WorldWideScience

Sample records for acid soils

  1. Replenishing Humic Acids in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  2. Response of agricultural soils to acid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, M.F.; Wagner, C.K.

    1982-07-01

    Proceedings of the workshop, Response of Agricultural Soils to Acid Deposition, which was held May 12-13 1981, in Columbus, Ohio, and which evaluated the potential beneficial and harmful impacts of atmospheric acid deposition on agricultural soils are presented. Those issues requiring further research are also identified. Five working papers and a literature review prepared by soils specialists are included as is a summary of conclusions reached by the participants. Each of the five working papers has been abstracted and indexed individually for ERA/EDB. (JGB)

  3. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  4. Impact of Seasalt Deposition on Acid Soils in Maritime Regions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-Hua

    2003-01-01

    The characteristics of seasalt deposition and its impact on acid soils in maritime regions are reviewed. It is pointed out that studies involving the impact of seasalt deposition on acid soils have been concentrated on short-term effects on soil and water acidification. A deep consideration of long-term effects on soil acidification in maritime regions is still needed.

  5. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  6. Alleviation of Soil Acidity and Aluminium Phytotoxicity in Acid Soils by Using Alkaline-Stabilised Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A pot experiment was carried out to study alleviation of soil acidity and Al toxicity by applying an alkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acid sandy loam (pH 4.5). Barley (Hordeum vulgare L. cv. Forrester) was used as a test crop and was grown in the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that the alkaline biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandy loam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity in strongly acid soils by increasing soil pH and lowering Al bioavailability.

  7. Characterization of Soil Humin by Acid Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    李云峰; 徐建民; 等

    1999-01-01

    Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.

  8. Isolation and Characterization of Soil Fulvic Acid

    Directory of Open Access Journals (Sweden)

    Mir Munsif Ali Talpur

    2016-06-01

    Full Text Available Fulvic acid was isolated from the agriculture soil of District Naushahro Feroz, Sindh, Pakistan by International Humic Substances Society (IHSS method. The nutrient contents of the soil like N. P, K, Ca, Mg, Fe and Zn were determined by using the Atomic Absorption spectrophotometer (AAS. The Spectroscopic analysis was carried out by studying the UV-Vis, FT-IR and NIR spectra of isolated compounds. The data has been compared with the literature and correlated. Moisture as well as texture shows good water holding capacity and silt- loam type of soil. pH and EC are indicators of the fertility of soil to be beneficial for plantation. The spectral data (UV-Visible, FTIR and NIR supports the characteristic functional groups (-COOH, C=O, -OH, -NH2, C=C, CH2 and Polysaccharides present in Fulvic acid. E4/E6 values depict its hydrophilic nature, having less aromatic and more aliphatic groups. The presence of metal ions indicates its chelating ability.

  9. Factors Affecting Sensitivity of Variable Charge Soils to Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJING-HUA

    1995-01-01

    The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves.Two derivative parameters,the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution,were used.The sensitivity of variable charge soils was higher than that of constant charge soils,due to the predominance of kaolinite in clay mineralogical composition.Among these soils the sensitivity was generally of the order lateritic red soil>red soil> latosol.For a given type of soil within the same region the sensitivity was affected by parent material,due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsiol,depending on whether organic matter or texture plays the dominant role in determining the buffering capacity.Paddy soils consumed more acid within lower range of acid input when compared with upland soils,due to the presence of more exchangeable bases,but consumed less acid within higher acid input range,caused by the decrease in clay content.

  10. Amendment of Acid Soils with Crop Residues and Biochars

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-Hua; XU Ren-Kou; WANG Ning; LI Jiu-Yu

    2011-01-01

    The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential,and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.

  11. Phenolic Acids in Plant-Soil-Microbe System: A Review

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phenolic acids are very common compounds in pedosphere. The objective of this review was to summarize the current knowledge of the behaviors of phenolic acids in plant-soil-microbe system. When phenolic acids originated from leaching, decomposition and exudation of living and dead plant tissues enter soils, they can react physicochemically with soil particle surfaces and/or incorporate into humic matter. Phenolic acids desorbed from soil particle surfaces and remained in solution phase can be utilized by microbe as carbon sources and absorbed by plants. The degradation products of phenolic acids by microbe include some organic and/or inorganic compounds such as new phenolic acids. In addition, phenolic acids in soils can stimulate population and activity of microbe. Phenolic acids can inhibit plants growth by affecting ion leakage, phytohormone activity, membrane permeability, hydraulic conductivity, net nutrient uptake, and enzyme activity. Behaviors of phenolic acids in soils are influenced by other organic compounds (phenolic acids, methionine, glucose, etc.) and/or inorganic ions. The role of phenolic acids as allelopathic agents should not be neglected only based on their low specific concentrations in natural soils, because numbers and interactions of phenolic acids will increase their allelopathic activities.

  12. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH.

  13. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  14. Liming of acid soils in Osijek-Baranja county

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2011-01-01

    Full Text Available The negative trend of soil degradation process increases with intensive agricultural production. Therefore, there is a need for soil conditioning like liming, humification, fertilization, etc. to improve soil quality. One of the major problems that occur on agricultural soils of Croatia is acidification. A downward trend of soil pH is mainly present in soils of poor structure with intensive agricultural production. In agricultural practice liming often needs to rely only on the pH value, without determining the hydrolytic acidity, CEC or soil texture. Due to the above mentioned facts, calculation of liming for Osijek-Baranja County was conducted with the help of ALRxp calculator, which takes CEC, soil pH in KCl, hydrolytic acidity, bulk density of soil, soil textural class and depth of the plow layer to 30 cm into account. Low soil pH values have a great influence on soil suitability for crops as well as on the deficit of calcium and magnesium. All of these lead to the degradation of soil structure, and can even lead to disturbances of plant nutrition in some production areas. On such soils, liming would be imperatively required, but with caution because an excessive intake of lime materials, especially without the necessary analysis, causes a decline in organic matter and reduces accessibility for plant uptake of microelements.

  15. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  16. Genotypic Differences of Forage Crop Tolerance to Acid Soils

    Institute of Scientific and Technical Information of China (English)

    YANGYUAI; CHUXIANGYUN; 等

    1998-01-01

    Twenty eight species of forage crops were planted on acid soils derived from Quaternary red clay(pH4.16) and red sandstone(pH4.55) to study genotypic differences of the forage crops in tolerance to acid soils as affected by liming,phosporus and potassium fertilizer application.Eight forage species,Lolium nultiflorum L., Brachiaria decumbens,Digitaria sumtisii,Melinis minutiflora,Paspalum dilatatum,Paspalum wettsteinii,Sataria viridis Beanv and Shcep's Festuca,were highly toleran to acid soils,and grew relatively well in the tested soils without lime application,whereas most of the other 20 tested forage species such as Lolium perenne L., Meadow Festuca and Trifolium praense L. were intolerant to acid soil ,showing retarded growth when the soil pH was below 5.5 and significant increase in dry matter yields by phosphrus fertilizer application at soil pH 6.0 Results showed that large differences in tolerance to acid soils existed among the forage species,and tolerance of the froage species to acid soils might be closely associated with their tolerance to Al and P efficiency.

  17. Succession of Soil Acidity Quality and its Influence on Soil Phosphorus Types

    Institute of Scientific and Technical Information of China (English)

    DUANWenbiao; CHENLixin

    2004-01-01

    Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of

  18. Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province, China

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-jun; ZHOU Wei; SHEN Jian-bo; LI Shu-tian; LIANG Guo-qing; WANG Xiu-bin; SUN Jing-wen; AI Chao

    2014-01-01

    Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were signiifcantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deifcient in AK and ASi. The results suggest that soil AK and ASi deifciencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.

  19. Oxidation of phenolic acids by soil iron and manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90, and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.

  20. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  1. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  2. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  3. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  4. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota.

    Science.gov (United States)

    von Mérey, Georg; Manson, Philip S; Mehrsheikh, Akbar; Sutton, Peter; Levine, Steven L

    2016-11-01

    Glyphosate is a broad-spectrum herbicide used widely in agriculture, horticulture, private gardens, and public infrastructure, where it is applied to areas such as roadsides, railway tracks, and parks to control the growth of weeds. The exposure risk from glyphosate and the primary soil metabolite aminomethylphosphonic acid (AMPA) on representative species of earthworms, springtails, and predatory soil mites and the effects on nitrogen-transformation processes by soil microorganisms were assessed under laboratory conditions based on internationally recognized guidelines. For earthworms, the reproductive no-observed-effect concentration (NOEC) was 472.8 mg glyphosate acid equivalent (a.e.)/kg dry soil, which was the highest concentration tested, and 198.1 mg/kg dry soil for AMPA. For predatory mites, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 320 mg/kg dry soil for AMPA, the highest concentrations tested. For springtails, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 315 mg/kg dry soil for AMPA, the highest concentrations tested. Soil nitrogen-transformation processes were unaffected by glyphosate and AMPA at 33.1 mg a.e./kg soil and 160 mg/kg soil, respectively. Comparison of these endpoints with worst-case soil concentrations expected for glyphosate (6.62 mg a.e./kg dry soil) and AMPA (6.18 mg/kg dry soil) for annual applications at the highest annual rate of 4.32 kg a.e./ha indicate very low likelihood of adverse effects on soil biota. Environ Toxicol Chem 2016;35:2742-2752. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  5. Effect of Enhancing Urea-Humic Acid Mixture with Refined Acid Sulphate Soil

    Directory of Open Access Journals (Sweden)

    Mohd T.M. Yusuff

    2009-01-01

    Full Text Available Problem statement: Acid Sulphate Soil (ASS is a problem soil partly because of its high acidity. This low pH could be exploited to reduce ammonia loss from urea by reducing soil microsite pH. The use Humic Acid (HA to control ammonia loss from urea has been reported but the cost of this material is high. This laboratory study compared the effect of enhancing urea-humic acid mixtures with acid sulphate soil on NH3 loss, pH, exchangeable ammonium and available nitrate contents. Approach: Humic acid, acid sulfate soil and soil used in the incubation study were analyzed for selected soil physical-chemical properties using standard procedures. Urea-HA-ASS mixtures were prepared and ammonia volatilization of the mixtures was evaluated by the closed-dynamic air flow system. The treatments were evaluated in a randomized complete block design with 3 replications. Standard procedures were used to determine ammonia loss, soil pH, exchangeable ammonium and available nitrate at 22 days of incubation. Data obtained were analyzed using analysis of variance and Duncan's test using Statistical Analysis System (SAS version 9.2. Results: Urea amended with 0.75 g ASS significantly reduced ammonia volatilization. Although the use of appropriate amount of acid sulphate soil to control ammonia loss is possible, excessive use of this material is not recommended because of Fe in it. Conclusion: Urea amended with 0.75 g ASS reduced ammonia.

  6. Arsenic removal from contaminated soil using phosphoric acid and phosphate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Laboratory batch experiments were conducted to study Arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KH2PO4). Both H3PO4 and KH2PO4 proved to clearly reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L, although soil As tolerance limit of 30 mg/kg, according to Chinese Environmental quality standard for soil (EQSS), was not satisfied by using these two extractants. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO43-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 min, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich's model best described the kinetic data of As removal among the four models used in the kinetic study.

  7. Acid soils of western Serbia and their further acidification

    Science.gov (United States)

    Mrvic, Vesna

    2010-05-01

    Acid soils cause many unfavorable soil characteristics from the plant nutrition point of view. Because of increased soil acidity the violation of buffering soil properties due to leaching of Ca and Mg ions is taking place that also can cause soil physical degradation via peptization of colloids. Together with increasing of soil acidity the content of mobile Al increases that can be toxic for plants. Easily available nutritive elements transforms into hardly avaialble froms. The process of deactivation is especially expressed for phosphorous that under such conditions forms non-soluble compounds with sesqui-oxides. From the other hand the higher solubility of some microelements (Zn and B) can cause their accelerated leaching from root zone and therefore, result in their deficiency for plant nutrition. Dangerous and toxic matters transforms into easly-available forms for plants, especially, Cd and Ni under the lower soil pH. The studied soil occupies 36675 hectare in the municipality of Krupan in Serbia, and are characterized with very unfavorable chemical properties: 26% of the territory belongs to the cathegory of very acidic, and 44 % belongs to the cathegory of acidic. The results showed that the soil of the territory of Krupan is limited for agricultural land use due to their high acidity. Beside the statement of negative soil properties determined by acidity, there is a necessity for determination of soil sensitivity for acidification processes toward soil protection from ecological aspect and its prevention from further acidification. Based on such data and categorization of soils it is possible to undertake proper measures for soil protection and melioration of the most endangered soil cover, where the economic aspect of these measures is very important. One of the methods of soil classification based on sensitivity for acidification classification the determination of soil categories is based on the values of soil CEC and pH in water. By combination of these

  8. Biochemical degradation of soil humic acids and fungal melanins

    Energy Technology Data Exchange (ETDEWEB)

    Zavgorodnyaya, Y.A.; Demin, V.V.; Kurakov, A.V. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Dept. of Soil Science

    2002-07-01

    Studies were conducted to compare properties and biodegradation of fungal melanins from Aspergillus niger and Cladosporium cladosporiodes with those of humic acids from soils and brown coal. Compared to the humic acids the fungal melanins contained more functional groups, were less hydrophilic and had relatively high molecular weights. Under the conditions of incubation the melanins were found to be more readily degradable than the humic acids studied. The changes in elemental composition, optical parameters and the decrease of molecular weight, observed for both fungal melanins during degradation, made them more similar to soil humic acids.

  9. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  10. Managing Actual Problems of Peatsoils Associated with Soil Acidity

    Directory of Open Access Journals (Sweden)

    M Edi Armanto

    2016-12-01

    Full Text Available The research objective is to manage actual problems of peatsoils associated with soil acidity. The research has been conducted on peatsoils in river backswamps located in Subdistricts of East Pedamaran and Pedamaran, District of OKI South Sumatra. Soil sampling was taken in cultivated and uncultivated types of landuse; cultivated peatsoils consist of Site A (intercropping between oil palm and pineapple and Site B (oil palm, uncultivated peatsoils are divided into Site C (peat forest, Site D (swamp bush and Site E (swamp grass. The research resulted that actual problems of soil acidity is associated with base saturation, cations exchange capacity, soil organic matters and C/N ratio, balances of soil nutrients, and toxicity potency. The climatic condition and drought can accelerate the occurrence of actual problems of peatsoils associated with acidity peatsoils. Some ameliorant have been applied in order of importance in the fields, namely lime/dolomite, mineral soils, organic fertilizers, combustion ash, and volcanic ash. Application of ameliorant materials is capable to minimize the actual problems of peatsoils associated with soil acidity.

  11. Analytical Methods for Environmental Risk Assessment of Acid Sulfate Soils: A Review

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soils.

  12. Chemical Species of Aluminum Lons in Acid Soils

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1998-01-01

    Soil samples collected from several acid soils in Guangdong,Fujian,Zhejiang and Anhui provinces of the southern China were employded to characterize the chemical species of aluminum ions in the soils.The proportion or monoeric inorganic Al to total Al in soil solution was in the range of 19% to 70%,that of monomeric organlic Al (Al-OM) to total Al ranged from 7.7% to 69%,and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied ,The Al-OM concentration in soil solution was postively correlated with the content of dissolved organic carbon(DOC) and aslo affected by the concentration of Al3+,The complexes of aluminum with fluoride(Al-F) were the predominant forms of inorganic Al,and the proportion of Al-F compexes to total inorganic Al increased with pH.Under strongly acid ondition,Al3+ was also a mjaor form of inorganic Al,and the proportio of Al3+ to total inorganic Al decreased with increasing pH.The,proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils.The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution,The concentrations of Al-OM,Al3+,Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth,The chemical species of aluminum ions were influenced by pH,The concentrations of Al-OM, Al3+,Al-F complexes and Al-OH complexes decreased with the increase in pH.

  13. Tolerance of VA Mycorrhizal Fungi to Soil Acidity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizai fungi on colonization rate,plant height, plant growth,hyphae length,total Al in the plants,exchangeable A1 in the soil and soil pH by comparison at soil pH 3.5,4.5 and 6.0.Plant mung bean (Phaseolus radiatus L.) and crotalaria (Crotalaria mucronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil.Ten VA mycorrhizal fungi strains were tested,including Glomus epigaeum (No.90001),Glomus caledonium (No.90036),Glomus mosseae (No.90107), Acaulospora spp.(No.34),Scutellospora heterogama (No.36),Scutellospora calospora (No. 37),Glomus manihotis (No.38),Gigaspora spp.(No.47),Glomus manihotis (No.49),and Acaulospora spp.(No.53).Being the most tolerant to acidity,strain 34 and strain 38 showed quicker and higher-rated colonization without lagging,three to four times more in number of nodules,two to four times more in plant dry weight,30% to 60% more in hyphae length,lower soil exchangeable Al,and higher soil pH than without VA mycorrhizal fungi (CK).Other strains also could improve plant growth and enhance plant tolerance to acidity,but their effects were not marked.This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects.In the experiment,acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.

  14. Amelioration of acidic soil using various renewable waste resources.

    Science.gov (United States)

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  15. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  16. Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth

    Institute of Scientific and Technical Information of China (English)

    LIN Chu-Xia; LONG Xin-Xian; XU Song-Jun; CHU Cheng-Xing; MAI Shao-Zhi; JIANG Dian

    2004-01-01

    A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.

  17. Combined Use of Alkaline Slag and Rapeseed Cake to Ameliorate Soil Acidity in an Acid Tea Garden Soil

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; YANG Xing-Lun; K.RACHEL; WANG Yu; TONG De-Li; YE Mao; JIANG Xin

    2013-01-01

    Rapeseed cake (RC),the residue of rapeseed oil extraction,is effective for improving tea (Camellia sinensis) quality,especially taste and aroma,but it has limited ability to ameliorate strongly acidic soil.In order to improve the liming potential of RC,alkaline slag (AS),the by-product of recovery of sodium carbonate,was incorporated.Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated.Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation,but not necessarily for soil pH adjustment.The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially,but then soil pH decreased due to nitrifications.Various degrees of nitrification were correlated with the interaction of different Ca levels,pH and N contents.When RC was applied at low levels,high Ca levels from AS repressed soil nitrification,resulting in smaller pH fluctuations.In contrast,high AS stimulated soil nitrification,when RC was applied at high levels,and resulted in a large pH decrease.Based on the optimum pH for tea production and quality,high ratios of AS to RC were indicated for soil acidity amelioration,and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC,respectively.Further,field studies are needed to investigate the variables of combined amendments.

  18. Interaction of Cd and citric acid, EDTA in red soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Adsorption and desorption process of cadmium in redsoil(Ferrisols) as well as the influence by media's pH were investigated in detail with and without citric acid and EDTA. Experimental results clearly showed that Cd adsorption in red soil was affected significantly by the coexisted organic chemicals. In the presence of citric acid and EDTA, Cd adsorption in red soil increased with pH in acid media but decreased in high pH one. Further studies placed stress on the adsorbed Cd in red soil which was found to be existed mainly as exchangeable one at pH<5.5, and desorption rate by 0.10 mol/L NaNO3 gave a peak-shaped curve due to the difference of specifically and nonspecifically adsorbed Cd with pH's change.

  19. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    Science.gov (United States)

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  20. Characteristics of Soluble and Exchangeable Acidity in an Extremely Acidified Acid Sulfate Soil

    Institute of Scientific and Technical Information of China (English)

    C.Lin; M.D.MELVILLE; 等

    1999-01-01

    An extremely acidified acid sulfate soil(ASS) was investigated to characterise its soluble and exchangeable acidity,The results showed that soluble acidity of a sample dtermined by titration with a KOH soulution was much significantly greater than that indicated by pH measured using a pH meter,paricularly for the extremely acidic soil samples,This is because the total soluble acidity of the extremely acidic soil samples was mainly composed of various soluble Al and Fe species,possibly in forms of Al sulfate complexes(e.g.,AlSO4+) and feerous Fe(Fe2+)_,It is therefore suggested not to use pH alone as an indicator of soluble acidity in ASS,particularly for extremely acidic ASS,It is also likely that AlSO4+ actively participated in cation exchange reactions.It appears that the possible involvement of this Al sulfate cation in the cation adsorption has significant effect on increasing the amount of acidity being adsorbed by the soils.

  1. Release of Soil Nonexchangeable K by Organic Acids

    Institute of Scientific and Technical Information of China (English)

    ZHUYONG-GUAN; LUOJIA-XIAN

    1993-01-01

    The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.

  2. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    Science.gov (United States)

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  3. Microbiological transformations of phosphorus and sulphur compounds in acid soils

    Directory of Open Access Journals (Sweden)

    Stamenov Dragana

    2012-01-01

    Full Text Available The dynamics of phosphorus and sulphur in soil is closely related to the dynamics of the biological cycle in which microorganisms play a central role. There is not much microbiological activity in acid soils because aerobes are scarce, rhizosphere is restricted to the shallow surface layer, and the biomass of microorganisms decreases with higher acidity. The aim of the research was to investigate the number of microorganisms, which decompose organic and inorganic phosphorus compounds and organic sulphur compounds in calcocambisol, luvisol, and pseudogley. The following parameters were determined in the soil samples: pH in H2O and in 1MKCl; the content of CaCO3 (%; humus content (%, nitrogen content (%; the content of physiologically active phosphorus and potassium (mg P2O5/100g of soil; mg K2O/100g of soil. The number of microorganisms was determined by the method of agar plates on appropriate nutrient media: the number of microorganisms solubilizing phosphates on a medium by Muramcov; the number of microorganisms that decompose organic phosphorus compounds on a medium with lecithin; and the number of microorganisms that transform organic sulphur compounds on a medium by Baar. All three types of soil are acid non-carbonate soils with a low level of available phosphorus and a more favorable amount of potassium, nitrogen, and humus. The largest number of bacteria, which transform organic phosphorus compounds, was found in calcocambisol. The largest number of phosphate solubilizing bacteria was recorded in pseudogley, whereas the largest number of phosphate solubilizing fungi was recorded in calcocambisol. The largest number of bacteria, which transform organic sulphur compounds, was recorded in pseudogley.

  4. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, Swantje [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Dept. of Landscape Planning; Majdi, Hooshang [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Sciences; Olsson, Mats [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2006-10-15

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction < 2 mm. Root biomass <5 mm in diameter) and its proportion in the forest floor and mineral soil varied between tree species. There was a vertical gradient under all species, with the highest concentrations of SOC, TN and base cations in the O-horizon and the lowest in the 10-20 cm layer. The tree species differed with respect to SOC, TN and soil acidity in the O-horizon and mineral soil. For SOC and TN, the range in the O-horizon was spruce> hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate.

  5. Enzyme Activities in Perfluorooctanoic Acid (PFOA)-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LIN Kuang-Fei; YANG Sha-Sha; ZHANG Meng

    2013-01-01

    Perfluorooctanoic acid (PFOA) is a popular additive of the chemical industry; its effect on activities of important soil enzymes is not well understood.A laboratory incubation experiment was carried out to analyze the PFOA-induced changes in soil urease,catalase,and phosphatase activities.During the entire incubation period,the activities of the three soil enzymes generally declined with increasing PFOA concentration,following certain dose-response relationships.The values of EC10,the contaminant concentration at which the biological activity is inhibited by 10%,of PFOA for the soil enzyme activity calculated from the modeling equation of the respective dose-response curve suggested a sensitivity order of phosphatase > catalase > urease.The effect of PFOA on soil enzyme activities provided a basic understanding of the eco-toxicological effect of PFOA in the environment.Results of this study supported using soil phosphatase as a convenient biomarker for ecological risk assessment of PFOA-polluted soils.

  6. Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum.

    Science.gov (United States)

    Lee, Soo Youn; Kim, Bit-Na; Choi, Yong Woo; Yoo, Kye Sang; Kim, Yang-Hoon; Min, Jiho

    2012-04-01

    The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenolcontaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

  7. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  8. Soil knowledge for farmers, farmer knowledge for soil scientists. The case of acid sulphate soils in the Mekong delta, Viet Nam.

    NARCIS (Netherlands)

    Mensvoort, van M.E.F.

    1996-01-01

    Half the Mekong delta in Vietnam, i.e. around 2 million hectares, suffers soil related problems due to acid sulphate soils. These soils generate sulphuric acid due to the oxidation of pyrite after aeration. Pyrite is most easily formed in tidal swamps. Human interference through land drainage is the

  9. Metagenomic Analysis of the Rhizosphere Soil Microbiome with Respect to Phytic Acid Utilization

    OpenAIRE

    Unno, Yusuke; Shinano, Takuro

    2012-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilizat...

  10. Soil Components Affecting Phosphate Sorption Parameters of Acid Paddy Soils in Guangdong Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Soil components affecting phosphate sorption parameters were studied using acid paddy soils derived from basalt, granite, sand-shale and the Pearl River Delta sediments, respectively, in Guangdong Province.For each soil, seven 2.50 g subsamples were equilibrated with 50 mL 0.02 mol L-1 (pH=7.0) of KCl containing 0, 5, 10, 15, 25, 50 and 100 ng P kg-1, respectively, in order to derive P sorption parameters (P sorption maximum, P sorption intensity factor and maximum buffer capacity) by Langmuir isotherm equation. It was shown that the main soil components influencing phosphate sorption maximum (Xm) included soil clay, pH,amorphous iron oxide (Feo) and amorphous aluminum oxide (Alo), with their effects in the order of Alo >Feo > pH > clay. Among these components, pH had a negative effect, and the others had a positive effect.Organic matter (OM) was the only soil component influencing P sorption intensity factor (K). The main components influencing maximum phosphate buffer capacity (MBC) consisted of soil clay, OM, pH, Feo and Alo, with their effects in the order of Alo > OM > pH > Feo > clay. Path analysis indicated that among the components with positive effects on maximum phosphate buffer capacity (MBC), the effect was in the order of Alo > Feo > Clay, while among the components with negative effects, OM > pH. OM played an important role in mobilizing phosphate in acid paddy soils mainly through decreasing the sorption intensity of phosphate by soil particles.

  11. Cadmium Release in Contaminated Soils due to Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-Mei

    2004-01-01

    There is limited information on the release behavior of heavy metals from natural soils by organic acids. Thus,cadmium release,due to two organic acids (tartrate and citrate) that are common in the rhizosphere,from soils polluted by metal smelters or tailings and soils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at a low concentration (≤6mmol L-1 for tartrate and ≤0.5 mmol L-1 for citrate) inhibited Cd release,whereas the presence of organic acids in high concentrations (≥2 mmol L-1 for citrate and ≥15 mmol L-1 for tartrate)apparently promoted Cd release. Under the same conditions,the Cd release in naturally polluted soils was less than that of artificially contaminated soils. Additionally,as the initial pH rose from 2 to 8 in the presence of citrate,a sequential valley and then peak appeared in the Cd release curve,while in the presence of tartrate the Cd release steadily decreased.In addition,Cd release was clearly enhanced as the electrolyte concentration of KNO3 or KC1 increased in the presence of 2 mmol L-1 tartrate. Moreover,a higher desorption of Cd was shown with the KC1 electrolyte compared to KNO3 for the same concentration levels. This implied that the bioavailability of heavy metals could be promoted with the addition of suitable types and concentrations of organic acids as well as reasonable field conditions.

  12. Adsorption of glyphosate and aminomethylphosphonic acid in soils

    Science.gov (United States)

    Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W. E. H.

    2013-03-01

    The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.

  13. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2011-08-01

    Full Text Available Abstract Background In soils with a low phosphorus (P supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin.

  14. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    Science.gov (United States)

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P acid and alkaline soils, respectively.

  15. Acid sulfate soils are an environmental hazard in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  16. Simple method of isolating humic acids from organic soils

    Science.gov (United States)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  17. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness

    NARCIS (Netherlands)

    Martins Bento, Celia; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; Dam, van Ruud; Zomer, Paul; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16 mg kg− 1

  18. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  19. Effect of Oxalic Acid on Potassium Release from Typical Chinese Soils and Minerals

    Institute of Scientific and Technical Information of China (English)

    TU Shu-Xin; GUO Zhi-Fen; SUN Jin-He

    2007-01-01

    Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L-1 oxalic acid was similar to that using 1 mol L-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y=a+blogc, while the best-fit kinetic equation of K release was y=a +b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite> phlogopite>> muscovite> microcline and for soils it was in the order: black soil> calcareous alluvial soil> red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K+ adsorption and increased the soil K+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.

  20. Effects of Composted and Thermally Dried Sewage Sludges on Soil and Soil Humic Acid Properties

    Institute of Scientific and Technical Information of China (English)

    J.M.FERN(A)NDEZ; N.SENESI; C.PLAZA; G.BRUNETTI; A.POLO

    2009-01-01

    The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions.Humie acids (HAs) isolated by conventional procedures from CS,TS,and unamended (SO) and sludge amended soils were analysed for elemental (C,H,N,S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible,Fourier transform infrared and fluorescence spectroscopies.With respect to CS,TS had similar pH and total P and K contents,larger dry matter,total organic C,total N.and C/N ratio and smaller ash content and electrical conductivity.Amendment with both CS and TS induced a number of modifications in soil properties,including an increase of pH,electrical conductivity,total organic C,total N,and available P.The CS-HA had greater O,total acidity,carboxyl,and phenolic OH group contents and smaller C and H contents than TS-HA.The CS-HA and TS-HA had larger N and S contents,smaller C,O and acidic functional group contents,and lower aromatic polycondensation and humification degrees than SO-HA.Amended soil-HAs showed C,H,N and S contents larger than SO-HA,suggesting that sludge HAs were partially incorporated into soil HAs.These effects were more evident with increasing number of sludge applications.

  1. Effect of Selected Organic Acids on Cadmium Sorption by Variable-and Permanent-Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HU Hong-Qing; LIU Hua-Liang; HE Ji-Zheng; HUANG Qiao-Yun

    2007-01-01

    Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-cinnamon soil and generally the yellow-brown soil (permanent-charge soils)decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the variable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol.

  2. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    Science.gov (United States)

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed.

  3. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  4. pH effects of the addition of three biochars to acidic Indonesian mineral soils

    DEFF Research Database (Denmark)

    Martinsen, V; Alling, V; Nurida, N L

    2015-01-01

    Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of ...

  5. Utilisation of coal ash to improve acid soil

    Directory of Open Access Journals (Sweden)

    Shigeru Kato

    2004-09-01

    Full Text Available The study on utilization of coal ash to improve acid soil was carried out in a greenhouse at the Land Development Regional Office 1, Pathum Thani Province, Central Thailand, from January-May 2003. Fly ash mixture (fly ash plus gypsum and lime at the proportion 5:4:1 and clinker ash mixture (clinker ash plus gypsum and lime at the proportion 5:4:1 were used as soil amendments at varying rates i.e., 0, 6.25,12.5, 18.75 and 25 t/ha to improve the soil. The aim of this study was to determine the effect of application of coal ash on acid soil and the growth of a vegetable (Chinese kale. Chinese kale cultivars were planted in a randomized complete block design with three replications. Pak Chong soil series (Ultisols was used as the growth medium. Twenty-day-old seedlings were transplanted in 270 pots (two plants per pot containing acid soil with different treatments of coal ash mixture which were as follows: 1 control, 2 fly ash mixture 6.25 t/ha, 3 fly ash mixture 12.5 t/ha, 4 fly ash mixture 18.75 t/ha, 5 fly ash mixture 25 t/ha, 6 clinker ash mixture 6.25 t/ha, 7 clinker ash mixture 12.5 t/ha, 8 clinker ash mixture 18.75 t/ha and 9 clinker ash mixture 25 t/ha. Chemical fertilizers were applied at the rate of 250 kg/ha using a grade of 15-15-15 of N, P and K, respectively. Plants were harvested 40 days after transplanting. Among the treatments, application of fly ashmixture at a rate of 25t/ha (4t/rai substantially increased soil pH up to 5.7. Fly ash was found more effective than clinker ash in increasing soil pH. The highest yield of Chinese kale was also obtained when fly ash mixture was applied at a rate of 25 t/ha followed by fly ash mixture at 18.75 t/ha and clinker ash mixture at 18.75 t/ha with an average yield per plant of 4.980, 3.743 and 3.447 grams, respectively. It can be concluded that the application of coal ash mixture, either fly- or clinker ash, at 18.75-25 t/ha (3-4 t/rai was the most effective in terms of plant yield. The use of

  6. Rice husk ash as corrective of soil acidity

    Directory of Open Access Journals (Sweden)

    Gláucia Oliveira Islabão

    2014-06-01

    Full Text Available Rice husk ash (RHA is a by-product from the burning of rice husk that can have favorable effects on the soil in terms of acidity correction. The objectives of this study were to determine the effective calcium carbonate equivalent (ECC of RHA under field conditions, and establish technical criteria as a basis for estimating the overall ECC of RHA. The 12 treatments of the experiment consisted of 10 RHA dosages (0, 10, 20, 30, 40, 60, 80, 100, 120, and 140 Mg ha-1 and two references, one of which was an absolute control (AC and the other a plot limed and fertilized according to official recommendations (recommended fertilization - RF. The soil was sampled twice (15 and 210 days after incorporating RHA, in the layers 0.00-0.10 and 0.10-0.20 m, to determine the pH(H2O and base saturation (V%. The ECC and neutralizing value (NV of RHA were also determined. The results showed that RHA neutralizes soil acidity, in a faster reaction than conventional limestone, despite a low ECC (around 3 %.

  7. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  8. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    Science.gov (United States)

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the

  9. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Lei; Peng, Qi-An; van Zwieten, Lukas; Chhajro, Muhammad Afzal; Wu, Yupeng; Lin, Shan; Ahmed, Muhammad Mahmood; Khalid, Muhammad Salman; Abid, Muhammad; Hu, Ronggui

    2017-02-21

    Lime or dolomite is commonly implemented to ameliorate soil acidity. However, the impact of dolomite on CO2 emissions from acidic soils is largely unknown. A 53-day laboratory study was carried out to investigate CO2 emissions by applying dolomite to an acidic Acrisol (rice-rapeseed rotation [RR soil]) and a Ferralsol (rice-fallow/flooded rotation [RF soil]). Dolomite was dosed at 0, 0.5, and 1.5 g 100 g(-1) soil, herein referred to as CK, L, and H, respectively. The soil pH(H2O) increased from 5.25 to 7.03 and 7.62 in L and H treatments of the RR soil and from 5.52 to 7.27 and 7.77 in L and H treatments of the RF soil, respectively. Dolomite application significantly (p ≤ 0.001) increased CO2 emissions in both RR and RF soils, with higher emissions in H as compared to L dose of dolomite. The cumulative CO2 emissions with H dose of dolomite were greater 136% in the RR soil and 149% in the RF soil as compared to CK, respectively. Dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased and reached at 193 and 431 mg kg(-1) in the RR soil and 244 and 481 mg kg(-1) in the RF soil by H treatments. The NH4(-)-N and NO3(-)-N were also increased by dolomite application. The increase in C and N contents stimulated microbial activities and therefore higher respiration in dolomite-treated soil as compared to untreated. The results suggest that CO2 release in dolomite-treated soils was due to the priming of soil C content rather than chemical reactions.

  10. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  11. Controls of Soluble Al in Experimental Acid Sulfate Conditions and Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    LINCHUXIA; M.D.MELVILLE

    1997-01-01

    The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.

  12. Influences of humic acid and fulvic acid on horizontal leaching behavior of anthracene in soil barriers.

    Science.gov (United States)

    Yu, Sheng; Li, Bang-Yu; Chen, Yi-Hu

    2015-12-01

    The influences of humic acid (HA) and fulvic acid (FA) on horizontal leaching behaviors of anthracene in barriers were investigated. Soil colloids (≤1 μm) were of concern because of their abilities of colloid-facilitated transport for hydrophobic organic compounds with soluble and insoluble organic matters. Through freely out of the barriers in the presence of soil colloids with FA added, the higher concentrations of anthracene were from 320 μg L(-1) (D1 and D3) to 390 μg L(-1) (D2 and D4) with 1 to 20 cm in length. The contents of anthracene were distributed evenly at 25 ng g(-1) dry weight (DW) (D1 and D3) and 11 ng g(-1) DW (D2 and D4) in barriers. Therefore, anthracene leaching behaviors were mainly induced by soil colloids with soluble organic matters. The insoluble organic matters would facilitate anthracene onto soil colloids and enhance the movement in and through porous media of soil matrix.

  13. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    Science.gov (United States)

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO2], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions.

  14. THE STABILIZATION SYSTEM OF SOIL ACIDITY WHEN GROWING TOMATOES IN A GREENHOUSE

    Directory of Open Access Journals (Sweden)

    Tsokur D. S.

    2013-11-01

    Full Text Available The article presents: the stabilization system of soil acidity, which allows subsoil irrigation tomato plants catholyte to compensate the negative effects of acidic fertilizer, and additionally to prevent plant diseases anolyte solution; transfer function of the stabilization system of soil acidity and the results of its tests

  15. Role of amino acid metabolites in the formation of soil organic matter

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1972-01-01

    Carbon-14 labelled cellulose or glucose were added to a medium loam and two sandy soils. The soils were incubated at 20°C for about 6 yr under laboratory conditions. Six to 12 per cent of the labelled carbon added to the soils was transformed into metabolites hydrolysable to amino acids during...... the first 10–30 days of the incubation period. The newly-formed metabolites decayed slowly as incubation continued. During the first 100–300 days of the incubation, losses of labelled amino acid carbon from soil were curvilinear when plotted on a semi-logarithmic scale. After this time the decay curves...... became linear, indicating half lives of 6–7 yr for the labelled carbon in amino acids. However, the labelled amino acid metabolites decayed at a faster rate than the native amino acid compounds of the soil, since they constituted a gradually decreasing percentage of total soil amino acid carbon...

  16. An Experimental Method to Quantify Extractable Amino Acids in Soils from Southeast China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-you; WU Liang-huan; CAO Xiao-chuang; Sarkar Animesh; ZHU Yuan-hong

    2013-01-01

    The extraction and comparison of soil amino acids using different extractants (deionized water, K2SO4, Na2SO4, NaCl, KCl) were reported. Results showed that 0.5 mol L-1 K2SO4 with a 5 times extraction was a better method to assess the concentration of extractable amino acids in soils. The total amino acids extracted from soil planted for tea were similar to the total inorganic nitrogen. While they extracted from vegetable soil and paddy soil were much lower than the total inorganic nitrogen.

  17. Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013.

    Science.gov (United States)

    Somtrakoon, Khanitta; Suanjit, Sudarat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung; Upatham, Suchart

    2008-08-01

    The ability of Burkholderia sp. VUN10013 to degrade anthracene in microcosms of two acidic Thai soils was studied. The addition of Burkholderia sp. VUN10013 (initial concentration of 10(5) cells g(-1) dry soil) to autoclaved soil collected from the Plew District, Chanthaburi Province, Thailand, supplemented with anthracene (50 mg kg(-1) dry soil) resulted in complete degradation of the added anthracene within 20 days. In contrast, under the same test conditions but using autoclaved soil collected from the Kitchagude District, Chanthaburi Province, Thailand, only approximately 46.3% of the added anthracene was degraded after 60 days of incubation. In nonautoclaved soils, without adding the VUN10013 inocula, 22.8 and 19.1% of the anthracene in Plew and Kitchagude soils, respectively, were degraded by indigenous bacteria after 60 days. In nonautoclaved soil inoculated with Burkholderia sp. VUN10013, the rate and extent of anthracene degradation were considerably better than those seen in autoclaved soils or in uninoculated nonautoclaved soils in that only 8.2 and 9.1% of anthracene remained in nonautoclaved Plew and Kitchagude soils, respectively, after 10 days of incubation. The results showed that the indigenous microorganisms in the pristine acidic soils have limited ability to degrade anthracene. Inoculation with the anthracene-degrading Burkholderia sp. VUN10013 significantly enhanced anthracene degradation in such acidic soils. The indigenous microorganisms greatly assisted the VUN10013 inoculum in anthracene degradation, especially in the more acidic Kitchagude soil.

  18. Application of Ground Phosphate Rock to Diminish the Effects of Simulated Acid Rain of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; LIXUE-YUAN

    1992-01-01

    The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H+,Al3+ and Mn2+ and the amount of SO41- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased,and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.

  19. Effect of some soil amendments on soil properties and plant growth in Southern Thailand acid upland soil

    Directory of Open Access Journals (Sweden)

    Onthong, C.

    2007-01-01

    Full Text Available One of the major factors limiting plant growth is acid soil. In general lime is used for soil amendment in acid soil. However, It has been reported that gypsum or phosphogypsum can be used for ameliorating soilacidity. Pot experiment was conducted to study the effects of lime, phosphogypsum and kieserite on soil properties and plant growth in Kho Hong soil series (coarse loamy, kaolinitic,isohyperthermic, TypicKandiudults which was considered as acid upland soil (pH 5.07. Sweet corn variety INSEE 2 was used as the test crop. The experiment was a completely randomized design with 4 replications and 19 treatments asfollow : unamended, application of hydrated lime and dolomite to raise soil pH at 5.5, application of hydrated lime and dolomite combined with phosphogypsum at the rate that can supply calcium 0.25, 0.50,0.75 and 1 time of both limes, application of hydrated lime and dolomite combined with kieserite at the rate 0.25, 0.50,0.75 and 1 times of sulfur requirement for corn (40 kg S ha-1. The result showed that shoot and root dry weights of corn were increased when lime materials, phosphogypsum and kieserite were applied and the drymatter weights were increased according to the increasing of phosphogypsum and kieserite. The maximum shoot dry weight (18.98 g pot-1 was obtained when 1 times of kieserite was supplied with dolomite and wassignificantly (P<0.01 higher than those of the unamended treatment, only hydrated lime and dolomite treatments, which had dry weights of 12.64, 15.18 and 15.67 g pot-1 respectively. Phosphorus and K uptakewere not significantly different in all treatments and the lowest uptake of N, Ca, Mg and S was obtained in the unamended treatment. The maximum uptake of N (512.10 mg pot-1 was found when 0.5 times ofphosphogypsum was applied together with dolomite. Calcium and Mg uptake was likely to increase according to the increasing rate of soil amendment application. Highest uptake of Ca (42.51 mg pot-1 was obtainedwhen

  20. Isotopically exchangeable Al in coastal lowland acid sulfate soils

    Energy Technology Data Exchange (ETDEWEB)

    Yvanes-Giuliani, Yliane A.M. [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia); Centre Européen de Recherche et d' Enseignement des Géosciences de l' Environnement, Aix-Marseille Université, Aix en Provence (France); Fink, D. [Centre Européen de Recherche et d' Enseignement des Géosciences de l' Environnement, Aix-Marseille Université, Aix en Provence (France); Rose, J. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Waite, T. David [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia); Collins, Richard N., E-mail: richard.collins@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability — a metal's ability to readily transfer between the soil solid- and solution-phases — of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl{sub 2}) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg{sup −1}. Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E = 1.68 × Al{sub KCl}, r{sup 2} = 0.66, n = 25). The addition of a 0.2 M CuCl{sub 2} extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial ‘organic-rich’ CLASS having E values < 1000 mg·kg{sup −1}. It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here. - Highlights: • Isotopically exchangeable Al was compared to 1 M KCl or 0.2 M CuCl{sub 2} extractable Al. • 1 M KCl always underestimated isotopically exchangeable Al concentrations. • 0.2 M CuCl{sub 2} mobilised non-isotopically exchangeable Al • 1 M KCl values require correction of ~ 1.7 to reflect exchangeable Al concentrations.

  1. Selection and breeding for acid-soil tolerance in crops: Upland rice and tropical forages as case studies

    Energy Technology Data Exchange (ETDEWEB)

    Vera, R. (Centro Internacional de Agricultura Tropical, Cali (Colombia)); Zeigler, R.S.; Sarkarung, S. (International Rice Research Institute, Manila (Philippines)); Rao, I.M.

    Soil acidity and associated infertility and mineral toxicities are major constraints to agricultural production in extensive areas of the humid tropics and subtropics. The natural process of soil acidification is often intensified by agricultural practices, particularly nitrogen fertilization, and acid precipitation. This paper briefly discusses the factors contributing to acid-soil infertility, effects on plant growth, and acid-soil treatments in temperate climates particularly liming. However, these treatments are not easily adaptable to tropical regions. However, the development of cultivars adapted to the acid soil complex is a promising alternative. The paper goes on to present several topics related to cultivar development: acid soils of tropical America; identification of germplasm adapted to acid soils; plant adaptation mechanisms for acid soils; improvement of acid-soil adaptation in crops; case study of upland rice by the Centro Internacional de Agricultura Tropical; tropical foages for livestock; and contribution of adapted plants to sustainable production systems. 50 refs., 3 figs., 7 tabs.

  2. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  3. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    Science.gov (United States)

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  4. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    Science.gov (United States)

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil.

  5. Biogenic arsenic volatilisation from an acidic wetland soil

    Science.gov (United States)

    Ilgen, Gunter; Huang, Jen-How; Lu, Shipeng; Tian, Liyan; Alewell, Christine

    2014-05-01

    Biogenic arsenic (As) volatilisation was budgeted at 26000 t yr-1as the largest input of the global As release into the atmosphere, thereby playing an important role in the biogeochemical cycle of As in the surface environment. In order to quantify As volatilisation from wetland soils and to elucidate the geochemical and microbiological factors governing As volatilisation, a series of incubations with an acidic wetland soil collected in NE-Bavaria in Germany were performed at 15oC for 4 months with addition of NaN3, arsenite (As(III)), FeCl3, NaSO4 and NaOAc with N2 and air in the headspace. Speciation of gaseous As in the headspace using GC-ICP-MS/ ESI-MS coupling showed the predominance of either arsine (AsH3) or trimethylarsine ((CH3)3As) in all treatments during the time course of incubation. Monomethylarsine ((CH3)AsH2) and dimethylarsine ((CH3)2AsH) could be only detected in trace amounts. Arsenic speciation in porewater with HPLC-ICP-MS revealed the predominance of As(III) and methylated As was never detectable. Arsenic volatilisation summed to 2.3 ng As (88% as AsH3) in the control incubations, which accounted for ~0.25 % of the total As storage in the wetland soil. Treatments with 10 mM NaN3 resulted in emission of only 0.03 ng As. In contrast, addition of 10 mM NaOAc stimulated microbial activities in wetland soils and subsequently rose As volatilisation to 8.5 ng As. It could be therefore concluded that As volatilisation from the wetland soils was mainly biological. Spiking 67 μM As(III) increased 10 times of As volatilisation and the proportion of methylated arsines increased to 66%, which is supposed to be caused by the largely enhanced As availability in porewater for microbes (480 ppb, ~65 times higher than those in the controls). Adding 10 mM FeCl3 stimulated microbial Fe(III) reducing activities but suppressed other microbial activities by lowering soil pH from 5 to 3.6, decreasing consequently As volatilisation to 0.3 ng As. The much lower redox

  6. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  7. Solvent-extractable lipids in an acid andic forest soil; variations with dept and season

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Bergen, P.F. van; Boogert, S.J.; Leeuw, J.W. de

    2004-01-01

    Total lipid extracts from an acid andic soil profile located on Madeira Island (Portugal) were analysed using gas chromatography (GC) and GC–mass spectrometry (GC/MS). The profile was covered mainly by grass. Bulk soil characteristics determined included soil pH (H2O) ranging from 4.5 to 4.0 and TOC

  8. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    NARCIS (Netherlands)

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtain

  9. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-derived organic acids and water were simulated and compared in the activation of mineral nutrients from the rhizosphere soil. The results showed that the organic acids could activate the nutrients and the activated degree of the nutrient elements highly depended on the amount and types of the organic acid excreted and on the physiochemical and biochemical properties of the soil tested. The activation effect of the citric acid was obviously higher than that of malic acid in extracting Fe, Mn, Cu, and Zn for all the tested soil types. However, the activation efficiencies of P, K, Ca, and Mg extracting by the citric acid were not much higher, sometimes even lower, than those by malic acid. The solution concentration of all elements increased with increase of amount of the citric acid added.

  10. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease

    NARCIS (Netherlands)

    Li, Yan; Tan, WenFeng; Koopal, Luuk K.; Wang, MingXia; Liu, Fan; Norde, Willem

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was inve

  11. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease

    NARCIS (Netherlands)

    Li, Y.; Tan, W.; Koopal, L.K.; Wang, M.; Liu, Fan; Norde, W.

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was inve

  12. Relationship of soil qualities to maize growth under increasing phosphorus supply in acid soils of southern Cameroon

    Institute of Scientific and Technical Information of China (English)

    TCHIENKOUA; M.JEMO; R.NJOMGANG; C.NOLTE; N.SANGINGA; J.TAKOW

    2008-01-01

    A large array of soil properties influences plant growth response to phosphorus (P) fertilizer input in acid soils.We carried out a pot experiment using three contrasted acid soils from southern Cameroon with the following main objectives:i) to assess the main soil causal factors of different maize (Zea mays L.) growth response to applied P and ii) to statistically model soil quality variation across soil types as well as their relationships to dry matter production.The soils used are classified as Typic Kandiudox (TKO),Rhodic Kandiudult (RKU),and Typic Kandiudult (TKU).Analysis of variance,regression,and principal component analyses were used for data analysis and interpretation.Shoot dry matter yield (DMY) was significantly affected by soil type and P rate with no significant interaction.Predicted maximum attainable DMY was lowest in the TKO (26.2 g pot-1) as compared to 35.6 and 36.7 g pot-1 for the RKU and TKU,respectively.Properties that positively influenced DMY were the levels of inorganic NaHCO3-extractable P,individual basic cations (Ca,Mg,and K),and pH.Their effects contrasted with those of exchangeable A1 and C/N ratio,which significantly depressed DMY.Principal component analysis yielded similar results,identifying 4 orthogonal components,which accounted for 84.7% of the total system variance (TSV).Principal component 1 was identified as soil nutrient deficiency explaining 35.9% of TSV.This soil quality varied significantly among the studied soils,emerging as the only soil quality which significantly (P < 0.05) correlated with maize growth.The 2nd,3rd,and 4th components were identified as soil organic matter contents,texture,and HCl-extractable P,respectively.

  13. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  14. Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. A. MAQSOOD; S. HUSSAIN; T. AZIZ; M. ASHRAF

    2011-01-01

    Rhizosphere drives plant uptake of sparingly soluble soil zinc (Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes (Sehar-06 and Vatan),Zn fractious in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties; their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-efficient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.

  15. Dissolution of Aluminum in Variably Charged Soils as Affected by Low-Molecular-Weight Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-Yu; XU Ren-Kou; JI Guo-Liang

    2005-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and Al detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of Al in the two investigated soils in the following order: citric > oxalic > malonic > malic > tartaric > salicylic > lactic > maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of Al increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-1, the dissolution of Al changed little with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L-1,the dissolution of Al increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of Al were also related to their sorption-desorption equilibrium in the soils.

  16. Low—Molecular—Weight Aliphatic Acids in Soils Inculbated with Plant Residues Under Different Moisture Conditions

    Institute of Scientific and Technical Information of China (English)

    SHENALIN; LIXUEYUAN; 等

    1997-01-01

    Iucubation experiments were conducted to investigate the dynamics of low-molecular-weight aliphatic acids i two andosols with and without plant materials.Results showed that amount of low-molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content,ranging from 257-860μmol kg-1 soil,of which 19%-33% was in free state.Incorporation of plant matrials increased greatly both the amount and unmber of members of low-molecular-weight aliphatic acids,and also the proportion of low-molecular-weght aliphatic acids occurred in free state ,Generally,among these ,aliphatic acids detected,acetic,propionic,glyoxalic and formic acids were predominant.

  17. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  18. Effects of organic acids on Cd adsorption and desorption by two anthropic soils

    Institute of Scientific and Technical Information of China (English)

    Jingui WANG; Jialong LV; Yaolong FU

    2013-01-01

    The objective of this experiment was to study the effects of malic, tartaric, oxalic, and citric acid on the adsorption and desorption characteristics of Cd by two typical anthropic soils (lou soil and irrigation-silted soil) in North-west China. Cadmium adsorption and desorption were studied under a range of temperatures (25℃, 30℃, 35℃, 40℃), organic acid concentrations (0.5-5.0 mmol·L-1), and pH values (2-8). The results showed that the Cd adsorption capacity of the lou soil was significantly greater than that of the irrigation-silted soil. Generally, Cd adsorption increased as the temperature increased. In the presence of NaNO3, the adsorption of Cd was endothermic with △H values of 31.365 kJ·mo1-1 for lou soil and 28.278 kJ·mol-1 for irrigation-silted soil. The endothermic reaction indicated that H bonds were the main driving force for Cd adsorption in both soils. However, different concentrations of organic acids showed various influences on the two soils. In the presence of citric acid, chemical adsorption and van der Waals interactions were the main driving forces for Cd adsorption rather than H bonds. Although the types of organic acids and soil properties were different, the effects of the organic acids on the adsorption and desorption of Cd were similar in the two soils. The adsorption percentage of Cd generally decreased as organic acid concentrations increased. In contrast, the adsorption percentage increased as the pH of the initial solution increased. The exception was that adsorption percentage of Cd increased slightly as oxalic acid concentrations increased. In contrast, the desorption percentage of Cd increased with increasing concentrations of organic acids but decreased as the initial solution pH increased.

  19. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  20. Solid components and acid buffering capacity of soils in South China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The effects of soil solid components on soil sensitivityto acid deposition were studied in this paper by sequentialextraction method. A multiple regression equation of soilsensitivity was set up on the basis of stepwise regressionanalysis. The results showed that organic matter expressed dualeffects that were decided by soil original pH value andexchangeable cation composition on acid buffering reactions. Thehydrolysis of activated oxides was a very important protonbuffering reaction when in low pH situation. The crystalline oxidesalso played a role in the buffering reactions, but the role wasrestricted by the rate of activation of oxides. Meanwhile, theresults by stepwise analysis showed that factors that hadsignificant effect on soil acid buffering capacity were content ofmontmorillite, soil original pH value, Alo, Mno and CEC indecreasing order. Finally, sixteen soils were classified into fourtypes of sensitive with single index cluster and multiple fuzzy cluster analysis respectively.

  1. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  2. Nature of Soil Acidity in Relation to Properties and Lime Requirement of Some Inceptisols

    Institute of Scientific and Technical Information of China (English)

    A. K. DOLUI; S. BHATTACHARJEE

    2003-01-01

    Some Inceptisols representing the Singla catchment area in Karimgaunge district of Assam, India, were studied for lime requirement as influenced by the nature of soil acidity. The electrostatically bonded (EB)-H+ and EB-Al3+ acidities constituted 33 and 67 percent of exchangeable acidity while EB-H+, EB-Al3+,exchangeable and pH-dependent acidities comprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a major contribution towards the total potential acidity (67%~84%). Grand mean of lime requirement determined by the laboratory incubation method and estimated by the methods of New Woodruff, Woodruff and Peech as expressed in MgCaCO3 ha-1 was in the order: Woodruff (15.6) > New Woodruff (14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity and lime requirement methods with selected soil properties showed that pH in three media, namely water, 1 mol L-1 KCl and 0.01 mol L-1 CaCl2, had a significant negative correlation with different forms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positive correlations with EB-Al3+ acidity, exchangeable acidity, pH-dependent acidity and total potential acidity, and also lime requirement methods. Extractable Al showed positive correlations with different forms of acidity except EB-H+ and EB-Al3+ acidities. The lime requirement by different methods depended upon the extractable aluminium.Significant positive correlations existed between lime requirements and different forms of acidity of the soils except EB-H+ acidity and incubation method. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method did slightly better than the New Woodruff, incubation and Peech methods at estimating lime requirement and hence the Woodruff procedure may be recommended for routine soil testing because of its speed and simplicity.

  3. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  4. The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils

    Science.gov (United States)

    Lapinskas, E. B.

    2007-04-01

    The distribution and symbiotic efficiency of nodule bacteria Rhizobium leguminosarum_bv. trifolii F., Sinorhizobium meliloti D., Rhizobium galegae L., and Rhizobium leguminosarum bv. viciae F. in Lithuanian soils as dependent on the soil acidity were studied in the long-term field, pot, and laboratory experiments. The critical and optimal pH values controlling the distribution of rhizobia and the symbiotic nitrogen fixation were determined for every bacterial species. The relationship was found between the soil pH and the nitrogen-fixing capacity of rhizobia. A positive effect of liming of acid soils in combination with inoculation of legumes on the efficiency of symbiotic nitrogen fixation was demonstrated.

  5. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  6. Calibration of KE C Value in Acidic Red Soils with Fumigation-Extraction Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Commonly used KEC value (0.45) of the fumigation-extraction (FE) method was obtained on the basis of temperate neutral soils. To ascertain its applicability to acidic red soils widespread in southern China and other subtropical regions, the KEC value was investigated based on 8 acidic red soils by in situ labelling of native soil microorganisms using 14C-labelled glucose. Realistic KEC value for red soils could be obtained by in situ 14C-labelling as long as an incubation period of 72 h is adopted after addition of 14C glucose to soil. The single KEC values for the eight red soils ranged from 0.27 to 0.35 and averaged 0.31. Lower KEC value obtained in red soils probably resulted from different soil quality, compared with other types of soil,which causes possible changes in microbial community structure and extractability of cellular component.Microbial biomass C contents of the eight red soils measured using a unique and constant KEC value of 0.45 decreased by 22.2%~40% in comparison to those using variable KEC values. The results suggest that microbial biomass C would be significantly underestimated using the present KEC value and a calibration of the KEC value is necessary for red soils.``

  7. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples.

    Science.gov (United States)

    Xu, Duanping; Xu, Zhonghou; Zhu, Shuquan; Cao, Yunzhe; Wang, Yu; Du, Xiaoming; Gu, Qingbao; Li, Fasheng

    2005-05-01

    Three kinds of soils in China, krasnozem, fluvo-aquic soil, and phaeozem, as well as the humic acids (HAs) isolated from them, were used to adsorb the herbicide butachlor from water. Under the experimental conditions, the adsorption amount of butachlor on soils was positively correlated with the content of soil organic matter. HAs extracted from different kinds of soils had different adsorption capacity for the tested herbicide, which was positively correlated with their content of carbonyls. The adsorption mechanism was studied using Fourier transform infrared spectroscopy and cross-polarization with magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) techniques. It was showed that the adsorption mainly took place on the C=O, phenolic and alcoholic O-H groups of HAs. It was also confirmed that the adsorption mechanism was hydrogen bonds formation between the above groups of HAs and butachlor molecules.

  8. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Renata Wilma Vasconcelos

    2014-08-01

    Full Text Available Mangrove ecosystems are of great environmental significance, because of their fragility and role in feeding and breeding various animal species. In northeastern Brazil, the disorderly occupation of estuarine areas and the urban sprawl have led to a considerable loss of the original area occupied by mangroves. In the municipality of Cabedelo, State of Paraíba, there are about 4,900 ha of remnant mangrove areas in the estuarine complex of the Paraíba River. However, information about the attributes of mangrove soils at this location is quite scarce. The aim of this study was to quantify the soil organic matter and soil acidity in mangroves located in the estuary of the Paraíba River, State of Paraíba, Brazil, in order to increase the database of soil attributes in this region. The study area is in local influence of the Restinga de Cabedelo National Forest (Flona, an environmental conservation unit of the Chico Mendes Institute for Biodiversity Conservation. For the choice of sampling points, we considered an area that receives direct influence of the eviction of domestic and industrial effluents. The soil of the study area is an “Organossolo Háplico” in Brazilian Soil Classification (Histosol, and was sampled at four point sites: one upstream of the effluent discharge (P1, one in the watercourse receiving effluent water (P2, one downstream of the effluent discharge (P3 and another near Flona (P4, at 0-20 and 20-40 cm, in four replications in time (28/08/2012 in the morning and afternoon, and 21/01/2013 in the morning and afternoon. Potential acidity, pH and soil organic matter (SOM were determined. No significant differences were detected in the potential acidity of the four collection sites, which ranged from 0.38 to 0.45 cmolc dm-3. Soil pH was greatest at point P4 (7.0 and lowest at point P1 (5.8. The SOM was highest at point P1 (86.4 % and lowest at P2 (77.9 %. The attributes related to soil acidity were not sensitive to indicate

  9. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  10. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS: DETECTION AND QUANTITATION ISSUES AT LOW CONCENTRATIONS

    Science.gov (United States)

    Methods were developed for the extraction from soil, identification, confirmation and quantitation by LC/MS/MS of trace levels of perfluorinated octanoic acid (PFOA), perfluorinated nonanoic acid (PFNA) and perfluorinated decanoic acid (PFDA). Whereas PFOA, PFNA and PFDA all can...

  11. Uranium Leaching from Contaminated Soil Utilizing Rhamnolipid, EDTA, and Citric Acid

    Directory of Open Access Journals (Sweden)

    Sara Asselin

    2014-01-01

    Full Text Available Biosurfactants have recently gained attention as “green” agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining and Leupp (control—no mining. The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 μM was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash.

  12. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.

  13. [Short-term changes of pH value and Al activity in acid soils after urea fertilization].

    Science.gov (United States)

    Zeng, Qingru; Liao, Bohan; Jiang, Zhaohui; Zhou, Xihong; Tang, Can; Zhong, Ning

    2005-02-01

    Acidic soils are widely distributed in South China, and their acidity is the major environmental stress factor limiting the growth of most crops. It is well known that soil Al solubilized at low pH is a main toxic factor for plant growth. Our study with three acidic soils showed that soil pH increased quickly, while soil exchangeable Al decreased sharply with the increasing concentrations of applied urea. The time-course experiment revealed that the increase of soil pH was short-lived, with a subsequently slow drop after reached its maximum. Urea fertilization caused a drastic change of soil pH during 2-4 weeks of the experimental period. There was a negative relationship between soil pH and soil exchangeable Al. Biological toxicity test demonstrated that applying urea to acidic soils could obviously decrease the aluminum toxicity of maize in a short-term period.

  14. Potential origin and formation for molecular components of humic acids in soils

    Science.gov (United States)

    DiDonato, Nicole; Chen, Hongmei; Waggoner, Derek; Hatcher, Patrick G.

    2016-04-01

    Soil humic acids are the base soluble/acid insoluble organic components of soil organic matter. Most of what we know about humic acids comes from studies of their bulk molecular properties or analysis of individual fractions after extraction from soils. This work attempts to better define humic acids and explain similarities and differences for several soils varying in degrees of humification using advanced molecular level techniques. Our investigation using electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) and nuclear magnetic resonance spectroscopy (NMR) has given new insight into the distinctive molecular characteristics of humic acids which suggest a possible pathway for their formation. Humic acids from various ecosystems, climate regions and soil textural classes are distinguished by the presence of three predominant molecular components: lignin-like molecules, carboxyl-containing aliphatic molecules and condensed aromatic molecules that bear similarity to black carbon. Results show that humification may be linked to the relative abundance of these three types of molecules as well as the relative abundance of carboxyl groups in each molecular type. This work also demonstrates evidence for lignin as the primary source of soil organic matter, particularly condensed aromatic molecules often categorized as black carbon and is the first report of the non-pyrogenic source for these compounds in soils. We also suggest that much of the carboxyl-containing aliphatic molecules are sourced from lignin.

  15. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids.

    Science.gov (United States)

    Vargas, Carmen; Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Moliner, Ana

    2016-07-01

    Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils.

  16. Soil acidity and mobile aluminum status in pseudogley soils in Čačak-Kraljevo basin

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2012-01-01

    Full Text Available Soil acidity and aluminum toxicity are considered most damaging soil conditions affecting the growth of most crops. This paper reviews the results of tests of pH, exchangeable acidity and mobile aluminum (Al concentration in profiles of pseudogley soils from Čačak-Kraljevo basin. For that purpose, 102 soil pits were dug in 2009 in several sites around Čačak- Kraljevo basin. The tests encompassed 54 field, 28 meadow, and 20 forest soil samples. Samples of soil in the disturbed state were taken from the Ah and Eg horizons (102 samples, from the B1tg horizon in 39 field, 24 meadow and 15 forest pits (a total of 78 samples and from the B2tg horizon in 14 field, 11 meadow, and 4 forest pits (a total of 29 samples. Mean pH values (1M KCl of the tested soil profiles were 4.28, 3.90 and 3.80 for the Ah, Eg and B1tg horizons, respectively. Soil pH of forest samples was lower than those in meadow and arable land samples (mean values of 4.06, 3.97 and 3.85 for arable land, meadow and forest samples, respectively. Soil acidification was especially intensive in deep horizons, as 27% (Ah, 77% (Eg and 87% (B1tg soil samples had the pH value below 4.0. Mean values of total exchangeable acidity (TEA were 1.55, 2.33 and 3.40 meq 100 g-1 for the Ah, Eg and B1tg horizons, respectively. The TEA values in forest soils were considerably higher (3.39 meq 100 g-1 than those in arable soils and meadow soils (1.96 and 1.93, respectively. Mean mobile Al contents of tested soil samples were 11.02, 19.58 and 28.33 mg Al 100 g-1 for the Ah, Eg and B1tg horizons, respectively. According to the pH and TEA values, mobile Al was considerably higher in the forest soils (the mean value of 26.08 mg Al 100 g-1 than in the arable soils and meadow soils (the mean values of 16.85 and 16.00 mg Al 100 g-1, respectively. The Eg and B1tg horizons of the forest soil had especially high mobile Al contents (the mean values of 28.50 and 32.95 mg Al 100 g-1, respectively. High levels of

  17. Influence of ingestion of aluminum, citric acid and soil on mineral metabolism of lactating beef cows.

    Science.gov (United States)

    Allen, V G; Horn, F P; Fontenot, J P

    1986-05-01

    Lactating beef cows (16 Hereford and 34 Angus, 430 kg average body weight, aged 8 to 10 yr) were fed a basal diet containing 200 micrograms/g Al alone or supplemented with Al-citrate, citric acid, soil or soil plus citric acid for 56 d. Diets containing Al-citrate, soil and soil plus citric acid contained 1,730, 1,870 and 1,935 micrograms/g Al, dry-basis, respectively. Adding soil to the diet also increased Mg and Fe content of the diet. Aluminum values in ruminal contents of beef cows fed the basal alone or supplemented with citric acid, Al-citrate, soil or soil plus citric acid were 800, 990, 2,930, 3,410 and 2,910 micrograms/g, air-dry basis, respectively. Serum Mg and inorganic P declined (P less than .01) and urinary Ca concentration increased (P less than .01) for cows fed Al-citrate. By d 56, serum Mg was 1.5 and 2.2 mg/dl, and serum P was 3.8 and 6.8 mg/dl, for cows fed Al-citrate and basal diets, respectively. Calcium concentrations in urine were 281 and 11 micrograms/g for cows fed Al-citrate and basal diets, respectively. Citric acid, soil and soil plus citric acid had no detrimental effects on serum Mg and inorganic P, or urinary Ca concentration. By d 56, serum Ca was higher (P less than .06) in cows fed Al-citrate, compared with cows on the other four diets. Bone Ca, P, Zn and percent ash were not significantly affected by treatment but bone Mg tended to be slightly lower (P less than .07) for cows fed Al-citrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Regularities of extracting humic acids from soils using sodium pyrophosphate solutions

    Science.gov (United States)

    Bakina, L. G.; Drichko, V. F.; Orlova, N. E.

    2017-02-01

    Regularities of extracting humic acids from different soil types (soddy-podzolic soil, gray forest soil, and all chernozem subtypes) with sodium pyrophosphate solutions at different pH values (from 5 to 13) have been studied. It is found that, regardless of soil type, the process occurs in two stages through the dissociation of carboxylic groups and phenolic hydroxyls, each of which can be described by a logistic function. Parameters of the logistic equations approximating the extraction of humic acids from soils at different pH values are independent of the content and composition of humus in soils. Changes in the optical density of humic acids extracted from soils using sodium pyrophosphate solutions with different pH values are described in the first approximation by the Gaussian function. The optically densest humic acids are extracted using sodium pyrophosphate solutions at pH 10. Therefore, it is proposed to use an extract with pH 10 for the characterization of organic matter with the maximum possible degree of humification in the given soil.

  19. Soil salinity and acidity: Spatial variability and effects on rice production in West Africa's mangrove zone.

    NARCIS (Netherlands)

    Sylla, M.

    1994-01-01

    In the mangrove environment of West Africa, high spatial and temporal variability of soil constraints (salinity and acidity) to rice production is a problem for the transfer and adoption of new agronomic techniques, for land use planning, and for soil and water management. Recently, several National

  20. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    Science.gov (United States)

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.

  1. Effects of Fe oxide on N transformations in subtropical acid soils

    Science.gov (United States)

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-02-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3--N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3--N immobilization rate increased 8 fold. NO3--N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3--N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3--N immobilization caused by high Fe oxide content rather than a low pH.

  2. Changes of cellular fatty acids of soil Actinobacteria producing antibiotics

    OpenAIRE

    LIPENSKÁ, Ivana

    2010-01-01

    Changes of cellular fatty acids in membrane of Actinobacteria. Changes of fatty acids are significant biomarkers of changing conditions of surroundings. This can also indicate production of antibiotics along with production of atypical fatty acids.

  3. Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Volcanic Ash Soils:

    Directory of Open Access Journals (Sweden)

    Ei Ei Mon

    2009-01-01

    Full Text Available The quantification of the linear adsorption coefficient (Kd for soils plays a vital role to predict fate and transport of pesticides in the soil-water environment. In this study, we measured Kd values for 2,4-Dichlorophenoxyacetic acid (2,4-D adsorption onto Japanese volcanic ash soils with different amount of soil organic matter (SOM in batch experiments under different pH conditions. All measurements followed well both linear and Freundlich adsorption isotherms. Strong correlations were found between measured Kd values and pH as well as SOM. The 2,4-D adsorption increased with decreasing pH and with increasing SOM. Based on the data, a predictive Kd equation for volcanic ash soils, log (Kd = 2.04 - 0.37 pH + 0.91 log (SOM, was obtained by the multiple regression analysis. The predictive Kd equation was tested against measured 2,4-D sorption data for other volcanic ash soils and normal mineral soils from literature. The proposed Kd equation well predicted Kd values for other volcanic ash soils and slightly over- or under-predicted Kd values for normal mineral soils. The proposed Kd equation performed well against volcanic ash soils from different sites and countries, and is therefore recommended for predicting Kd values at different pH and SOM conditions for volcanic ash soils when calculating and predicting 2,4-D mobility and fate in soil and groundwater.

  4. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk.

    Science.gov (United States)

    Zhao, Lixia; Zhu, Lingyan; Zhao, Shuyan; Ma, Xinxin

    2016-12-01

    Different from typical hydrophobic organic contaminants (HOCs), perfluoroalkyl acids (PFAAs) are more soluble in water and less partitioned to soil than the HOCs. It remains unclear whether and to what extent PFAAs could be sequestrated in soil. In this study, sequential extraction of PFAAs in soil and bioaccumulation of PFAAs in earthworm were carried out to understand the sequestration and bioavailability of PFAAs in soils with different soil organic matter (SOM) and aged for different time periods (7 and 47d). Sequestration occurred in different degrees depending on the amount and compositions of SOM in soil, structural properties of PFAAs and aging time. Surprisingly, in one peat soil with high fraction of organic carbon (foc, 59%), the PFAAs were completely sequestrated in the soil. Aging might lead to further sequestration of PFAAs in soil with relatively lower foc. As a consequence of sequestration, the bioavailability of PFAAs in peat soils was reduced 3-10 times compared to that in the plain farmland soil. However, the sequestrated PFAAs were still bioaccumulative in earthworms to some extent. The results indicated that the risk of PFAAs in field soil with high content of SOM could be underestimated if only free PFAAs using mild solvent extraction were monitored.

  5. Dolomite application to acidic soils: a promising option for mitigating N2O emissions.

    Science.gov (United States)

    Shaaban, Muhammad; Peng, Qi-An; Hu, Ronggui; Wu, Yupeng; Lin, Shan; Zhao, Jinsong

    2015-12-01

    Soil acidification is one of the main problems to crop productivity as well as a potent source of atmospheric nitrous oxide (N2O). Liming practice is usually performed for the amelioration of acidic soils, but the effects of dolomite application on N2O emissions from acidic soils are still not well understood. Therefore, a laboratory study was conducted to examine N2O emissions from an acidic soil following application of dolomite. Dolomite was applied to acidic soil in a factorial design under different levels of moisture and nitrogen (N) fertilizer. Treatments were as follows: dolomite was applied as 0, 1, and 2 g kg(-1) soil (named as CK, L, and H, respectively) under two levels of moisture [i.e., 55 and 90 % water-filled pore space (WFPS)]. All treatments of dolomite and moisture were further amended with 0 and 200 mg N kg(-1) soil as (NH4)2SO4. Soil properties such as soil pH, mineral N (NH4 (+)-N and NO3 (-)-N), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and soil N2O emissions were analyzed throughout the study period. Application of N fertilizer rapidly increased soil N2O emissions and peaked at 0.59 μg N2O-N kg(-1) h(-1) under 90 % WFPS without dolomite application. The highest cumulative N2O flux was 246.32 μg N2O-N kg(-1) under 90 % WFPS without dolomite addition in fertilized soil. Addition of dolomite significantly (p ≤ 0.01) mitigated N2O emissions as soil pH increased, and H treatment was more effective for mitigating N2O emissions as compared to L treatment. The H treatment decreased the cumulative N2O emissions by up to 73 and 67 % under 55 and 90 % WFPS, respectively, in fertilized soil, and 60 and 68 % under 55 and 90 % WFPS, respectively, in unfertilized soil when compared to those without dolomite addition. Results demonstrated that application of dolomite to acidic soils is a promising option for mitigating N2O emissions.

  6. Cu and Zn Speciation in an Acid Soil Amended with Alkaline Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewage sludge biosolids was conducted in order to assess metal bioavailability and environmental mobility. Soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution was determined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used for extraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soil solution existed in different fractions with variable lability and metals in the soil solid phase were also present in various chemical forms with potentially different bioavailability and environmental mobility. Alkalinestabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractions both in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.

  7. Sorption of a triazol derivative by soils: importance of surface acidity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H2O2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H2O2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.

  8. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  9. Mobility and speciation of Cd,Cu,and Zn in two acidic soils affected by simulated acid rain

    Institute of Scientific and Technical Information of China (English)

    GUO Zhao-hui; LIAO Bo-han; HUANG Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals(Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil(CRS) and yellow red soil(CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values.

  10. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China

    Science.gov (United States)

    Huang, Yongmei; Kang, Ronghua; Mulder, Jan; Zhang, Ting; Duan, Lei

    2015-11-01

    Elevated anthropogenic nitrogen (N) deposition has caused nitrate (NO3-) leaching, an indication of N saturation, in several temperate and boreal forests across the Northern Hemisphere. So far, the occurrence of N saturation in subtropical forests and its effects on the chemistry of the typically highly weathered soils, forest growth, and biodiversity have received little attention. Here we investigated N saturation and the effects of chronically high N inputs on soil and vegetation in a typical, subtropical Masson pine (Pinus massoniana) forest at Tieshanping, southwest China. Seven years of N flux data obtained in ambient conditions and in response to field manipulation, including a doubling of N input either as ammonium nitrate (NH4NO3) or as sodium nitrate (NaNO3) solution, resulted in a unique set of N balance data. Our data showed extreme N saturation with near-quantitative leaching of NO3-, by far the dominant form of dissolved inorganic N in soil water. Even after 7 years, NH4+, added as NH4NO3, was nearly fully converted to NO3-, thus giving rise to a major acid input into the soil. Despite the large acid input, the decrease in soil pH was insignificant, due to pH buffering caused by Al3+ mobilization and enhanced SO42- adsorption. In response to the NH4NO3-induced increase in soil acidification and N availability, ground vegetation showed significant reduction of abundance and diversity, while Masson pine growth further declined. By contrast, addition of NaNO3 did not cause soil acidification. The comparison of NH4NO3 treatment and NaNO3 treatment indicated that pine growth decline was mainly attributed to acidification-induced nutrient imbalance, while the loss in abundance of major ground species was the combining effect of N saturation and acidification. Therefore, N emission control is of primary importance to curb further acidification and eutrophication of forest soils in much of subtropical south China.

  11. Effect of Polylactic Acid-Degradable Film Mulch on Soil Temperature and Cotton Yield

    Directory of Open Access Journals (Sweden)

    ZHANG Ni

    2016-03-01

    Full Text Available Concern on biodegradable plastic film is increasing because of pollution problems caused by the plastic films currently used. The objective of this field experiment is to evaluate the effect of two thicknesses of polyactic acid-degradable film on soil temperature and cotton yield. The results showed that small holes appeared in the polyactic acid-degradable film at 17~22 d after it was installed. Burst period appeared about 60 d after installation. Splits were observed in the polyactic acid-degradable film at 130 d after installation. Soil temperatures rose slowly under polyactic acid-degradable film during the cotton seedling stage. Daytime soil temperatures were 0.8℃ and 6.2℃ lower under 18μm and 15μm thick polyactic acid-degradable film than non-degradable plastic film(CK, respectively. Nighttime soil temperatures under the polyactic acid-degradable film were about 1℃ warmer than CK. There was no significant difference in cotton yields between the 18μm polyactic acid degradable film treatment and CK. In contrast, yields in the 15μm degradable plastic film treatment were 8.9% less than that in CK. This study indicated that 18μm polyactic acid degradable plastic film had good degradability and no negative effect on cotton growth. The 18μm polyactic acid degradable plastic film can replace ordinary plastic film in agricultural production.

  12. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  13. Removal of heavy metals from a contaminated soil using tartaric acid

    Institute of Scientific and Technical Information of China (English)

    KE Xin; LI Pei-jun; ZHOU Qi-xing; ZHANG Yun; SUN Tie-heng

    2006-01-01

    This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing remediation of the HM contaminated soil. An empirical model was employed to describe the kinetics of HM dissolution/desorption and to predict equilibrium concentrations of HMs in soil leachate. The changes of HMs in different fractions before and after tartaric acid treatment were also investigated. Tartaric acid solution containing HMs was regenerated by chestnut shells. Results show that utilization of tartaric acid was effective for removal of HMs from the contaminated soil, attaining 50%-60% of Cd, 40%-50% of Pb, 40%-50% of Cu and 20%-30% of Zn in the pH range of 3.5-4.0 within 24 h. Mass transfer coefficients for cadmium (Cd) and lead (Pb) were much higher than those for copper (Cu) and zinc (Zn). Sequential fractionations of treated and untreated soil samples showed that tartaric acid was effective in removing the exchangeable, carbonate fractions of Cd, Zn and Cu from the contaminated soil. The contents of Pb and Cu in Fe-Mn oxide fraciton were also significantly decreased by tartaric acid treatment. One hundred milliliters of tartaric acid solution containing HMs could be regenerated by 10 g chestnut shells in a batch reactor. Such a remediation procedure indicated that tartaric acid is a promising agent for remediation of HM contaminated soils. However, further research is needed before the method can be practically used for in situ remediation of contaminated sites.

  14. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Garrido-Rodríguez, B.; Arias-Estévez, M.

    2015-01-01

    We applied three different doses of crushed mussel shell (CMS) on two Cu-polluted acid soils to study the effect of these amendments on the growth of the bacterial community during 730 days. Soil pH increased in the short and medium term due to CMS addition. In a first stage, bacterial growth...... was lower in the CMS-amended than in the un-amended samples. Thereafter, bacterial growth increased slowly. The soil having the highest initial pH value (4.5) showed the first significant increase in bacterial growth 95 days after the CMS amendment. However, in the soil with the lowest initial pH value (3...... as an agronomic sound practice for strongly acid soils (pH

  15. Organic Matter, Carbon and Humic Acids in Rehabilitated and Secondary Forest Soils

    Directory of Open Access Journals (Sweden)

    Lee Y. Leng

    2009-01-01

    Full Text Available Problem Statement: Tropical rainforests cover about 19.37 million ha (60% of Malaysia’s total area and about 8.71 million ha can be found in Sarawak, Malaysia. Excessive logging, mining and shifting cultivation contribute to deforestation in Sarawak. The objectives of this study were to: (i Quantify soil Organic Matter (SOM, Soil Organic Carbon (SOC and Humic Acids (HA in rehabilitated and secondary forest soils and (ii Compare SOM, SOC and HA sequestrations of both forests. Approach: Soil samples were collected from a 16 year old rehabilitated forest and a secondary forest at Universiti Putra Malaysia, Bintulu Campus. Fifteen samples were taken at random with a soil auger at 0-20 cm and 20-40 cm depths. The bulk densities at these depths were determined by the coring method. The bulk density method was used to quantify the total C (TC, Total Organic Carbon (TOC, Organic Matter (OM, Humic Acids (HA and total N at the stated sampling depths. Results: Regardless of forest soil type and depth, the amount of SOM of the two forests was similar. Except for 20-40 cm of the secondary forest soil whereby the quantity of total C sequestered was significantly lower than that of the rehabilitated forest soil, C sequestration was similar irrespective of forest type and depth. Nevertheless, stable C (organic carbon sequestered in HA was generally higher in the rehabilitated forest soil compared with the secondary forest soil. This was attributed to higher yield of HA in the rehabilitated forest soil partly due to better humification at 20-40 cm in the rehabilitated forest soil. Conclusion: Hence, the findings suggest that organic C in HA realistically reflects C sequestration in the soils of the two forests investigated.

  16. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains ... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  17. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  18. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    Science.gov (United States)

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pHacid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments.

  19. Study on Humic Acids of the Soil Applied with Corn Stalk by Spectroscopy Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Jing-gui; WANG Ming-hui; JIANG Yi-mei; XU Yan

    2005-01-01

    Spectroscopy measurements (Fourier transform infrared differential spectroscopy, Carbon-13 nuclear magnetic resonance spectrometry, Matrix-assisted laser desorption/ionization-time of flight mass spectrometry) were performed to study the humic acids of the soil applied with corn stalk. The results showed that after incorporation of corn stalks into the soil, the soil humic acid (HA) changed significantly in different stages. During first 60 days, new HAs were formed by polymerization and seems to be similar to that of initial HAs from composting corn stalk, some little molecular organic matters also reacted with soil HAs and turned into parts of soil HAs. After 60 days of the corn stalk residue incorporation, new HAs were formed by polymerization of decomposed lignin molecules, some methylenes transformed into methyls and methoxyls since the 90th day. Application of corn stalk led to the increase of aliphatic components in soil HAs, the decrease in aromatic components of soil HAs and the suppression in oxidation degree of soil HAs. The average molecular weight of soil HAs also declined because of application of corn stalk.

  20. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  1. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils

    Institute of Scientific and Technical Information of China (English)

    YAO Huai-ying; LIU Yue-yan; XUE Dong; HUANG Chang-yong

    2006-01-01

    The phospholipid fatty acid (PLFA) composition was analyzed in two red soils experimentally contaminated with copper at different concentrations. The total amounts ofphospholipid fatty acids (PLFAs) in both red soils were significantly correlated with soil microbial biomass C and N, which decreased consistently with increasing levels of copper. The relative quantities of the PLFAs 17:0(10 Me), i 16:0, il 5:0 and 16:1 w5c, decreased with increasing heavy metal concentration, while those of cy 17:0, which is an indicator of gram-negative bacteria, increased. The Shannon index calculated from the PLFA data indicated that Cu addition in the red soils decreased the population diversity of soil microbial communities. Multivariate analysis of PLFA data demonstrated that high levels of Cu application had a significant impact on microbial community structure and there is a threshold metal concentration for PLFA composition. Comparatively higher toxic effect on microbial biomass and community structure were found in the red sandy soil than those in the red clayey soil. The differential effect of Cu addition on microbial communities in the two soils may be due to differences in soil texture and cation exchange capacity.

  2. The effect of organic acid on the spectral-induced polarization response of soil

    Science.gov (United States)

    Schwartz, N.; Shalem, T.; Furman, A.

    2014-04-01

    In spectral-induced polarization (SIP) studies of sites contaminated by organic hydrocarbons, it was shown that biodegradation by-products in general, and organic acids in particular, significantly alter the SIP signature of the subsurface. Still a systematic study that considers the effect of organic acid on the physicochemical and electrical (SIP) properties of the soil is missing. The goal of this work is to relate between the effect of organic acid on the physicochemical properties of the soil, and the soil electrical properties. To do so, we measured the temporal changes of the soil chemical (ion content) and electrical (low-frequency SIP) properties in response to influx of organic acid at different concentrations, gradually altering the soil pH. Our results show that organic acid reduces the soil pH, enhances mineral weathering and consequently reduces both the in-phase and quadrature conductivity. At the pH range where mineral weathering is most significant (pH 6-4.5) a negative linear relation between the soil pH and the soil formation factor was found, suggesting that mineral weathering changes the pore space geometry and hence affecting the in-phase electrical conductivity. In addition, we attribute the reduction in the quadrature conductivity to an exchange process between the natural cation adsorbed on the mineral surface and hydronium, and to changes in the width of the pore bottleneck that results from the mineral weathering. Overall, our results allow a better understanding of the SIP signature of soil undergoing acidification process in general and as biodegradation process in particular.

  3. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  4. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  5. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.

    Science.gov (United States)

    Darch, Tegan; Blackwell, Martin S A; Chadwick, David; Haygarth, Philip M; Hawkins, Jane M B; Turner, Benjamin L

    2016-12-15

    Soil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases. Five lowland tropical forest soils with contrasting properties (pH 4.4-6.1, total P 86-429 mg P kg(- 1)) were extracted with 2 mM citric acid (i.e., 10 μmol g(- 1), approximating rhizosphere concentrations) adjusted to soil pH in a 4:1 solution to soil ratio for 1 h. Three phosphatase enzymes were then added to the soil extract to determine the forms of hydrolysable organic phosphorus. Total phosphorus extracted by the procedure ranged between 3.22 and 8.06 mg P kg(- 1) (mean 5.55 ± 0.42 mg P kg(- 1)), of which on average three quarters was unreactive phosphorus (i.e., organic phosphorus plus inorganic polyphosphate). Of the enzyme-hydrolysable unreactive phosphorus, 28% was simple phosphomonoesters hydrolyzed by phosphomonoesterase from bovine intestinal mucosa, a further 18% was phosphodiesters hydrolyzed by a combination of nuclease from Penicillium citrinum and phosphomonoesterase, and the remaining 51% was hydrolyzed by a broad-spectrum phytase from wheat. We conclude that soil organic phosphorus can be solubilized and hydrolyzed by a combination of organic acids and phosphatase enzymes in lowland tropical forest soils, indicating that this pathway could make a significant contribution to biological phosphorus acquisition in tropical forests. Furthermore, we have developed a method that can be used to assess the bioavailability of this soil organic phosphorus.

  6. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores t

  7. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    Science.gov (United States)

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  8. Influence of some agricultural practices on the soil acidification in acid precipitation areas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Both acid precipitation and unreasonable agricultural practices are notorious artificial factors resulting in soil acidification. To sort out reasonable agricultural practices favorable to abating soil acidification, the task of this study was directed to a long-term field trial in Chongqing, during which chemical fertilizer, organic fertilizer were applied to different crop rotations and the soil pH value was measured. The results indicated that all treatments decreased pH value in the 0 to 20 cm soil layer after ten years. Problems were more serious when chlorine-containing fertilizer, excessive chemical fertilizer and mixed fertilizer were applied. It is demonstrated that balance rates of N, P and K fertilizers, application of muck in field are advantageous to abating soil acidification. Oil plants affect soil acidification more than cereal in different crop rotation.

  9. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Katsumi, Naoya, E-mail: n-katsu@ishikawa-pu.ac.jp; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12 h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, {sup 13}C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. - Highlights: • Darkness of humic acids increased with increasing heating time and temperature. • Aromatic carbon content increased during darkening. • Carbon and nitrogen stable isotope

  10. Understanding the mechanism behind the nitrous acid (HONO) emissions from the northern soils

    Science.gov (United States)

    Bhattarai, Hem Raj; Siljanen, Henri MP; Biasi, Christina; Maljanen, Marja

    2016-04-01

    The interest of the flux of nitrous acid (HONO) from soils has recently increased. HONO is an important source of the oxidant OH- radical in the troposphere and thus results a reduction of the greenhouse gas methane (CH4) in the atmosphere. Soils have been recently found to be potential sources of HONO as these emissions are linked to other nitrogen cycle processes, especially presence of nitrite in soils. Ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) have been suggested as possible yet substantial sources of HONO. Along with soil pH, other physical properties such as C:N, nitrogen availability, soil moisture and temperature may effect HONO emissions. Our preliminary results demonstrate that drained acidic peatlands with a low C:N produces higher NO, N2O and HONO emissions compared to those in pristine peatlands and upland forest soils. This study will identify the hotspots and the process involved in HONO emissions in northern ecosystems. Along with HONO, we will examine the emissions of NO and N2O to quantify the related N-gases emitted. These results will add a new piece of information in our knowledge of the nitrogen cycle. Soil samples will be collected from several boreal and arctic sites in Finland, Sweden and Russia. In the laboratory, soil samples will be manipulated based on previously described soil physical properties. This will be followed by labelling experiment coupled with selective nitrification inhibitor experiment in the soils. Our first hypothesis is that northern ecosystems are sources of HONO. Second, is that the soil properties (C:N ratio, moisture, N-availability, pH) regulate the magnitude of HONO emissions from northern soils. Third is that the first step of nitrification (ammonium oxidation) is the main pathway to produce HONO. This study will show that the northern ecosystems could be sources of HONO and therefore increasing the oxidizing capacity of the lower atmosphere.

  11. Effects of Hg and Cu on the activities of soil acid phosphatase

    Institute of Scientific and Technical Information of China (English)

    XU Dong-mei; CHEN Bo; LIU Wen-li; LIU Guang-shen; LIU Wei-ping

    2007-01-01

    Comparative study on the activity and kinectic properties of acid phosphatase (ACPase) of three soils amended with Hg and Cu at constant temperature and humidity was carried out. The results indicated that the inhibition on ACPase of the three sample soils by Hg and Cu varied with the content of soil organic matter and pH, where, Soil 1 was the most seriously contaminated due to its lowest content of organic matter and the lowest pH among three samples, Soil 2 took the second place, and Soil 3was the least contaminated. Except Soil 3, the activity of soil ACPase tended to increase along with the contact time under the same type and the same concentration of heavy metal. In particular the Vmax values of ACPase in all three samples decreased with increasing Hg and Cu concentration, whereas the Km values were affected weakly. According to the change of Vmax and Km values,Cu and Hg had the same inhibition effect on soil ACPase. Both of them may be a type of compound of non-competitive and anti-competitive inhibition. Statistic analyses indicated that activities of soil ACPase and Vmax values could serve as bioindicator to partially denote the heavy metal Hg and Cu contamination degree.

  12. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  13. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control.

    Science.gov (United States)

    James, Richard A; Weligama, Chandrakumara; Verbyla, Klara; Ryan, Peter R; Rebetzke, Gregory J; Rattey, Allan; Richardson, Alan E; Delhaize, Emmanuel

    2016-06-01

    Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding.

  14. Effect of Humic Acid on Soil Chemical and Physical Characteristics of Embankment

    Directory of Open Access Journals (Sweden)

    Ali Munawar

    2016-01-01

    Full Text Available The effectiveness of the treatment of pathogens disease in fish using chemicals is very limited because of the stress of toxic ions. A treatment of humic acid of 50-90 mg /L on a farmland has been able to reduce illness and death compared to a mixture of formaldehyde and blue-green methylene. Humic acid is suspected to be able to increase yield, through improved conditions and resistance to diseases, health, and cultural vitality, either by itself or combined with cation species toxic. Humic acid can balance the soil cation so that the soil pH reached 7-8, through a chelate of Al, Fe, Ca or exchanged with NH4, Na and K. Humic acids were extracted from compost plants with a weak base of 0.1 N NaOH and precipitated at pH 2. The concentration of AH 0- 400 ml was applied to three soil types with an area of 0.12 m2 and 15 cm thickness. The results showed that the application of 100-200 ml HA/0.12 m2 gave optimum yield in improving the physical-chemical characteristics of the soil embankment. Soil pH reached a value of 7-8, cation exchange to 60% saturated, and soil bulk density was reached in the range of 1.1- 0.97 g / cm3.This condition is suitable for fish or shrimp in the embankment.

  15. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    Science.gov (United States)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43- level. The statistical significance of the correlation with groundwater PO43- concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (PStructural equation modeling for example could be used to understand the practical importance of individual soil, management and hydrological potential predictors of groundwater PO4.

  16. Emission control for precursors causing acid rain(V):Improvement of acid soil with the bio-briquette combustion ash

    Institute of Scientific and Technical Information of China (English)

    DONG Xu-hui; SAKAMOTO Kazuhiko; WANG Wei; GAO Shi-dong; ISOBE Yugo

    2004-01-01

    The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3-5 t/cm2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0%-10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%-8% of the bio-briquette combustion ash to the tested soil.

  17. Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils

    Science.gov (United States)

    Todorovic, Gorana Rampazzo; Rampazzo, Nicola; Mentler, Axel; Blum, Winfried E. H.; Eder, Alexander; Strauss, Peter

    2014-03-01

    Erosion processes can strongly influence the dissipation of glyphosate and aminomethylphosphonic acid applied with Roundup Max® in agricultural soils; in addition, the soil structure state shortly before erosive precipitations fall can be a key parameter for the distribution of glyphosate and its metabolite. Field rain simulation experiments showed that severe erosion processes immediately after application of Roundup Max® can lead to serious unexpected glyphosate loss even in soils with a high presumed adsorption like the Cambisols, if their structure is unfavourable. In one of the no-tillage-plot of the Cambisol, up to 47% of the applied glyphosate amount was dissipated with surface run-off. Moreover, at the Chernozem site with high erosion risk and lower adsorption potential, glyphosate could be found in collected percolation water transported far outside the 2x2 m experimental plots. Traces of glyphosate were found also outside the treated agricultural fields.

  18. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.

    Science.gov (United States)

    Su, Xiaojuan; Zhu, Jun; Fu, Qingling; Zuo, Jichao; Liu, Yonghong; Hu, Hongqing

    2015-02-01

    Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP+OA, and the TCLP-Pb was phosphate was detected at the P:Pb molar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability.

  19. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  20. Adsorption and desorption kinetics of carbofuran in acid soils.

    Science.gov (United States)

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, Pcarbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  1. Impacts of simulated acid rain on recalcitrance of two different soils.

    Science.gov (United States)

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  2. Role of Low-Molecule-Weight Organic Acids and Their Salts in Regulating Soil pH

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-An; ZOU Bi; XIA Han-Ping; DING Yong-Zhen; TAN Wan-Neng; FU Sheng-Lei

    2008-01-01

    The process of organic materials increasing soil pH has not yet been fully understood.This study examined the role of cations and organic anions in regulating soil pH using organic compounds.Calcareous soil,acid soil,and paddy soil were incubated with different simple organic compounds,pH was determined periodically and CO2 emission was also measured.Mixing organic acids with the soil caused an instant decrease of soil pH.The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids.Decomposition of organic acids could only recover the soil pH to about its original level.Mixing organic salts with soil caused an instant increase of soil pH.Decomposition of organic salts of sodium resulted in a steady increase of soil pH,with final soil pH being about 2.7-3.2 pH units over the control.Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase,while those having the same cations but different anions led to very similar pH increases.Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na+.The results suggested that cations played a central role in regulating soil pH.Decarboxylation might only consume a limited number of protons.Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition,suggesting that only those plant residues containing high excess base cations could actually increase soil pH.

  3. Contribution of ants in modifying of soil acidity and particle size distribution

    Science.gov (United States)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  4. A conceptual framework: Redefining forest soil's critical acid loads under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, Steven G., E-mail: steve_mcnulty@ncsu.ed [USDA Forest Service, Eastern Forests Environmental Assessment Threats Center, Southern Global Change Program, 920 Main Campus Dr. Suite 300, Raleigh, NC 27606 (United States); Boggs, Johnny L. [USDA Forest Service, Eastern Forests Environmental Assessment Threats Center, Southern Global Change Program, 920 Main Campus Dr. Suite 300, Raleigh, NC 27606 (United States)

    2010-06-15

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  5. [Effects of different tillage methods on phospholipid fatty acids and enzyme activities in calcareous cinnamon soil].

    Science.gov (United States)

    Pei, Xue-Xia; Dang, Jian-You; Zhang, Ding-Yi; Wang, Jiao-Ai; Zhang, Jing

    2014-08-01

    In order to study changes of physical and chemical characteristics and microbial activities in soil under different tillage methods, effects of four tillage methods, rotary tillage (RT), subsoil tillage (ST), conventional tillage (CT) with corn straw returned to soil, and rotary tillage with no corn straw returned to soil (CK), on phospholipid fatty acids (PLFA) characteristics and hydrolase enzymes activities in calcareous cinnamon soil were investigated. The results showed that soil hydrolase enzymes activities, nutrient contents, microbial diversity varied greatly with the different tillage methods. Returning corn straw to soil increased the kinds, amount of soil total PLFAs, bacteria PLFAs and actonomycetes PLFAs, while decreased the fungi PLFAs, indicating that fungi was more adaptable than bacteria to an infertile environment. ST and CT resulted in higher amounts of total PLFAs, which were 74.7% and 53.3% higher than that of CK, indicating they were more beneficial to the growth of plants. They could also improve soil physical and chemical properties, increase alk-phosphatase, protease and urease activities, which would provide a favorable soil condition for high and stable crop yields.

  6. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    Science.gov (United States)

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  7. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    Science.gov (United States)

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  8. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    Science.gov (United States)

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-08-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.

  9. [Release of Si, Al and Fe in red soil under simulated acid rain].

    Science.gov (United States)

    Liu, Li; Song, Cun-yi; Li, Fa-sheng

    2007-10-01

    bstract:A laboratory leaching experiment on simulated acid rain was carried out using soil columns. The release of Si, Al and Fe from soils and pH values of eluates were investigated. The results showed that under the given leaching volume, the release amounts of cations were influenced by the pH value of simulated acid rain, while their response to acid rain was different. Acid rain led to Si release, nearly none of Fe. Within the range from pH 3.0 to 5.6, a little Al release but mass Al only release at the pH below 3.0, both Si and Al had a declining release ability with the undergoing eluviation. At pH 2.5, the release amounts of Si and Al, especially Al, increased significantly with the strengthened weathering process of soil mineral. With an increase of the leaching amount of acid rain, the release of Si and Al increased, but acceleration of Si was slower than Al which was slower and slower. When the soil pH falling down to a certain grade, there are negative correlation between pH and both Al and DOC concentration of eluate. released, but most of Al derived from the aluminosilicates dissolved. Acid deposition can result in solid-phase alumino-organics broken and Al released, but most of Al derived from the aluminosilicates dissolved.

  10. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Energy Technology Data Exchange (ETDEWEB)

    Olego, M.A.; Visconti, F.; Quiroga, M.J.; Paz, J.M. De; Garzón-Jimeno, E.

    2016-11-01

    Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils. (Author)

  11. Impeded Acidification of Acid Sulfate Soils in an Inten- sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees. The lack of natural levees has allowed the inundation of the land by regular tidal flooding prior to the construction of flood mitigation work. Such physiographical conditions prevent the development of pre-drainage pyrite-derived soil acidifica- tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells. Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently, the creation of favourable environments for catalysed pyrite oxidation. Under current intensively drained conditions, the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering, resulting in low concentrations of soluble Fe in the pyritic layer, which could reduce the rate of pyrite oxidation.

  12. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... located in carbohydrates and amino acid metabolites show a curvilinear form during the first 30 days of incubation, indicating a variety of chemical compounds decaying at different rates. After this time, the decay curves became straight lines indicating a greater homogeneity of the metabolites. After 200...

  13. Organic Carbon Stabilization of Soils Formed on Acidic and Calcareous Bedrocks in Neotropical Alpine Grassland, Peru

    Science.gov (United States)

    Yang, Songyu; Cammeraat, Erik; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2016-04-01

    Increasing evidence shows that Neotropical alpine ecosystems are vulnerable to global change. Since soils in the alpine grasslands of the Peruvian Andean region have large soil organic carbon (SOC) stocks, profound understanding of soil organic matter (OM) stabilization mechanisms will improve the prediction of the feedback between SOC stocks and global change. It is well documented that poor-crystalline minerals and organo-metallic complexes significantly contribute to the OM stabilization in volcanic ash soils, including those in the Andean region. However, limited research has focused on non-ash soils that also express significant SOC accumulation. A pilot study of Peruvian Andean grassland soils suggests that lithology is a prominent factor for such carbon accumulation. As a consequence of contrasting mineral composition and pedogenic processes in soils formed on different non-volcanic parent materials, differences in OM stabilization mechanisms may be profound and consequently may respond differently to global change. Therefore, our study aims at a further understanding of carbon stocks and OM stabilization mechanisms in soils formed on contrasting bedrocks in the Peruvian Andes. The main objective is to identify and compare the roles that organo-mineral associations and aggregations play in OM stabilization, by a combination of selective extraction methods and fractionations based on density, particle size and aggregates size. Soil samples were collected from igneous acidic and calcareous sedimentary bedrocks in alpine grassland near Cajamarca, Peru (7.17°S, 78.63°W), at around 3700m altitude. Samples were taken from 3 plots per bedrock type by sampling distinguishable horizons until the C horizons were reached. Outcomes confirmed that both types of soil accumulate large amounts of carbon: 405.3±41.7 t/ha of calcareous bedrock soil and 226.0±5.6 t/ha of acidic bedrock soil respectively. In addition, extremely high carbon contents exceeding 90g carbon per

  14. A conceptual framework: redefining forest soil's critical acid loads under a changing climate.

    Science.gov (United States)

    McNulty, Steven G; Boggs, Johnny L

    2010-06-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  15. Effect of Nitrogen Fertilizers on Movement and Transformation of Phosphorus in an Acid Soil

    Institute of Scientific and Technical Information of China (English)

    DU Zhen-Yu; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2005-01-01

    The effects of two different nitrogen fertilizers (urea and NH4Cl) with monocalcium phosphate (MCP) on the movement and transformation of fertilizer P in soil microsites along with soil pH changes at different distances from the fertilizer application site were studied in an incubation experiment. A highly acidic red soil (Ultisol, pH 4.57) from south China with MCP fertilizer alone or in combination with NH4Cl or urea was added to the surface of soil cylinders and packed in wax blocks. After 7 and 28 days, the extraction and analysis of each 2 mm layer from the interface of the soil and fertilizer showed that added NH4Cl or urea did not change the movement distance of fertilizer P. However, P transformation was significantly affected (P < 0.05). After 7 days, at 0-8 mm distance from the fertilizer site the addition of urea significantly decreased the water-extractable P concentration; however, after 28 days the effect of N addition had disappeared. Also,at limited distances close to the fertilizer site NH4Cl application with MCP significantly increased acid-extractable P and available P, while with the addition of urea they significantly decreased. Compared with application of MCP alone,addition of urea significantly increased soil pH in fertilizer microsites, whereas the addition of NH4Cl significantly decreased soil pH.

  16. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongtao [College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou (China); Laboratoire de Geochimie des Eaux, Universite Paris-Diderot - IPGP, Case 7052, Batiment Lamarck, 75205 Paris Cedex 13 (France); Becquer, Thierry [UMR 137 Biodiversite et Fonctionnement des Sols, IRD/Universites Paris VI and XII, SupAgro - Bat. 12, 2 Place Viala, 34060 Montpellier Cedex 2 (France); Dai Jun [College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou (China); Quantin, Cecile [UMR 8148 IDES, Universite Paris Sud XI - CNRS, Bat. 504, 91405 Orsay Cedex (France); Benedetti, Marc F. [Laboratoire de Geochimie des Eaux, Universite Paris-Diderot - IPGP, Case 7052, Batiment Lamarck, 75205 Paris Cedex 13 (France)], E-mail: benedetti@ipgp.fr

    2009-04-15

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. - First evidence of the real free metal ion concentrations in acid mine drainage context in tropical systems.

  17. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    Science.gov (United States)

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2015-12-17

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  18. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  19. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  20. Application of alkaline waste from pulp industry to acid soil with pine

    Directory of Open Access Journals (Sweden)

    Patricia Pértile

    2012-06-01

    Full Text Available In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a changes in the physical and chemical properties of an acidic soil and (b pine tree development. The experiment was carried out in 2004 in Bocaina do Sul, Santa Catarina, consisting of the application of increasing dreg and lime rates to a Pinus taeda L. production area, on a Humic Cambisol, in a randomized block design with four replications and 10 x 10 m plots. The treatments consisted of levels of soil acidity amendments corresponding to the recommendations by the SMP method to reach pH 5.5 in the 0-20 cm layer, as follows: no soil amendment; dregs at 5.08 (1/4 SMP, 10.15 (1/2 SMP and 20.3 Mg ha-1 (1 SMP; and lime at 8.35 (1/2 SMP and 16.7 Mg ha-1 (1 SMP. Soil layers were sampled in 2010 for analyses of soil chemical and physical properties. The diameter at breast height of the 6.5 year old pine trees was also evaluated. Surface application of dregs improved soil chemical fertility by reducing acidity and increasing base saturation, similar to liming, especially in surface layers. Dregs, comparable to lime, reduced the degree of clay flocculation, but did not affect the soil physical quality. There was no effect of the amendments on increase in pine tree diameter. Thus, the alternative to raise the pH in forest soils to 5.5 with dregs is promising for the forestry sector with a view to dispose of the waste and increase soil fertility.

  1. Phospholipid Fatty Acid Profiles of Chinese Red Soils with Varying Fertility Levels and Land Use Histories

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analysis of phospholipid fatty acids (PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correlated with soil organic carbon,total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustalnability in these highly weathered soils.Soils for the eroded wasteland were rich in Gram-positive species.When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8~12 years before it reached a significantly different population.Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.However,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.

  2. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    Science.gov (United States)

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  3. Gulf of Bothnia receives high concentrations of potentially toxic metals from acid sulphate soils

    Energy Technology Data Exchange (ETDEWEB)

    Roos, M.; Aastroem, M. [Kalmar Univ., Kalmar (Sweden)

    2006-07-01

    An estimated 460000 ha of acid sulphate soil (AS soil) occur within the river catchments bordering the Gulf of Bothnia in Finland and Sweden. This soil type exists because extensive areas of sulphide-bearing Holocene sediments have been drained for agricultural purposes, resulting in oxidation of metal sulphides to sulphuric acid and the concomitant formation of these acidic, environmentally-unfriendly soils. The aim of this study was to compare median values of metal concentrations in rivers discharging into the Gulf of Bothnia and obtain a uniform picture of to what extent these rivers are affected by AS-soil leaching. Dissolved element concentrations for arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) were determined in 47 rivers (catchment size > 500 km2) discharging into Gulf of Bothnia (a few into Gulf of Finland) along the coastline of Finland and Sweden. Water chemistry data was obtained from the Environmental Information System (HERTTA) database at the Finnish Environment Institute, the publicly available online database at Swedish University of Agricultural Sciences, Department of Environmental Assessment, and from a previous study of the authors. One area in central-western Finland proved to have highly elevated concentrations of Cd, Ni and Zn, and they all occurred with a similar spatial pattern and had the highest concentrations in rivers Teuvanjoki and Maalahdenjoki. This is caused by AS-soil leaching. The metalloid As and the metals Cr, Fe, Pb did not display this pattern and are, therefore, in line with previous studies, not leached abundantly from the AS soils, although they overall occur at somewhat higher concentrations in the Finnish as compared with those in the Swedish rivers. Thorough planning of land-use operations (e.g. land reclamation through ditching, dredging of rivers and estuaries, etc.) in AS-soil landscapes should be necessary, which is currently not the case, to reduce the high

  4. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    Science.gov (United States)

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  5. Development of Sorghum Tolerant to Acid Soil Using Induced Mutation with Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2010-04-01

    Full Text Available Water scarcity still becomes a problem in some dryland agricultural areas in Indonesia. Development of dryland farming system may be focused on crops that are required less water such as sorghum. Sorghum is a cereal crop that is usually grown under hot and dry condition and it is ideal for Indonesia. Sorghum is a good source of food, animal feed and raw material for ethanol. Indonesia is currently looking for alternative renewable energy resources and sorghum is regarded as one of the promising source of bioethanol as bioenergy. Unfortunately, most agricultural land in western part of the country particularly in Sumatera and Kalimantan is dryland and dominated by acid soil. The main constraint of crop production in acid soil is deficiency and Al toxicity. Therefore, development of sorghum cultivation in dryland farming system requires a variety which is tolerant to such conditions. Sorghum breeding for acid soil tolerance had been conducted at PATIR-BATAN by using induced mutations with gamma irradiation. The breeding objective was to search for sorghum genotypes tolerant to acid soil condition and with regard to sorghum use for bioethanol production. A number of 66 breeding materials, including the mutants, had been screened for acid soil tolerance on land with soil pH of 4.2 and 39% Al saturation in Lampung Province. Ten sorghum genotypes had been identified as high yielding in the acid soil condition. The mutant lines GH-ZB-41-07, YT30-39-07, B-76 and B-92 had grain yield higher (>4.5 t/ha than the control plants (Durra, Mandau and Numbu. Sorghum mutants ZH30-29-07, ZH30-30-07 and ZH30-35-07 were promising for grain-base bioethanol production with ethanol yield exceeded 2,000 l/ha. Meanwhile, the sweet sorghum mutants ZH30-35-07, ZH30-30-07 and ZH30-29-07 had brix content of 11.59, 11.95 and 10.50%, respectively. These mutant lines are promising to be developed further in sorghum breeding since they are highly tolerant to acid soils.

  6. Acidity Regimes of Soils Under Different Vegetations in the Changbai Mountains Region

    Institute of Scientific and Technical Information of China (English)

    YUTIANREN; GAOZIQIN; 等

    1997-01-01

    The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of pH and pCa of the soil paste as well as in-situ determinations,For soils under broad-leaf forest or broad-leaf-Korean pine forest,the pH decreased from the litte to lower layers gradually until it did not change or decreased further slightly .For soils under coniferous of Erans birch forest,ther was a minimum in pH at a depth of 3-6 cm where the content of humus was high,The pCa increased gradually from the soil surface downward to a constant value.The lime potential(pH-0.5pCa) showed a similar trend as the pH in its distribution.For a given soil,the measured pH value of the thick paste,ranging from 4.5 to 5.5,was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1 ,The pH determined in situ was even lower.It was found that there was a firly close relationship between soil acidity and the type of vegetation.The pH showed a trend of decreasing from soils under broda-leaf forest through broad-leaf-conifer mixed rorest and coniferos forest to Ermans birch forest,and the pCa showed an opposite trend in variation.

  7. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  8. Agronomic Potential of Partially Acidulated Rock Phosphates in Acid Soils of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLI-MING; B.TRUONG; 等

    1995-01-01

    A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulated rock phosphates(PARP) in three representative solis sampled from subtripical China.The PARPs were manufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or with combination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation.Shoot dry weight and P accumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of these fertilizers with that of the raw rock phosphate(RP) and monocalcium phosphate (MCP).Results indicated that the effectiveness of various phosphates was determined both by the solubility of the phosphates and by the acidity and P-fixing capacity of the soils.The higher the watersoluble P contained,the better the effectiveness of the fertilizer was.Although plant P accumulation of PARP treatments was constantly lower than that of MCP treatment,some PARPs could still get a dry matter production similar to that of MCP treatment.PARP SP60,which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60 percent of acidulation and contained the highest soluble,P,was as effective as MCP in terms of dry matter production on all the soils.S60 and C1 which were both acidulated with sulfuric acid with the former at 60 percent of acidulation and the latter at 30 percent but with a further addition of monoammonium phosphate,were more than 80 percent as efective as MCP,Raw RP also showed a reasonable effectiveness which increased with soil acidity.It was suggested from the study that some of these APRPs could be expected to have a comparable field performance as soluble P fertilizers in the acid soil regions.

  9. SMASS - a simulation model of physical and chemical processes in acid sulphate soils; Version 2.1

    NARCIS (Netherlands)

    Bosch, van den H.; Bronswijk, J.J.B.; Groenenberg, J.E.; Ritsema, C.J.

    1998-01-01

    The Simulation Model for Acid Sulphate Soils (SMASS) has been developed to predict the effects of water management strategies on acidification and de-acidification in areas with acid sulphate soils. It has submodels for solute transport, chemistry, oxygen transport and pyrite oxidation. The model mu

  10. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    Science.gov (United States)

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  11. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  12. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  13. Movement of Phosphorus in a Calcareous Soil as Affected by Humic Acid

    Institute of Scientific and Technical Information of China (English)

    DU Zhen-Yu; WANG Qing-Hua; LIU Fang-Chun; MA Hai-Lin; MA Bing-Yao; S.S.MALHI

    2013-01-01

    When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil,HA may affect the movement of P.A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China.Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1) was applied alone or in combination with HA (at 254.8 kg HA ha-1) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter),and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods.Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P,acid-extractable P and Olsen P in soil.The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.

  14. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-mei; Alshawabkeh Akram N; DENG Chang-fen; CANG Long; SI You-bin

    2004-01-01

    The electrokinetic removal of chromium and copper from contaminated soils by adding lactic acid in cathode chamber as an enhancing reagent was evaluated. Two sets of duplicate experiments with chromium contaminated kaolinite and with a silty soil sampled from a superfund site in California of USA and polluted by Cr and Cu, were carried out in a constant current mode. Changes of soil water content and soil pH before and after the electrokinetic experiments, and variations of voltage drop and electroosmosis flow during the treatments were examined. The results indicated that Cr, spiked as Cr(Ⅵ) in the kaolinite, was accumulated mainly in the anode chamber, and some of Cr and metal hydroxides precipitated in the soil sections in contact with the cathode, which significantly increased electrical energy consumption. Treatment of the soil collected from the site showed accumulation of large amounts of Cr and Cu in the anode chamber while none was detected in the cathode one. The results suggested that the two metals either complexed with the injected lactic acid at the cathode or existed as negatively charged complex, and electromigrated toward the anode under a voltage gradient.

  15. Phthalic acid and benzo[a]pyrene in soil-plant-water systems amended with contaminated sewage sludge

    DEFF Research Database (Denmark)

    Mougin, C.; Dappozze, F.; Brault, A.

    2006-01-01

    We studied the fate of C-14-labelled phthalic acid and benzo[a]pyrene applied to the soil by the way of contaminated sewage sludge in model ecosystems allowing the simultaneous assessment of physicochemical and biological descriptors. Here we show that the mineralisation of phthalic acid is highe......[a]pyrene is recalcitrant to biodegradation whatever the type of soil contamination. We show also that the chemicals present in the sludge are poorly transferred to soil leachates and plant seedlings....

  16. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    Science.gov (United States)

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains.

  17. Spatio-temporal variability of acid sulphate soils in the plain of reeds, Vietnam : impact of soil properties, water management and crop husbandry on the growth and yield of rice in relation to microtopography

    NARCIS (Netherlands)

    Husson, O.

    1998-01-01

    Acid sulphate soils in the Mekong delta cover 1.6 million hectares, of which 400 000 ha are located in the Plain of Reeds. Due to the presence of pyrite that yields acid when oxidised, all acid sulphate soils are (potentially) strongly acidic. Reclamation of the 150 000 ha of severely acid sulphate

  18. Interaction between uranium and humic acid (Ⅰ): Adsorption behaviors of U(Ⅵ) in soil humic acids

    Institute of Scientific and Technical Information of China (English)

    WEI Min; LIAO Jiali; LIU Ning; ZHANG Dong; KANG Houjun; YANG Yuanyou; YANG Yong; JIN Jiannan

    2007-01-01

    The adsorption behaviors of uranium on three soil humic acids (HAs), which were extracted from soils of different depths at the same site, were investigated under various experimental conditions. The adsorption results showed that U(Ⅵ) in solutions can be adsorbed by the three soil HAs, with the order of FHA (HA from 5 m depth of soil) >SHA (HA from the surface) >THA (HA from 10 m depth of soil) for adsorption efficiency in each desirable condition, and the adsorption reached equilibrium in about 240 min. Although the maximum adsorption efficiency was adsorption could be described with Langmiur isotherm or Freundlich isotherm equation. The L/S (liquid/solid, mL/g)ratio and pH were important factors influencing the adsorption in our adsorption system besides uranium concentration. The adsorption efficiency decreased with the increase of the L/S ratio and pH at the pH range of 2.0-3.0 for SHA and THA or 2.5 - 6.0 for FHA. However, no significant difference in adsorption of U(Ⅵ) was observed at the experimental temperature. All the results implied that humic substances have different characteristics in samples even collected at the same site.

  19. Biological nitrogen fixation of soybean in acid soils of Sumatra, Indonesia

    NARCIS (Netherlands)

    Waluyo, S.H.

    2000-01-01

    The aim of this study is to improve soybean cultivation in transmigration areas, especially in Sitiung, West Sumatra. However, these soils are very acid, and have a high P-fixing capacity. To reduce the amounts of fertilisers, normally 5 - 7 ton lime ha -1 and 100 kg P as TSP, seed, pelle

  20. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Science.gov (United States)

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  1. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.d...

  2. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S.D.; Germida, J.J. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    1997-06-01

    Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria, plants, and plant-bacteria associations to remediate 2-chlorobenzoic acid (2CBA) contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated with 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginosa strain R75, a proven plant growth-promoting rhizobacterium, increased seed germination by 80% and disappearance of 2CBA by 20% relative to noninoculated plants. Inoculation of E. dauricus with a mixture of P. savastanoi strain CB35, a 2CBA-degrading bacterium, and P. aeruginosa strain R75 increased disappearance of 2CBA by 112% relative to noninoculated plants. No clear relationship between enhanced 2CBA disappearance and increased plant biomass was found. These results suggest that specific plant-microbial systems can be developed to enhance remediation of pollutants in soil.

  3. Balance of trichloroacetic acid in the soil top layer

    NARCIS (Netherlands)

    Hoekstra, E.J.; Leer, E.W.B. de; Brinkman, U.A.T.

    1999-01-01

    Since the ban on the use of trichloroacetic acid (TCAA) as a herbicide in several countries, TCAA is still found ubiquitously in the environment. The presence of TCAA nowadays is suggested to originate mainly from the atmospheric degradation of tetrachloroethene. Our mass balance calculations indica

  4. Fractionation of Moderately and Highly Stable Organic Phosphorus in Acid Soil

    Institute of Scientific and Technical Information of China (English)

    FANYEKUAN; LISHIJUN

    1998-01-01

    The fractionation of moderately and highly organic phosphorus(Po) in acid soil was studied by two methods .By the first method,after incubation for 40 d; the mineralization rates of eight constituents of stable Po in the soil were determined.By the second method ,five constituents of peecipitates of stable Po in the soil were separated,then the five precipiates were put back into the original soils and incubated for 40 d and 60 d .Then,mineralization rates of the five precipitates were determined.The same results were obtained by the two methods.When the pH of the alkali solution containing stable Po was adjusted from 3.00 to 3.10,the mineralization rate of moderately stable Po Was rapidly raised.Therefore,the pH 3.00 is the critical point between moderately and highly stable Po.

  5. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    Science.gov (United States)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  6. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil.

    Science.gov (United States)

    Topaç, F Olcay; Dindar, Efsun; Uçaroğlu, Selnur; Başkaya, Hüseyin S

    2009-10-30

    Introduction of organic dyes into soil via wastewater and sludge applications has been of increasing concern especially in developing or under-developed countries where appropriate management strategies are scarce. Assessing the response of terrestrial ecosystems to organic dyes and estimating the inhibition concentrations will probably contribute to soil remediation studies in regions affected by the same problem. Hence, an incubation study was conducted in order to investigate the impact of a sulfonated azo dye, Reactive Black 5 (RB5) and sulfanilic acid (SA), a typical representative of aromatic sulfonated amines, on soil nitrogen transformation processes. The results apparently showed that nitrogen related processes in soil can be used as bioindicators of anthropogenic stress caused by organic dyes. It was found that urease activity, arginine ammonification rate, nitrification potential and ammonium oxidising bacteria numbers decreased by 10-20% and 7-28% in the presence of RB5 (> 20 mg/kg dry soil) and SA (> 8 mg/kg dry soil), respectively. Accordingly, it was concluded that organic dye pollution may restrict the nitrogen-use-efficiency of plants, thus further reducing the productivity of terrestrial ecosystems. Furthermore, the response of soil microbiota to SA suggested that inhibition effects of the organic dye may continue after the possible reduction of the parent dye to associated aromatic amines.

  7. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.

    Science.gov (United States)

    Li, Yong-Tao; Becquer, Thierry; Dai, Jun; Quantin, Cécile; Benedetti, Marc F

    2009-04-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.

  8. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A;

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...

  9. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance.

  10. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil.

    Science.gov (United States)

    O'Connor, Kevin E; O'Leary, Niall P; Marchesi, Julian R; Dobson, Alan D W; Duetz, Wouter

    2005-11-01

    A diverse range of microorganisms capable of growth on phenylacetic acid as the sole source of carbon and energy were isolated from soil. Sixty six different isolates were identified and grouped according to 16S rRNA gene RFLP analysis. Subsequent sequencing of 16S rDNA from selected strains allowed further characterization of the phenylacetic acid degrading population isolated from soil. Nearly half (30) of the isolates are Bacillus species while the rest of the isolates are strains from a variety of genera namely, Arthrobacter, Pseudomonas, Rhodococcus, Acinetobacter, Enterobacter, Flavobacterium, and Paenibacillus. Sixty-one of the sixty-six strains reproducibly grew in defined minimal liquid culture medium (E2). All strains isolated grew when at least one hydroxylated derivative of phenylacetic acid was supplied as the carbon source, while 59 out of the 61 strains tested, accumulated ortho-hydroxyphenylacetic acid in the assay buffer; when pulsed with phenylacetic acid. Oxygen consumption experiments failed to indicate a clear link between phenylacetic acid and hydroxy-substituted phenylacetic acid in isolates from a broad range of genera.

  11. Archaea rather than bacteria control nitrification in two agricultural acidic soils.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Nicol, Graeme W; Prosser, James I

    2010-12-01

    Nitrification is a central component of the global nitrogen cycle. Ammonia oxidation, the first step of nitrification, is performed in terrestrial ecosystems by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Published studies indicate that soil pH may be a critical factor controlling the relative abundances of AOA and AOB communities. In order to determine the relative contributions of AOA and AOB to ammonia oxidation in two agricultural acidic Scottish soils (pH 4.5 and 6), the influence of acetylene (a nitrification inhibitor) was investigated during incubation of soil microcosms at 20 °C for 1 month. High rates of nitrification were observed in both soils in the absence of acetylene. Quantification of respective amoA genes (a key functional gene for ammonia oxidizers) demonstrated significant growth of AOA, but not AOB. A significant positive relationship was found between nitrification rate and AOA, but not AOB growth. AOA growth was inhibited in the acetylene-containing microcosms. Moreover, AOA transcriptional activity decreased significantly in the acetylene-containing microcosms compared with the control, whereas no difference was observed for the AOB transcriptional activity. Consequently, growth and activity of only archaeal but not bacterial ammonia oxidizer communities strongly suggest that AOA, but not AOB, control nitrification in these two acidic soils.

  12. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.

    Science.gov (United States)

    Princz, Juliska; Becker, Leonie; Scheffczyk, Adam; Stephenson, Gladys; Scroggins, Rick; Moser, Thomas; Römbke, Jörg

    2017-03-17

    To verify the continuous sensitivity of ecotoxicological tests (mainly the test organisms), reference substances with known toxicity are regularly tested. Ideally, this substance(s) would lack specificity in its mode action, be bioavailable and readily attainable with cost-effective means of chemical characterization. Boric acid has satisfied these criteria, but has most recently been characterized as a substance of very high concern, due to reproductive effects in humans, thus limiting its recommendation as an ideal reference toxicant. However, there is probably no other chemical for which ecotoxicity in soil has been so intensively studied; an extensive literature review yielded lethal (including avoidance) and sublethal data for 38 taxa. The ecotoxicity data were evaluated using species sensitivity distributions, collectively across all taxa, and separately according to species type, endpoints, soil type and duration. The lack of specificity in the mode of action yielded broad toxicity among soil taxa and soil types, and provided a collective approach to assessing species sensitivity, while taking into consideration differences in test methodologies and exposure durations. Toxicity was species-specific with Folsomia candida and enchytraied species demonstrating the most sensitivity; among plants, the following trend occurred: dicotyledonous (more sensitive) ≫ monocotyledonous ≫ gymnosperm species. Sensitivity was also time and endpoint specific, with endpoints such as lethality and avoidance being less sensitive than reproduction effects. Furthermore, given the breadth of data and toxicity demonstrated by boric acid, lessons learned from its evaluation are discussed to recommend the properties required by an ideal reference substance for the soil compartment.

  13. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    Institute of Scientific and Technical Information of China (English)

    Haihong; GU; Fuping; LI; Xiang; GUAN; Zhongwei; LI; Qiang; YU

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metals, and selecting economical and effective amendments is the key. The effects and mechanism of steel slag, the silicon-rich alkaline byproduct which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory reference for future research. Firstly, the paper analyzes current research situation of in situ immobilization with amendments. Then, it introduces the main physicochemical properties of steel slag, and the effect on soil pH value as well as heavy metal activity. Besides, the paper elaborates the promoting effect on silicon-requiring plant and the strengthening mechanism for its resistant capability of heavy metal. According to the analysis, the application of steel slag could be a potential valuable strategy to remediate acidic soil contaminated by heavy metal by modifying the transformation of heavy metals in both soil and plant, so that the translocation of heavy metal in food chain is reduced.

  14. Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil.

    Science.gov (United States)

    Chigbo, Chibuike; Batty, Lesley

    2013-12-01

    Polycyclic aromatic hydrocarbons and heavy metals in the environment are a concern, and their removal to acceptable level is required. Phytoremediation, the use of plants to treat contaminated soils, could be an interesting alternative to conventional remediation processes. This work evaluates the role of single and combined applications of chelates to single or mixed Cr + benzo[a]pyrene (B[a]P)-contaminated soil. Medicago sativa was grown in contaminated soil and was amended with 0.3 g citric acid, 0.146 g ethylenediaminetetraacetic acid (EDTA), or their combination for 60 days. The result shows that in Cr-contaminated soil, the application of EDTA + citric acid significantly (pEDTA and EDTA + citric acid in co-contaminated soil increased the removal of Cr from the soil (34 and 54 %, respectively). The dissipation of B[a]P in single B[a]P-contaminated soil was effective even without planting and amendment with chelates, while in co-contaminated soil, it was related to the application of either EDTA or EDTA + citric acid. This suggests that M. sativa with the help of chelates in single or co-contaminated soil can be effective in phytoextraction of Cr and promoting the biodegradation of B[a]P.

  15. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure.

  16. Using humic acid for remediation of sandy soils contaminated by heavy metal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents the development of a new remediation technology for contaminated sandy soil using humic acid (HA). Distribution of amount of Cr (VI) in the aqueous or solid system containing humic acid and sandy soil, was studied using batch experiments, es-pecially for effects of reaction time, pH, concentrations, temperature and irradiation on the reduction of Cr (VI), and the optimum reaction conditions. The results indicated a significant increase of the adsorption of Cr (VI) because of the complexion reaction between HA and Cr (VI) that occurred under acidic condition. The reaction mechanisms of HA with chromium on sand surfaces were certified. Thus it came to a conclusion that HA could be used effectively on remediation of Cr (VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. These results suggest that the organic-inorganic complex-such as sandy soils coated with humic substances-is important as a metal reservoir in the environment.

  17. Copper Recovery from Polluted Soils Using Acidic Washing and Bioelectrochemical Systems

    Directory of Open Access Journals (Sweden)

    Karin Karlfeldt Fedje

    2015-07-01

    Full Text Available Excavation followed by landfilling is the most common method for treating soils contaminated by metals. However, as this solution is not sustainable, alternative techniques are required. Chemical soil washing is one such alternative. The aim of this experimental lab-scale study is to develop a remediation and metal recovery method for Cu contaminated sites. The method is based on the washing of soil or ash (combusted soil/bark with acidic waste liquids followed by electrolytic Cu recovery by means of bioelectrochemical systems (BES. The results demonstrate that a one- or two-step acidic leaching process followed by water washing removes >80 wt. % of the Cu. Copper with 99.7–99.9 wt. % purity was recovered from the acidic leachates using BES. In all experiments, electrical power was generated during the reduction of Cu. This clearly indicates that Cu can also be recovered from dilute solutions. Additionally, the method has the potential to wash co-pollutants such as polycyclic aromatic hydrocarbons (PAHs and oxy-PAHs.

  18. Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico.

    Science.gov (United States)

    Verástegui-Valdés, Myrthala M; Zhang, Yu Jing; Rivera-Orduña, Flor N; Cheng, Hai-Ping; Sui, Xing Hua; Wang, En Tao

    2014-12-01

    In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of "R. leguminosarum" and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that "R. leguminosarum" and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the "R. leguminosarum" population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.

  19. Influence of Lime and Phosphorus Application Rates on Growth of Maize in an Acid Soil

    Directory of Open Access Journals (Sweden)

    Peter Asbon Opala

    2017-01-01

    Full Text Available The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1 but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1 was obtained with a combined 2 t ha−1 of lime with 30 kg P ha−1 suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.

  20. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    Science.gov (United States)

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.

  1. Adsorption of Acid Phosphatase on Minerals and Soil Colloids in Presence of Citrate and Phosphate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aim of this work was to study the influence of phosphate and citrate, which are common inorganic andorganic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separatedfrom yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major claymineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite andoxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted tothe Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBScolloid >LS colloid>kaolin≈goethite. In the presence of phosphate or citrate, the amounts of the enzymeadsorbed followed the sequence YBS colloid>kaolin>LS colloid>goethite. The presence of ligands alsodecreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligandconcentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme werefound in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed ongoethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However,no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations.When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usuallyenhanced the adsorption of enzyme. The results obtained in this study suggested the important role ofkaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.

  2. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    Science.gov (United States)

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2.

  3. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    Science.gov (United States)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  4. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    Science.gov (United States)

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest.

  5. Microbial Substrate Usage Indicated by C-14 Contents of Phospholipid Fatty Acids From Soil Organic Matter

    Science.gov (United States)

    Rethemeyer, J.; Nadeau, M. J.; Grootes, P. M.; Kramer, C.; Gleixner, G.

    2004-05-01

    Phospholipid fatty acids (PLFA's) are generally associated with viable (bacterial) cell membranes. They are thought to be short-lived under normal soil conditions. We compare the C-14 levels in PLFA's obtained from soil samples from the,clean" experimental site at Rotthalmünster (Germany) with those from the agricultural research station at Halle (Germany), where the soil is contaminated with,old" carbon from lignite mining and industry. The most abundant PLFA's were isolated via preparative capillary gas chromatography of their methyl-esters at the Max-Planck Institute, Jena, and their C-14 concentration was determined via accelerator mass spectrometry at the Leibniz-Labor, Kiel. The C-14 levels of three mono-unsaturated fatty acids (n-C17:1, n-C18:1 (and n-C16:1)) are not statistically significant different from those of the contemporaneous atmosphere, indicating these fatty acids were derived from fresh plant material. C-14 levels significantly above those of the atmosphere in three saturated fatty acids (i/a-C15:0, n-C16:0 and cy-C18:0) from the surface soil of Rotthalmünster must derive from carbon fixed from the atmosphere several years earlier, when levels of bomb-C-14, remaining from the atmospheric nuclear weapons tests, especially of the early 1960's, were still higher. Lower C-14 levels in the same compounds from the Halle surface soil indicate the incorporation of "old" contaminant carbon. A below- atmospheric C-14 concentration in n-C18:0 in Rotthalmünster surface soil may reflect the partial incorporation of carbon from older, pre-bomb times. The C-14 concentrations show these PLFA's were synthesized predominantly from recent to sub-recent photosynthetic compounds, while the significant differences in C-14 concentration, observed between the PLFA's, indicate their production from soil organic matter fractions of different (recent) age and C-14 content. The Halle results show "old" carbon may be incorporated into PLFA's and thus reenter the soil

  6. Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea.

    Science.gov (United States)

    An, Jinsung; Lee, Hyun A; Lee, Junseok; Yoon, Hye-On

    2015-01-01

    This study assessed the status of fluorine (F) in soil in the vicinity of a spillage of anhydrous hydrofluoric acid in Korea. Gaseous hydrogen fluoride dispersed was suspected to have contaminated the surrounding soil environment. Total and water soluble F concentrations in soil within a 1 km radius of the spillage were determined. Total F concentrations (mean=222±70.1 mg kg(-1)) were lower than the Korean limit value (i.e., 400 mg kg(-1)) and several reported measurements of background F concentrations in soils except for a single outlying case. Soluble F concentrations ranged from 0.111 to 6.40 mg kg(-1) (mean=2.20±1.80 mg kg(-1)). A negative correlation between the soluble F concentration of soil and distance from the spillage was observed. This indicates that the soluble F concentration has a crucial role in fractionating the F concentration arising from a 'non natural input' i.e., the spillage. The F content of rice samples seemed to be significantly influenced by the soluble F concentrations of soils. Rice samples collected from the control and affected areas contained 41 mg kg(-1) and 578 mg kg(-1) of total F, respectively.

  7. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  8. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils

    Directory of Open Access Journals (Sweden)

    Ieva Jokubauskaite

    2015-04-01

    Full Text Available Soil quality has become an important issue in soil science. Dissolved organic carbon (DOC is believed to play an important role in soil processes and in the C, N and P balances, their supplies to plants in all types of soils. It is much more sensitive to soil management than is soil organic matter as a whole, and can be used as a key indicator of soil natural functions. This study aimed to assess the influence of different organic fertilizers on DOC and N, P accumulation. The study was carried out on a moraine loam soil at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry in 2012. Farmyard manure (FYM (60 t ha -1 and alternative organic fertilizers (wheat straw, rape residues, roots, stubble, perennial grasses were applied on two soil backgrounds - acid and limed. DOC was analysed using an ion chromatograph SKALAR. Application of organic amendments resulted in a significant increase of soil organic carbon (SOC content, which demonstrates a positive role of organic fertilizers in SOC conservation. The combination of different organic fertilizers and liming had a significant positive effect on DOC concentration in the soil. The highest DOC content (0.241 g kg-1 was established in the limed soil fertilized with farmyard manure. The most unfavourable status of DOC was determined in the unlimed, unfertilized soil. The limed and FYM-applied soil had the highest nitrogen (1.47 g kg-1 and phosphorus (0.84 g kg-1 content compared to the other treatments. Organic fertilizers gave a significant positive effect on SOC and DOC content increase in the topsoil. This immediate increase is generally attributed to the presence of soluble materials in the amendments. Application of organic fertilizers in acid and limed soil increased the nutrient stocks and ensured soil chemical indicators at the optimal level for plant growth and thus may provide a mechanism as well as prediction opportunities for soil fertility, conservation

  9. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness.

    Science.gov (United States)

    Bento, Célia P M; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; van Dam, Ruud; Zomer, Paul; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2016-12-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16mgkg(-1) of glyphosate, subjected to three SM contents (20% WHC, 60% WHC, saturation), and incubated for 30days at 5°C and 30°C, under dark and light regimes. Glyphosate and AMPA dissipation kinetics were fit to single-first-order (SFO) or first-order-multicompartment (FOMC) models, per treatment combination. AMPA kinetic model included both the formation and decline phases. Glyphosate dissipation kinetics followed SFO at 5°C, but FOMC at 30°C. AMPA followed SFO dissipation kinetics for all treatments. Glyphosate and AMPA dissipation occurred mostly by microbial activity. Abiotic processes played a negligible role for both compounds. Under biotic conditions, glyphosate dissipation and AMPA formation/dissipation were primarily affected by temperature, but also by SM. Light regimes didn't play a significant role. Glyphosate DT50 varied between 1.5 and 53.5days, while its DT90 varied between 8.0 and 280days, depending on the treatment. AMPA persisted longer in soil than glyphosate, with its DT50 at 30°C ranging between 26.4 and 44.5days, and its DT90 between 87.8 and 148days. The shortest DT50/DT90 values for both compounds occurred at 30°C and under optimal/saturated moisture conditions, while the largest occurred at 5°C and reaching drought stress conditions. Based on these results, we conclude that glyphosate and AMPA dissipate rapidly under warm and rainy climate conditions. However, repeated glyphosate applications in fallows or winter crops in countries where cold and dry winters normally occur could lead to on-site soil pollution, with consequent potential risks to the environment and human health. To our knowledge, this study is the first evaluating the combined effect of

  10. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    Science.gov (United States)

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.

  11. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.

    Science.gov (United States)

    Zhang, Tao; Wei, Hang; Yang, Xiu-Hong; Xia, Bing; Liu, Jun-Min; Su, Cheng-Yong; Qiu, Rong-Liang

    2014-08-01

    The development of more selective chelators for the washing of heavy metal contaminated soil is desirable in order to avoid excessive dissolution of soil minerals. Speciation and mobility of Cu, Zn, Pb, and Ni in a contaminated soil washed with phenyldiaminetetraacetic acid (PDTA), a derivative of EDTA, were investigated by batch leaching test using a range of soil washing conditions followed by sequential extraction. With appropriate washing conditions, PDTA significantly enhanced extraction of Cu from the contaminated soil. The primary mechanisms of Cu extraction by PDTA were complexation-promoted dissolution of soil Cu and increased dissolution of soil organic matter (SOM). PDTA showed high selectivity for Cu(II) over soil component cations (Ca(II), Mg(II), Fe(III), Mn(II), Al(III)), especially at lower liquid-to-soil ratios under PDTA deficiency, thus avoiding unwanted dissolution of soil minerals during the soil washing process which can degrade soil structure and interfere with future land use. PDTA-enhanced soil washing increased the exchangeable fractions of Cu, Zn, and Pb and decreased their residual fractions, compared to their levels in unwashed soil.

  12. Robust analysis of underivatized free amino acids in soil by hydrophilic interaction liquid chromatography coupled with electrospray tandem mass spectrometry.

    Science.gov (United States)

    Gao, Jiajia; Helmus, Rick; Cerli, Chiara; Jansen, Boris; Wang, Xiang; Kalbitz, Karsten

    2016-06-03

    Amino acids are an important and highly dynamic fraction of organic N in soils and their determination in soil without derivatization is challenging due to the difficulties in separation and detection of trace amounts of these polar analytes. In the present work, we developed an analytical method to quantify 20 free amino acids in aqueous soil extracts without derivatization. The method employed hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) technique combined with a cation exchange solid phase extraction (SPE). Four stable isotope labelled amino acids were used as internal standards to improve the method performance. Good separation of 20 underivatized amino acids was achieved within 12min. The limit of detection (LODs) and limit of quantification (LOQs) were in the range of 13-384ngg(-1) and 43-1267ngg(-1) (dry soil basis), respectively. The results showed that overall recoveries with high precision were obtained for the extracted free amino acids from ten different soils. The overall recoveries of 18 amino acids were similar for the ten soils used, which differed substantially in organic C content and in other properties as soil texture and pH. For most of the amino acids, the average recoveries from soil extracts were between 74% and 117%, with the exception of Met (31%), Pro (52%) and Arg (68%). Variability was within acceptable limits (relative standard deviations were between 4% and 13%), with the exception of Met (relative standard deviation=90%) and Arg (relative standard deviation=53%). Thus the proposed method with high throughout and high analyte specificity shows great promise for consistent analysis of free amino acids extracted from soils and offers new horizons for the analysis of amino acids in terrestrial and aquatic ecosystem.

  13. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.

    Science.gov (United States)

    Rogiers, Suzy Y; Greer, Dennis H; Hatfield, Jo M; Hutton, Ron J; Clarke, Simon J; Hutchinson, Paul A; Somers, Anthony

    2012-03-01

    Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment

  14. Acid and Alkali Buffer Capacity of Typical Fluvor-Aquic Soil in Huang-HuaiHai Plain

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping; ZHANG Jia-bao; ZHU An-ning; ZHANG Cong-zhi

    2009-01-01

    Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HCl) (0.12 mol L-1) or sodium hydroxide (NaOH) (0.10 mol L-1) to soil suspended in deionized water (soil:solution=1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T= 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R2= 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it.

  15. A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils

    Energy Technology Data Exchange (ETDEWEB)

    Conesa, Hector M.; Gonzalez-Alcaraz, Maria N. [Universidad Politecnica de Cartagena (Spain). Dept. de Ciencia y Tecnologia Agraria; Wieser, Mirjam; Studer, Bjoern; Schulin, Rainer [ETH Zuerich (Switzerland). Inst. of Terrestrial Ecosystems

    2012-04-15

    Purpose: The effects of the addition of an acidic fertilizer solution and/or slaked lime (5.5 g Ca(OH){sub 2}kg{sup -1}) on a slightly acidic shooting range soil (pH 6.1, % organic carbon 5.4) with moderate metal (e.g., 620 mg kg{sup -1} Pb) and metalloid (17 mg kg{sup -1} Sb) concentrations on metal and Sb solubility and plant accumulation were investigated. Materials and methods: In a pot experiment, we grew Plantago lanceolata, Lolium perenne and Triticum aestivum. The pH, dissolved organic carbon (DOC), and metal and Sb concentrations in the leachate were monitored. Results and discussion: The addition of slaked lime increased the soil pH from 6.1 to 7.2 and the DOC from 100 to 300 mg l{sup -1}. In contrast to Sb, we found a correlation between DOC and soluble Cu concentrations. The addition of the acidic fertilizer significantly increased Mn- and Pb-NaNO{sub 3} extractable concentrations. Slaked lime decreased at first, Pb-, Mn- Ni- and Zn-NaNO{sub 3} extractable concentrations, but with time, these concentrations increased. Metal accumulation in shoots was in general low. The highest concentrations were obtained in shoots of L. perenne for Mn (135 mg kg{sup -1} DW). Spikes of T. aestivum accumulated more Cu, Mn, Ni and Zn than shoots. Grains of T. aestivum had higher Zn concentrations (up to 37 mg kg{sup -1}) than spikes and shoots (up to 22 and 19 mg kg{sup -1}, respectively). Antimony concentrations were always below 2 mg kg{sup -1} for the three species studied. Conclusions: Under these growing conditions, these three plant species showed to be suitable for the phytomanagement of moderately contaminated shooting range areas. (orig.)

  16. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  17. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  18. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    Science.gov (United States)

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  19. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure.

    Science.gov (United States)

    Liu, Xingmei; Zhou, Jian; Li, Wanlu; Xu, Jianming; Brookes, Philip C

    2014-05-01

    Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H(+) and Al(3+) and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg(-1)soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H(+) and Al(3+). Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.

  20. Transport of Glyphosate and Aminomethylphosphonic Acid under Two Soil Management Practices in an Italian Vineyard.

    Science.gov (United States)

    Napoli, Marco; Marta, Anna Dalla; Zanchi, Camillo A; Orlandini, Simone

    2016-09-01

    Worldwide, glyphosate is the most widely used herbicide in controlling the growth of annual and perennial weeds. An increasing number of studies have highlighted the environmental risk resulting from the use of this molecule in aquatic and terrestrial ecosystems. The objective of the study was to determine the transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), through runoff and transported sediment from a vineyard under two different soil management systems: harrowed inter-row (HR) and permanent grass covered inter-row (GR). The study was performed over a period of 4 yr. Glyphosate and AMPA concentrations were found to be higher in runoff and in transported sediment from HR compared with GR, regardless of the amount of runoff and transported sediment. The mean annual percentages of glyphosate loss, via runoff and transported sediment, were about 1.37 and 0.73% for HR and GR, respectively. Aminomethylphosphonic acid represented approximately 30.9 and 40.0% of the total glyphosate losses in GR and HR, respectively. Moreover, results suggested that rains occurring within 4 wk after treatment could cause the transport of glyphosate and AMPA in high concentrations. Soil analyses indicated that glyphosate content was below detection within 1 yr, whereas AMPA remained in the soil profiles along the vine row and in the inter-row. Results indicated that GR can reduce soil and herbicide loss by runoff in vineyard cropping system.

  1. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-chun; WANG Guang-huo; YAO Huai-ying

    2007-01-01

    The microbial communities under irrigated rice cropping with different fertilizer treatments, including control (CK), PK, NK, NP, NPK fertilization, were investigated using phospholipid fatty acid (PLFA) profile method. The results of this study revealed that the fertilizer practice had an impact on the community structure of specific microbial groups. The principal components analysis (PCA) showed that proportion of the actinomycete PLFAs (10Me 18:0 and 10Me 16:0) were the lowest in the PK treatment and the highest in the NPK treatment, which means that soil nitrogen status affected the diversity of actinomycetes, whereas nitrogen cycling was related to the actinomycets. Under CK treatment, the ratio of Gram-positive to Gram-negative bacteria was lower compared with that in fertilizer addition treatments, indicating that fertilizer application stimulated Gram-positive bacterial population in paddy soil. The fatty acid 18:2ω6, 9, which is considered to be predominantly of fungal origin, was at low level in all the treatments. The ratio of cy19:0 to 18:1ω7, which has been proposed as an indicator of stress conditions, decreased in PK treatment. Changes of soil microbial community under different fertilizer treatments of paddy soil were detected in this study; however, the causes that lead to changes in the microbial community still needs further study.

  2. [Effects of simulated nitrogen deposition on soil acid phosphomonoesterase activity and soil available phosphorus content in subtropical forests in Dinghushan Mountain].

    Science.gov (United States)

    Li, Yin; Zeng, Shu-cai; Huang, Wen-juan

    2011-03-01

    An in situ field experiment was conducted to study the effects of simulated nitrogen (N) deposition on soil acid phosphomonoesterase activity (APA) and soil available phosphorous (AP) content in Pinus massoniana forest (PF), coniferous and broad-leaved mixed forest (MF), and monsoon evergreen broad-leaved forest (MEBF) in Dinghushan Mountain. In PF and MF, three treatments were installed, i.e., CK (0 kg N x hm(-2) x a(-1)), low N (50 kg N x hm(-2) x a(-1)), and medium N (100 kg N x hm(-2) x a(-1)); in MEBF, four treatments were installed, i.e., CK, low N, medium N, and high N (150 kg N x hm(-2) x a(-1)). The soil APA and soil AP content decreased with soil depth. The soil APA was the highest in MEBF, while the AP content had no significant difference in the three forests. The effects of N addition on soil APA differed with forest types. In MEBF, the APA was the highest (19.52 micromol x g(-1) x h(-1)) in low N treatment; while in PF and MF, the APA was the highest (12.74 and 11.02 micromol x g(-1) x h(-1), respectively) in medium N treatment. In the three forests, soil AP content was the highest in low N treatment, but had no significant differences among the N treatments. There was a significant positive correlation between soil APA and soil AP content.

  3. [Aliphatic characteristics of the fractions isolated from the soil fulvic acid using XAD-8 column].

    Science.gov (United States)

    Liu, Ben-ding; Li, Xia; Dai, Jing-yu

    2007-10-01

    In order to truly understand the character and structure of fulvic acid, which contains many substances, the authors isolated fulvic acid detailedly according to its definite character and its characteristic of similar structure. Fulvic acid with H+ can be adsorbed by the XAD-8 column balanced by the usual buffer(pH 2). The hydrophilic fraction in fulvic acid can be divided into three groups using the buffer with various pH (4.8, 7.0 and 11.0), while the hydrophobic fraction can be classified into two groups by the distilled water and alcohol separately. For FTIR (Fourier transform infrared) and NMR (nuclear magnetic resonance) spectroscopy analysis, three paddy soils were used. It may be concluded that the content of oxygen and carboxyl group dissolved at low pH is more than that dissolved in the water and alcohol, but the content of aliphatic fraction is less and has short side chain.

  4. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Wahbi, Ammar [Soil Science Department, Faculty of Agriculture, University of Aleppo, Aleppo (Syrian Arab Republic); Ma, Lena, E-mail: lqma@ufl.edu [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Li Bing; Yang Yongliang [National Research Center for Geoanalysis, Beijing 100037 (China)

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H{sub 3}PO{sub 4} treatments (PA and PR + PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H{sub 3}PO{sub 4} was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  5. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.

    Science.gov (United States)

    Cao, Xinde; Wahbi, Ammar; Ma, Lena; Li, Bing; Yang, Yongliang

    2009-05-30

    Considerable research has been done on P-induced Pb immobilization in Pb-contaminated soils. However, application of P to soils contaminated with multiple heavy metals is limited. The present study examined effectiveness of phosphoric acid (PA) and/or phosphate rock (PR) in immobilizing Pb, Cu, and Zn in two contaminated soils. The effectiveness was evaluated using water extraction, plant uptake, and a simple bioaccessibility extraction test (SBET) mimicking metal uptake in the acidic environment of human stomach. The possible mechanisms for metal immobilization were elucidated using X-ray diffraction, scanning electron microscopy, and chemical speciation program Visual MINTEQ. Compared to the control, all P amendments significantly reduced Pb water solubility, phytoavailability, and bioaccessibility by 72-100%, 15-86%, and 28-92%, respectively. The Pb immobilization was probably attributed to the formation of insoluble Pb phosphate minerals. Phosphorus significantly reduced Cu and Zn water solubility by 31-80% and 40-69%, respectively, presumably due to their sorption on minerals (e.g., calcite and phosphate phases) following CaO addition. However, P had little effect on the Cu and Zn phytoavailability; while the acid extractability of Cu and Zn induced by SBET (pH 2) were even elevated by up to 48% and 40%, respectively, in the H(3)PO(4) treatments (PA and PR+PA). Our results indicate that phosphate was effective in reducing Pb availability in terms of water solubility, bioaccessibility, and phytoavailability. Caution should be exercised when H(3)PO(4) was amended to the soil co-contaminated with Cu and Zn since the acidic condition of SBET increased Cu and Zn bioaccessibility though their water solubility was reduced.

  6. Influence of 'acid rain' on agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Sauerbeck, D.

    1983-01-01

    The West German average value of 55 kg sulphur precipitation per hectare is not very informative because the local deposition rates vary considerably from less than 20 to more than 100 kg S/haxa. Also the carbonate and exchangeable cation contents of soils differ from place to place. With the exception of very light sands with low exchange capacities short-term soil damages due to acid precipitation are not to be expected. Generally, the natural and production-induced losses of cations may not be increased through the effects of acid precipitation by more than 10%. On the other hand, 'acid rain' is a considerable source of sulphur to agricultural land, which from the viewpoint of plant nutrition would otherwise have to be supplied by fertilization. This even results in realistic monetary gains, although these sulphur additions would preferably not be made in an acid form. The effects of acid rain in agriculture, therefore cannot only be considered to be detrimental, especially since direct damages to annual field crops by SO/sub 2/ at its present concentration can hardly be found.

  7. The Influence of Clay on the Rate of Decay of Amino Acid Metabolites Synthesized in Soils during Decomposition of Cellulose

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1975-01-01

    14C-labelled cellulose was added to seven different soils containing silt + clay (particles .... The amounts of labelled amino acid C in the soils were proportional to their content of silt + clay. After 30 days of incubation labelled amino acid C remaining in the soil with the lowest content of silt + clay constituted 6 per cent of the carbon added in cellulose, as compared with 18 per cent in the soil...... with the highest content of silt + clay. These values had decreased to 5 and 13 per cent respectively after 2 years of incubation. The order between the soils in the content of labelled amino acid C established during the first month of incubation, was thus roughly maintained throughout the period of incubation...

  8. Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data

    Institute of Scientific and Technical Information of China (English)

    Xian-Zhong SHI; Mehrooz ASPANDIAR; David OLDMEADOW

    2014-01-01

    Acid sulphate soil (ASS) is a kind of soil which is harmful to the environment. ASS is hard to efficiently assess efficiently in the subsurface, although it is detectable on the surface by remote sensing. This paper aims to explore a new way to rapidly assess ASS in the subsurface by introducing a proximal hyperspectral instrument, namely the HyloggerTM system which can rapidly scan soil cores and provide high resolution hyperspectral data. Some minerals in ASS, which usually act as indicators of the severity of ASS, such as iron oxides, hydroxides, and sulphates, as well as some clay minerals, such as kaolinite, have diagnostic spectral absorption features in the reflectance spectral range (400-2500 nm). Soil cores were collected from a study area and hyperspectral data were acquired by HyloggerTM scanning. The main minerals related to ASS were characterized spectrally, and were subsequently identified and mapped in the soil cores based on their reflectance spectral characteristics. Traditional X-ray diffraction (XRD) and scanning electron microscope (SEM) were also applied to verify the results of the mineral identification. The main results of this study include the spectral characterisation of ASS and its main compositional minerals, as well as the distribution of these relevant minerals in different depth of cores.

  9. Impeded Acidification of Acid Sulfate Soils in an Inter—sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    C.LIN; R.T.BUSH; 等

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees,The lack of natural levees has allowed the inuudation of the land by regular tidal flooding prior to the construction of flood mitigation work.Such physiographical conditions prevent the development of pre-draingae pyrite-derived soil acidifica-tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells.Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently,the creation of favourable environments for catalysed pyrite oxidation.Under current intensively drained onditions,the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering,resulting in low concentrations of soluble Fe in the pyritic layer,which could reduce the rate of pyrite oxidation.

  10. Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil.

    Science.gov (United States)

    Geng, Anjing; Wang, Xu; Wu, Lishu; Wang, Fuhua; Chen, Yan; Yang, Hui; Zhang, Zhan; Zhao, Xiaoli

    2017-03-01

    P-arsanilic acid (AsA) is a emerging but less concerned contaminant used in animal feeding operations, for it can be degraded to more toxic metabolites after being excreted by animals. Rice is the staple food in many parts of the world, and also more efficient in accumulating arsenic (As) compared to other cereals. However, the uptake and transformation of AsA by rice is unclear. This study aimed to evaluate the potential risk of using AsA as a feed additive and using the AsA contaminated animal manure as a fertilizer. Five rice cultivars were grown in soil containing 100mg AsA/kg soil, after harvest, As species and their concentrations in different tissues were determined. Total As concentration of the hybrid rice cultivar was more than conventional rice cultivars for whole rice plant. For rice organs, the highest As concentration was found in roots. AsA could be absorbed by rice, partly degraded and converted to arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate. The number of As species and their concentrations in each cultivar were related to their genotypes. The soil containing 100mg AsA/kg or more is unsuitable for growing rice. The use of AsA and the disposal of animal manure requires detailed attention.

  11. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.

    Science.gov (United States)

    Kinsela, Andrew S; Collins, Richard N; Waite, T David

    2011-02-01

    Factors controlling the transport of geogenically-derived arsenic from a coastal acid sulfate soil into downstream sediments are identified in this study with both solid-phase associations and aqueous speciation clearly critical to the mobility and toxicity of arsenic. The data from both sequential extractions and X-ray adsorption spectroscopy indicate that arsenic in the unoxidised Holocene acid sulfate soils is essentially non-labile in the absence of prolonged oxidation, existing primarily as arsenopyrite or as an arsenopyrite-like species, likely arsenian pyrite. Anthropogenically-accelerated pedogenic processes, which have oxidised this material over time, have greatly enhanced the potential bioavailability of arsenic, with solid-phase arsenic almost solely present as As(V) associated with secondary Fe(III) minerals present. Analyses of downstream sediments reveal that a portion of the arsenic is retained as a mixed As(III)/As(V) solid-phase, though not at levels considered to be environmentally deleterious. Determination of arsenic speciation in pore waters using high performance liquid chromatography/Inductively Coupled Plasma-Mass Spectrometry shows a dominance of As(III) in upstream pore waters whilst an unidentified As species reaches comparative levels within the downstream, estuarine locations. Pore water As(V) was detected at trace concentrations only. The results demonstrate the importance of landscape processes to arsenic transport and availability within acid sulfate soil environments.

  12. Amelioration of Saline-Sodic Soils with Tillage Implements and Sulfuric Acid Application

    Institute of Scientific and Technical Information of China (English)

    M.SADIQ; G.HASSAN; S.M.MEHDI; N.HUSSAIN; M.JAMIL

    2007-01-01

    Amelioration of saline-sodic soils through land preparation with three tillage implements(disc plow,rotavator and cultivator)each followed by application of sulfuric acid at 20%of gypsum(CaSO4·2H2O)requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites,i.e., Jhottianwala, Gabrika(Thabal),and Thatta Langar,in Tehsil Piudi Bhattian,Hafizabad District,Pakistan.Within 2.5 years,there was a decrease in the salinity parameters measured(electrical conductivity,pH,and sodium adsorption ratio),with a gradual increase in rice and wheat grain yields.It was observed that the disc plow,which not only ensured favorable yields but also helped improve soil health at all the three sites,was the most effective tillage implement.Also,application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.

  13. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  14. Microbial Response to Soil Liming of Damaged Ecosystems Revealed by Pyrosequencing and Phospholipid Fatty Acid Analyses

    Science.gov (United States)

    Narendrula-Kotha, Ramya; Nkongolo, Kabwe K.

    2017-01-01

    Aims To assess the effects of dolomitic limestone applications on soil microbial communities’ dynamics and bacterial and fungal biomass, relative abundance, and diversity in metal reclaimed regions. Methods and Results The study was conducted in reclaimed mining sites and metal uncontaminated areas. The limestone applications were performed over 35 years ago. Total microbial biomass was determined by Phospholipid fatty acids. Bacterial and fungal relative abundance and diversity were assessed using 454 pyrosequencing. There was a significant increase of total microbial biomass in limed sites (342 ng/g) compared to unlimed areas (149 ng/g). Chao1 estimates followed the same trend. But the total number of OTUs (Operational Taxonomic Units) in limed (463 OTUs) and unlimed (473 OTUs) soil samples for bacteria were similar. For fungi, OTUs were 96 and 81 for limed and unlimed soil samples, respectively. Likewise, Simpson and Shannon diversity indices revealed no significant differences between limed and unlimed sites. Bacterial and fungal groups specific to either limed or unlimed sites were identified. Five major bacterial phyla including Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, and Proteobacteria were found. The latter was the most prevalent phylum in all the samples with a relative abundance of 50%. Bradyrhizobiaceae family with 12 genera including the nitrogen fixing Bradirhizobium genus was more abundant in limed sites compared to unlimed areas. For fungi, Ascomycota was the most predominant phylum in unlimed soils (46%) while Basidiomycota phylum represented 86% of all fungi in the limed areas. Conclusion Detailed analysis of the data revealed that although soil liming increases significantly the amount of microbial biomass, the level of species diversity remain statistically unchanged even though the microbial compositions of the damaged and restored sites are different. Significance and Impact of the study Soil liming still have a significant

  15. Potential origin and formation for molecular components of humic acids in soils

    Science.gov (United States)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  16. Significance of Ligand Exchange Relating to Sulfate in Retarding Acidification of Variable Charge Soils Caused by Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJINGHUA; YUTIANREN

    1996-01-01

    For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H+ ion activities remained in the suspension.The difference in H+ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.

  17. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    Science.gov (United States)

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  18. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    Science.gov (United States)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  19. Comparison of simulated forest soil response to acid deposition reduction with two models of differing complexity

    Directory of Open Access Journals (Sweden)

    J. P. Mol-Dijkstra

    1998-01-01

    Full Text Available Great effort has been dedicated to developing soil acidification models for use on different scales. This paper focuses on the changes in model performance of a site scale soil acidification model (NUCSAM and a national to European scale soil acidification model (SMART 2. This was done to gain insight into the effects of model simplification. Because these models aim to predict the response to reduction in acid deposition, these models must be tested under such circumstances. A straightforward calibration and validation of the regional model, however, is hampered by lack of observations over a sufficient time period. Consequently, NUCSAM was calibrated and validated to a manipulation experiment involving reduced acid deposition in the Speuld forest, the Netherlands. SMART 2 was then used with calibrated input data from NUCSAM. The acid deposition was excluded by a roof beneath the canopy. The roofed area consists of a plot receiving pristine deposition levels of nitrogen (N and sulphur (S and a control plot receiving ambient deposition. NUCSAM was calibrated on the ambient plot, followed by a validation of both models on the pristine plot. Both models predicted soil solution concentrations within the 95% confidence interval of the observed responses for both the ambient plot and the pristine plot at 90 cm depth. Despite the large seasonal and vertical (spatial variation in soil solution chemistry, the trends in annual flux- weighted soil solution chemistry, as predicted by SMART 2 and NUCSAM, corresponded well.The annual leaching fluxes below the root zone were also similar although differences exist for the topsoil. For the topsoil, NUCSAM simulated the nutrients and acid related constituents better than SMART 2. Both models overestimated the ammonium (NH4 concentration at 10 cm depth. SMART 2 underestimated calcium and magnesium (BC2+ concentration at 10 depth, whereas NUCSAM overestimated BC2+ concentration at 90 cm depth. NUCSAM predicted

  20. Determination of Minimal Duration Essential for Isolation of Humic Acids From Soils in Forest Restoration Programmes

    Directory of Open Access Journals (Sweden)

    Mohd R. N. Hanisah

    2008-01-01

    Full Text Available This study was conducted to investigate whether a simple and rapid method could be developed for extracting, fractionating and purifying soil HA in forest rehabilitation programmes. Humic acids from 10 g of soil were extracted with 100 mL of 0.10 M NaOH. Different extraction periods (4, 8, 12, 16, 20 and 24 h were tested. Samples were centrifuged (16,211 G for 15 min at the end of each extraction period. The dark-coloured supernatant liquor containing HA was decanted and the pH of the solution adjusted to 1.0 using 6 M HCl. After acidification, the fractionation periods evaluated were 4, 8, 12, 16, 20 and 24 h. After each fractionation period, the sample was transferred to a polyethylene bottle and centrifuged (16,211 G for 10 min. The HA were purified by suspending them in 100 mL distilled water, centrifuged (16,211 G for 10 min. After repeating this procedure three times, the supernatant was analyzed for Na, Mg and K. Standard procedures were used to characterize the HA (C, E4/E6, phenolic OH, carboxylic COOH, total acidity and soil (pH, C, organic matter. Although there was significant effect of different extraction periods on yield of HA, there was no significant relationship between fractionation period and yield of HA. There was also no significant relationship between fractionation periods and yield of HA for different extraction periods studied. In terms of purification, the distilled water used in this study was able to effectively purify HA (e.g., reduction in mineral matter such as Na+ of the soil without altering the true nature of HA as C, E4/E6, phenolic OH, carboxylic COOH, total acidity values of the acids were consistent with those reported in the literature. The significance of this work is that it enables the isolation of HA from soil within 9 h (4 h extraction period, 4 h fractionation period and 1 h purification period instead of the existing range of 2-7 days, hence helping in facilitating the idea of producing for

  1. Bypass flow and its role in leaching of raised beds under different land use types on an acid sulphate soil.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Booltink, H.W.G.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    A better understanding of leaching processes in raised beds is useful in assessing management options for acid sulphate soils. Field and laboratory studies were carried out to quantify the effects of soil physical properties and bypass flow on leaching processes of new, 1-year-old and 2-year-old rai

  2. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil

    Science.gov (United States)

    Hrapovic, L.; Rowe, R. K.

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8)×10 8 and (0.1-1)×10 8 cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  3. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Directory of Open Access Journals (Sweden)

    Asif Naeem

    2013-01-01

    Full Text Available In calcareous soils, phosphorus (P retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms ( were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1 were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation.

  4. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    Science.gov (United States)

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation.

  5. Simple and Rapid Method of Isolating Humic Acids from Tropical Peat Soils (Saprists

    Directory of Open Access Journals (Sweden)

    Shamsuddin Rosliza

    2009-01-01

    Full Text Available Problem Statement: The isolation (extraction, fractionation and purification of humic acids (HA from soils is laborious, time consuming and expensive. The extraction, fractionation and purification periods of these substances vary from 12 h-7 days. In order to facilitate production of HA at competitive cost, this study was conducted to investigate whether a simple and rapid procedure could be developed for isolation of HA from well decomposed tropical peat soils (Saprists. Approach: A 0.1 M KOH was used to isolate HA of air dry peat soil at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h extraction periods after which samples (liquid obtained after centrifugation at 16,211 G for 15 min were fractionated (using 6 M HCl at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h. Samples were purified by washing them five times using distilled water instead of using HCl, HF, and an expensive process called dialysis that requires 1 to 7 days to purify HA. Each washing time was 10 min. Standard procedures were used to ascertain the purity (Ash, C, E4/E6, carboxylic, phenolic, total acidity, and K, Ca, Mg, and Na and quantity of HA yield. Statistical Analysis System (SAS was used for statistical analysis. Results: Although there was a linear relationship between extraction period and HA yield, there was no relationship between fractionation period and yield of HA. Distilled water used in this study was effective in purifying HA of the Saprists within 1 h without altering the true chemical nature of HA as it significantly reduced the mineral content of HA. Besides, C, E4/E6, carboxylic, phenolic, and total acidity of the isolated HA were typical of standard ones. Conclusion: The isolation of HA from peat soils can be reduced to 9 h (4 h extraction period, 4 h fractionation period and 1 h purification period instead of the existing range of 1 to 7 days.

  6. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    Directory of Open Access Journals (Sweden)

    W. Puspitasari

    2012-12-01

    Full Text Available High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P deficiency and aluminum (Al toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content

  7. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    Directory of Open Access Journals (Sweden)

    W. Puspitasari

    2012-08-01

    Full Text Available High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P deficiency and aluminum (Al toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content

  8. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?

    Science.gov (United States)

    Chen, Xue; Yang, Yazhou; Liu, Danqing; Zhang, Chunhua; Ge, Ying

    2015-12-01

    The bioavailability of cadmium (Cd) to rice may be complicated by chemical and biological factors in the rhizosphere. The aim of this work is to investigate how soil iron (Fe) redox transformations and low-molecular-weight organic acid (LMWOA) exudation from root affect Cd accumulation in rice. Two soils (a paddy soil and a saline soil) with different physicochemical properties were used in this study. Soil redox conditions were changed by flooding and addition of organic matter (OM). Two days after the soil treatments, rice seedlings were transplanted in a vermiculite-soil system and grown for 10 days. We measured pH and Eh, LMWOA, Fe and Cd contents in rice, and their fractions in the soils and vermiculite. Cadmium accumulation in rice declined in both soils upon the flooding and OM treatment. Iron dissolution in the paddy soil and its deposition in the rhizosphere significantly increased upon the OM addition, but the concentration of Fe plaque on the rice root significantly declined. Conversely, although Fe transformed into less active fractions in the saline soil, Fe accumulation on the surface and in the tissue of root was considerably enhanced. The secretion of LMWOA was remarkably induced when the OM was amended in the saline soil, but the same effect was not observed in the paddy soil. Reduction of Cd uptake by rice could be attributed to different factors in the two soils. For the paddy soil, the lowered Cd bioavailability was likely due to the competition of Fe and Cd for the binding sites on the vermiculite surface. For the saline soil, however, rice responded to the low Fe mobility through more LMWOA exudation and Fe plaque formation, and their increases could explain the decrease of rice Cd.

  9. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China.

    Science.gov (United States)

    Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi

    2014-01-01

    Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.

  10. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China.

    Directory of Open Access Journals (Sweden)

    Chao Chai

    Full Text Available Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs were detected using gas chromatography-mass spectrometry (GC-MS. All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl phthalate (DEHP, di-n-octyl phthalate (DnOP, di-n-butyl phthalate (DnBP, and diisobutyl phthalate (DiBP were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP, diethyl phthalate (DEP and DnBP exceeded soil allowable concentrations (in US in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.

  11. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  12. Monitoring and assessment of surface water acidification following rewetting of oxidised acid sulfate soils.

    Science.gov (United States)

    Mosley, Luke M; Zammit, Benjamin; Jolley, Ann-Marie; Barnett, Liz; Fitzpatrick, Rob

    2014-01-01

    Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n = 1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH  H(+) ≈ Mn(II) > Fe(II/III)) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.

  13. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities.

    Science.gov (United States)

    Chowdhury, Taniya Roy; Dick, Richard P

    2012-02-01

    Phospholipid fatty acid (PLFA) as biomarkers, is widely used to profile microbial communities in environmental samples. However, PLFA extraction and derivatization protocols are not standardized and have widely varied among published studies. Specifically investigators have used either HCl/MeOH or KOH/MeOH or both for the methylation step of PLFA analysis, without justification or research to support either one. It seems likely that each method could have very different outcomes and conclusions for PLFA based studies. Therefore, the objective of this study was to determine the effect of catalyst type for methylation on detecting PLFAs and implications for interpreting microbial profiling in soil. Fatty acid samples extracted from soils obtained from a wetland, an intermittently flooded site, and an adjacent upland site were subjected to HCl/MeOH or KOH/MeOH catalyzed methylation procedures during PLFA analyses. The methylation method using HCl/MeOH resulted in significantly higher concentrations of most PLFAs than the KOH/MeOH method. Another important outcome was that fatty acids with a methyl group (18:1ω,7c 11Me, TBSA 10Me 18:0, 10Me 18:0, 17:0 10Me and 16:0 10Me being an actinomycetes biomarker) could not be detected by HCl/MeOH catalyzed methylation but were found in appreciable concentrations with KOH/MeOH method. From our results, because the HCl/MeOH method did not detect the fatty acids containing methyl groups that could strongly influence the microbial community profile, we recommend that the KOH/MeOH catalyzed transesterification method should become the standard procedure for PLFA profiling of soil microbial communities.

  14. Yield, chemical composition and persistence of alfalfa on moderately acidic mountain soil

    Directory of Open Access Journals (Sweden)

    Josip Leto

    2006-12-01

    Full Text Available Due to its excellent nutritional characteristics and high yields, alfalfa is the most important forage crop in roughage production. The main limiting factor in global food production is soil acidification. At the moment, about 40% of world agricultural soils are acidic. It is difficult to grow alfalfa on acid soils (pH 0.05. Average DM yield of all cultivars in the year 2000 was 7.07 t/ha, in the year 2001 it was 10.94 t/ha, and finally in the year 2002 it was 12.78 t/ha. Significant differences in DM yields were recorded between cuttings (P0.05. Mean crude protein content was 28.2%, while contents of crude fat, crude fibers and non nitrogen free extract (NFE were 3.73%, 16.15%, 29.19%, respectively. No significant differences in alfalfa ground cover were recorded between cultivars in autumn or in spring in all experimental years (P>0.05. Significant differences in alfalfa ground cover in autumn (P<0.05 and in spring (P<0.01 were recorded between years. The lowest average ground cover was recorded in last experimental year: in the autumn of the year 2001(72.81% and in the spring of the year 2002 (64.37%. All investigated alfalfa cultivars are suitable for growing in similar agroecological conditions.

  15. Reduction of Ammonia Loss from Urea through Mixing with Humic Acids Isolated from Peat Soil (Saprists

    Directory of Open Access Journals (Sweden)

    Regis Bernard

    2009-01-01

    Full Text Available Problem statement: Application of urea as a source of nitrogen fertilizer has an adverse effect on ammoniacal loss to the environment. This study was conducted to reduce ammonia loss from urea by mixing with Humic Acids (HA isolated from Saprists peat. Approach: The effects of urea amended with four different amounts of humic acids, 0.25, 0.50, 0.75 and 1.00 g were evaluated in laboratory conditions using a closed dynamic air flow system. The mineral soil that was used as medium for the study was Bekenu series (typic paleudults. Amnonia loss, soil pH, exchangeable ammonium, available nitrate, exchangeable K, Ca, Mg and Na were determined using standard procedures. Results: All the treatments with HA significantly reduced ammoinia loss compared to urea alone. Increasing the amount of HA also significantly retained soil exchangeable ammonium and available nitrate. Treatments with HA had no significant effect on the concentrations of Mg, K and Ca, except for Na. The effect of HA in the mixtures on ammonia loss was related to their effect on the formation of ammonium over ammonia. Conclusion: Surface-applied urea fertilizer efficiency could be increased when coated with 1.00 g of HA.

  16. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  17. Ammonia Volatilization from Urea Applied to Acid Paddy Soil in Southern China and Its Control

    Institute of Scientific and Technical Information of China (English)

    CAIGUI-XIN; PENGGUANG-HAO; 等

    1992-01-01

    Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using 15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.

  18. Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, P. G.; Murakami, P. F. [Northeastern Research Station, Burlington, VT (United States); Dehayes, D. H.; Hawley, G. J.; Strimbeck, G. R.; Borer, C. H. [Vermont Univ., School of Natural Resources, Burlington, VT (United States); Cumming, J. R. [West Virginia Univ, Dept. of Biology, Morgantown, WV (United States)

    2000-01-01

    The effects and potential interactions of acid mist and soil solutions of calcium and aluminium treatments on foliar cation concentrations, membrane-associated calcium leaching, growth, carbon exchange and cold tolerance in red spruce saplings was investigated. Results showed that soil solution calcium addition increased foliar calcium and zinc concentrations and increased the rate of respiration early in the growing season. Soil aluminium treatment reduced foliar concentrations of calcium, manganese, magnesium, phosphorus and zinc, which in turn, produced smaller stem diameters and shoot lengths. On the whole, aluminium -induced alterations in growth or physiology appeared to be independent of foliar calcium status. As a general rule, reduction in cation concentration associated with aluminium addition were greater for pH 5.0-treated saplings than for pH 3.0-treated saplings. This observation led the investigators to conclude that the mechanism underlying acid-induced reductions in foliar cold tolerance in red spruce is hydrogen ion-induced leaching of membrane-associated calcium from mesophyll cells. 93 refs., 6 tabs., 1 fig.

  19. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Dick, W.A.; Nelson, S.

    2001-07-01

    Flue gas desulfurization (FGD) by-products are often alkaline and contain many plant nutrients. Land application of FGD by-products is encouraged but little information is available related to plant responses and environmental impacts concerning such use. Agricultural lime (ag-lime) and several new types of FGD by-products which contain either vermiculite or perlite were applied at 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) rate to an acidic soil (Wooster silt loam). The highest FGD by-products application rate was equivalent to 75.2 Mg ha{sup -1}. Growth of alfalfa (Medicago sativa L.) was significantly increased compared to the untreated control in the second year after treatment with yields for the 1 x LR rate of FGD approximately 7-8 times greater compared to the untreated control and 30% greater than for the commercial ag-lime. Concentrations of Mo in alfalfa were significantly increased by FGD by-products application, compared to the untreated control, while compared to the ag-lime treatment, concentrations of B increased and Ba decreased. No soil contamination problems were observed, even at the 2xLR rate, indicating these materials can be safely applied to agricultural soils.

  20. Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods

    Institute of Scientific and Technical Information of China (English)

    HEJIZHENG; A.VIOLANTE; 等

    1998-01-01

    Potassium chloride, Na-pyrophosphate,CuCl2,NH4-oxalate,dithionit-citrate-bicarbonate(DCB) and Na-citrate solutions were employed to etract aluminum(Al) and iron(Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains,Hunan Province,China,Many evidences showed that separate pyrophosphate extracted mainly KCl-extractable Al,organo-Al complexes and some inorganic Al compounds,whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes,CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils .Separate oxalate did not extract all KCl-pyrophosphate-CuCl2-oxalate seuentially extractable Al and Fe ,Also,separate DCB did not extract all KCl-pyrophosphate-CuCl2-oxalate-DCB sequentially extractable Al. The forms of Al extacted by oxalate and DCB from the soils were majorly noncrystalline.The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.

  1. Growth of forage legumes and grasses in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA)

    2003-07-01

    Large amounts of flue gas desulfurization products (FGDs) are produced when SO{sub 2} emissions are trapped in the coal burning process for generation of electricity. FGDs are normally discarded instead of being reused, and reuse on soils could be important in overall management of these products. Glasshouse experiments were conducted to determine effects of various levels of three FGDs (a FGD gypsum, an oxidized FGD + Mg, and a stabilized FGD) and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4} on growth of alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dactylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) in acidic (pH 4) soil (Typic Hapludult). The FGDs enhanced growth of each plant species, with alfalfa, white clover, and tall fescue receiving greater increases than the other species, especially when grown in soil amended with FGD + Mg. FGD gypsum did not often enhance growth unless high amounts were added. FGDs containing high B and low levels of CaSO{sub 3} were detrimental to growth. Overall, FGDs improved growth responses of these forage plants grown in an infertile low pH soil.

  2. Dissolution of Metals from Biosolid-Treated Soils by Organic Acid Mixtures

    Directory of Open Access Journals (Sweden)

    Won-Pyo Park

    2016-01-01

    Full Text Available Results for the solubilization of metals from biosolid- (BSL- treated soils by simulated organic acid-based synthetic root exudates (OA mixtures of differing composition and concentrations are presented. This study used two BSL-treated Romona soils and a BSL-free Romona soil control that were collected from experimental plots of a long-term BSL land application experiment. Results indicate that the solubility of metals in a BSL-treated soil with 0.01 and 0.1 M OA mixtures was significantly higher than that of 0.001 M concentrations. Differences in composition of OAs caused by BSL treatment and the length of growing periods did not affect the solubility of metals. There were no significant differences in organic composition and metals extracted for plants grown at 2, 4, 8, 12, and 16 weeks. The amount of metals extracted tended to decrease with the increase of the pH. Results of metal dissolution kinetics indicate two-stage metal dissolution. A rapid dissolution of metals occurred in the first 15 minutes. For Cd, Cu, Ni, and Zn, approximately 60–70% of the metals were released in the first 15 minutes while the initial releases for Cr and Pb were approximately 30% of the total. It was then followed by a slow but steady release of additional metals over 48 hours.

  3. Seasonal variation in soil nitrogen availability across a fertilization chronosequence in moist acidic tundra

    Science.gov (United States)

    McLaren, J. R.; Gough, L.; Weintraub, M. N.

    2012-12-01

    Changes in global climate may result in altered timing of seasonal events including the timing of the spring-thaw and fall freeze-up. In addition to this changing seasonality, arctic environments are experiencing overall increases in nutrient availability caused by climate warming resulting in alterations of plant species composition, such as the observed increases in the abundance of deciduous shrubs. Changing species composition may have large effects on nutrient dynamics in the surrounding ecosystem because of documented differences in how particular plant species influence soil nutrient availability. Although we have some idea of how plant identity influences soil nutrients, soil biogeochemical processes are strongly seasonal, and we have a poor understanding of how plant identity, or nutrient levels, may influence these seasonal patterns. We examined the responses of moist acidic tundra to experimentally increased soil nutrient availability and the accompanying increase in shrub abundance at the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. We examined a chrono-sequence of long-term fertilization experiments, composed of experiments fertilized for 5, 15 and 22 years, which has resulted in increasing shrub density with time since fertilization. The fertilized plots receive both nitrogen (N, 10 g/m2/yr) and phosphorus (5 g/m2/yr) annually following snowmelt. In the 2011 growing season we measured variation in soil available N weekly, including measures of ammonium (NH4), nitrate (NO3) and total free amino acids (TFAA). We found that differences between fertilized and control plots depended strongly on both the seasonal timing of measurements, as well as the duration of the fertilization treatment. Early in the growing season fertilization resulted in large increases in available soil N (both NH4 and NO3) across the entire chronosequence. As the season progressed, however, older fertilized plots show evidence of N saturation, where

  4. BORON CONCENTRATION IN HUMIC AND FULVIC ACID EXTRACTS OF SOIL EPIPEDON IN SAN VITALE PINEWOOD (RAVENNA, ITALY

    Directory of Open Access Journals (Sweden)

    Maddalena Pennisi

    2010-08-01

    Full Text Available Humified Soil Organic Matter (SOM plays a crucial role in the assessment of soil quality since it makes up a significant part of the total organic carbon and nitrogen in soils. High concentrations of humic and fulvic acids may be presents in soils and subordinately in sediments. These substances can potentially act as a significant reservoir of adsorbed boron as well as a source of this element to soil solution, rivers, and lakes. The aim of this study was to investigate boron in humic substances (e.g. humic and fulvic acids of soil epipedon. The San Vitale pinewood was selected as the study site and three samples - classified as Sodic Psammaquents and Typic Psammaquants - of the A1-horizon epipedon were analyzed for humic and fulvic acids and boron contents. The knowledge of the mechanisms of boron interaction with SOM is important for a better understanding of the water/rock interaction in the superficial soil environment, and to envisage the application of the blending of boron into humic acid granules in agricultural practices.

  5. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.

    Science.gov (United States)

    Onireti, Olaronke O; Lin, Chuxia; Qin, Junhao

    2017-03-01

    A batch experiment was conducted to examine the combined effects of three common low-molecular-weight organic acids (LMWOAs) on the mobilization of arsenic and lead in different types of multi-contaminated soils. The capacity of individual LMWOAs (at a same molar concentration) to mobilize soil-borne As and Pb varied significantly. The combination of the organic acids did not make a marked "additive" effect on the mobilization of the investigated three elements. An "antagonistic" effect on element mobilization was clear in the treatments involving oxalic acid for some soils. The acid strength of a LMWOA did not play an important role in controlling the mobilization of elements. While the mobilization of As and Pb was closely associated with the dissolution of soil-borne Fe, soil properties such as original soil pH, organic matter contents and the total amount of the element relative to the total Fe markedly complicated the mobility of that element. Aging led to continual consumption of proton introduced from addition of LMWOAs and consequently caused dramatic changes in solution-borne Fe, which in turn resulted in change in As and Pb in the soil solution though different elements behaved differently.

  6. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid.

    Science.gov (United States)

    Zhou, Xingang; Yu, Gaobo; Wu, Fengzhi

    2012-08-01

    Changes in soil biological properties have been implicated as one of the causes of soil sickness, a phenomenon that occurs in continuous monocropping systems. However, the causes for these changes are not yet clear. The aim of this work was to elucidate the role of p-hydroxybenzoic acid (PHBA), an autotoxin of cucumber (Cucumis sativus L.), in changing soil microbial communities. p-Hydroxybenzoic acid was applied to soil every other day for 10 days in cucumber pot assays. Then, the structures and sizes of bacterial and fungal communities, dehydrogenase activity, and microbial carbon biomass (MCB) were assessed in the rhizosphere soil. Structures and sizes of rhizosphere bacterial and fungal communities were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time PCR, respectively. p-Hydroxybenzoic acid inhibited cucumber seedling growth and stimulated rhizosphere dehydrogenase activity, MBC content, and bacterial and fungal community sizes. Rhizosphere bacterial and fungal communities responded differently to exogenously applied PHBA. The PHBA decreased the Shannon-Wiener index for the rhizosphere bacterial community but increased that for the rhizosphere fungal community. In addition, the response of the rhizosphere fungal community structure to PHBA acid was concentration dependent, but was not for the rhizosphere bacterial community structure. Our results indicate that PHBA plays a significant role in the chemical interactions between cucumber and soil microorganisms and could account for the changes in soil microbial communities in the continuously monocropped cucumber system.

  7. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment.

    Science.gov (United States)

    Spaccini, Riccardo; Song, XiangYun; Cozzolino, Vincenza; Piccolo, Alessandro

    2013-11-13

    The molecular composition of soil organic matter (SOM) in three agricultural fields under different managements, was evaluated by off-line thermochemolysis followed by gas chromatography mass spectrometry analysis (THM-GC-MS). While this technique enabled the characterization of SOM components in coarse textured soil, its efficiency in heavy textured soils was seriously affected by the interference of clay minerals, which catalyzed the formation of secondary artifacts in pyrolysates. Soil demineralization with hydrofluoric acid (HF) solutions effectively improved the reliable characterization of organic compounds in clayey soils by thermochemolysis, while did not alter significantly the results of coarse textured soil. A wide range of lignin monomers and lipids molecules, of plant and microbial origin, were identified in the pyrograms of HF treated soils, thereby revealing interesting molecular differences between SOM management practices. Our results indicated that clay removal provided by HF pretreatment enhanced the capacity of thermochemolysis to be a valuable and accurate technique to study the SOM dynamics also in heavy-textured and OC-depleted cultivated soils.

  8. Rapid Cloning and Expression of Glutaryl-7-Aminocephalosporanic Acid Acylase Genes from Soil Samples

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; YU Huimin; LI Qiang; SHEN Zhongyao

    2005-01-01

    A polymerase chain reaction (PCR)-based strategy was developed to rapidly obtain the gene encoding for an industrially important enzyme, glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase. Different soil samples were cultured with a Pseudomonas selective medium to enrich specific microorganisms, and then the genomic DNA was extracted to serve as PCR templates. PCR primers for GL-7-ACA acylase gene amplification were designed on the basis of bioinformatics searches and analyses. The method was used to successfully amplify three GL-7-ACA acylase genes from different soil samples. The GL-7-ACA acylase genes were then cloned and overexpressed in Escherichia coli with a relatively high level of 266 unit·L-1.

  9. Effect of different ascorbic acid levels (Vitamin C on eco-physiological properties of barley in soils contaminated with lead

    Directory of Open Access Journals (Sweden)

    Kamdin Akhavan Samimi

    2016-03-01

    Full Text Available This study was carried out to examine the effects of foliar application of ascorbic acid on barley in contaminated soil in a completely randomized factorial design with 2 factors, 9 treatments and 3 replications in Varamin in 1393.150 mg of lead nitrate per kg of soil were applied to infect the soil for all treatments. Superabsorbent was the first factor used in three levels (0, 3, 6 g per kg soil and ascorbic acid as the second factor was also used in three levels (0, 50 and 100 ppm. The results of this experiment showed that increase in superabsorbent and ascorbic acid concentrations in barley improved the morphological traits such as plant height and spike and grain number, grain weight, total weight of shoot, root dry weight and thousand grain weight and also improved physiological traits such as protein content and chlorophyll a, b and total chlorophyll in barley, moreover, increase in ascorbic acid in the plant resulted in reduction in antioxidant enzymes content such as superoxide dismutase andcatalase, and physiological traits such as proline, increased relative water content and reduced lead content in leaves and roots.So it can be concluded that, given that the country is located in arid and semiarid regions and considering Iran’s soils pollution with heavy metals,using effective treatments such as ascorbic acid can enhance crop water holding capacity and also reduce the effects of these elements toxicity. Therefore,the use of ascorbic acid seems essential.Due to the non-degradable and long life of heavy metals in soil, insoluble hydrophilic polymers with different amounts carboxylic groups are used. The surface carboxylic groups of the polymer (SAP due to exposure to pH are ionized and make strong bonds with soil pollutant metals, and eventually form a gel and are separated from soil.

  10. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.

    Science.gov (United States)

    Debela, F; Arocena, J M; Thring, R W; Whitcombe, T

    2013-02-15

    Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.

  11. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  12. Groundwater or floodwater? Assessing the pathways of metal exports from a coastal acid sulfate soil catchment.

    Science.gov (United States)

    Santos, Isaac R; de Weys, Jason; Eyre, Bradley D

    2011-11-15

    Daily observations of dissolved aluminum, iron, and manganese in an estuary downstream of a coastal acid sulfate soil (CASS) catchment provided insights into how floods and submarine groundwater discharge drive wetland metal exports. Extremely high Al, Fe, and Mn concentrations (up to 40, 374, and 8 mg L(-1), respectively) were found in shallow acidic groundwaters from the Tuckean Swamp, Australia. Significant correlations between radon (a natural groundwater tracer) and metals in surface waters revealed that metal loads were driven primarily by groundwater discharge. Dissolved Fe, Mn, and Al loads during a 16-day flood triggered by a 213 mm rain event were respectively 80, 35, and 14% of the total surface water exports during the four months of observations. Counter clockwise hysteresis was observed for Fe and Mn in surface waters during the flood due to delayed groundwater inputs. Groundwater-derived Fe fluxes into artificial drains were 1 order of magnitude higher than total surface water exports, which is consistent with the known accumulation of monosulfidic black ooze within the wetland drains. Upscaling the Tuckean catchment export estimates yielded dissolved Fe fluxes from global acid sulfate soil catchments on the same order of magnitude of global river inputs into estuaries.

  13. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    Science.gov (United States)

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  14. Steady-state critical loads of acidity for forest soils in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Shaun A. WATMOUGH

    2010-08-01

    Full Text Available There has been growing interest in acid rain research in western Canada where sulphur (S and nitrogen (N emissions are expected to increase during the next two decades. One region of concern is southern British Columbia, specifically the Georgia Basin, where emissions are expected to increase owing to the expansion of industry and urban centres (Vancouver and Victoria. In the current study, weathering rates and critical loads of acidity (S and N for forest soils were estimated at nineteen sites located within the Georgia Basin. A base cation to aluminium ratio of 10 was selected as the critical chemical criterion associated with ecosystem damage. The majority of the sites (58% had low base cation weathering rates (≤50 meq m–2 y–1 based on the PROFILE model. Accordingly, mean critical load for the study sites, estimated using the steady-state mass balance model, ranged between 129–168 meq m–2 y–1. Annual average total (wet and dry S and N deposition during the period 2005–2006 (estimated by the Community Multiscale Air Quality model, exceeded critical load at five–nine of the study sites (mean exceedance = 32–46 meq m–2 y–1. The high-elevation (>1000 m study sites had shallow, acid sensitive, soils with low weathering rates; however, critical loads were predominantly exceeded at sites close to Vancouver under higher modelled deposition loads. The extent of exceedance is similar to other industrial regions in western and eastern Canada.

  15. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    Science.gov (United States)

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials.

  16. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A-nan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Teng, Ying [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Xue-feng [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wu, Long-hua; Huang, Yu-juan [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yong-ming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO{sub 2}) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L{sub 9}(3){sup 4}, only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO{sub 2} dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg{sup −1} were found to be a 1:10 soil: water ratio, 40 mW cm{sup −2} light intensity, 5% TiO{sub 2} in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5 h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO{sub 2} in soil slurry. This study suggests that TiO{sub 2} photocatalytic oxidation is a promising treatment for removing DPAA from soil. - Highlights: • DPAA was degraded into arsenate through TiO{sub 2} (P25) photocatalytic oxidation. • Soil/water ratio was more influential on the removal of DPAA in soil by TiO{sub 2} (P25). • Soil properties affected the adsorption of DPAA and the generation of OH• by Ti

  17. Influence of multi-step washing using Na2EDTA, oxalic acid and phosphoric acid on metal fractionation and spectroscopy characteristics from contaminated soil.

    Science.gov (United States)

    Wei, Meng; Chen, Jiajun

    2016-11-01

    A multi-step soil washing test using a typical chelating agent (Na2EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na2EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na2EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).

  18. Composts with and without wood ash admixture for the management of tropical acid soils: chemical, physical and microbiological effects

    Science.gov (United States)

    Bougnom, B. P.; Insam, H.; Etoa, F. X.

    2009-04-01

    Acid soils generally found in the tropics have a low pH, are poor in organic matter, deficient in Ca2+, Mg+, P, or Mo ; limited in mineralization, nitrification, nodulation, and mycorrhizal infection , suffer from Al or Mn toxicity. Within the framework aiming at using organic wastes and wood ash to overcome soil infertility in tropical acidic soils, a green house experiment was conducted with two acid soils collected from Cameroon (Ferralsol and Acrisol) and amended with three types of compost 3:1(W/W) containing 0 (K0), 8(K8) and 16% (K16) wood ash admixture respectively for two consecutive cycles of 100 days, during which soybean (Glycine max) was grown on the first, the second cycle was left as fallow. Generally the same trends of variation of the physico-chemical parameters were observed in both soils. Addition of organic wastes increased the pH electrical conductivity, soil organic matter, water holding capacity, total Carbone and total nitrogen as compared to the controls. The rate of nitrification highly increased posing the problem of possible leaching of nitrates in the ground water. The cations and micronutrients content followed the same trends. These changes leaded to an increase of the P availability and a decrease of Al toxicity. At the end of the second cycle, generally most of the different parameters slightly decreased except for the electrical conductivity. All composts passed a toxicity test, and the amended soils had significant better fresh and dried plant biomass, the Total nitrogen also significantly increased. Amended soils with K0 generally performed better than those amended with K8 and K16, thinking that their pH (closer to the neutrality) was responsible of these performances, all the parameters were significantly correlated to the pH. K8 and K16 performances could be performed by reducing the added quantities. The study of PCR-DGGE have shown a shift in the fungal and bacterial communities, Ammonia oxidizing bacteria community were

  19. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles.

    Science.gov (United States)

    Imran, Muhammad; Shaharoona, Baby; Crowley, David E; Khalid, Azeem; Hussain, Sabir; Arshad, Muhammad

    2015-10-01

    The aim of this study was to examine the stability of structurally different azo dyes in soil and their impact on the microbial community composition by analyzing phospholipid fatty acid (PLFA) profiles. Sterile and non-sterile soils were amended with three azo dyes, including: Direct Red 81, Reactive Black 5 and Acid Yellow 19 at 160mgkg(-1) soil. The results showed that the azo dyes were quite stable and that large amounts of these dyes ranging from 17.3% to 87.5% were recoverable from the sterile and non-sterile soils after 14 days. The maximum amount of dye was recovered in the case of Direct Red 81. PLFA analysis showed that the azo dyes had a significant effect on microbial community structure. PLFA concentrations representing Gram-negative bacteria in dye-amended soil were substantially less as compared to the PLFA concentration of Gram-positive bacteria. Acid Yellow 19 dye had almost similar effects on the PLFA concentrations representing bacteria and fungi. In contrast, Reactive Black 5 had a greater negative effect on fungal PLFA than that on bacterial PLFA, while the opposite was observed in the case of Direct Red 81. To our knowledge, this is the first study reporting the stability of textile azo dyes in soil and their effects on soil microbial community composition.

  20. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  1. Integrated soil and water management in acid sulphate soils. Balancing agricultural production and environmental requirements in the Mekong Delta, Viet Nam.

    NARCIS (Netherlands)

    Le Quang Minh,

    1996-01-01

    The objectives of this study in the Mekong delta, Vietnam, were: (1) to obtain a better understanding of the effects of soil physical properties and flow types on solute transport in ASS emphasing aluminum; (2) to quantify environmental hazards resulting from amelioration activities in acid sulphate

  2. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  3. Food engineering residues: amino acid composition of hydrolysates and application for the decontamination of metal polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K. (GSF-Forschungszentrum, Inst. fuer Oekologische Chemie, Oberschleissheim (Germany) TU Muenchen, Lehrstuhl fuer Oekologische Chemie, Freising-Weihenstephan (Germany)); Riemschneider, P. (GSF-Forschungszentrum, Inst. fuer Oekologische Chemie, Oberschleissheim (Germany)); Bieniek, D. (GSF-Forschungszentrum, Inst. fuer Oekologische Chemie, Oberschleissheim (Germany)); Kettrup, A. (GSF-Forschungszentrum, Inst. fuer Oekologische Chemie, Oberschleissheim (Germany) TU Muenchen, Lehrstuhl fuer Oekologische Chemie, Freising-Weihenstephan (Germany))

    1994-11-01

    Several residues of the brewing industry and slaughtering offals were investigated in order to evaluate their potential as raw materials for the hydrolytic preparation of amino acid containing solutions, applicable as extractants in amelioration processes for metal polluted soils. The residues were hydrolysed with 6 mol/L hydrochloric acid and the hydrolysates were analysed for their total nitrogen, TOC, amino acid and heavy metal contents. Then, the leaching capacities of the hydrolysates were examined in a series of batch tests with a contaminated soil. High amino acid yields in relation to the weight of the air-dried raw materials were achieved with blood meal (72.5%) and poultry feather meal (56.6%). The portion of the detected amino acids of the total organic carbon content of the hydrolysates ranged from 38.9% (brewer's spent grain) to 93.6% (blood meal). In extraction tests with hydrolysates adjusted to a total amino acid concentration of 60 mmol/L and to a pH value of 7.0, maximum extraction yields of 50.3% for copper (soil content 279 mg kg[sup -1]) and 38.7% for nickel (soil content 54 mg kg[sup -1]) were reached. An increase of the hydrolysate concentration and of the pH of an amino acid mixture resulted in higher solubilisation of the metals. (orig.)

  4. Assessing soil calcium depletion following growth and harvesting of Sitka spruce plantation forestry in the acid sensitive Welsh uplands

    Directory of Open Access Journals (Sweden)

    B. Reynolds

    1998-01-01

    Full Text Available A simple mass balance has been used to estimate soil calcium depletion during the growth of a 50 year old Sitka spruce crop on acid, base-poor peaty podzol soils in upland Wales. Growth of the crop will deplete the soil calcium reserve by an amount (205 kg Ca ha-1 approximately equivalent to the exchangeable calcium pool to the bottom of the profile and equal to 14% of the total soil calcium reserve to the bottom of the B horizon. Despite these predictions, measurements of exchangeable calcium show no differences beneath mature forest and acid grassland, implying that i weathering rates in forest soils are greater than long-term estimates and predictions by the PROFILE soil chemistry model ii the trees can access other sources of calcium or iii there are significant errors in the mass balance. Following stem-only harvesting, growth of a 50 year old second rotation crop will lead to further depletion of soil calcium, but this amount (79 kg Ca ha-1, is less than for a second rotation crop following whole-tree harvesting (197 kg Ca ha-1. After the first crop, stem-only harvesting would allow a further 18 rotations before depletion of the total calcium reserve to the bottom of the B horizon. Whole-tree harvesting would allow for seven rotations after the first crop. These calculations assume that all sources of calcium are equally available to the crop. This can only be resolved by dynamic modelling of the calcium cycle at the ecosystem scale based on appropriate field measurements. The potential for significant soil acidification is therefore greater following whole-tree harvesting and, in line with current recommendations (Nisbet et al., 1997, this technique should probably be avoided on acidic, nutrient-poor soils unless remedial measures are included to enhance the soil base cation status.

  5. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  6. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  7. A reexamination of amino acids in lunar soils: Implications for the survival of exogenous organic material during impact delivery

    Science.gov (United States)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of ≤ 0.3 ppb for α-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is ≤ 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  8. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    Science.gov (United States)

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  9. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    Science.gov (United States)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  10. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  11. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, N.; McBride, M.B.

    Copper and zinc sorption-desorption studies were carried out over a range of pH values using clay fractions separated from two horizons of an acid soil from New York. In the pH range of high sorption, as much as 95% of the sorbed metal could not be desorbed and thus was considered fixed. Sorption and fixation of Cu and Zn increased rapidly above pH 4 and 5, respectively, for the whole soil clays. Following removal of the oxide fraction by oxalate and citrate-dethionite extractions, sorption and fixation were reduced considerably at pH values below the onset of hydrolysis of the metals in bulk solution. Citrate-dithionite extraction was more effective than oxalate in reducing Zn sorption and fixation. These extraction procedures had less effect on the ability of the clays to sorb and fix Cu. It is concluded that microcrystalline and noncrystalline oxides in the clay fraction of this soil, representing < 20% off the clay by weight, provide reactive surfaces for the chemisorption of Cu and Zn. At low pH, adsorption at these surfaces may be the dominant mechanism of heavy metal immobilization, especially in the subsoil horizons.

  12. SCC of XT0 and Its Deteriorated Microstructure in Simulated Acid Soil Environment

    Institute of Scientific and Technical Information of China (English)

    Zhiyong Liu; Guoli Zhai; Xiaogang Li; Cuiwei Du

    2009-01-01

    In order to study the stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint in acid soil environment of southeast of China, two simulating methods were used here. The one was to obtain the bad microstructures in heat affected zone by annealing at 1300℃ for 10 min and air cooling to room temperature,the other was to get a series of simulating solutions of the acid soil environment. SCC susceptibilities of X70pipeline steels'before and after being normalized in the simulated solutions were studied by slow strain rate test (SSRT) and microstructural observation of fracture areas. Potentiodynamic polarization curves were used to study the electrochemical behaviour of different microstructures. SCC does occur to both the as-received material and normalized microstructure after heat treatment as the polarization potential decreased. Hydrogen embrittlement (HE) is indicated occurring to all tested materials at -850 mV (vs SCE) and -1200 mV(vs SCE). The SCC mechanisms are different within varying potential range. Anodic dissolution is the key cause as polarization potential higher than null current potential, and HE will play a more important role as polarization potential lower than the null current potential.

  13. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.

  14. Degradation of reactive dyes by ozonation and oxalic acid-assimilating bacteria isolated from soil.

    Science.gov (United States)

    Kurosumi, Akihiro; Kaneko, Erika; Nakamura, Yoshitoshi

    2008-07-01

    Ozonation and treatment of wastewaters with oxalic acid-assimilating bacterium was attempted for the complete degradation of reactive dyes. Oxalic acid-assimilating bacterium, Pandoraea sp. strain EBR-01, was newly isolated from soil under bamboo grove and was identified to be a member of the genus Pandoraea by physicochemical and biochemical tests including 16S rDNA sequence analysis. The bacterium was grown optimally at pH 7 and temperature of 30 degrees C under the laboratory conditions. Reactive Red 120 (RR120), Reactive Green 19 (RG19), Reactive Black 5 (RB5) and Remazol Brilliant Blue R (RBBR) were used in degradation experiments. At the initial reactive dye concentrations of 500 mg/l and the ozonation time of 80 min, it was confirmed that 75-90 mg/l oxalic acid was generated from reactive dyes by ozonation. Microbial treatment using EBR-01 greatly decreased the amount of oxalic acid in the mixture after 48 h, but it was not removed completely. TOC/TOC(0) of reactive dye solutions was also decreased to 80-90% and 20-40% by ozonation and microbial treatment using EBR-01, respectively. The study confirmed that consecutive treatments by ozone and microorganisms are efficient methods to mineralize reactive dyes.

  15. Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Jun; ZHOU Jian-Min; WANG Huo-Yan; CHEN Xiao-Qin

    2008-01-01

    Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems.Cypermethrin and its metabolite 3-phenoxybenzoic acid (PBA) have exerted adverse biological impacts on the environment; therefore,it is critically important to develop different methods to enhance their degradation.In this study,incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen (N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil.The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil.The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha-1.The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA.However,oversupplying N significantly reduced degradation of these compounds.Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N.In particular,dehydrogenase activities in the soil generally increased with the addition of N,except in the soil where N was applied at the highest level.The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.

  16. Nodulation of cowpeas and survival of cowpeas Rhizobia in acid, aluminum-rich soils. [Vigna unguiculata; Rhizobium

    Energy Technology Data Exchange (ETDEWEB)

    Hartel, P.G.; Whelan, A.M.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether the reduced nodulation of cowpeas (Vigna unguiculata (L.) Walp) grown in certain acid, Alrich soils resulted from the poor survival of the potentially infective rhizobia. Two strains of Rhizobium capable of nodulating cowpeas were used. The lowest pH for growth in defined liquid medium was 4.2 for one strain and 3.9 for the other. Only the latter was Al tolerant and could grow in a defined liquid medium containing 50 ..mu..M KAl(SO/sub 4/)/sub 2/. The survival of the bacteria and their ability to nodulate cowpeas in three soils were measured after the soils were amended with Ca or Al salts to give pH values ranging from 5.7 to 4.1 and extractable-Al concentrations from < 0.1 to 3.7 cmol(p/sup +/)/kg of soil. Only small differences in survival in 7 or 8 weeks were noted between the two strains. Plants inoculated with the Al-sensitive strain bore significantly fewer nodules in the more acid, Al-rich soils than in the same soils with higher pH values and less extractable Al. No significant reduction in nodule number was evident for plants inoculated with the Al-tolerant strain and grown in the more acid, Al-rich soils compared to cowpeas grown in the same soils with higher pH values and less extractable Al. It is suggested that the Al content of soil is not a major factor in the survival of cowpea rhizobia but that it does have a significant effect on nodulation. 24 references, 3 figures, 2 tables.

  17. Mineral Dissolution and Metal Mobility From Rhizosphere and Non-rhizosphere Soils by Low Molecular Weight Organic Acids

    Science.gov (United States)

    Little, D. A.; Field, J. B.; Welch, S. A.

    2005-12-01

    This research is part of an ongoing investigation of micro-biogeochemistry in the rhizosphere of co-occurring Eucalyptus mannifera and Acacia falciformis on the Southern Tablelands of New South Wales, Australia. While there is still considerable controversy in the literature regarding the roles of low molecular weight organic acids in soil processes there is growing evidence suggesting low molecular weight compounds, especially di-carboxylic acids, have large impacts on mineral dissolution and metal mobility in the rhizosphere. Rhizosphere and non-rhizosphere samples from adjacent E. mannifera and A. falciformis trees were subjected to four separate treatments in sets of 3 replicates; +oxalic acid, +malic acid, +citric acid or +NaCl control solution. These three acids were chosen because they are produced by rhizosphere species and they form stable complexes with nutrient elements such as Phosphorus (P), Iron (Fe), and Calcium (Ca). Solution samples were collected at day 1, day 8 and day 15 for pH measurement and analysed for major and trace elements by ICP-AES and ICP-MS. The results of the preliminary dissolution experiments show that milli-molar concentrations of individual organic acids, malate and oxalate, and in particular citrate, greatly increase the release of major and trace metals to solution compared to inorganic controls. Concentrations of Al and Fe in organic acid solutions were up to 10 times greater than in the inorganic controls. Si concentrations were a factor of 2-5 greater in the organic acid solutions, suggesting preferential weathering of Fe and Al oxyhydroxide phases rather than primary silicate minerals. Dissolution of elements such as Si, Al and Fe from rhizosphere soils were about twice that observed from non-rhizosphere soils, further supporting this. Interestingly Ti and Zr, which are usually considered to be immobile during chemical weathering and are not usually taken up by plants, were also mobilised from the rhizosphere soils

  18. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  19. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  20. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    DEFF Research Database (Denmark)

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen;

    2016-01-01

    bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth......, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate...

  1. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Science.gov (United States)

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment.

  2. [Toxicity and accumulation of copper and nickel in wheat plants cropped on alkaline and acidic field soils].

    Science.gov (United States)

    Huang, Jin-Sun; Wei, Dong-Pu; Guo, Xue-Yan; Ma, Yi-Bing

    2012-04-01

    Field experiments were conducted to study the toxicity of added copper (Cu) and nickel (Ni) in soils to wheat and metal accumulation in wheat plants. The results showed that the yields of wheat straw and grain were decreased with the increasing concentration of Cu and Ni added to soils. The added Cu concentrations yielding 10% inhibition of wheat yield (EC10) were 499.6 mg x kg(-1) for alkaline soils (Dezhou, pH 8.90), and 55.7 mg x kg(-1) for acidic soils (Qiyang, pH 5.31). The toxicity of Cu or Ni in acidic soils were significantly higher than that in alkaline soils. With increasing addition of Cu or Ni, the contents of Cu in wheat grains initially increased and then keep at constant level, while the accumulation of Ni in grains linearly increased. The contents of Cu and Ni in Qiyang wheat grains were 6.07-9.26 mg x kg(-1) and 0.53-31.78 mg x kg(-1), and those of in Dezhou were 5.24-10. 52 mg x kg(-1) and 0.16-25.33 mg x kg(-1). In both field experimental sites, the contents of Cu in wheat grains meet the national standard for food safety. These findings showed that Cu is more relevant to ecological risk assessments than to food safety assessments for wheat grown in soils that have been contaminated with Cu.

  3. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    Science.gov (United States)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  4. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  5. Effect of application rate of commercial lignite-derived amendments on early-stage growth of Medicago sativa and soil health, in acidic soil conditions

    Science.gov (United States)

    Patti, Antonio; Little, Karen; Rose, Michael; Jackson, Roy; Cavagnaro, Tim

    2013-04-01

    Commercially available lignite-derived amendments, sold mainly as humate preparations, have been promoted as plant growth stimulants leading to higher crop yields. These products are also claimed to improve soil properties such as pH. This study investigated the effect of application rate of three lignite-derived amendments on the early-stage growth of a pasture legume, lucerne (Medicago sativa), and soil health in a soil type common to south eastern Australia, in a glasshouse setting. An organic-mineral humate product and 'run of mine' lignite coal did not improve shoot or root growth despite application at a range of rates at, and in excess of, the manufacturers recommendation. Application of soluble K-humate product at 20 kg/ha (9.5 kg/ha C equivalent) produced an observable positive effect in shoot growth. At this application rate, a significant delay in the appearance of chlorotic symptoms was observed along with an increase in soil pH concurrent with decreased availability of soil Mn and Al. Higher root dry weight was associated with lower microbial biomass carbon which may indicate an effect on allocation of resources between the microbial community and the plant. An assessment of the effectiveness of lignite-derived amendments on plant growth, as well as their potential to improve the health of an acidic soil will assist farmers in making decisions regarding the use of these products.

  6. Introduction to Soil Acidification and Use of Conditioners on Acid Soil%土壤酸化及酸性土壤调理剂应用概述

    Institute of Scientific and Technical Information of China (English)

    陈绍荣; 余根德; 白云飞; 陈德康; 宁维

    2013-01-01

    Acidification of soil not only aggravates leaching and fixation of soil nutrients and promotes the release and activation of poisonous elements, but also affects the life activity of soil micro organism and increases the ambient pressure. An introduction is given to present status and causes of soil acidification in China, and on this point measures are proposed for improvement of soil acidification by application of such acid soil conditioners as lime, boron and refined organic manure.%土壤酸化不仅会加剧土壤营养元素的淋溶和固定、促进有毒元素的释放和活化,而且会影响土壤微生物的生命活动、增加环境压力.概述了我国土壤酸化的现状及原因,针对性地提出了施用石灰类、硼泥类、精制有机肥类等酸性土壤调理剂改良治理土壤酸化的措施.

  7. Anaerobic soil disinfestation: Carbon rate effects on tomato plant growth and organic acid production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) is a non-chemical soil disinfestation technique proposed for the control of soil-borne pathogens, plant parasitic-nematodes, and weeds in different crops. ASD is applied in three steps: 1) Soil amendment with a labile carbon (C) source; 2) Cover the soil with tota...

  8. Source and compositional changes of soil organic matter in an acidic forest soil - from top- to subsoil

    Science.gov (United States)

    Angst, Gerrit; John, Stephan; Rethemeyer, Janet; Kögel-Knabner, Ingrid; Mueller, Carsten W.

    2014-05-01

    Subsoils can significantly contribute to the terrestrial C pool. While processes of C turnover and storage in topsoils are generally well understood, little is known about subsoils. Our project, embedded within the DFG research group FOR 1806, aims to contribute to the knowledge about subsoil C by differentiating soil organic matter (SOM) in terms of its origin and its composition. In order to obtain a meaningful sample set we studied three soil ditches, 3.15 m in length and 2.15 m in depth, in a podzolic Cambisol under European beech (Fagus sylvatica L.) north of Hannover, Germany. In a to date unique sampling approach we took 64 soil samples in a regular vertical grid in each of the soil profiles, thus identifying possible gradients between top- and subsoil. The samples were subjected to a combined density and particle size fractionation to separate particulate organic matter (POM) from mineral compartments. We especially aimed at obtaining the combined fine silt and clay fraction which is thought to be most important in the long term stabilization of SOM. The chemical composition of the so obtained fractions and the bulk soil was revealed by C, N and 13C CPMAS NMR measurements. The source of OM in the soil was investigated by tracing the biopolymers cutin and suberin across the soil profile. Cutin occurs mainly in the cuticula of leaves while suberin mainly constitutes the endodermal cell walls of plant roots. In soils the two polymers can thus be used as proxies for above and belowground OM input respectively. To release the constituting monomers of the two biopolymers from the soil samples the latter were pretreated with organic solvents to extract free lipids. The soil residues were subsequently subjected to a base hydrolysis and the so obtained extracts were measured with GC/MS. The organic C contents of the bulk soil decrease significantly with depth in all transects from around 15 mg g-1 to 2 mg g-1. This is likely associated with the very high sand and

  9. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil

    Directory of Open Access Journals (Sweden)

    Hongmiao eWu

    2016-03-01

    Full Text Available Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274 and Kosakonia sacchari W. (KU324465, and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence.

  10. A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization.

    Science.gov (United States)

    Ou, Qian; Liu, Yao; Deng, Jie; Chen, Gao; Yang, Ying; Shen, Peihong; Wu, Bo; Jiang, Chengjian

    2015-06-01

    A novel D-amino acid oxidase (DAAO) gene designated as daoE was cloned by the sequence-based screening of a plasmid metagenomic library of uncultured microorganisms from contaminated agricultural soil. The deduced amino acid sequence comparison and phylogenetic analysis indicated that daoE and other putative DAAOs are closely related. The putative DAAO gene was subcloned into a pETBlue-2 vector and overexpressed in Escherichia coli Tunner(DE3)pLacI. The recombinant protein was purified to homogeneity. The maximum activity of DaoE protein occurred at pH 8.0 and 37 °C. DaoE recombinant protein had an apparent K m of 2.96 mM, V max of 0.018 mM/min, k cat of 10.9/min, and k cat/K m of 1.16 × 10(4)/mol/min. The identification of this novel DAAO gene demonstrated the importance of metagenomic libraries in exploring new D-amino acid oxidases from environmental microorganisms to optimize their applications.

  11. Effects of Humic Acid and Solution pH on Dispersion of Na—and Ca—Soil Clays

    Institute of Scientific and Technical Information of China (English)

    LANYEQING; HUQIONGYING; 等

    1996-01-01

    Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement.In this study,two typical soils from the south of China were chosen for investigating roles of pH and humic acid(HA) on dispersion of soil clays.Critical flocculation concentration (CFC) of the soil clay suspension was determined by using light transmission at a wavelength of 600 nm.The results indicated that effects of pH and HA on dispersion of the soil clays were closely related to the type of the major minerals makin up the soil and to the valence of the exchangeable cations as well.At four rates of pH(4,6,8and 10),the CFC for the Na-yellow-brown soil treated with H2O2 was increased from 0.32 to 0.56,6.0 to 14.0,10.0 to 24.6 and 26.0 to 52.0mmol L-1 NaCl,respectively when Na-HA was added at the rate of from 0 to 40mgL-1,With the same Na-HA addition and three pH(6,8and 10)treatments,the CFC for the Na-red soil was incresed from 0.5 to 20.0,1.0 to 40.0 and 6.0 to 141.0mmol L-1 NaCl,respectively.Obviously,pH and HA has greater effects on clay dispersion of the red soil(dominated by 1:1 minerals and oxides) than on that of the yellow-brown soil(dominated by 2:1minerals).However,at three rates of pH(6,8and 10) and with the addition of Ca-HA from 0 to 40mg L-1,the CFC of the Ca-yellow-brown soil and Ca-red soil treated with H2O2 was increased from 0.55 to 0.81,0.75 to 1.28,0.55 to 1.45and 0.038 to 0.266.0.25 to 0.62,0.7to 1.6mmol CaCl2 L-1,respectively.So,Na-soil claye are more sensitive to pH and HA than Ca-soil clays.

  12. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China

    Institute of Scientific and Technical Information of China (English)

    CHENG FengXian; CAO GuiQin; WANG XiuRong; ZHAO Jing; YAN XiaoLong; LIAO Hong

    2009-01-01

    Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different Iow-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest ni-trogenase activity, on a typical Iow-P acid soil in South China. The results showed that, without inocu-lation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inocuiants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respec-tively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on Iow-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering

  13. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  14. The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub-green moss spruce forests

    Science.gov (United States)

    Orlova, M. A.; Lukina, N. V.; Smirnov, V. E.; Artemkina, N. A.

    2016-11-01

    Presently, among the works considering the influence of forest trees on soil properties, the idea that spruce ( Picea abies) promotes the acidification of soils predominates. The aim of this work is to assess the effects of spruce trees of different ages and Kraft classes on the acidity and content of available nutrient compounds in the soils under boreal dwarf shrub-green moss spruce forests by the example of forest soils in the Kola Peninsula. The soils are typical iron-illuvial podzols (Albic Rustic Podzols (Arenic)). Three probable ways of developing soils under spruce forests with the moss-dwarf shrub ground cover are considered. The soils under windfall-soil complexes of flat mesodepressions present the initial status. The acidity of organic soil horizons from the initial stage of mesodepression overgrowth to the formation of adult trees changed nonlinearly: the soil acidity reached its maximum under the 30-40-year-old trees and decreased under the trees older than 100 years. The contents of nitrogen and available nutrients increased. The acidity of the mineral soil horizons under the trees at the ages of 110-135 and 190-220 years was comparable, but higher than that under the 30-40-year-old trees. The differences in the strength and trends of the trees' effect on the soils are explained by the age of spruce trees and their belonging to different Kraft classes.

  15. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    Directory of Open Access Journals (Sweden)

    Stanislava Vondráčková

    Full Text Available High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8 and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism.We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs.Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions.In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  16. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Science.gov (United States)

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  17. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    Full Text Available Biochar (BC application to soil suppresses emission of nitrous- (N2O and nitric oxide (NO, but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2 were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  18. Compound amino acids added in media improved Solanum nigrum L. phytoremediating CD-PAHS contaminated soil.

    Science.gov (United States)

    Wei, Shuhe; Bai, Jiayi; Yang, Chuanjie; Zhang, Qianru; Knorrm, Klaus-Holger; Zhan, Jie; Gao, Qianhui

    2016-01-01

    Cd hyperaccumulator Solanum nigrum L. was a promising plant used to simultaneously remediate Cd-PAHs combined pollution soil through its extra accumulation capacity and rhizosphere degradation. This article compared the strengthening remediation role of cysteine (Cys), glycine (Gly) and glutamic acid (Glu) with EDTA and TW80. The results showed that the addition of 0.03 mmol L(-1) Cys, Gly, and Glu didn't significantly impact (p Cd concentration. Therefore, Cd capacity (µg pot(-1)) in shoots of S. nigrum was significantly increased (p Cd might lie in the addition of Cys, Gly, and Glu which reduced pH and increased extractable Cd concentration in rhizosphere and phytochelatines (PCs) concentration in leaves. As for the degradation of PAHs in rhizosphere, increased microorganism number might be play important role.

  19. Effect of Pig Manure Application on Structural Characteristics of Humic Acids in Brown Soil

    Institute of Scientific and Technical Information of China (English)

    DOUSEN; TANSHI-WEN; 等

    1991-01-01

    The effect of application of pig manure (PM) on the structural characteristics of humic acids (HAs) of brown soil was studied in field and incubation experiments.The results showed that the number-average molecular weights (Mn),the ratios of C/H,C/H and O/C,the contents of carboxyl and phenolic hydroxyl groups,the content of aromatic C,the values of E2,E4 and λExmax of HAs all decreased;whereas,the contents of alkyl C and O--alkyl C,the ratio of carboxyl to phenolic hydroxyl groups,the degree of oxidation stability,te absorption intensity at 285mμ (UV),and 2920cm-1 of HAs increased after the application of PM.The above results indicated that the molecular structure of HAs tended to be more aliphatic and simpler after the application of PM.

  20. Extraction and Characterization of Humic Acids and Humin Fractions from a Black Soil of China

    Institute of Scientific and Technical Information of China (English)

    XING Bao-Shan; LIU Ju-Dong; LIU Xiao-Bing; HAN Xiao-Zeng

    2005-01-01

    Twenty-three progressive extractions were performed to study individual humic acids (Has) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E2/Ea increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of Has increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 Has and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.

  1. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.

    Science.gov (United States)

    Shaker, Medhat A; albishri, Hassan M

    2014-09-01

    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical.

  2. Suitability of Isotope Kinetic Approach to Assess Phos—phorus Status and Bioavailability of Major Acidic Soils in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLIMING; J.C.FARDEAU

    1997-01-01

    A 32P isotope kinetic approach was used to describe the chemical status and bioavailability of phosphorus in 32 acidic soils from subtropical China.By determining the residual radoactivity,rt,in soil solution at different time,t,after introduction of the isotope in an amount of R into the steady soil-water system,a well-defined isotope kinetic model was established,and upon this model the decrease rate ,n,of log(rt/R) with respect to logt,the mean sojourn time of phosphate ions in solution,the mean exchange rate and the mean flux of phosphate ions between soil solid and solution phases were calculated.Other parameters,such as the exchangeable P within the first minute of isotope exchange(E1),and P in various compartments that could be exchanged with solution phosphte ions at different perods of time,were also obtained.For these acidic soils,the r1/R had a significant correlation with the contents of clay and free Al2O3 where r1 is the radioactivity in solution 1 minute after introduction of the isotope into the system.Parameter n also had a significant correlation with clay content and a neagtive correlation with soil pH,E1 values and Cp,the P concentration in soil solution,also Significantly correlated with clay and sesquioxide contents of the soils.these indicated that these isotope kinetic parameters were largely influenced by P-fixing components of the soils.For the soils with strong P-fixing ability,the E1 values overestimated labile P pools and hence their correlations with A values and plant P uptake were not significant .The other iostope kinetic parameters also had no significant correlation with plant P uptak.On the other hand,the convetional chemical-extracted p correlated better with plant P uptake .It was concluded that the iostope kinetic method could assess the p chemical status yet it would inappropriate in predicting plant available P for soils with a high P-fixing ability as the problem of an overestimation of soil lable P in these soils was

  3. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed.

    Science.gov (United States)

    Wüst, Pia K; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf; Overmann, Jörg

    2016-05-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actino bacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms.

  4. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  5. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    Science.gov (United States)

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems.

  6. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (Pacid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere effects, and have impact on nutrient cycling in tea plantation.

  7. Evaluation of water management strategies for acid sulphate soils using a simulation model: a case study in Indonesia

    NARCIS (Netherlands)

    Bronswijk, J.J.B.; Groenenberg, J.E.; Ritsema, C.J.; Wijk, van A.L.M.; Nugroho, K.

    1995-01-01

    Reclamation and drainage of potential acid sulphate soils results in acidification and release of toxic elements, hampering their use for agriculture. Ecologically valuable habitats located downstream of reclamation areas may be disrupted. Proper water management is essential to a sustainable reclam

  8. EFFECT OF PHOSPHATE ON NODULE PRIMORDIA OF SOYBEAN (Glycine max Merrill IN ACID SOILS IN RHIZOTRON EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Setiyo Hadi Waluyo

    2016-10-01

    Full Text Available To clarify whether P had a direct or indirect effect on the nodulation  process of soybean grown in acid soils from Sitiung, West Sumatra, Indonesia, a series of rhizotron experiments, with special attention given to formation of nodule primordia, was conducted at Laboratory of  Microbiology, Wageningen University in 1998-2000. It was shown that Ca and P were essential nutrients for root growth, nodule formation, and growth of soybean in the acid soils (Oxisols. Ca increased root growth, number of nodule primordia, nodules, and growth of the soybean plant. This positive effect of Ca was increased considerably by the application of P. Ca and P have a synergistic effect on biological nitrogen fixation (BNF of soybean in acid soils. Ca is important for the establishment of nodules, whilst P is essential for the development and function of the formed nodules. P increased number of nodule primordia, thus it also has an important role in the initiation of nodule formation. From this study, it can be concluded that Ca and P are the most limiting nutrients for BNF of soybean in the acid soils of Sitiung, West Sumatra, Indonesia.

  9. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (beta-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.

  10. Accumulation of Rare Earth Elements in Spinach and Soil under Condition of Using REE and Acid Rain Stress

    Institute of Scientific and Technical Information of China (English)

    严重玲; 洪业汤; 林鹏; 王世杰; 李心清; 梁洁

    2002-01-01

    The content and distribution characteristics of REE in spinach and soil under using REE and acid rain stress were studied by pot experiments. The results show that the content of REE is 0.527~0.696 (μgg-1) in the above-ground portion of spinach, 2.668~3.003 (μg*g-1) in the under-ground portion of spinach and 229.09~250.30 (μg*g-1) in the soil. With the acidity of acid rain increasing, the leaching of REE in plants and soil is strengthened and the amount of REE reduces with decreasing of pH value. After REE are used, though plants show the selective absorption to Ce group elements (especially spraying on leaves), regardless under acid rain stress or using REE or not, the distribution model of REE in the above-ground and under-ground portion of plants is basically the same with the control. Plants also follow the Oddo-Harkins rule of the REE of distribution abundance, light rare earth elements is enriched, the minus of Eu is abnormal and admeasure of Ce is a rich model. The results show that REE in plants mainly come from soil and are affected by it.

  11. Changes in the molecular composition of ester-bound aliphatics with depth in an acid andic forest soil

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Nierop, K.G.J.; Bergen, P.F. van; Leeuw, J.W. de

    2005-01-01

    Changes in the molecular composition of ester-linked aliphatic compounds with depth in an acid andic forest soil are studied. Thermally assisted hydrolysis and methylation (THM) using tetramethylammonium hydroxide in combination with gas chromatography/mass spectrometry revealed a dominance of cutin

  12. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Science.gov (United States)

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling.

  13. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  14. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems.

  15. Influence of Neutral Salts and pH on Exchangeable Acidity of Red Soil and Latosol Colloids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the present work, the exchangeable acidity of a red soil colloid and a latosol colloid at different pH during reacting with four neutral salts was measured. The results show that the exchangeable acidity increased with increasing amounts of the neutral salts added, and the relation between them was almost linear. When the amount of the neutral salt added was lower than a certain value, the slope of the line was high, and the slope turned low when the amount exceeded that value, so there was a turning point in each line. The addition amounts of the neutral salts for the turning points were affected by the cation species of the neutral salts, but pH had less effect on them. After the turning points occurred, the exchangeable acidity of the red soil colloid still gradually increased with the addition amounts of the neutral salts, but that of the latosol colloid did not increase any more.The exchangeable acidity in NaClO4, KClO4 and NaCl solutions increased at first, and then decreased with increasing pH, that is to say, peak values appeared. The peak positions of the exchangeable acidity in relation to pH changed with neutral salt solutions and were affected by the surface characteristics of the soil colloids, but not affected by the amounts of the neutral salts added. The exchangeable acidity in the Ba(NO3)2 solution increased continuously with increasing pH. The exchangeable acidity of the red soil colloid was obviously larger than that of the latosol colloid.``

  16. Dssimilatory Fe(Ⅲ) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids

    Institute of Scientific and Technical Information of China (English)

    HE Jiangzhou; QU Dong

    2008-01-01

    Dissimilatory Fe(Ⅲ) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(Ⅲ) reduction predominantly comes from pure cultures of dissimilatory Fe(Ⅲ) reducing bacteria (DFRB). The objective of this study was to compare the effects of glucose and a selection of short organic acids (citrate, succinate, pyruvate, propionate, acetate, and formate) on Fe(Ⅲ) reduction via the anaerobic culture of three paddy soil solutions with Fe(OH)3 as the sole electron acceptor. The results showed significant differences in Fe(Ⅲ) reduction among the three paddy soil solutions and suhstrate types. Bacteria from the Sichuan paddy soil responded quickly to substrate supply and showed higher Fe(Ⅲ) reducing activity than the other two soil types. Bacteria in the Jiangxi paddy soil culture solution could not use propionate as a source of electrons for Fe(Ⅲ) reduction. Similarly, bacteria in the Jilin paddy soil culture could not use succinate effectively. Pyruvate was readily used by cultures from all three paddy soil solutions, thus indicating that there were some similarities in substrate utilization by bacteria for Fe(Ⅲ) reduction. The use of glucose and citrate as substrate for dissimilatory Fe(Ⅲ) reduction indicates important ecological implications for this type of anoxic respiration.

  17. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    Science.gov (United States)

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  18. Spatial distribution of soil acidity components in natural area field in the region Humaitá, Amazonas

    Directory of Open Access Journals (Sweden)

    Bruno Campos Mantovanelli

    2016-08-01

    Full Text Available Amazonian are highly weathered soils and characterized by high acidity, high aluminum saturation and low nutrient concentration, due to the high leach rates. The objective of this study was to evaluate the spatial distribution of acidity components in natural field environment in the region of Humaita, Amazonas. The study area is located in the region of Humaitá, south of Amazonas state, being situated in the geographical coordinates of (7 30 '24 "S and 63º 04' 56" W, the soil is classified as Cambissolo Háplico Alítico plíntico (CXalf. Soil samplings were conducted between March and October 2012 respectively in the natural field area, collected in sampling grid layout with dimensions of 70 mx 70 m and regular spacing between sampling points 10 m, sampled at two depths: 0 , 0 to 0.020 me 0.40-0.60 m. The following chemical analyzes were performed: pH in water potentiometrically determined by the ratio 1: 2.5, the exchangeable aluminum was determined from extraction solution KCl 1 mol / L-1 and the potential acidity extracted with buffered solution of calcium acetate pH 7.0. The results were subjected to analysis of descriptive statistics and geostatistics. From the mean values obtained for the soil acidity components to the natural field area, these results demonstrate the acidic nature of the soil environment and the possible correlation of a low concentration of bases due to the greater complexation of Al3+.

  19. Isolation and Characterization of Alfalfa-Nodulating Rhizobia Present in Acidic Soils of Central Argentina and Uruguay

    OpenAIRE

    1999-01-01

    We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes enco...

  20. Changes in the chemical composition of an acidic soil treated with marble quarry and marble cutting wastes.

    Science.gov (United States)

    Tozsin, Gulsen; Oztas, Taskin; Arol, Ali Ihsan; Kalkan, Ekrem

    2015-11-01

    Soil acidity greatly affects the availability of plant nutrients. The level of soil acidity can be adjusted by treating the soil with certain additives. The objective of this study was to determine the effect of marble quarry waste (MQW) and marble cutting waste (MCW) on the chemical composition and the acidity of a soil. Marble wastes at different rates were applied to an acid soil. Their effectiveness in neutralizing the soil pH was compared with that of agricultural lime. The changes in the chemical composition of the soil were also evaluated with column test at the end of a 75-day incubation period. The results indicated that the MQW and MCW applications significantly increased the soil pH (from 4.71 up to 6.54), the CaCO3 content (from 0.33% up to 0.75%), and the exchangeable Ca (from 14.79 cmol kg(-1) up to 21.18 cmol kg(-1)) and Na (from 0.57 cmol kg(-1) up to 1.07 cmol kg(-1)) contents, but decreased the exchangeable K (from 0.46 cmol kg(-1) down to 0.28 cmol kg(-1)), the plant-available P (from 25.56 mg L(-1) down to 16.62 mg L(-1)), and the extractable Fe (from 259.43 mg L(-1) down to 55.4 mg L(-1)), Cu (from 1.97 mg L(-1) down to 1.42 mg L(-1)), Mn (from 17.89 mg L(-1) down to 4.61 mg L(-1)) and Zn (from 7.88 mg L(-1) down to 1.56 mg L(-1)) contents. In addition, the Cd (from 0.060 mg L(-1) down to 0.046 mg L(-1)), Ni (from 0.337 mg L(-1) down to 0.092 mg L(-1)) and Pb (from 28.00 mg L(-1) down to 20.08 mg L(-1)) concentrations decreased upon the treatment of the soil with marble wastes.

  1. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    Science.gov (United States)

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  2. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    Science.gov (United States)

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.

  3. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  4. Alleviation of Subsoil Acidity of Red Soil in Southeast China with Lime and Gypsum

    Institute of Scientific and Technical Information of China (English)

    SUNBO; R.MOREAU; 等

    1998-01-01

    Application of lime or gypsum is a common agricultrual practice to ameliorate soils with low pH which prohibits crop prduction,Its integrated effect on soil properties in a red soil derved from Quaternary red clay in Southeast China is discussed in this paper,Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH4,but lime addition had a contrary effect.Generally,application of lime and /or gypsum has little on soil electrical properties.Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth ,The effect of lime reached only to 5 cm below its application layer.With leaching,Ca transferred from top soil to subsoil and decreased exchangeable Al in subsiol.Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.

  5. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  6. Gaseous Nitrogen Losses from Coastal Acid Sulfate Soils:A Short-Term Study

    Institute of Scientific and Technical Information of China (English)

    B. C. T. MACDONALD; O. T. DENMEAD; I.WHITE; G. BYRANT

    2011-01-01

    NOx and N2O emissions from coastal acid sulfate soils (CASS) cultivated for sugarcane production were investigated on the coastal lowlands of northern New South Wales, Australia. Two series of short-term measurements were made using chambers and micrometeorological techniques. Series 1 occurred during the wet season, the water-filled pore space (WFPS) was between 60%-80% and the site flooded during the measurements. Measurements were made directly after the harvest of soybean crop, which fixed an estimated 100 kg N ha-1, and the emission amounted to 3.2 kg NOx-N ha-1 (12 d) and 1.8 kg N2O-N ha-1 (5 d). Series 2 was made towards the end of the dry season when the WFPS was less than 60%. In Series 2, after an application of 50 kg N ha-1, emissions were markedly less, amounting to 0.9 kg N ha-1 over 10 d. During both series when the soil was moist, emissions of NOx were larger than those of N2O. The emission of NOx appeared to be haphazard, with little time dependence, but there was a clear diurnal cycle for N2O, emphasising the need for continuous measurement procedures for both gases. Theseresults suggest that agricultural production on CASS could be important sources of greenhouse gases and nitrogen practices will need to be optimised to reduce the offsite effects of atmospheric warming, acidification or nitrification. Many questions still remain unanswered such as the emissions during the soybean bean filling stage and crop residue decomposition, the longer-term losses following the fertiliser application and emissions from CASS under different land uses.

  7. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Directory of Open Access Journals (Sweden)

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  8. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    Science.gov (United States)

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems.

  9. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  10. CHARACTERISTICS OF PHOSPHATE ROCK MATERIALS FROM CHINA, INDONESIA AND TUNISIA AND THEIR DISSOLUTION IN INDONESIAN ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Dissolution of phosphate rock (PR in soils is a primary concern for P in the PR to be available for plant. The dissolution of three PR materials, China (CPR, Ciamis (IPR and Gafsa (GPR, in eight acid Indonesian soils (pH in water 4.1-5.7 was tested in a closed incubation system. Experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The dissolution was determined from the increase in either 0.5 M NaOH extractable P (∆P or 1 M BaCl2-triethanolamine (TEA-extractable Ca (∆Ca in soils amended with PR compared with control soil. Dissolution of the IPR was the highest (30-100% followed by GPR (17-69% and then by CPR (20-54%. The maximum dissolution followed the order: Bogor Ultisols > Bogor Oxisols > Subang Inceptisols > Bogor Inceptisols > Sukabumi Oxisols > Lebak Ultisols > Sukabumi Inceptisols > Lampung Ultisols. PR dissolution indicated a positive correlation with P retention capacity. The results implied that the extent of PR dissolution for the three PR sources (China, Indonesia and Tunisia increased with increasing P retention capacity of the soils. PR dissolution can be based on a calibration curve of ∆Ca meaning that if ∆P is high then the amount of PR dissolution measured by ∆Ca in PR materials is also high.

  11. Cu retention in an acid soil amended with perlite winery waste.

    Science.gov (United States)

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2016-02-01

    The effect of perlite waste from a winery on general soil characteristics and Cu adsorption was assessed. The studied soil was amended with different perlite waste concentrations corresponding to 10, 20, 40 and 80 Mg ha(-1). General soil characteristics and Cu adsorption and desorption curves were determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also detected in the perlite waste-amended soils. The effect of perlite waste addition to the soil had special relevance on its Cu adsorption capacity at low coverage concentrations and on the energy of the soil-Cu bonds.

  12. Contributions of separate reactions to the acid-base buffering of soils in brook floodplains (Central Forest State Reserve)

    Science.gov (United States)

    Sokolova, T. A.; Tolpeshta, I. I.; Rusakova, E. S.

    2016-04-01

    The acid-base buffering of gleyic gray-humus soils developed in brook floodplains and undisturbed southern-taiga landscapes has been characterized by the continuous potentiometric titration of soil water suspensions. During the interaction with an acid, the major amount of protons (>80%) is consumed for the displacement of exchangeable bases and the dissolution of Ca oxalates. In the O and AY horizons, Mn compounds make the major contribution (2-15%) to the acid buffering. The buffer reactions with the participation of Al compounds make up from 0.5 to 1-2% of the total buffering capacity, and the protonation of the surface OH groups of kaolinite consumes 2-3% of the total buffering capacity. The deprotonation of OH groups on the surface of Fe hydroxides (9-43%), the deprotonation of OH groups on the surface of illite crystals (3-19%), and the dissolution of unidentified aluminosilicates (9-14%) are the most significant buffer reactions whose contributions have been quantified during the interaction with a base. The contribution of the deprotonation of OH groups on the surface of kaolinite particles is lower (1-5%) because of the small specific surface area of this mineral, and that of the dissolution of Fe compounds is insignificant. In the AY horizon, the acid and base buffering of soil in the rhizosphere is higher than beyond the rhizosphere because of the higher contents of organic matter and nonsilicate Fe and Al compounds.

  13. Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Turrión, M.B.; Pando, V.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of the study was to determine the baseline carbon stock in forest floor and mineral soils in pine and oak stands in acid soils in Northern Spain. Area of study: The study area is situated in northern Spain (42° N, 4° W) on “Paramos y Valles” region of Palencia. aterial and methods: An extensive monitoring composed of 48 plots (31 in pine and 17 in oak stands) was carried out. Litter layers and mineral soil samples, at depths of 0-30 cm and 30-60 cm, were taken in each plot. An intensive monitoring was also performed by sampling 12 of these 48 plots selected taken in account species forest composition and their stand development stage. Microbial biomass C (CMB), C mineralization (CRB), and soil organic C balance at stand level were determined in surface soil samples of intensive monitoring. Main results: No differences in soil C content were detected in the two forest ecosystems up to 60 cm depth (53.0±25.8 Mg C ha-1 in Pinus spp. plantations and 60.3±43.8 Mg C ha-1 in oak stands). However, differences in total C (CT), CMB and CRB were found in the upper 10 cm of the soils depending on the stand development stage in each species forest composition (Pinus nigra, Pinus pinaster, Pinus sylvestris and Quercus pyrenaica). Plots with high development stage exhibited significant lower metabolic quotient (qCO2), so, meant more efficient utilization of C by the microbial community. The C content in the forest floor was higher in pine stands (13.7±0.9 Mg C ha-1) than in oak stands (5.4±0.7 Mg C ha-1). A greater turnover time was found in pine ecosystems vs. oak stands. In contrast, forest floor H layer was nonexistent in oak stands. Research highlights: Results about litterfall, forest floor and mineral soil dynamics in this paper can be used strategically to reach environmental goals in new afforestation programs and sustainable forest management approaches. (Author)

  14. Acid rain research program. Annual progress report, July 1976--September 1977. [Effects on plants and soil microbiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Francis, A.J.; Raynor, G.S.

    1977-12-01

    Experiments were carried out and chemical aspects of ambient precipitation were determined using a sequential precipitation collector for the period July 1976 through September 1977. A related report provides experimental details. In experiments with plants, experiments were aimed to document: the foliar response of six clones of hybrid poplar to simulated acid rain; effects of buffered solutions and various anions on vegetative and sexual development of gametophytes of the fern (Pteridium aquilinum) and the acid-sensitive steps of symbiotic nitrogen fixation of the garden pea (Pisum sativum). After five 6 min daily exposures to simulated rain of pH 2.7, up to 10 percent of the leaf area of some poplar clones was injured. Lesions developed mostly near stomata and vascular tissue as shown with other plant species. Acidic solutions have a marked effect on sperm motility and fertilization (sexual reproduction) of bracken fern. Since sexual reproduction of ferns is very sensitive to mildly acidic conditions under laboratory conditions, experiments are planned to view the response of sexual stages of other plant species. Nodulation and symbiotic nitrogen fixation in Pisum is very sensitive to nutrient solution acidity. Specific isolates of Rhizobium bacteria are used and the medium pH can be maintained rigidly. In experiments to determine the effects of excess acidity on soil microbiological processes, the rate of denitrification may be slowed so drastically that increases of N/sub 2/O in the atmosphere may result with a subsequent reduction in soil nitrogen levels.

  15. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra.

    Science.gov (United States)

    Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung

    2016-11-01

    The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

  16. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  17. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    Science.gov (United States)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  18. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.

  19. Amycolatopsis thailandensis sp. nov., a poly(L-lactic acid)-degrading actinomycete, isolated from soil.

    Science.gov (United States)

    Chomchoei, Atchareeya; Pathom-Aree, Wasu; Yokota, Akira; Kanongnuch, Chartchai; Lumyong, Saisamorn

    2011-04-01

    A novel actinomycete that was capable of degrading poly(l-lactic acid), strain CMU-PLA07(T), was isolated from soil in northern Thailand. Strain CMU-PLA07(T) had biochemical, chemotaxonomic, morphological and physiological properties that were consistent with its classification in the genus Amycolatopsis. 16S rRNA gene sequence analysis showed that the isolate formed a phyletic line within the genus Amycolatopsis. Strain CMU-PLA07(T) was most similar to Amycolatopsis coloradensis IMSNU 22096(T) (99.5 % 16S rRNA gene sequence similarity) and Amycolatopsis alba DSM 44262(T) (99.4 %). However, strain CMU-PLA07(T) was distinguishable from the type strains of species of the genus Amycolatopsis on the basis of DNA-DNA relatedness and phenotypic data. Therefore, strain CMU-PLA07(T) is considered to represent a novel species of the genus Amycolatopsis, for which the name Amycolatopsis thailandensis sp. nov. is proposed. The type strain is CMU-PLA07(T) ( = JCM 16380(T) = BCC 38279(T)).

  20. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh.

    Science.gov (United States)

    Sarkar, Animesh; Islam, Tofazzal; Biswas, Gokul Chandra; Alam, Shohidul; Hossain, Mikail; Talukder, Nur Mohammad

    2012-06-01

    The objectives of the research were to isolate phosphate solubilizing bacteria (PSB) from the rhizoplane of rice (Oryza sativa L.) cv. BRRIdhan 29 cultivated in acidic soils of Tangail in Bangladesh and evaluate their performances in phosphate solubilization in both in vitro and in vivo conditions. A total of 10 bacterial strains were isolated and purified by repeated streak culture on nutrient agar medium. Upon screening, five isolates (OS01, OS03, OS07, OS08 and OS10) showed varying levels of phosphate solubilizing activity in agar plate and broth assays. Among them, the strain OS07 (B1) and two previously isolated PSB strains B2 and B3 were selected for evaluation for their performances in rice alone or in combination of TSP (triple super phosphate: P1) and rock phosphate (P2). Plant height and the number of tillers per plant were significantly increased by all PSB isolates when used in combination with TSP but PSB alone did not influence much on plant height and the number of tillers except B1. The levels of mineral nutrients content in rice plant tissues were generally increased by the application of the PSB in combination with TSP, while the performances of B1 isolate was superior in all aspects to B2 and B3 isolates.

  1. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil

    Institute of Scientific and Technical Information of China (English)

    HE You-lan; LIU Ai-qin; Mulualem Tigabu; WUPeng-fei; MA Xiang-qing; WANG Chen; Per Christer Oden

    2013-01-01

    Pinus massoniana Lamb.is a major timber species widely planted in the South China,where the soil is acidic and deficient in phosphorus (P) due to fixation by aluminum and iron.Understanding the physiological responses to rhizospheric insoluble P is essential for enhancing plantation productivity.Thus,a sand culture experiment was conducted with four levels of P treatment (0,5,20 g insoluble P and 10 g soluble P),and 11 P.massoniana elite families.Physiological responses were measured after two months of stress.Compared to the normal soluble P treatment,the insoluble P treatment significantly reduced the proline content and the APase activity in the needles,while it significantly increased the catalase activity by 1.3-fold and malondialdehyde content by 1.2-fold.Soluble protein content was unaffected by the treatments,but chlorophyll content was significantly lower in P-deprived treatment compared with soluble and insoluble P treatments.These physiological responses also exhibited highly significant variation among families (p < 0.01).The findings suggest that increased catalase activities in the presence of insoluble P might be involved in the activation of an anti-oxidation defense mechanism that scavenges the reactive oxygen species elicited by the stress.And this response has a strong genetic control that can be exploited to identify desirable genotypes.

  2. Factors Controlling Deoxygenation of "Floodwater" Overlying an Acid Sulfate Soil: Experimental Modeling

    Institute of Scientific and Technical Information of China (English)

    C. LIN; P. G. HASKINS; J. LIN

    2003-01-01

    An incubation experiment was conducted to simulate the effect of flooding on water deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated "floodwater" could be deoxygenated immediately following "flooding" and it is likely that this was caused mainly by decomposition of organic debris from the inundated plants. Deoxygenation eventually led to the depletion of dissolved oxygen (DO) in the "floodwater"and it is highly possible that this resulted in the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide, and organic nitrogen to ammonia (ammonification). The accumulation of these reduced substances allows the "floodwater" to develop DO-consuming capacity (DOCC). When the "floodwater" is mixed with the introduced oxygenated water, apart from the dilution effects, the reduced substances contained in the "floodwater" oxidize to further consume DO carried by the introduced water. However, it appears that the DO drop in the mixed water can only last for a few hours if no additional DO-depleted "floodwater" is added.Entry of atmospheric oxygen into the water can raise the DO level of the mixed water and lower water pH through the oxidation of the reduced substances.

  3. Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils

    DEFF Research Database (Denmark)

    Ferrari, Alejandro E.; Ravnskov, Sabine; Larsen, John

    2015-01-01

    to winter differentially according to soil treatment being the smallest decrease inHR management 35%. Both PLFA and NLFA profiles showed strong potential to discriminatebetween different land uses. In winter samples, some rare or unknown fatty acids were relevant forthe discrimination of agricultural...... practices while NLFA 20:0 appears to be a good marker of HRsoils despite season or location. The PLFA-based taxonomic biomarkers for total bacteria, Gramnegativebacteria and arbuscular mycorrhiza showed a significant trend NE>HR>LR in the wintersampling. HR management was also characterized by high levels...... of NLFA in winter samples as ifhigh crop rotation improves lipids reserves in soil during winter more than in monocropping soilmanagement. In conclusion, PLFA and particularly NLFA profiles appear to provide useful andcomplementary information to obtain a footprint of different soil use and managements...

  4. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  5. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  6. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  7. Adsorption of chloroacetanilide herbicides on soil and its components Ⅲ. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca2 + -, Mg2 + -. Al3 + -and Fe3 + -saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ ≤ Fe3+ which coincided with the iucreasing aciditv of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  8. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.-C. [INRA, Departement Environnement et Agronomie, Versailles (France)]. E-mail: fardeau@versailles.inra.fr; Zapata, F. [IAEA, Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Programme, Vienna (Austria)

    2002-05-15

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P{center_dot}kg{sup -1}, and incubated for one month in moist conditions. In another series, 1000 mg P kg{sup -1} applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg{sup -1} as triple superphosphate (TSP) were added. The {sup 32}P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  9. Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic acid mineralization increases with depth in agricultural soil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Sørensen, Jan

    2013-01-01

    Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralizati...... to the groundwater if transported from the plow layer into the subsoil. © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.......Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralization...... activity at different depths (8-115 cm) in a Danish agricultural soil profi le using a 96-well microplate C-radiorespirometric method for small-volume samples. The heterotrophic microbial population and specifi c MCPA degraders decreased 10- to 100-fold from the plow layer to a depth of 115 cm. MCPA...

  10. Effect of Organic Acids and Protons on Release of Non-Exchangeable NH4+ in Flooded Paddy Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Song; SHAO Xing-Hua; LIN Xian-Yong; H. W. SCHERER

    2005-01-01

    In a model experiment, which imitated the rhizosphere of rice, the effect of organic acids (oxalic acid, citric acid) and protons on the release of non-exchangeable NH4+ and the resin adsorption of N was studied in a paddy soil, typical for Zhejiang Province, China. Oxalic and citric acids under low pH conditions, in combination with proton secretion, favored the mobilization of NH4+ ions and increased resin adsorption of N. The release of non-exchangeable NH4+ was associated with less formation of iron oxides. These could coat clay minerals and thus hinder the diffusion of NH4+ ions out of the interlayer. Protons enhanced the release of NH4+, and then they could enter the wedge zones of the clay minerals and displace non-exchangeable NH4+ ions.

  11. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil.

    Science.gov (United States)

    Chaignon, Valérie; Quesnoit, Marie; Hinsinger, Philippe

    2009-12-01

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl(2)-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH soil. Rhizosphere alkalisation occurred at pH pH. This explained the changes of CaCl(2)-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu.

  12. Effect of Organic Based N Fertilizer on Dry Matter (Zea mays L., Ammonium and Nitrate Recovery in an Acid Soil of Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Susilawati Kasim

    2009-01-01

    Full Text Available Problem statement: Exchangeable ammonium (NH4+ could be recovered by humic and fulvic acids from humic substances. The ability of these acids in fixing or retaining NH4+ has been demonstrated in many findings and reports. Both acids could affect the plant growth, nutrients uptake by enhancing photosynthesis rate and root growth among others. Thus, in this study, the effect of both acids (in liquid form on soil exchangeable NH4+, dry matter production and available nitrate (NO3- was investigated. Approach: Humic molecules were isolated using standard procedures, followed by liquid organic N fertilizers formulation. Organic based N fertilizers were applied to soil in pots at 10 Days After Planting (DAP and 28 DAP. Treated soils and plant parts were sampled at 54 DAP or at tasselling stage. Soil samples were analyzed for pH, ammonium and nitrate content. The plant samples were weighed to assess dry matter production. Results: Under acid condition, organic based liquid N fertilizers (fulvic acid or both, humic and fulvic acids increased accumulation of NH4+in soil. The presence of carboxylic groups in humic molecules increased NH4+ retention with increasing soil's stock labile carbon. However, low percentage of these acids reduced their full effect on dry matter production. The availability of nitrate was not statistically different for all treatments. Low soil pH could had reduced nitrification processes and simultaneously soil NO3- content. Conclusion: Liquid form of humic and/or fulvic acids could play an important role in enhancing urea efficiency. However, their contribution needs to be studied in detail in relation to humic molecules characteristics. This study had a potential in the development of liquid and foliar organic fertilizers.

  13. Moderately thermophilic, hydrocarbonoclastic bacterial communities in Kuwaiti desert soil: enhanced activity via Ca(2+) and dipicolinic acid amendment.

    Science.gov (United States)

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2015-05-01

    Pristine and oil-contaminated desert soil samples from Kuwait harbored between 10 and 100 cells g(-1) of hydrocarbonoclastic bacteria capable of growth at 50 °C. Enrichment by incubation of moistened soils for 6 months at 50 °C raised those numbers to the magnitude of 10(3) cells g(-1). Most of these organisms were moderately thermophilic and belonged to the genus Bacillus; they grew at 40-50 °C better than at 30 °C. Species belonging to the genera Amycolatopsis, Chelativorans, Isoptericola, Nocardia, Aeribacillus, Aneurinibacillus, Brevibacillus, Geobacillus, Kocuria, Marinobacter and Paenibacillus were also found. This microbial diversity indicates a good potential for hydrocarbon removal in soil at high temperature. Analysis of the same desert soil samples by a culture-independent method (combined, DGGE and 16S rDNA sequencing) revealed dramatically different lists of microorganisms, many of which had been recorded as hydrocarbonoclastic. Many species were more frequent in the oil contaminated than in the pristine soil samples, which may reflect their hydrocarbonoclastic activity in situ. The growth and hydrocarbon consumption potential of all tested isolates were dramatically enhanced by amendment of the cultures with Ca(2+) (up to 2.5 M CaSO4). This enhanced effect was even amplified when in addition 8 % w/v dipicolinic acid was amended. These novel findings are useful in suggesting biotechnologies for waste hydrocarbon remediation at moderately high temperature.

  14. Comparison of Paraffin Bait, Humic Acid Vitamin B Agar and Paraffin Agar Methods to Isolate Nocardia from Soil

    Directory of Open Access Journals (Sweden)

    Rasoulinasab, M. (MSc

    2014-06-01

    Full Text Available Background and Objective: The Isolation of Nocardia species is complex and time-consuming, which is due to rapid growth of adjacent bacteria. Because of the importance of a specific medium with the ability of controlling intrusive microorganisms, this study aimed at comparing three laboratory methods to introduce the reliable isolation technique for Nocardia species. Material and Methods: The soil samples were collected from different regions of Tehran province, Iran, and carefully transferred to the laboratory. The samples were cultured in three different media including Paraffin Baiting,Humic acid vitamin B agar and Paraffin agar, and incubated for 3-4 weeks at 35 °C. Results: Of 110 soil samples, 31 Nocardia isolates (28.18% were obtained from the media including Paraffin Baiting, (19; 17.27%, Humic acid and vitamin B agar (4; 3.63%, and Paraffin agar, (8; 7.27%. Conclusion: because of high rate of isolation, low cost and the clearance of colonies suspected nocardia, Paraffin Bait technique is more reliable and efficient compared to the other methods. Key words: Nocardia; Soil; Paraffin Baiting; Humic Acid Vitamin B

  15. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2015-04-01

    Full Text Available Using a pulse-chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of root-associated soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h and DNA (30 h turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 d, while phospholipid fatty acids (PLFAs had the slowest turnover (42 d. PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

  16. Atrazine degradation and residues distribution in two acid soils from temperate humid zone.

    Science.gov (United States)

    Mahía, J; Díaz-Raviña, M

    2007-01-01

    Mineralization of atrazine and formation of extractable and non-extractable "bound" residues were followed under laboratory conditions in two contrasting soils (organic C, texture, and atrazine application history) from northern Spain. The soils, a Humic Cambisol (MP) and a Gleyic Cambisol (G) were incubated with labeled atrazine (ring-13C atrazine) at field application dose and measurements were made at different time intervals during 3 mo. Fate and behavior of atrazine along the incubation showed different patterns between the two soils, the time taken for degradation of 50% (DT50) being 9 and 44 d for MP and G soils, respectively. In MP soil, with 40 yr of atrazine application and lower organic C and clay content, more than 89% of U-13C-atrazine added was mineralized after 12 wk, with most mineralization occurring within the first 2 wk. G soil, with 10 yr of atrazine application, exhibited a more progressive U-13C-atrazine mineralization, reaching 54% of initially added atrazine at 12 wk. Hydroxyatrazine and deisopropylatrazine were the metabolites founded in the extractable fraction, demonstrating that both chemical and biological processes are involved in atrazine degradation. Soil G showed during all the incubation times an extractable residues fraction greater than that in MP soil, indicating a high potential risk of soil and water contamination. Rapid microbial degradation through s-triazine ring cleavage was proposed to be the main decomposition pathway of atrazine for the two soils studied. Bound residues pool also differed notably between soils accounting for 9 and 41% of initially added atrazine, the higher values shown by soil with higher organic matter and clay content (G soil).

  17. GIS analysis of vulnerability to acidic deposition of soils in a region of the Northern Appennines; Uso di tecniche GIS per lo studio della sensibilita` alle deposizioni acide dei suoli di una area dell`Appennino piacentino e parmense

    Energy Technology Data Exchange (ETDEWEB)

    Vincini, Massimo [Piacenza, Univ. Cattolica del Sacro Cuore (Italy). Lab. Centralizzato Radioisotopi; Solinas, Chiara [Piacenza, Univ. Cattolica del Sacro Cuore (Italy). Fac. di Agraria. Istituto di Entomologia e Patologia Vegetale

    1997-04-01

    A study on the vulnerability to acidic depositions of the soils of forested ecosystems is conducted by GIS analysis in a region of the Northern Appennines. On the basis of soil pH and yearly precipitation the yearly soil intake of H{sup +} from unpolluted rain (pH 5.6) is calculated by Henderson-Hasselbach equation. The area of possible vulnerability to strong acidic anions such as SO{sub 4}{sup 2-} (soil pH {<=} 5.8 and lime content {<=} 0.5 %) is related to yearly precipitation in order to show the extension and the localization of forested ecosystems whose soils are more likely affected by base leaching as a long-term consequence of acidic depositions.

  18. Nitrosomonas europaea-like bacteria detected as the dominant b-subclass Proteobacteria ammonia oxidisers in reference and limed acid forest soils

    NARCIS (Netherlands)

    Carnol, M.; Kowalchuk, G.A.; De Boer, W.

    2002-01-01

    Net nitrification in intact soil cores and the community of ammonia-oxidising bacteria were studied in acid Norway spruce (Picea abies (L.) Karst) and sessile oak (Quercus petraea (Matt. Lieb.)) soils (Haute Ardenne, east Belgium) 18 months after treatment with 5tha1 dolomite lime. Liming caused a s

  19. Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis

    Science.gov (United States)

    Chan, Kok-Gan; Chong, Teik-Min; Adrian, Tan-Guan-Sheng; Kher, Heng Leong; Grandclément, Catherine; Faure, Denis; Yin, Wai-Fong; Dessaux, Yves; Hong, Kar-Wai

    2016-01-01

    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment. PMID:27512520

  20. Oxidation of humic acids from an agricultural soil and a lignite deposit: Analysis of lipophilic and hydrophilic products

    Energy Technology Data Exchange (ETDEWEB)

    Allard, B.; Derenne, S. [BIOEMCO, Paris (France)

    2007-07-01

    The composition of humic acids (HAs) isolated from an agricultural soil and a lignite deposit was examined via H{sub 2}O{sub 2} and RuO{sub 4} oxidation. The oxidation digests were separated into lipophilic and hydrophilic components. Information with regard to the source, degree of humification and preservation of easily degradable constituents of the HAs was obtained and results were compared with those obtained earlier for base hydrolysates of solvent-extracted fractions. H{sub 2}O{sub 2} oxidation of both HAs afforded lipophilic fractions containing high molecular weight compounds. The composition of the base hydrolysates of the lipophilic fractions strongly differed with the origin of the HA. The lipophilic components of the soil HA derived mainly from the higher plant polyesters cutin and suberin. The lipophilic components of the lignite HA predominantly comprised long chain alkanoic acids and alkanols. The patterns for the hydrophilic components released upon H{sub 2}O{sub 2} oxidation were found to be identical irrespective of the origin of the HA. The hydrophilic fractions comprised aliphatic (poly)carboxylic acids related to carbohydrate moieties and benzene polycarboxylic acids. The relative abundance of benzene polycarboxylic acids increased with the degree of humification. For both HAs, RuO{sub 4} oxidation resulted in a lipophilic fraction containing low molecular weight products identical to those found in the base hydrolysate of the lipophilic fraction released upon H{sub 2}O{sub 2} oxidation. The hydrophilic components released upon RuO{sub 4} oxidation were independent of the HA origin and consisted mainly of monosaccharides and disubstituted aromatic compounds. In agreement with the greater aromaticity of lignite HA, the aromatic compound/carbohydrate ratio was higher for lignite HA than soil HA. The results show that the fused aromatic structures had a small size and that carbohydrates could escape degradation during the humification process.

  1. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  2. Phosphate status and acid phosphatase activity in soil and ectomycorrhizas in two mature stands of scots pine (Pinus sylvestris L. exposed to different levels of anthropogenic pollution

    Directory of Open Access Journals (Sweden)

    Barbara Kieliszewska-Rokicka

    2014-01-01

    Full Text Available The relations between anthropogenic environmental pollution and the level of inorganic phosphorus in soil, enzyme activities of extracellular soil acid phosphatase and the surface acid phosphatase of excised ectomycorrhizas of Scots pine (Pinus sylvestris L. were studied. Soil and root samples were taken from two Scots pine stands in central Poland: a polluted site exposed to long-term pollution from a steelworks and the city of Warsaw and a reference plot (control free from direct impact of pollution. The polluted site was characterised by high concentration of trace elements (Cd, Pb, Cu, Zn, Mn, Cr and low level of inorganic phosphate in soil. This site had significantly lower enzyme activities of soil acid phosphatase (0.54 µmoles p-nitrophenol released g-1 dry weight h-1 and surface acid phosphatase of pine ectomycorrhizas (3.37 µmoles p-nitrophenol released g-1 fresh weight h-1 than the control site (1.36 µmoles p-nitrophenol released g-1 dry weight h-1 and 12.46 µmoles p-nitrophenol released g-1 fresh weight h-1, respectively. The levels of phosphate, carbon and nitrogen in pine fine roots were also analysed. Low concentrations of P04-P and high N: P ratio in pine fine roots from polluted site were found. The results suggest that soil pollutants may have a negative effect on the extracellular acid phosphatase of soil and Scots pine ectomycorrhizas and on the phosphorus status in fine roots of the plant.

  3. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir].

    Science.gov (United States)

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong

    2015-12-01

    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.

  4. Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate.

    Science.gov (United States)

    Meunier, Nathalie; Drogui, Patrick; Montané, Camille; Hausler, Robert; Mercier, Guy; Blais, Jean-François

    2006-09-01

    This paper provides a quantitative comparison between electrocoagulation and chemical precipitation based on heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) removal from acidic soil leachate (ASL) at the laboratory pilot scale. Chemical precipitation was evaluated using either calcium hydroxide or sodium hydroxide, whereas electrocoagulation was evaluated via an electrolytic cell using mild steel electrodes. Chemical precipitation was as effective as electrocoagulation in removing metals from ASL having low contamination levels (30 mg Pbl(-1) and 18 mg Znl(-1)). For ASL enriched with different metals (each concentration of metals was initially adjusted to 100 mg l(-1)), the residual Cr, Cu, Pb and Zn concentrations at the end of the experiments were below the acceptable level recommended for discharge in sewage urban works (more than 99.8% of metal was removed) using either electrocoagulation or chemical precipitation. Cd was more effectively removed by electrochemical treatment, whereas Ni was easily removed by chemical treatment. The cost for energy, chemicals and disposal of metallic residue of electrocoagulation process ranged from USD 8.83 to 13.95 tds(-1), which was up to five times lower than that recorded using chemical precipitation. Highly effective electrocoagulation was observed as the ASL was specifically enriched with high concentration of Pb (250-2000 mg Pbl(-1)). More than 99.5% of Pb was removed regardless of the initial Pb concentration imposed in ASL and, in all cases, the residual Pb concentrations (0.0-1.44 mg l(-1)) were below the limiting value (2.0 mg l(-1)) for effluent discharge in sewage works.

  5. Effects of mulch on soil properties and on the performance of late season cassava (Manihot esculenta Crantz on an acid ultisol in Southwestern Zaire

    Directory of Open Access Journals (Sweden)

    Lutaladio, NB.

    1992-01-01

    Full Text Available Mulch effects on soil temperature, soil moisture content, soil chemical properties, growth and development, yield and yield components of late season cassava were investigated for three years on an acid ultisol in the tropical sa vanna zone of Southwestern Zaire. Diurnal soil temperature and soil moisture content were recorded at 30-day intervals during the first 4 months of growth. Cassava growth and development were monitored a t3, 6 and 9 months after planting while yield and yield components were noted at 12 months after planting. After each cropping year, changes in soil chemical constituents were recorded. Mulching significantly reduced soil temperature by about 3.5°C and increased soil moisture content by 6.1 % under late season cassava. Soil pH, soil organic carbon content, total nitrogen, soil available phosphorus and soil exchangeable cations (Ca, Mg, K increased as a result of increase in organic matter with continuous application of mulch for 3 years. Plant height, leaf area, shoot and root dry weights of cassava plants given mulch were significantly increased as compared to the plants in unmulched plots. Cassava plants given mulch produced more and bigger storage roots than unmulched plants. Storage root yield increased by 16.7, 28.1 and 57.7 % respectively in the first, the second and the third years of mulch application. The beneficiai effect of mulching over no-mulching increased from year to year, irrespective of cassava cultivars.

  6. Effect of Soil Moisture on Release of Low-MolecularWeight Organic Acids in Root Exudates and the Accumulation of Iron in Root Apoplasm of Peanut

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of "lime-induced chlorosis" peanut grown on a calcareous soil in relation to different soil moisture conditions. Results showed that chlorosis of peanuts developed under condition of high soil moisture level (250 g kg-1), while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level (150 g kg-1). The malic acid, maleic acid and succinic acid contents of chlorotic peanut increased by 108.723, 0.029 and 22.446μg cm-2, respectively,compared with healthy peanuts. The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts. On Days 28 and 42 of peanut growth, the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts. From Day 28 to Day 42, the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the same, being 52.4% and 52.8%,respectively, indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under high soil moisture conditions.

  7. Cu retention in an acid soil amended with perlite winery waste

    DEFF Research Database (Denmark)

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía

    2016-01-01

    determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also...

  8. Dissipation of pterosin B in acid soils - tracking the fate of the bracken fern carcinogen ptaquiloside

    DEFF Research Database (Denmark)

    Skourti-Stathaki, Eirini; Clauson-Kaas, Frederik; Brandt, Kristian Koefoed

    2016-01-01

    -free areas. Soil samples were incubated with pterosin B at 3 and 8 μg g(-1) for 10 days, whereas sterile (autoclaved) samples were incubated for 23 days. Pterosin B showed unexpected fast degradation in soils with full degradation in topsoils in 2-5 days. Pterosin B dissipation followed the sum of two...

  9. FUNGUS INDEX AND RESIDUAL EFFECTS OF PESTICIDES IN ACID AND ALKALINE SOILS

    Science.gov (United States)

    Soil applied pesticides have profound effects on the population density and diversity of fungi, however, such information is lacking in tropical soils of the Amazon region. Field experiments were implemented at two experimental farms ("El Choclito", "Bello Horizonte”) of Tropical Crop Institute (ICT...

  10. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Science.gov (United States)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  11. Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nicora, Carrie D.; Anderson, Brian J.; Callister, Stephen J.; Norbeck, Angela D.; Purvine, Samuel O.; Jansson, Janet K.; Mason, Olivia U.; David, Maude; Jurelevicius, Diogo D.; Smith, Richard D.; Lipton, Mary S.

    2013-10-01

    Characterization of geomicrobial protein expression provides information necessary to better understand the unique biological pathways that occur within soil microbial communities and the role they play in regulating atmospheric CO2 levels and the Earth’s climate. A significant challenge in studying soil microbial proteins is their initial dissociation from the complex mixture of particles found in natural soil. Due to bias of the most robust cells, the removal of intact bacterial cells limits the characterization of the complete representation of a microbial community. However, in-situ lysis of bacterial cells leads to the expulsion of proteins to the soil surface, which can lead to potentially high levels of adsorption due to the physicochemical properties of both the protein and the soil. We investigated various compounds for their ability to block protein adsorption soil sites prior to in-situ lysis of bacterial cells, as well as their compatibility with both tryptic digestion and mass spectrometric analysis. The treatments were tested by adding lysed Escherichia coli proteins to representative treated and untreated soil samples. The results show that it is possible to significantly increase protein identifications through blockage of binding sites on a variety of soil textures; use of an optimized desorption buffer further increases the number of identifications.

  12. Drainage, liming and fertilization of organic soils. 1. Long-term effects on acid/base relations

    Energy Technology Data Exchange (ETDEWEB)

    Braekke, F.H. [Norges Landbrukshoegskole, Aas (Norway). Dept. of Forest Sciences

    1999-06-01

    Long-term changes of the acid/base relations of organic soils after drainage, fertilization and/or liming at three experimental sites - two ombrogenous and one soligenous - in south-central Norway are discussed. These sites were drained, fertilized and/or limed in 1953-1956 and sampled in 1991-1992. Drainage at the ombrogenous sites caused: insignificant shifts of pH, higher bulk densities to 40 cm depth, higher ash percentage, higher contents of N and P to 20 cm depth and reduced concentrations of total Ca, K, Mg, Na, Al and Fe in soil layers deeper than 20 cm. The soligenous site was not effectively drained; despite this, pH dropped about 0.5 unit in the surface and subsurface soil layers of the control plots, while small changes were measured for most other soil variables. The suggested reason for the pH drop is limited sulphide oxidation in the upper 20 cm drained layer. Base saturation at actual soil pH, when all treatments were included, was estimated with good precision by four regressors: pH, extractable Al, extractable Fe and extractable Ca (R{sup 2} = 0.90-0.95). Similar models explained 97-99% of the variation in base saturation at soil pH = 7.0. The lime effects at the properly drained oligotrophic sites were proportional to applied doses; for pH to 40 cm, base saturation to 60 cm, and Ca concentration to 60 cm depth. At the less well-drained soligenous site, effects were limited to the upper 30 cm layer. Both drainage and liming caused higher cation exchange capacities and proper drainage seems to be a prerequisite for the liming effect. Estimated recovery of calcium to 60 cm depth was 64-79% at the ombrogenous sites and 42-46% at the soligenous site 28 refs, 3 figs, 8 tabs

  13. Attenuation of Metal Bioavailability in Acidic Multi-Metal Contaminated Soil Treated with Fly Ash and Steel Slag

    Institute of Scientific and Technical Information of China (English)

    QIU Hao; GU Hai-Hong; HE Er-Kai; WANG Shi-Zhong; QIU Rong-Liang

    2012-01-01

    A pot experiment was conducted with multi-metal (Pb,Cd,Cu,and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag).The efficiency of amendmentsinduced metal stabilization was evaluated by diffusive gradients in thin films (DGT),sequential extraction,and plant uptake.The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling.Addition of fly ash (20 g kg-1) and steel slag (3 g kg-1 ) resulted in similar increase in soil pH.Both amendments significantly decreased the concentrations of metals measured with DGT (CDGT) and the metal uptake by Oryza sativa L.Significant correlations were found between CDGT and the concentration of a combination of metal fractions (exchangeable,bound to carbonates,and bound to Fe/Mn oxides),unraveling the labile species that participate in the flux of metal resupply.The capability of metal resupply,as reflected by the R (ratio of CDGT to pore water metal concentration) values,significantly decreased in the amended soils.The CDGT correlated well with the plant uptake,suggesting that DGT is a good indicator for bioavailability.Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level.Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe,Al and Ca minerals,which may play a positive role in metal stabilization.Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.

  14. Determination of the Proportion of Total Soil Extracellular Acid Phosphomonoesterase (E.C. 3.1.3.2 Activity Represented by Roots in the Soil of Different Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Klement Rejsek

    2012-01-01

    Full Text Available The aim of this study is to present a new method for determining the root-derived extracellular acid phosphomonoesterase (EAPM activity fraction within the total EAPM activity of soil. EAPM activity was determined for roots, organic and mineral soil. Samples were collected using paired PVC cylinders, inserted to a depth of 15 cm, within seven selected forest stands. Root-derived EAPM formed between 4 and18% of the total EAPM activity of soil from forests of differing maturity. A new approach, presented in this work, enables separation of root-derived EAPM activity from total soil EAPM. Separation of root-derived EAPM from soil provides a better understanding of its role in P-cycling in terrestrial ecosystems. The method presented in this work is a first step towards the separation of root- and microbe-derived EAPM in soils, which are thought to possess different kinetic properties and different sensitivity to environmental change.

  15. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    Science.gov (United States)

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  16. Characterization of Firing Range Soil from Camp Edwards, MA, and the Efficacy of Acid and Alkaline Hydrolysis for the Remediation of M1 105mm M67 Propellant

    Science.gov (United States)

    2013-06-01

    using 3/4–in. AMS butyrate plastic soil recovery liners (Forestry Supply, Jackson, MS). The subsamples were well mixed, yielding a representative...ER D C/ EL T R -1 3 -1 0 Characterization of Firing Range Soil from Camp Edwards, MA, and the Efficacy of Acid and Alkaline Hydrolysis...acwc.sdp.sirsi.net/client/default. ERDC/EL TR-13-10 June 2013 Characterization of Firing Range Soil from Camp Edwards, MA, and the Efficacy of Acid and

  17. Effects of VA-Mycorrhiza on Growth and Phosphorus, Zinc, Iron, Copper and Manganese Concentrations of Maize Grown in Acid and Alkaline Soils

    OpenAIRE

    ÖZCAN, Hesna; Süleyman TABAN

    2000-01-01

    The aim of this study was to determine the effects of VA Mycorrhiza on P, Zn, Fe, Cu and Mn uptake by maize grown in alkaline and acid soils. For this purpose, maize was grown in sterilized alkaline and acid soils under greenhouse conditions by applying 100 mg N g -1 (as urea) and 40 mg K g -1 (as K 2 SO 4 ) as solution to the soils. 40 mg P g -1 (as TSP) was added to the pots that P was applied to, and a mixture of Glomus etunicatumand Glomus intraradiceswas inoculated to the pots that VA...

  18. Effects of citric acid and the siderophore desferrioxamine B (DFO-B) on the mobility of germanium and rare earth elements in soil and uptake in Phalaris arundinacea.

    Science.gov (United States)

    Wiche, Oliver; Tischler, Dirk; Fauser, Carla; Lodemann, Jana; Heilmeier, Hermann

    2017-02-03

    Effects of citric acid and desferrioxamine B (DFO-B) on the availability of Ge and selected REEs (La, Nd, Gd, Er) to P. arundinacea were investigated. A soil dissolution experiment was conducted to elucidate the effect of citric acid and DFO-B at different concentrations (1 and 10 mmol l(-1) citric acid) on the release of Ge and REEs from soil. In a greenhouse plants of P. arundinacea were cultivated on soil and on sand cultures to investigate the effects of citric acid and DFO-B on the uptake of Ge and REEs by the plants. Addition of 10 mmol l(-1) citric acid significantly enhanced desorption of Ge and REEs from soil and uptake into soil-grown plants. Applying DFO-B enhanced the dissolution and the uptake of REEs, while no effect on Ge was observed. In sand cultures, presence of citric acid and DFO-B significantly decreased the uptake of Ge and REEs, indicating a discrimination of the formed complexes during uptake. This study clearly indicates that citric acid and the microbial siderophore DFO-B may enhance phytoextraction of Ge and REEs due to the formation of soluble complexes that increase the migration of elements in the rhizosphere.

  19. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    Science.gov (United States)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  20. Effects of humic acids and microorganisms on decabromodiphenyl ether, 4,4′-dibromodiphenyl ether and anthracene transportation in soil

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study, effects of humic acids (HA) and microorganisms on the migration of hydrophobic organic contaminants (HOCs), decabromodiphenyl ether (BDE-209), 4,4′-dibromodiphenyl ether (BDE-15) and anthracene, in soils were examined. More soil particles were dispersed into the colloidal phase (0.22-1 μm) in the presence of HA and/or microorganisms as a result of increased erosion and friction. The study suggested that PBDEs (BDE-209 and BDE-15) and anthracene in soils would be transported to other places by soil colloids with surface and underground water flow given the high concentrations of HA and microorganisms in the natural environment.

  1. Structure formation of soil dispersions in the presence of polyelectrolytes on the basis of allyl alcohol and acryl acid derivatives

    Directory of Open Access Journals (Sweden)

    Amankait Asanov

    2015-09-01

    Full Text Available Some changes of structural composition and surface properties of soil dispersions in the presence of polyelectrolytes, based on allyl alcohol and acryl acid derivatives, have been studied. The results show, that the changes in the structure of soil dispersions composition are connected with the added concentration and pH value, that depend on mole ratio and nature of functional groups, as well as on the nature of counterions and concomitant electrolytes, changing with the conditions of polymer analogous conversion and neutralization reaction. Experimental data show, that the change in the conformational state and the length of the macromolecule has a significant impact on the structure-forming effect and the amount of polyelectrolyte, needed to achieve the same degree of structure-forming effect of soil dispersions. The causes for the revealed reasons are shown on the basis of the results of the experiment. Along with this, it was found that particular changes of structural composition and surface properties of the soil dispersions depend on the type and concentration of the added polyelectrolyte.

  2. The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil

    Directory of Open Access Journals (Sweden)

    I Wahyudi

    2015-01-01

    Full Text Available A study that was aimed to elucidate roles of Gliricidia sepium and Tithonia diversifolia prunings and their extracted humic and fulvic acids on improving phosphorus availability and decreasing aluminum concentration in an Ultisol was conducted in a glasshouse. Thirteen treatments consisting of two prunings, six rates of pruning application (5, 7.5, 10, 20, 40 and 80 t/ha and one control (no added prunings were arranged in a randomized block design with four replicates. Each mixture of prunings and soil was placed in a pot containing 8 kg of soil and maize of Srikandi cultivar was grown on it for 45 days. At harvest, soil pH, P content and aluminium concentration were measured. Results of the glasshouse experiment showed that application of Gliricidia and Tithonia prunings significantly increased soil pH, reduced Alo concentration, increased Alp content, increased P availability, and increased P taken up by maize grown for 45 days. The optimum rate of both Gliricidia and Tithonia pruning should be 40 t/ha. However, at the same rate, optimum production gained by Tithonia would be higher than that of Gliricidia.

  3. Acid-base properties of water-soluble organic matter of forest soils, studied by the pK-spectroscopy method.

    Science.gov (United States)

    Shamrikova, E V; Ryazanov, M A; Vanchikova, E V

    2006-11-01

    Using the potentiometric titration and pK spectroscopy method, acid-base properties of water-soluble organic matter of forest soils have been studied. Five acidic classes composed of different substances with pK(a) values around 3.6; 4.8; 6.7; 8.7 and 9.7 have been identified. Testing the properties of soluble soil fraction, it is to be taken into account that when it is isolated from non-soluble soil matter, some water-soluble substances remain in soil and do not pass into the solution. Most firmly adsorbed in soil are water-soluble components with pK(a) 9.6-9.8.

  4. [Inhibition of Low Molecular Organic Acids on the Activity of Acidithiobacillus Species and Its Effect on the Removal of Heavy Metals from Contaminated Soil].

    Science.gov (United States)

    Song, Yong-wei; Wang, He-rul; Cao, Yan-xiao; Li, Fei; Cui, Chun-hong; Zhou, Li

    2016-05-15

    Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil.

  5. [Study on heavy metals in soils contaminated by acid mine drainage from Dabaoshan mine, Guangdong].

    Science.gov (United States)

    Fu, Shan-Ming; Zhou, Yong-Zhang; Zhao, Yu-Yan; Zeng, Feng; Gao, Quan-Zhou; Peng, Xian-Zhi; Dang, Zhi; Zhang, Cheng-Bo; Yang, Xiao-Qiang; Yang, Zhi-Jun; Dou, Lei; Qiu, Rong-Liang; Ding, Jian

    2007-04-01

    Mining activities in the Dabaoshan area in the upper reach of the Hengshihe River have caused severe environmental changes, the waste water of milling and refining drained directly into the Hengshihe River, which contaminated the soils along the river severely. It is shown that Pb, Zn, Cd and Cu have contaminated the soil, the Cd contamination was more severe, and the contaminated level of Pb, Zn reached moderately to strongly polluted. The pH value of river and soil affected directly the heavy metals concentration of total and exchangeable ions, and presented negative pertinences. The levels of Pb, Zn, Cu and Cd in the surface soil of Shangbacun village in the lower reach of the river were found as high as 257.762, 350.235, 5.083 and 186.901 mg x kg(-1) respectively, which were relatively higher than those of the background values of soil 1.03, 1.75, 16.9 and 3.7 times respectively, and the result on the soil profiles showed that the contaminations have infiltrated into lower layer soil, ecological environment was harmed severely.

  6. Lime and compost promote plant re-colonization of metal-polluted, acidic soils.

    Science.gov (United States)

    Ulriksen, Christopher; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2012-09-01

    The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.

  7. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    in the extraradical mycelium was positively correlated with the level of root infection and thus decreased with increasing applications of P. The neutral lipid/phospholipid ratio indicated that at high P levels, less carbon was allocated to storage structures. At all levels of P applied, the major part of the AM......The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...

  8. Amino acid and N mineralization dynamics in heathland soil after long-term warming and repetitive drought

    Science.gov (United States)

    Andresen, L. C.; Bode, S.; Tietema, A.; Boeckx, P.; Rütting, T.

    2015-04-01

    Monomeric organic nitrogen (N) compounds such as free amino acids (FAAs) are an important resource for both plants and soil microorganisms and a source of ammonium (NH4+) via microbial FAA mineralization. We compared gross FAA dynamics with gross N mineralization in a Dutch heathland soil using a 15N tracing technique. A special focus was made on the effects of climate change factors warming and drought, followed by rewetting. Our aims were to (1) compare FAA mineralization (NH4+ production from FAAs) with gross N mineralization, (2) assess gross FAA production rate (depolymerization) and turnover time relative to gross N mineralization rate, and (3) assess the effects of a 14 years of warming and drought treatment on these rates. The turnover of FAA in the soil was ca. 3 h, which is almost 2 orders of magnitude faster than that of NH4+ (i.e. ca. 4 days). This suggests that FAA is an extensively used resource by soil microorganisms. In control soil (i.e. no climatic treatment), the gross N mineralization rate (10 ± 2.9 μg N g-1 day-1) was 8 times smaller than the total gross FAA production rate of five AAs (alanine, valine, leucine, isoleucine, proline: 127.4 to 25.0 μg N g-1 day-1). Gross FAA mineralization (3.4 ± 0.2 μg N g-1 day-1) contributed 34% to the gross N mineralization rate and is therefore an important component of N mineralization. In the drought treatment, a 6-29% reduction in annual precipitation caused a decrease of gross FAA production by 65% and of gross FAA mineralization by 41% compared to control. On the other hand, gross N mineralization was unaffected by drought, indicating an increased mineralization of other soil organic nitrogen (SON) components. A 0.5-1.5 °C warming did not significantly affect N transformations, even though gross FAA production declined. Overall our results suggest that in heathland soil exposed to droughts a different type of SON pool is mineralized. Furthermore, compared to agricultural soils, FAA mineralization

  9. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  10. Determination of flumequine and oxolinic acid in sediments and soils by microwave-assisted extraction and liquid chromatography-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Prat, M.D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)]. E-mail: mdprat@ub.edu; Ramil, D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Compano, R. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Hernandez-Arteseros, J.A. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Granados, M. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)

    2006-05-17

    A method is reported for the determination of the quinolones oxolinic acid and flumequine in aquatic sediments and agricultural soils. The analytes are extracted by liquid-liquid partitioning between a sample homogenated in an aqueous buffer solution and dichloromethane. Microwave-assisted extraction (MAE) was tested to improve the speed and efficiency of the extraction process. The parameters affecting the efficiency of MAE, such as irradiation time and temperature, were studied. The clean-up consists of back-extraction in 1 M sodium hydroxide. The determination is carried out by reversed phase liquid chromatography on an octyl silica-based column and fluorimetric detection. The optimised method was applied to the analysis of two sediments and one agricultural soil spiked with the analytes. The absolute recovery rates for the whole process range from 79% to 94% (RSD 3-7%), and detection limits are in the low {mu}g kg{sup -1} level.

  11. Acid rain and resulting chemical composition of soils; Der saure Regen und die daraus resultierende chemische Zusammensetzung der Bodenloesungen

    Energy Technology Data Exchange (ETDEWEB)

    Ugolini, F.C. [Dipt. di Scienza del Suolo e Nutrizione della Pianta, Univ. Florenz (Italy); Cecchini, G. [Dipt. di Scienza del Suolo e Nutrizione della Pianta, Univ. Florenz (Italy); Buffoni, A. [ENEL - CRTN, Mailand (Italy); Sanesi, G. [Dipt. di Scienza del Suolo e Nutrizione della Pianta, Univ. Florenz (Italy)

    1993-11-01

    The input of free acids in the central and northern Appenine mountains is low and gets almost fully neutralised on its path through the vegetation. Nitrogen penetrating the ecosystem is largely accumulated. Soil solutions show low acidities and low aluminium contents. Formation of chelates of organic pollutant and stratification of vermiculite account for Al-immobilisation. At Monte Mottarone too, acid input which is considerably higher but neutralised during transition through the vegetation. A greater part of the ammonia is accumulated in the soil, a considerable output of nitrate takes place. This leads to strong acidification and mobilises large amounts of aluminium. (orig./EW). [Deutsch] Im zentralen und noerdlichen Appenin ist der Input an freien Saeuren gering und wird auch fast zur Gaenze beim Durchgang durch die Vegetation neutralisiert. Der ins Oekosystem gelangende Stickstoff wird zum Grossteil angereichert. Die Bodenloesung ist gering sauer und enthaelt wenig Aluminium. Die Chelatbildung der organischen Substanz und die Vermikulitschichtung sind die beiden fuer die Al-Immobilisierung ausschlaggebenden Prozesse. Auch am Monte Mottarone wird der Saeure-Input, der dort allerdings um einiges hoeher ist, zum Grossteil beim Durchgang durch den Bewuchs neutralisiert. Im Boden wird ein grosser Teil des Ammoniums angereichert, waehrend ein beachtlicher Nitrat-Austrag stattfindet. Dies fuehrt zu einer starken Versauerung und dementsprechend auch zur Mobilisierung grosser Aluminiummengen. (orig.)

  12. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

    Science.gov (United States)

    Meng, Han; Wang, Yong-Feng; Chan, Ho-Wang; Wu, Ruo-Nan; Gu, Ji-Dong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two new processes of recent discoveries linking the microbial nitrogen and carbon cycles. In this study, 16S ribosomal RNA (rRNA) gene of anammox bacteria and pmoA gene of n-damo bacteria were used to investigate their distribution and diversity in natural acidic and re-vegetated forest soils. The 16S rRNA gene sequences retrieved featured at least three species in two genera known anammox bacteria, namely Candidatus Brocadia anammoxidans, Candidatus Brocadia fulgida, and Candidatus Kuenenia stuttgartiensis while the pmoA gene amplified was affiliated with two species of known n-damo bacteria Candidatus Methylomirabilis oxyfera and a newly established Candidatus Methylomirabilis sp. According to the results, the diversity of anammox bacteria in natural forests was lower than in re-vegetated forests, but no significant difference was observed in n-damo community between them. Quantitative real-time PCR showed that both anammox and n-damo bacteria were more abundant in the lower layer (10-20 cm) than the surface layer (0-5 cm). The abundance of anammox bacteria varied from 2.21 × 10(5) to 3.90 × 10(6) gene copies per gram dry soil, and n-damo bacteria quantities were between 1.69 × 10(5) and 5.07 × 10(6) gene copies per gram dry soil in the two different layers. Both anammox and n-damo bacteria are reported for the first time to co-occur in acidic forest soil in this study, providing a more comprehensive information on more defined microbial processes contributing to C and N cycles in the ecosystems.

  13. Mapping potential acid sulfate soils in Denmark using legacy data and LiDAR-based derivatives

    DEFF Research Database (Denmark)