial brewery handling.

    Science.gov (United States)

    Gibson, Brian R; Lawrence, Stephen J; Leclaire, Jessica P R; Powell, Chris D; Smart, Katherine A

    2007-09-01

    During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.

  2. Supplementary data: Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and mechanism of resistance

    NARCIS (Netherlands)

    Kissoudis, C.; Sri Sunarti, Sri; Wiel, van de C.C.M.; Visser, R.G.F.; Linden, van der C.G.; Bai, Y.

    2016-01-01

    Stress conditions in agricultural ecosystems can occur in variable intensities. Different resistance mechanisms to abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of

  3. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism

    NARCIS (Netherlands)

    Kissoudis, Christos; Sri Sunarti, Sri; De Wiel, Van Clemens; Visser, Richard G.F.; Linden, van der Gerard; Bai, Yuling

    2016-01-01

    Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effec

  4. Mcm2 phosphorylation and the response to replicative stress

    Directory of Open Access Journals (Sweden)

    Stead Brent E

    2012-05-01

    Full Text Available Abstract Background The replicative helicase in eukaryotic cells is comprised of minichromosome maintenance (Mcm proteins 2 through 7 (Mcm2-7 and is a key target for regulation of cell proliferation. In addition, it is regulated in response to replicative stress. One of the protein kinases that targets Mcm2-7 is the Dbf4-dependent kinase Cdc7 (DDK. In a previous study, we showed that alanine mutations of the DDK phosphorylation sites at S164 and S170 in Saccharomyces cerevisiae Mcm2 result in sensitivity to caffeine and methyl methanesulfonate (MMS leading us to suggest that DDK phosphorylation of Mcm2 is required in response to replicative stress. Results We show here that a strain with the mcm2 allele lacking DDK phosphorylation sites (mcm2AA is also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU and to the base analogue 5-fluorouracil (5-FU but not the radiomimetic drug, phleomycin. We screened the budding yeast non-essential deletion collection for synthetic lethal interactions with mcm2AA and isolated deletions that include genes involved in the control of genome integrity and oxidative stress. In addition, the spontaneous mutation rate, as measured by mutations in CAN1, was increased in the mcm2AA strain compared to wild type, whereas with a phosphomimetic allele (mcm2EE the mutation rate was decreased. These results led to the idea that the mcm2AA strain is unable to respond properly to DNA damage. We examined this by screening the deletion collection for suppressors of the caffeine sensitivity of mcm2AA. Deletions that decrease spontaneous DNA damage, increase homologous recombination or slow replication forks were isolated. Many of the suppressors of caffeine sensitivity suppressed other phenotypes of mcm2AA including sensitivity to genotoxic drugs, the increased frequency of cells with RPA foci and the increased mutation rate. Conclusions Together these observations point to a role for DDK-mediated phosphorylation

  5. Transcriptomic profiling of linolenic acid-responsive genes in ROS signalling from RNA-seq data in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Capilla eMata-Pérez

    2015-03-01

    Full Text Available Linolenic acid (Ln released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA. The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signalling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2 fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs and Allene oxide cyclases (AOCs. In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding, such as WRKY, JAZ, MYC and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signalling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1, methionine sulfoxide reductase (MSR and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signalling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity and especially in stresses mediated by ROS.

  6. Low Phytic Acid Barley Responses to Phosphorus Rates

    Science.gov (United States)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  7. Plant natriuretic peptides are apoplastic and paracrine stress response molecules

    KAUST Repository

    Wang, Yuhua

    2011-04-07

    Higher plants contain biologically active proteins that are recognized by antibodies against human atrial natriuretic peptide (ANP). We identified and isolated two Arabidopsis thaliana immunoreactive plant natriuretic peptide (PNP)-encoding genes, AtPNP-A and AtPNP-B, which are distantly related members of the expansin superfamily and have a role in the regulation of homeostasis in abiotic and biotic stresses, and have shown that AtPNP-A modulates the effects of ABA on stomata. Arabidopsis PNP (PNP-A) is mainly expressed in leaf mesophyll cells, and in protoplast assays we demonstrate that it is secreted using AtPNP-A:green fluorescent protein (GFP) reporter constructs and flow cytometry. Transient reporter assays provide evidence that AtPNP-A expression is enhanced by heat, osmotica and salt, and that AtPNP-A itself can enhance its own expression, thereby generating a response signature diagnostic for paracrine action and potentially also autocrine effects. Expression of native AtPNP-A is enhanced by osmotica and transiently by salt. Although AtPNP-A expression is induced by salt and osmotica, ABA does not significantly modulate AtPNP-A levels nor does recombinant AtPNP-A affect reporter expression of the ABA-responsive RD29A gene. Together, these results provide experimental evidence that AtPNP-A is stress responsive, secreted into the apoplastic space and can enhance its own expression. Furthermore, our findings support the idea that AtPNP-A, together with ABA, is an important component in complex plant stress responses and that, much like in animals, peptide signaling molecules can create diverse and modular signals essential for growth, development and defense under rapidly changing environmental conditions. © 2011 The Author.

  8. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli.

    Energy Technology Data Exchange (ETDEWEB)

    Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don Ruwan; Wittkopp, Tyler M.; Marner II, Wesley D.; Pfleger, Brian F.

    2011-11-01

    Microbially produced fatty acids are potential precursors to high energy density biofuels, including alkanes and alkyl ethyl esters by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversions of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium chain length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long chain unsaturated fatty acid content greatly increased and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability, however little to no change in FFA titers was observed after 24 h cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli.

  9. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    Science.gov (United States)

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  10. The auditory startle response in post-traumatic stress disorder.

    Science.gov (United States)

    Siegelaar, S E; Olff, M; Bour, L J; Veelo, D; Zwinderman, A H; van Bruggen, G; de Vries, G J; Raabe, S; Cupido, C; Koelman, J H T M; Tijssen, M A J

    2006-09-01

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex (ASR). Reflex EMG responses to auditory startling stimuli in seven muscles rather than the EMG response of the OO alone as well as the psychogalvanic reflex (PGR) were studied in PTSD patients and healthy controls. Ten subjects with chronic PTSD (>3 months) and a history of excessive startling and 11 healthy controls were included. Latency, amplitude and duration of the EMG responses and the amplitude of the PGR to 10 auditory stimuli of 110 dB SPL were investigated in seven left-sided muscles. The size of the startle reflex, defined by the number of muscles activated by the acoustic stimulus and by the amplitude of the EMG response of the OO muscle as well, did not differ significantly between patients and controls. Median latencies of activity in the sternocleidomastoid (SC) (patients 80 ms; controls 54 ms) and the deltoid (DE) muscles (patients 113 ms; controls 69 ms) were prolonged significantly in PTSD compared to controls (P < 0.05). In the OO muscle, a late response (median latency in patients 308 ms; in controls 522 ms), probably the orienting reflex, was more frequently present in patients (56%) than in controls (12%). In patients, the mean PGR was enlarged compared to controls (P < 0.05). The size of the ASR response is not enlarged in PTSD patients. EMG latencies in the PTSD patients are prolonged in SC and DE muscles. The presence of a late response in the OO muscle discriminates between groups of PTSD patients with a history of startling and healthy controls. In addition, the autonomic response, i.e. the enlarged amplitude of the PGR can discriminate between these groups.

  11. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    Science.gov (United States)

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water.

  12. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  13. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  14. Jasmonates and octadecanoids: signals in plant stress responses and development.

    Science.gov (United States)

    Wasternack, Claus; Hause, Bettrina

    2002-01-01

    Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable,