WorldWideScience

Sample records for acid soils

  1. Some negative chemical properties of acid soils

    OpenAIRE

    SVETLANA ANTIC-MLADENOVIC; SRDJAN BLAGOJEVIC; MIRJANA KRESOVIC; MIODRAG JAKOVLJEVIC

    2005-01-01

    Some important chemical properties of various samples of two types of acid soil fromWestern Serbia (pseudogley and brown forest) are presented in this paper.Mobile Al was found in elevated and toxic quantities (10–30 mg/100 g) in the more acid samples of pseudogley soil. All samples of brown forest soil were very acid and the quantities ofmobile Al were in the range from 12.8 to 90.0mg/100 g. In a selected number of pseudogley soils, the influence of pH and other soil properties on the minera...

  2. Replenishing Humic Acids in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  3. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  4. Total Nucleic Acid Extraction from Soil

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Roey Angel ### Abstract The following protocol is intended for the simultaneous extraction of DNA and RNA from various soil samples along with suggestions on how to tweak the protocol for soil with higher humic content. The protocol has been used by many and results in very high yields of nucleic acids, typically much more than commercial kits. For buffers and solutions used in this protocol, please see accompanying document Buffers and Solutions for TNA Extractions.pdf. ...

  5. Brown coal derived products ameliorating soil acidity

    Energy Technology Data Exchange (ETDEWEB)

    Issa, J.; Patti, A.F.; Jackson, W.R. [Monash University, Clayton, Vic. (Australia). Centre for Green Chemistry

    2000-07-01

    Humic acid derived from brown coal, with added calcium, when applied to the soil surface, can increase pH deeper into the soil profile. The humates can move down with water percolating the soil. As they move down the added calcium bound to the humate's cation exchange sites (the acidic oxygen functional groups) can exchange with toxic aluminium ions and ions on exchange sites in the soil. Thus the soil pH is buffered, nutrient transport to plants assisted, and phytotoxic aluminium bound and rendered harmless to plants. K Humate is a commercially available source of humate (ex HRL Agriculture Pty Ltd Australia) derived from brown coal. It can be obtained by the treatment of brown coal with potassium hydroxide. Calsulmag is a commercial treated coal fly ash (also ex HRL Agriculture Pty Ltd) which can be used instead of lime due to its high inorganic calcium and magnesium content. When K humate and Calsulmag are combined in an aqueous mixture, and applied to the surface of an acidic soil, pH is increased (from 3.8 to 4.5) as is exchangeable calcium (30-50%), while exchangeable aluminium is decreased (30-50%), down to a 5 cm depth.

  6. Designer, acidic biochar influences calcareous soil characteristics.

    Science.gov (United States)

    Ippolito, J A; Ducey, T F; Cantrell, K B; Novak, J M; Lentz, R D

    2016-01-01

    In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils. PMID:26077798

  7. Exchangeable aluminum evaluation in acid soils

    Directory of Open Access Journals (Sweden)

    Abreu Jr. Cassio Hamilton

    2003-01-01

    Full Text Available One of the main factors limiting agricultural production in tropical climate regions is mainly related to the presence of exchangeable aluminum (Al3+ in highly weathered acid soils. Four methods of Al3+ determination extracted with neutral 1 mol L¹ KCl solution were evaluated: three colorimetric methods (aluminon plus ascorbic acid, and eriochrome cyanine R by FIA and the usual titrimetric method with back-titration. Surface samples from 20 soils of different Brazilian regions, with active acidity (0.01 mol L¹ CaCl2 pH ranging from very high to medium (3.82 to 5.52, were used. The variance analysis revealed significant interaction among Al3+ determination methods and soil. Mean methods comparisons within each soil (Tukey, P 10 mmol c dm³. Among colorimetric methods, in operational terms, the eriochrome with FIA method presented analytical performance up to 50 samples per hour, easiness and sensibility for routine Al analysis in soil samples. However, due to the specificity, the titration/back-titration method should be used, despite the moroseness, when the Al3+ ions are the objective.

  8. Impact of Seasalt Deposition on Acid Soils in Maritime Regions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-Hua

    2003-01-01

    The characteristics of seasalt deposition and its impact on acid soils in maritime regions are reviewed. It is pointed out that studies involving the impact of seasalt deposition on acid soils have been concentrated on short-term effects on soil and water acidification. A deep consideration of long-term effects on soil acidification in maritime regions is still needed.

  9. Genesis and solution chemistry of acid sulfate soils in Thailand

    NARCIS (Netherlands)

    Breemen, van N.

    1976-01-01

    To study short-term and long-term chemical processes in periodically flooded acid sulfate soils in the Bangkok Plain and in various smaller coastal plains along the Gulf of Thailand, 16 acid sulfate soils and one non-acid marine soil were examined for distribution of iron-sulfur compounds, elemental

  10. Copper binding to soil fulvic and humic acids

    NARCIS (Netherlands)

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K.

    2016-01-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of

  11. Alleviation of Soil Acidity and Aluminium Phytotoxicity in Acid Soils by Using Alkaline-Stabilised Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A pot experiment was carried out to study alleviation of soil acidity and Al toxicity by applying an alkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acid sandy loam (pH 4.5). Barley (Hordeum vulgare L. cv. Forrester) was used as a test crop and was grown in the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that the alkaline biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandy loam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil and from 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yield increased greatly in the amended treatments compared with the unamended controls. These observations indicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity in strongly acid soils by increasing soil pH and lowering Al bioavailability.

  12. Isolation and Characterization of Soil Fulvic Acid

    Directory of Open Access Journals (Sweden)

    Mir Munsif Ali Talpur

    2016-06-01

    Full Text Available Fulvic acid was isolated from the agriculture soil of District Naushahro Feroz, Sindh, Pakistan by International Humic Substances Society (IHSS method. The nutrient contents of the soil like N. P, K, Ca, Mg, Fe and Zn were determined by using the Atomic Absorption spectrophotometer (AAS. The Spectroscopic analysis was carried out by studying the UV-Vis, FT-IR and NIR spectra of isolated compounds. The data has been compared with the literature and correlated. Moisture as well as texture shows good water holding capacity and silt- loam type of soil. pH and EC are indicators of the fertility of soil to be beneficial for plantation. The spectral data (UV-Visible, FTIR and NIR supports the characteristic functional groups (-COOH, C=O, -OH, -NH2, C=C, CH2 and Polysaccharides present in Fulvic acid. E4/E6 values depict its hydrophilic nature, having less aromatic and more aliphatic groups. The presence of metal ions indicates its chelating ability.

  13. Characterization of Soil Humin by Acid Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    李云峰; 徐建民; 等

    1999-01-01

    Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.

  14. Factors Affecting Sensitivity of Variable Charge Soils to Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJING-HUA

    1995-01-01

    The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves.Two derivative parameters,the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution,were used.The sensitivity of variable charge soils was higher than that of constant charge soils,due to the predominance of kaolinite in clay mineralogical composition.Among these soils the sensitivity was generally of the order lateritic red soil>red soil> latosol.For a given type of soil within the same region the sensitivity was affected by parent material,due to differences in clay minerals and texture.The sensitivity of surface soil may be lower or higher than that of subsiol,depending on whether organic matter or texture plays the dominant role in determining the buffering capacity.Paddy soils consumed more acid within lower range of acid input when compared with upland soils,due to the presence of more exchangeable bases,but consumed less acid within higher acid input range,caused by the decrease in clay content.

  15. Amendment of Acid Soils with Crop Residues and Biochars

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-Hua; XU Ren-Kou; WANG Ning; LI Jiu-Yu

    2011-01-01

    The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential,and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.

  16. Phenolic Acids in Plant-Soil-Microbe System: A Review

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phenolic acids are very common compounds in pedosphere. The objective of this review was to summarize the current knowledge of the behaviors of phenolic acids in plant-soil-microbe system. When phenolic acids originated from leaching, decomposition and exudation of living and dead plant tissues enter soils, they can react physicochemically with soil particle surfaces and/or incorporate into humic matter. Phenolic acids desorbed from soil particle surfaces and remained in solution phase can be utilized by microbe as carbon sources and absorbed by plants. The degradation products of phenolic acids by microbe include some organic and/or inorganic compounds such as new phenolic acids. In addition, phenolic acids in soils can stimulate population and activity of microbe. Phenolic acids can inhibit plants growth by affecting ion leakage, phytohormone activity, membrane permeability, hydraulic conductivity, net nutrient uptake, and enzyme activity. Behaviors of phenolic acids in soils are influenced by other organic compounds (phenolic acids, methionine, glucose, etc.) and/or inorganic ions. The role of phenolic acids as allelopathic agents should not be neglected only based on their low specific concentrations in natural soils, because numbers and interactions of phenolic acids will increase their allelopathic activities.

  17. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  18. Fixation of radiocaesium in an acid brown forest soil

    International Nuclear Information System (INIS)

    The influence of clay minerals and organic matter on the sorption and desorption of radiocaesium in an acid brown forest soil is investigated. A highly selective adsorption of radiocaesium is often reported in the surface horizons of acid forest soils. For this reason, soil humus is often considered as a key parameter in modelling the behaviour of Cs in these soils. The Ca2+-clay fractions, extracted from the surface hemi-organic horizon and the deeper mineral horizons of an acid brown soil, exhibit similarly high Cs+ sorption properties. Desorption yields are much lower in the surface layers, resulting in higher net retention of radiocaesium. Organic matter dynamics in the soil containing Hydroxy Interlayered Vermiculite minerals has an indirect effect on radiocaesium retention properties through Al complexation by organic acids. Acidocomplexolysis of Hydroxy Interlayered Vermiculitic clays results in the formation of degraded vermiculite in the topsoil layers, inducing a larger amount of high charged interlayer sites for Cs+ specific adsorption

  19. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  20. Genotypic Differences of Forage Crop Tolerance to Acid Soils

    Institute of Scientific and Technical Information of China (English)

    YANGYUAI; CHUXIANGYUN; 等

    1998-01-01

    Twenty eight species of forage crops were planted on acid soils derived from Quaternary red clay(pH4.16) and red sandstone(pH4.55) to study genotypic differences of the forage crops in tolerance to acid soils as affected by liming,phosporus and potassium fertilizer application.Eight forage species,Lolium nultiflorum L., Brachiaria decumbens,Digitaria sumtisii,Melinis minutiflora,Paspalum dilatatum,Paspalum wettsteinii,Sataria viridis Beanv and Shcep's Festuca,were highly toleran to acid soils,and grew relatively well in the tested soils without lime application,whereas most of the other 20 tested forage species such as Lolium perenne L., Meadow Festuca and Trifolium praense L. were intolerant to acid soil ,showing retarded growth when the soil pH was below 5.5 and significant increase in dry matter yields by phosphrus fertilizer application at soil pH 6.0 Results showed that large differences in tolerance to acid soils existed among the forage species,and tolerance of the froage species to acid soils might be closely associated with their tolerance to Al and P efficiency.

  1. Liming of acid soils in Osijek-Baranja county

    Directory of Open Access Journals (Sweden)

    Dolijanović Željko

    2011-01-01

    Full Text Available The negative trend of soil degradation process increases with intensive agricultural production. Therefore, there is a need for soil conditioning like liming, humification, fertilization, etc. to improve soil quality. One of the major problems that occur on agricultural soils of Croatia is acidification. A downward trend of soil pH is mainly present in soils of poor structure with intensive agricultural production. In agricultural practice liming often needs to rely only on the pH value, without determining the hydrolytic acidity, CEC or soil texture. Due to the above mentioned facts, calculation of liming for Osijek-Baranja County was conducted with the help of ALRxp calculator, which takes CEC, soil pH in KCl, hydrolytic acidity, bulk density of soil, soil textural class and depth of the plow layer to 30 cm into account. Low soil pH values have a great influence on soil suitability for crops as well as on the deficit of calcium and magnesium. All of these lead to the degradation of soil structure, and can even lead to disturbances of plant nutrition in some production areas. On such soils, liming would be imperatively required, but with caution because an excessive intake of lime materials, especially without the necessary analysis, causes a decline in organic matter and reduces accessibility for plant uptake of microelements.

  2. Succession of Soil Acidity Quality and its Influence on Soil Phosphorus Types

    Institute of Scientific and Technical Information of China (English)

    DUANWenbiao; CHENLixin

    2004-01-01

    Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of

  3. The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Inoculant for Soybean Grown on Acid Soils

    Directory of Open Access Journals (Sweden)

    ANGELIA REZTY FITRIANI SITUMORANG

    2009-12-01

    Full Text Available Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max cultivation, although the production is low. The use of acid tolerant soybean and acid-Al tolerant nitrogen-fixing bacteria was an alternative way to increase soybean productivity on acid soils. This research was conducted to study the influence of acid-Al tolerant Bradyrhizobium japonicum on growth of Slamet cultivar soybean planted on acid soils in greenhouse. Three strains of acid-Al tolerant B. japonicum, i.e. BJ 11 (19, BJ 11 (5, and BJ 11 (wt, were used in this experiment. The result showed that inoculation of all acid-Al tolerant B. japonicum strains could increase plant height, shoot and root weight, number of flowers, pods, seeds, seeds dry weight, and shoot and seed nitrogen content.

  4. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  5. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  6. Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province, China

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-jun; ZHOU Wei; SHEN Jian-bo; LI Shu-tian; LIANG Guo-qing; WANG Xiu-bin; SUN Jing-wen; AI Chao

    2014-01-01

    Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were signiifcantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deifcient in AK and ASi. The results suggest that soil AK and ASi deifciencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.

  7. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  8. Acidic sandy soil improvement with biochar - A microcosm study.

    Science.gov (United States)

    Molnár, Mónika; Vaszita, Emese; Farkas, Éva; Ujaczki, Éva; Fekete-Kertész, Ildikó; Tolner, Mária; Klebercz, Orsolya; Kirchkeszner, Csaba; Gruiz, Katalin; Uzinger, Nikolett; Feigl, Viktória

    2016-09-01

    Biochar produced from a wide range of organic materials by pyrolysis has been reported as a means to improve soil physical properties, fertility and crop productivity. However, there is a lack of studies on the complex effects of biochar both on the degraded sandy soil physico-chemical properties and the soil biota as well as on toxicity, particularly in combined application with fertilizer and compost. A 7-week microcosm experiment was conducted to improve the quality of an acidic sandy soil combining variations in biochar types and amounts, compost and fertilizer application rates. The applied biochars were produced from different feedstocks such as grain husks, paper fibre sludge and wood screenings. The main purpose of the microcosm experiment was to assess the efficiency and applicability of different biochars as soil amendment prior to field trials and to choose the most efficient biochar to improve the fertility, biological activity and physical properties of acidic sandy soils. We complemented the methodology with ecotoxicity assessment to evaluate the possible risks to the soil as habitat for microbes, plants and animals. There was clear evidence of biochar-soil interactions positively affecting both the physico-chemical properties of the tested acidic sandy soil and the soil biota. Our results suggest that the grain husk and the paper fibre sludge biochars applied to the tested soil at 1% and 0.5 w/w% rate mixed with compost, respectively can supply a more liveable habitat for plants and soil living animals than the acidic sandy soil without treatment. PMID:26850860

  9. Chemical evaluation of soil-solution in acid forest soils

    Science.gov (United States)

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  10. Acid soils of western Serbia and their further acidification

    Science.gov (United States)

    Mrvic, Vesna

    2010-05-01

    Acid soils cause many unfavorable soil characteristics from the plant nutrition point of view. Because of increased soil acidity the violation of buffering soil properties due to leaching of Ca and Mg ions is taking place that also can cause soil physical degradation via peptization of colloids. Together with increasing of soil acidity the content of mobile Al increases that can be toxic for plants. Easily available nutritive elements transforms into hardly avaialble froms. The process of deactivation is especially expressed for phosphorous that under such conditions forms non-soluble compounds with sesqui-oxides. From the other hand the higher solubility of some microelements (Zn and B) can cause their accelerated leaching from root zone and therefore, result in their deficiency for plant nutrition. Dangerous and toxic matters transforms into easly-available forms for plants, especially, Cd and Ni under the lower soil pH. The studied soil occupies 36675 hectare in the municipality of Krupan in Serbia, and are characterized with very unfavorable chemical properties: 26% of the territory belongs to the cathegory of very acidic, and 44 % belongs to the cathegory of acidic. The results showed that the soil of the territory of Krupan is limited for agricultural land use due to their high acidity. Beside the statement of negative soil properties determined by acidity, there is a necessity for determination of soil sensitivity for acidification processes toward soil protection from ecological aspect and its prevention from further acidification. Based on such data and categorization of soils it is possible to undertake proper measures for soil protection and melioration of the most endangered soil cover, where the economic aspect of these measures is very important. One of the methods of soil classification based on sensitivity for acidification classification the determination of soil categories is based on the values of soil CEC and pH in water. By combination of these

  11. Arsenic removal from contaminated soil using phosphoric acid and phosphate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Laboratory batch experiments were conducted to study Arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KH2PO4). Both H3PO4 and KH2PO4 proved to clearly reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L, although soil As tolerance limit of 30 mg/kg, according to Chinese Environmental quality standard for soil (EQSS), was not satisfied by using these two extractants. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO43-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 min, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich's model best described the kinetic data of As removal among the four models used in the kinetic study.

  12. Biochemical degradation of soil humic acids and fungal melanins

    Energy Technology Data Exchange (ETDEWEB)

    Zavgorodnyaya, Y.A.; Demin, V.V.; Kurakov, A.V. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Dept. of Soil Science

    2002-07-01

    Studies were conducted to compare properties and biodegradation of fungal melanins from Aspergillus niger and Cladosporium cladosporiodes with those of humic acids from soils and brown coal. Compared to the humic acids the fungal melanins contained more functional groups, were less hydrophilic and had relatively high molecular weights. Under the conditions of incubation the melanins were found to be more readily degradable than the humic acids studied. The changes in elemental composition, optical parameters and the decrease of molecular weight, observed for both fungal melanins during degradation, made them more similar to soil humic acids.

  13. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    Science.gov (United States)

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  14. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  15. Analytical Methods for Environmental Risk Assessment of Acid Sulfate Soils: A Review

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soils.

  16. Chemical Species of Aluminum Lons in Acid Soils

    Institute of Scientific and Technical Information of China (English)

    XURENKOU; JIGUOLIANG

    1998-01-01

    Soil samples collected from several acid soils in Guangdong,Fujian,Zhejiang and Anhui provinces of the southern China were employded to characterize the chemical species of aluminum ions in the soils.The proportion or monoeric inorganic Al to total Al in soil solution was in the range of 19% to 70%,that of monomeric organlic Al (Al-OM) to total Al ranged from 7.7% to 69%,and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied ,The Al-OM concentration in soil solution was postively correlated with the content of dissolved organic carbon(DOC) and aslo affected by the concentration of Al3+,The complexes of aluminum with fluoride(Al-F) were the predominant forms of inorganic Al,and the proportion of Al-F compexes to total inorganic Al increased with pH.Under strongly acid ondition,Al3+ was also a mjaor form of inorganic Al,and the proportio of Al3+ to total inorganic Al decreased with increasing pH.The,proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils.The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution,The concentrations of Al-OM,Al3+,Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth,The chemical species of aluminum ions were influenced by pH,The concentrations of Al-OM, Al3+,Al-F complexes and Al-OH complexes decreased with the increase in pH.

  17. A new allele of acid soil tolerance gene from a malting barley variety

    OpenAIRE

    Bian, Miao; Jin, Xiaoli; Broughton, Sue; Zhang, Xiao-Qi; Zhou, Gaofeng; Zhou, Meixue; Zhang, Guoping; Sun, Dongfa; Li, Chengdao

    2015-01-01

    Background Acid soil is a serious limitation to crop production all over the world. Toxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield. Although a gene tolerant to acid soil has been identified, it has not been used in malting barley breeding, which is partly due to the acid soil tolerance gene being linked to unfavorable malting quality traits. Results A Brazilian malting barley variety Br2 was identified as tolerant to acid soil. A doubled haploid (DH) population...

  18. Sorption and leaching potential of acidic herbicides in Brazilian soils.

    Science.gov (United States)

    Spadotto, Claudio A; Hornsby, Arthur G; Gomes, Marco A F

    2005-01-01

    Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied. PMID:15656159

  19. Acid Sulfate Soils in Australia:Characteristics,Problems and Management

    Institute of Scientific and Technical Information of China (English)

    C.LIN

    1999-01-01

    Acid sulfate soils(ASS) are widely distributod in Australia.This has only been recognised recently when intensive research on ASS has been done in this county.This paper reviews aspects concerning a )the distribution and acid potential,b) controls on acidic status,and c) problems and management of ASS problems from ASS exist but insufficient attention was paid to them.

  20. Tolerance of VA Mycorrhizal Fungi to Soil Acidity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A 45-day greenhouse experiment was carried out to determine effect of vesicular-arbuscular (VA) mycorrhizai fungi on colonization rate,plant height, plant growth,hyphae length,total Al in the plants,exchangeable A1 in the soil and soil pH by comparison at soil pH 3.5,4.5 and 6.0.Plant mung bean (Phaseolus radiatus L.) and crotalaria (Crotalaria mucronata Desv.) were grown with and without VA mycorrhizal fungi in pots with red soil.Ten VA mycorrhizal fungi strains were tested,including Glomus epigaeum (No.90001),Glomus caledonium (No.90036),Glomus mosseae (No.90107), Acaulospora spp.(No.34),Scutellospora heterogama (No.36),Scutellospora calospora (No. 37),Glomus manihotis (No.38),Gigaspora spp.(No.47),Glomus manihotis (No.49),and Acaulospora spp.(No.53).Being the most tolerant to acidity,strain 34 and strain 38 showed quicker and higher-rated colonization without lagging,three to four times more in number of nodules,two to four times more in plant dry weight,30% to 60% more in hyphae length,lower soil exchangeable Al,and higher soil pH than without VA mycorrhizal fungi (CK).Other strains also could improve plant growth and enhance plant tolerance to acidity,but their effects were not marked.This indicated that VA mycorrhizal fungi differed in the tolerance to soil acidity and so did their inoculation effects.In the experiment,acidic soil could be remedied by inoculation of promising VA mycorrhizal fungi tolerant of acidity.

  1. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  2. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    Science.gov (United States)

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  3. Transcriptional profile of maize roots under acid soil growth

    Directory of Open Access Journals (Sweden)

    Mattiello Lucia

    2010-09-01

    Full Text Available Abstract Background Aluminum (Al toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17 showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6. Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The

  4. Combined Use of Alkaline Slag and Rapeseed Cake to Ameliorate Soil Acidity in an Acid Tea Garden Soil

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; YANG Xing-Lun; K.RACHEL; WANG Yu; TONG De-Li; YE Mao; JIANG Xin

    2013-01-01

    Rapeseed cake (RC),the residue of rapeseed oil extraction,is effective for improving tea (Camellia sinensis) quality,especially taste and aroma,but it has limited ability to ameliorate strongly acidic soil.In order to improve the liming potential of RC,alkaline slag (AS),the by-product of recovery of sodium carbonate,was incorporated.Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated.Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation,but not necessarily for soil pH adjustment.The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially,but then soil pH decreased due to nitrifications.Various degrees of nitrification were correlated with the interaction of different Ca levels,pH and N contents.When RC was applied at low levels,high Ca levels from AS repressed soil nitrification,resulting in smaller pH fluctuations.In contrast,high AS stimulated soil nitrification,when RC was applied at high levels,and resulted in a large pH decrease.Based on the optimum pH for tea production and quality,high ratios of AS to RC were indicated for soil acidity amelioration,and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC,respectively.Further,field studies are needed to investigate the variables of combined amendments.

  5. Interaction of Cd and citric acid, EDTA in red soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Adsorption and desorption process of cadmium in redsoil(Ferrisols) as well as the influence by media's pH were investigated in detail with and without citric acid and EDTA. Experimental results clearly showed that Cd adsorption in red soil was affected significantly by the coexisted organic chemicals. In the presence of citric acid and EDTA, Cd adsorption in red soil increased with pH in acid media but decreased in high pH one. Further studies placed stress on the adsorbed Cd in red soil which was found to be existed mainly as exchangeable one at pH<5.5, and desorption rate by 0.10 mol/L NaNO3 gave a peak-shaped curve due to the difference of specifically and nonspecifically adsorbed Cd with pH's change.

  6. Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth

    Institute of Scientific and Technical Information of China (English)

    LIN Chu-Xia; LONG Xin-Xian; XU Song-Jun; CHU Cheng-Xing; MAI Shao-Zhi; JIANG Dian

    2004-01-01

    A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.

  7. Mechanisms for the retention of inorganic N in acidic forest soils of southern China

    OpenAIRE

    Zhang, Jin-Bo; Cai, Zu-cong; Zhu, Tong-bin; Yang, Wen-Yan; Müller, Christoph

    2013-01-01

    The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much ...

  8. The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition

    Science.gov (United States)

    Mulder, Jan; Stein, Alfred

    1994-01-01

    Despite the ecological and pedogenic importance of Al, its solubility control in acidic forest soils is poorly understood. Here we discuss the solubility of Al and its development with time in three acid brown forest soils in The Netherlands, which are under extreme acidification from atmospheric deposition. All soil solutions (to a 60 cm depth) were undersaturated with respect to synthetic gibbsite (Al(OH) 3; log K = 9.12 at 8°C), with the highest degree of undersaturation occurring in the surface soil. In about one third of the individual soil layers a significant positive correlation existed between the activity of Al 3+ and H +, but this relationship was far less than cubic. Kinetically constrained dissolution of Al is unlikely to explain the disequilibrium with respect to gibbsite, because undersaturation was highest through summer when water residence times were longest and temperatures greatest. Time series analysis of six year data sets for several soil layers revealed a significant annual decline in soil solution pH and Al solubility (defined as log Al + 3 pH) despite a constant concentration of strong acid anions. The annual decline of both pH and Al solubility was greatest in the surface soil and was positively correlated with the relative depletion of reactive organically bound soil Al. The results support our earlier hypothesis that in strongly acidified forest soils complexation by solid phase organics controls the solubility of Al even in mineral soil layers, relatively low in organic C. The data lend no support to the current widespread and often uncritical use of gibbsite as a model for the Al solubility in highly acidic forest soils (pH temperate zone.

  9. Barren Acidic Soil Assessment using Seismic Refraction Survey

    Science.gov (United States)

    Tajudin, S. A. A.; Abidin, M. H. Z.; Madun, A.; Zawawi, M. H.

    2016-07-01

    Seismic refraction method is one of the geophysics subsurface exploration techniques used to determine subsurface profile characteristics. From past experience, seismic refraction method is commonly used to detect soil layers, overburden, bedrock, etc. However, the application of this method on barren geomaterials remains limited due to several reasons. Hence, this study was performed to evaluate the subsurface profile characteristics of barren acidic soil located in Ayer Hitam, Batu Pahat, Johor using seismic refraction survey. The seismic refraction survey was conducted using ABEM Terraloc MK 8 (seismograph), a sledge hammer weighing 7 kg (source) and 24 units of 10 Hz geophones (receiver). Seismic data processing was performed using OPTIM software which consists of SeisOpt@picker (picking the first arrival and seismic configureuration data input) and SeisOpt@2D (generating 2D image of barren acidic soil based on seismic velocity (primary velocity, Vp) distribution). It was found that the barren acidic soil profile consists of three layers representing residual soil (Vp= 200-400 m/s) at 0-2 m, highly to completely weathered soil (Vp= 500-1800 m/s) at 3-8 m and shale (Vp= 2100-6200 m/s) at 9-20 m depth. Furthermore, result verification was successfully done through the correlation of seismic refraction data based on physical mapping and the geological map of the study area. Finally, it was found that the seismic refraction survey was applicable for subsurface profiling of barren acidic soil as it was very efficient in terms of time, cost, large data coverage and sustainable.

  10. Characteristics of Soluble and Exchangeable Acidity in an Extremely Acidified Acid Sulfate Soil

    Institute of Scientific and Technical Information of China (English)

    C.Lin; M.D.MELVILLE; 等

    1999-01-01

    An extremely acidified acid sulfate soil(ASS) was investigated to characterise its soluble and exchangeable acidity,The results showed that soluble acidity of a sample dtermined by titration with a KOH soulution was much significantly greater than that indicated by pH measured using a pH meter,paricularly for the extremely acidic soil samples,This is because the total soluble acidity of the extremely acidic soil samples was mainly composed of various soluble Al and Fe species,possibly in forms of Al sulfate complexes(e.g.,AlSO4+) and feerous Fe(Fe2+)_,It is therefore suggested not to use pH alone as an indicator of soluble acidity in ASS,particularly for extremely acidic ASS,It is also likely that AlSO4+ actively participated in cation exchange reactions.It appears that the possible involvement of this Al sulfate cation in the cation adsorption has significant effect on increasing the amount of acidity being adsorbed by the soils.

  11. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    Science.gov (United States)

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  12. Release of Soil Nonexchangeable K by Organic Acids

    Institute of Scientific and Technical Information of China (English)

    ZHUYONG-GUAN; LUOJIA-XIAN

    1993-01-01

    The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.

  13. Nitrification in acid soils: micro-organisms and mechanisms

    NARCIS (Netherlands)

    De Boer, W.; Kowalchuk, G.A.

    2001-01-01

    Nitrification in acid soils was first reported in the beginning of the 20th century. Although this finding has been well substantiated by countless studies since then, it has until recently remained unclear which micro-organisms were responsible for nitrate production at low pH. Substantial evidence

  14. Enzyme Activities in Perfluorooctanoic Acid (PFOA)-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LIN Kuang-Fei; YANG Sha-Sha; ZHANG Meng

    2013-01-01

    Perfluorooctanoic acid (PFOA) is a popular additive of the chemical industry; its effect on activities of important soil enzymes is not well understood.A laboratory incubation experiment was carried out to analyze the PFOA-induced changes in soil urease,catalase,and phosphatase activities.During the entire incubation period,the activities of the three soil enzymes generally declined with increasing PFOA concentration,following certain dose-response relationships.The values of EC10,the contaminant concentration at which the biological activity is inhibited by 10%,of PFOA for the soil enzyme activity calculated from the modeling equation of the respective dose-response curve suggested a sensitivity order of phosphatase > catalase > urease.The effect of PFOA on soil enzyme activities provided a basic understanding of the eco-toxicological effect of PFOA in the environment.Results of this study supported using soil phosphatase as a convenient biomarker for ecological risk assessment of PFOA-polluted soils.

  15. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  16. Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum.

    Science.gov (United States)

    Lee, Soo Youn; Kim, Bit-Na; Choi, Yong Woo; Yoo, Kye Sang; Kim, Yang-Hoon; Min, Jiho

    2012-04-01

    The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenolcontaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

  17. Metagenomic Analysis of the Rhizosphere Soil Microbiome with Respect to Phytic Acid Utilization

    OpenAIRE

    Unno, Yusuke; Shinano, Takuro

    2012-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilizat...

  18. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2011-08-01

    Full Text Available Abstract Background In soils with a low phosphorus (P supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin.

  19. Soil sorption of acidic pesticides: modeling pH effects.

    Science.gov (United States)

    Spadotto, Claudio A; Hornsby, Arthur G

    2003-01-01

    A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model. PMID:12809295

  20. Cadmium Release in Contaminated Soils due to Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-Mei

    2004-01-01

    There is limited information on the release behavior of heavy metals from natural soils by organic acids. Thus,cadmium release,due to two organic acids (tartrate and citrate) that are common in the rhizosphere,from soils polluted by metal smelters or tailings and soils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at a low concentration (≤6mmol L-1 for tartrate and ≤0.5 mmol L-1 for citrate) inhibited Cd release,whereas the presence of organic acids in high concentrations (≥2 mmol L-1 for citrate and ≥15 mmol L-1 for tartrate)apparently promoted Cd release. Under the same conditions,the Cd release in naturally polluted soils was less than that of artificially contaminated soils. Additionally,as the initial pH rose from 2 to 8 in the presence of citrate,a sequential valley and then peak appeared in the Cd release curve,while in the presence of tartrate the Cd release steadily decreased.In addition,Cd release was clearly enhanced as the electrolyte concentration of KNO3 or KC1 increased in the presence of 2 mmol L-1 tartrate. Moreover,a higher desorption of Cd was shown with the KC1 electrolyte compared to KNO3 for the same concentration levels. This implied that the bioavailability of heavy metals could be promoted with the addition of suitable types and concentrations of organic acids as well as reasonable field conditions.

  1. Adsorption of glyphosate and aminomethylphosphonic acid in soils

    Science.gov (United States)

    Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W. E. H.

    2013-03-01

    The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.

  2. Nitrification in acid coniferous forests: Some soils do, some soils don't

    OpenAIRE

    Nugroho, R.A.

    2006-01-01

    Nitrification is a key process in the global nitrogen cycle. Ammonia-oxidising bacteria (AOB) were long thought to be the sole microorganisms capable of autotrophic ammonia oxidation, the rate-limited step in nitrification. This thesis elucidates the relation between the presence of AOB, environmental factors and nitrification rates in the soil layer of acid coniferous forests. Especially, the question why some acid forests show nitrification while others do not, is addressed in this thesis.

  3. Soil knowledge for farmers, farmer knowledge for soil scientists. The case of acid sulphate soils in the Mekong delta, Viet Nam.

    NARCIS (Netherlands)

    Mensvoort, van M.E.F.

    1996-01-01

    Half the Mekong delta in Vietnam, i.e. around 2 million hectares, suffers soil related problems due to acid sulphate soils. These soils generate sulphuric acid due to the oxidation of pyrite after aeration. Pyrite is most easily formed in tidal swamps. Human interference through land drainage is the

  4. Soil acidity and mobile aluminum status in pseudogley soils in Čačak-Kraljevo basin

    OpenAIRE

    Đalović Ivica G.; Jocković Đorđe S.; Dugalić Goran J.; Bekavac Goran F.; Purar Božana; Šeremešić Srđan I.; Jocković Milan Đ.

    2012-01-01

    Soil acidity and aluminum toxicity are considered most damaging soil conditions affecting the growth of most crops. This paper reviews the results of tests of pH, exchangeable acidity and mobile aluminum (Al) concentration in profiles of pseudogley soils from Čačak-Kraljevo basin. For that purpose, 102 soil pits were dug in 2009 in several sites around Čačak- Kraljevo basin. The tests encompassed 54 field, 28 meadow, and 20 forest soil samples. Samples of soil in the disturbed state wer...

  5. [Phthalic acid esters (PAEs) pollution in farmland soils: a review].

    Science.gov (United States)

    Wang, Kai-Rong; Cui, Ming-Ming; Shi, Yan-Xi

    2013-09-01

    The environmental pollution and food safety problems caused by phthalic acid esters (PAEs) have been attracted 'extensive attention around the world. As a large PAEs producer and consumer, China is facing severe PAEs environmental pollution problems. This paper reviewed the present pollution status of six PAEs classified by the U.S. Environmental Protection Agency as the priority pollutants in China farmland soils, analyzed the sources of these six PAEs in this country, and discussed the absorption and accumulation characteristics of the PAEs in different crops as well as the bio-toxic effects of PAEs pollutants. The PAEs concentrations in China farmland soils are significantly higher those in the farmland soils of the United States and European countries. The main sources of PAEs in China farmland soils are atmospheric deposition, agricultural films, sewage sludge application, and wastewater irrigation. There exist significant differences in the characteristics of PAEs absorption, accumulation, and distribution among different crops. PAEs not only have negative effects on soil quality, crop growth, and crop physiological and biochemical properties, but also possess bio-accumulative characteristics. The weaknesses in current researches were pointed out, and the suggestions for the further researches were given, e. g., to expand the scope of PAEs pollution survey, to explore the toxic mechanisms of PAEs on crops, and to develop the techniques for in situ remediation of PAEs-polluted soils.

  6. Soil Components Affecting Phosphate Sorption Parameters of Acid Paddy Soils in Guangdong Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Soil components affecting phosphate sorption parameters were studied using acid paddy soils derived from basalt, granite, sand-shale and the Pearl River Delta sediments, respectively, in Guangdong Province.For each soil, seven 2.50 g subsamples were equilibrated with 50 mL 0.02 mol L-1 (pH=7.0) of KCl containing 0, 5, 10, 15, 25, 50 and 100 ng P kg-1, respectively, in order to derive P sorption parameters (P sorption maximum, P sorption intensity factor and maximum buffer capacity) by Langmuir isotherm equation. It was shown that the main soil components influencing phosphate sorption maximum (Xm) included soil clay, pH,amorphous iron oxide (Feo) and amorphous aluminum oxide (Alo), with their effects in the order of Alo >Feo > pH > clay. Among these components, pH had a negative effect, and the others had a positive effect.Organic matter (OM) was the only soil component influencing P sorption intensity factor (K). The main components influencing maximum phosphate buffer capacity (MBC) consisted of soil clay, OM, pH, Feo and Alo, with their effects in the order of Alo > OM > pH > Feo > clay. Path analysis indicated that among the components with positive effects on maximum phosphate buffer capacity (MBC), the effect was in the order of Alo > Feo > Clay, while among the components with negative effects, OM > pH. OM played an important role in mobilizing phosphate in acid paddy soils mainly through decreasing the sorption intensity of phosphate by soil particles.

  7. Acid sulfate soils are an environmental hazard in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  8. Soil heavy metal contamination and acid deposition: experimental approach on two forest soils in Hunan, Southern China

    OpenAIRE

    Bo-han, Liao; Zhaohui, Guo; Probst, Anne; Probst, Jean-Luc

    2005-01-01

    In 1985, a tailing dam collapsed in Hunan province (southern China) leading to soil contamination by heavy metals from the tailings waste. Moreover, acid deposition becomes more and more serious in this area. In this context, two forest soils (a red soil and a yellow red soil, typically and commonly found in southern China) were collected from Hunan. The objectives are (i) to determine releases and changes in speciation fractions of heavy metals (especially Cd, Cu, and Zn) when the soils are ...

  9. STRUCTURAL AND FUNCTIONAL CHARACTERISTICS OF HUMIC ACID SOILS OF THE KRASNODAR REGION

    OpenAIRE

    Lobanov V. G.; Alexandrova A. V.; Shuray K. N.; Avdeev A. S.; Rashid I. D.

    2015-01-01

    The structural and functional properties of humic acids of different types of poorly studied soils of the Krasnodar Region: ordinary black soil or chernozem (carbonated), meadowish chernozem and gray forest soils are investigated. We define the type of humus of the soil samples studied as fulvate-humate. Using traditional indicators of humus soil conditions the regularities of soil and ecological processes involving organic matter in soils under natural and anthropogenically factorial changes...

  10. Simple method of isolating humic acids from organic soils

    Science.gov (United States)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  11. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  12. Correction of Excessive Soil Acidity with Different Liming Materials

    Directory of Open Access Journals (Sweden)

    Milan Mesić

    2001-06-01

    According to the changes of soil pH, hydrolytic acidity, base saturation level and mobile aluminium content in soil for all investigation years, the differences in rapidity and duration of activity of particular liming material were recorded. Hydrated lime, sugar factory waste lime, ground soft lithothamnium limestone, hard limestone and dolomite influenced the soil chemical properties on the similar way, but not equally. When higher doses of these materials were applied the excessive soil acidity was almost completely neutralised. Compared to the other liming materials the efficacy of not ground lithothamnium limestone was somewhat lower, and that of phosphogypsum and special natural substrata was considerably lower. Winter wheat and corn were used as test crops and they were grown in the crop sequence winter wheat – corn – corn – winter wheat. According to the winter wheat and corn grain yield recorded at different trial treatments, the trial was statistically significant in all 4 years of investigation. At the first investigation year the highest yield of winter wheat was recorded at the treatment with higher dose of sugar factory waste lime. At the second, third and fourth year highest yields of test crops were obtained at trial treatment with higher dose of ground soft lithothamnium limestone.

  13. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  14. Soil knowledge for farmers, farmer knowledge for soil scientists. The case of acid sulphate soils in the Mekong delta, Viet Nam.

    OpenAIRE

    Mensvoort, van, KM Koert

    1996-01-01

    Half the Mekong delta in Vietnam, i.e. around 2 million hectares, suffers soil related problems due to acid sulphate soils. These soils generate sulphuric acid due to the oxidation of pyrite after aeration. Pyrite is most easily formed in tidal swamps. Human interference through land drainage is the most important way in which the acidification takes place. The processes of pyrite formation, of acidification and of the solution chemistry of these soils have been well explained (e.g. van Breem...

  15. Alleviating aluminium toxicity on an acid sulphate soils in Peninsular Malaysia with application of calcium silicate

    OpenAIRE

    A. A. Elisa; Ninomiya, S.; J. Shamshuddin; Roslan, I.

    2015-01-01

    A study was conducted to alleviate Al toxicity of an acid sulphate soils collected from paddy cultivation area in Kedah, Peninsular Malaysia. For this purpose, the collected acid sulphate soils were treated with calcium silicate. The treated soils were incubated for 120 days in submerged condition in a glasshouse. Subsamples were collected every 30 days throughout the incubation period. Soil pH and exchangeable Al showed positive effect; soil pH increased from ...

  16. Effect of Oxalic Acid on Potassium Release from Typical Chinese Soils and Minerals

    Institute of Scientific and Technical Information of China (English)

    TU Shu-Xin; GUO Zhi-Fen; SUN Jin-He

    2007-01-01

    Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L-1 oxalic acid was similar to that using 1 mol L-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y=a+blogc, while the best-fit kinetic equation of K release was y=a +b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite> phlogopite>> muscovite> microcline and for soils it was in the order: black soil> calcareous alluvial soil> red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K+ adsorption and increased the soil K+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.

  17. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness

    NARCIS (Netherlands)

    Martins Bento, Celia; Yang, Xiaomei; Gort, Gerrit; Xue, Sha; Dam, van Ruud; Zomer, Paul; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    The dissipation kinetics of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) were studied in loess soil, under biotic and abiotic conditions, as affected by temperature, soil moisture (SM) and light/darkness. Nonsterile and sterile soil samples were spiked with 16 mg kg− 1

  18. Effects of Composted and Thermally Dried Sewage Sludges on Soil and Soil Humic Acid Properties

    Institute of Scientific and Technical Information of China (English)

    J.M.FERN(A)NDEZ; N.SENESI; C.PLAZA; G.BRUNETTI; A.POLO

    2009-01-01

    The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions.Humie acids (HAs) isolated by conventional procedures from CS,TS,and unamended (SO) and sludge amended soils were analysed for elemental (C,H,N,S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible,Fourier transform infrared and fluorescence spectroscopies.With respect to CS,TS had similar pH and total P and K contents,larger dry matter,total organic C,total N.and C/N ratio and smaller ash content and electrical conductivity.Amendment with both CS and TS induced a number of modifications in soil properties,including an increase of pH,electrical conductivity,total organic C,total N,and available P.The CS-HA had greater O,total acidity,carboxyl,and phenolic OH group contents and smaller C and H contents than TS-HA.The CS-HA and TS-HA had larger N and S contents,smaller C,O and acidic functional group contents,and lower aromatic polycondensation and humification degrees than SO-HA.Amended soil-HAs showed C,H,N and S contents larger than SO-HA,suggesting that sludge HAs were partially incorporated into soil HAs.These effects were more evident with increasing number of sludge applications.

  19. Effect of Selected Organic Acids on Cadmium Sorption by Variable-and Permanent-Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HU Hong-Qing; LIU Hua-Liang; HE Ji-Zheng; HUANG Qiao-Yun

    2007-01-01

    Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-cinnamon soil and generally the yellow-brown soil (permanent-charge soils)decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the variable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol.

  20. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    Science.gov (United States)

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here. PMID:26519574

  1. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  2. pH effects of the addition of three biochars to acidic Indonesian mineral soils

    DEFF Research Database (Denmark)

    Martinsen, V; Alling, V; Nurida, N L;

    2015-01-01

    Soil acidity may severely reduce crop production. Biochar (BC) may increase soil pH and cation exchange capacity (CEC) but reported effects differ substantially. In a systematic approach, using a standardized protocol on a uniquely large number set of 31 acidic soils, we quantified the effect of ...

  3. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  4. Controls of Soluble Al in Experimental Acid Sulfate Conditions and Acid Sulfate Soils

    Institute of Scientific and Technical Information of China (English)

    LINCHUXIA; M.D.MELVILLE

    1997-01-01

    The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.

  5. Influences of humic acid and fulvic acid on horizontal leaching behavior of anthracene in soil barriers.

    Science.gov (United States)

    Yu, Sheng; Li, Bang-Yu; Chen, Yi-Hu

    2015-12-01

    The influences of humic acid (HA) and fulvic acid (FA) on horizontal leaching behaviors of anthracene in barriers were investigated. Soil colloids (≤1 μm) were of concern because of their abilities of colloid-facilitated transport for hydrophobic organic compounds with soluble and insoluble organic matters. Through freely out of the barriers in the presence of soil colloids with FA added, the higher concentrations of anthracene were from 320 μg L(-1) (D1 and D3) to 390 μg L(-1) (D2 and D4) with 1 to 20 cm in length. The contents of anthracene were distributed evenly at 25 ng g(-1) dry weight (DW) (D1 and D3) and 11 ng g(-1) DW (D2 and D4) in barriers. Therefore, anthracene leaching behaviors were mainly induced by soil colloids with soluble organic matters. The insoluble organic matters would facilitate anthracene onto soil colloids and enhance the movement in and through porous media of soil matrix. PMID:26300357

  6. A Simulation of the Interaction of Acid Rain with Soil Minerals

    Science.gov (United States)

    Schilling, Amber L.; Hess, Kenneth R.; Leber, Phyllis A.; Yoder, Claude H.

    2004-01-01

    The atmospheric issue of acid rains is subjected to a five-part laboratory experiment by concentrating on the chemistry of the infiltration process of acid rainwater through soils. This procedure of quantitative scrutiny helps students realize the efficacy of soil minerals in the consumption of surplus acidity in rainwater.

  7. THE STABILIZATION SYSTEM OF SOIL ACIDITY WHEN GROWING TOMATOES IN A GREENHOUSE

    Directory of Open Access Journals (Sweden)

    Tsokur D. S.

    2013-11-01

    Full Text Available The article presents: the stabilization system of soil acidity, which allows subsoil irrigation tomato plants catholyte to compensate the negative effects of acidic fertilizer, and additionally to prevent plant diseases anolyte solution; transfer function of the stabilization system of soil acidity and the results of its tests

  8. Proton binding to soil humic and fulvic acids: Experiments and NICA-Donnan modelling

    NARCIS (Netherlands)

    Tan, W.; Xiong, J.; Li, Y.; Wang, M.; Weng, L.; Koopal, L.K.

    2013-01-01

    Proton binding to one soil fulvic acid (JGFA), two soil humic acids (JGHA, JLHA) and a lignite-based humic acid (PAHA) was investigated. The results were fitted to NICA-Donnan model and compared directly with the predictions using the generic parameters. NICA-Donnan model can describe proton binding

  9. Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II

    OpenAIRE

    Kauppi, P.; Kaemaeri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1985-01-01

    Acidification is an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are sources of acidification. Acidification causes a risk of damage to plant roots and a subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of acid stress and the buffer mechanisms of the soil. ...

  10. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    Science.gov (United States)

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land garden plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on

  11. An Experimental Method to Quantify Extractable Amino Acids in Soils from Southeast China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-you; WU Liang-huan; CAO Xiao-chuang; Sarkar Animesh; ZHU Yuan-hong

    2013-01-01

    The extraction and comparison of soil amino acids using different extractants (deionized water, K2SO4, Na2SO4, NaCl, KCl) were reported. Results showed that 0.5 mol L-1 K2SO4 with a 5 times extraction was a better method to assess the concentration of extractable amino acids in soils. The total amino acids extracted from soil planted for tea were similar to the total inorganic nitrogen. While they extracted from vegetable soil and paddy soil were much lower than the total inorganic nitrogen.

  12. Application of Ground Phosphate Rock to Diminish the Effects of Simulated Acid Rain of Soil Properties

    Institute of Scientific and Technical Information of China (English)

    DONGYUAN-YAN; LIXUE-YUAN

    1992-01-01

    The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method.Results show as follows:(1)For yellow brown soil,the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small,except a great quantity of acid rain deposited on it.(2) for red soil,the effect of simulated acid rain on the properties of soil was significant.With the increase of the amount of acid deposition,the pH value of soil was declined,but the contents of exchangeable H+,Al3+ and Mn2+ and the amount of SO41- retention were increased.(3) Many properties of acid soils could be improved by applying ground phosphate rock.For example,pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased,and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced.The application of ground posphate rock could effctively diminish the pollution of acid rain to soil.

  13. Soil quality under forest compared to other landuses in acid soil of North Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sharmistha Pal

    2013-07-01

    Full Text Available A study was conducted to examine the impact of land?use on soil fertility in an Alfisol, at Dharamshala district of north western Himalayan region, India. Soil samples were collected from 0-15, 15-30, 30-45 and 45-60 cm soil depths of five land-uses viz. natural forest of Pinus roxburghii, grassland, horticulture, agriculture and wasteland. Soil was examined for pH, organic carbon (OC, electrical conductivity (EC, cation exchange capacity (CEC, available nitrogen (N, phosphorus (P, exchangeable calcium (Ca, magnesium (Mg, potassium (K, aluminium (Al, microbial biomass carbon (MBC, microbial biomass nitrogen (MBN, microbial biomass phosphorus (MBP, acid phosphatase activity (APHA and dehydrogenase activity (DHA. Soil pH varied from 5.22 in forest and 5.72 in grassland. OC content was higher in forest (3.01%, followed by grassland (2.16% and was least (0.36% in deeper layers of agriculture. Highest N content was found under forest (699, 654, 623 and 597 kg/ha, at 0-15, 15-30, 30-45 and 45-60 cm depth, respectively, followed by grassland, horticulture and agriculture and least in wasteland. Exchangeable Ca and Mg were higher in grassland (0.801 c mol kg-1 and 0.402 c mol kg-1, respectively. Exchangeable K and Al were higher under forest (0.231 c mol kg-1 and 1.89 c mol kg-1, respectively least in wasteland. Soil biological properties were highest under surface soil of forest (576 mg kg-1, 31.24 mg kg-1, 6.55 mg kg-1, 29.6 mg PNP g-1h-1 and 35.65 ľg TPF 24 h-1 g-1 dry soil, respectively for MBC, MBN, MBP, APHA and DHA and least in 45-60 cm layer, under wasteland. The forest had a higher fertility index and soil evaluation factor followed by grassland, horticulture, agriculture as compared to wasteland. 

  14. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and pine oil, 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H2SO4 100 kg/ton, MnO2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 oC and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  15. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils

    OpenAIRE

    MORADI, Neda; SADAGHIANI, Mir Hassan RASOULI; SEPEHR, Ebrahim

    2012-01-01

    Understanding the role of organic acids in phosphorus sorption in soils is very important for economic and environmentally friendly management of soil P. Thus, calcareous surface soils (0-30 cm) from West Azerbaijan Province, Iran, were sampled to study the effect of different organic acids on P sorption. Soil samples (2.5 g) were equilibrated with 25 mL of 0.01 M CaCl2 solution containing 0-20 mg P L-1 and 5 mmol L-1 of different organic acids (citric, oxalic, and malic acid). The sorption d...

  16. Effect of reduction in acid rain on phosphate loss-phosphate leached from agriculture soil and Al leaked from upstream acid forest soil

    OpenAIRE

    2012-01-01

    This master thesis was an integrated part of EUTROPIA. The specific aim of this present study is to enhance our understanding of the effects of reduction in acid rain on P-loss from agriculture soil due to reduced co-precipitation between P leached from agriculture soil and Al leaked from upstream acid forest soils. The study was carried out at two watersheds: Dalen, which is an aluminium rich, acidic forest stream water catchment upstream, and Støa1, which is a P-loaded agricultural water ca...

  17. Effect of some soil amendments on soil properties and plant growth in Southern Thailand acid upland soil

    Directory of Open Access Journals (Sweden)

    Onthong, C.

    2007-01-01

    Full Text Available One of the major factors limiting plant growth is acid soil. In general lime is used for soil amendment in acid soil. However, It has been reported that gypsum or phosphogypsum can be used for ameliorating soilacidity. Pot experiment was conducted to study the effects of lime, phosphogypsum and kieserite on soil properties and plant growth in Kho Hong soil series (coarse loamy, kaolinitic,isohyperthermic, TypicKandiudults which was considered as acid upland soil (pH 5.07. Sweet corn variety INSEE 2 was used as the test crop. The experiment was a completely randomized design with 4 replications and 19 treatments asfollow : unamended, application of hydrated lime and dolomite to raise soil pH at 5.5, application of hydrated lime and dolomite combined with phosphogypsum at the rate that can supply calcium 0.25, 0.50,0.75 and 1 time of both limes, application of hydrated lime and dolomite combined with kieserite at the rate 0.25, 0.50,0.75 and 1 times of sulfur requirement for corn (40 kg S ha-1. The result showed that shoot and root dry weights of corn were increased when lime materials, phosphogypsum and kieserite were applied and the drymatter weights were increased according to the increasing of phosphogypsum and kieserite. The maximum shoot dry weight (18.98 g pot-1 was obtained when 1 times of kieserite was supplied with dolomite and wassignificantly (P<0.01 higher than those of the unamended treatment, only hydrated lime and dolomite treatments, which had dry weights of 12.64, 15.18 and 15.67 g pot-1 respectively. Phosphorus and K uptakewere not significantly different in all treatments and the lowest uptake of N, Ca, Mg and S was obtained in the unamended treatment. The maximum uptake of N (512.10 mg pot-1 was found when 0.5 times ofphosphogypsum was applied together with dolomite. Calcium and Mg uptake was likely to increase according to the increasing rate of soil amendment application. Highest uptake of Ca (42.51 mg pot-1 was obtainedwhen

  18. Influence of acid rain and organic matter on the adsorption of trace elements on soil

    International Nuclear Information System (INIS)

    Acid rain has become one of the most serious environmental problems. Soil loses its buffering capacity by long exposure to acid rain, and the soil pH value decreases significantly. The acidification of the soil disturbs the adsorption equilibrium of many elements in the soil-water system. Soil is a very complex heterogeneous system, primarily consisting of clay minerals, hydrous oxides and polymeric organic substances, which possess their own characteristic element-adsorbing properties. On the other hand, the intrinsic properties of elements are reflected in their adsorption process as a matter of course. Therefore, both the effects of the pH of acid rain and that of the components of the soil on the adsorption of different elements should be studied when the adsorption process in acid soils is to be clarified. Although leaching of major cations in soil, such as Ca2+, Mg2+ and Al3+, by acid rain, has been extensively studied, relatively little attention has been focused on trace elements which can also seriously affect the ecological system. We studied the acid rain effects on element adsorption by kaolin, forest soil, black soil, and also these soils with Fe- and Mn-oxides or organic matter selectively removed by using the radioactive multitracer technique. (author)

  19. Effects of Lanthanum and Cerium on Acid Phosphatase Activities in Two Soils

    Institute of Scientific and Technical Information of China (English)

    徐冬梅; 刘广深; 徐杰; 刘维屏

    2004-01-01

    To evaluate the security of using thulium,comparision between effects of La and those of Ce on acidic phosphatase activities in red soil and yellow soil in Zhejiang district was studied under conditions of ambient temperature and humidity. Results show that the acid phosphatase from different soil respondes to La and Ce differently. The activity of acid phosphatase in soil 1 declines with the increase of the concentration of La and Ce. The maximum inhibitory ratio of La and Ce reaches 69.8% and 71.0% respectively. But La and Ce have stimulative effect on the activity of acid phosphatase in soil 2. Under the effect of same concentration of the thulium,the acid phosphatase in two soils increases with the extending of culture time.

  20. Improving the management of infertile acid soils in Southeast Asia: The approach of the IBSRAM Acid-Soils network

    International Nuclear Information System (INIS)

    The IBSRAM ASIALAND Management of Acid Soils network aims to improve the understanding of the broad range of biophysical and socio-economic production limitations on infertile acid soils of Southeast Asia, and to lead to development and implementation of sustainable land-management strategies for these important marginal areas. The main activities of the network are in Indonesia, Myanmar, Philippines, and Vietnam, with associated activity in Thailand, and minor involvement in Brunei, Cambodia, Laos, and Malaysia. The main experimental focus is through researcher-managed on-farm trials, to improve the management of phosphorus nutrition with inorganic and organic amendments. A generic design is used across the eight well characterised sites that form the core of the network. The results will be analysed across time and across sites. Improved methods for laboratory analyses, experimental management, socio-economic data collection, and data analysis and interpretation are critical components. Three important initiatives are associated with the core activities. These aim to establish a broader network on maintenance of quality laboratory analyses, to assess the potential for implementation of improved strategies through farmer-managed on-farm trials, and to improve our understanding of, and ways of estimating, nutrient budgets for diverse farming systems. (author)

  1. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  2. Correlations between different acidity forms in amorphous loamy soils of the tundra and taiga zones

    Science.gov (United States)

    Shamrikova, E. V.; Sokolova, T. A.

    2013-05-01

    Pair correlation coefficients ( r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity ( H exch) and the activity of the [H]+ ions in the KCl extract ( a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total ( H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.

  3. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    Science.gov (United States)

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil. PMID:23257911

  4. Soil degradation by sulfuric acid disposition on uranium producing sites in south Bulgaria

    International Nuclear Information System (INIS)

    This study assesses the damage of soils caused by spills of sulfuric acid solutions used for in situ leaching of uranium at eight uranium producing (by open-cast method) sites (total area of approximately 220 ha) in the region of Momino-Rakovski (South Bulgaria). The upper soil layer is cinnamonic pseudopodzolic ( or Eutric Planosols by FAO Legend, 1974). The results of the investigation show that the sulfuric acid spills caused strong acidification of upper (0-20 cm) and subsurface (20-60 cm) soil horizons which is expressed as decreasing of pH (H2O) to 2.9-3.5 and increasing of exchangeable H+ and Al3+ to 18 and 32% from CEC. Acid degradation of soils is combined with reducing of organic matter content. The average concentration of the total heavy metal content in the upper soil horizon (in ppm) is: Cd=1.5; Cu=30; Pb=25; Zn=40 and U=8. No significant differences were detected between the upper and subsurface soil layers . The heavy metal concentration did not exceed the Bulgarian standards for heavy metals and uranium content of soils. But the coarse texture of the top soil layers, the lack of carbonates, The low CEC and strong acidity determine a low buffering capacity of the investigated soils and this can be considered as hazardous for plants. This indicates that a future soil monitoring should be carried out in the region together with measures for neutralizing of soil acidity

  5. Soil humic acids may favour the persistence of hexavalent chromium in soil

    International Nuclear Information System (INIS)

    The interaction between hexavalent chromium Cr(VI), as K2CrO4, and standard humic acids (HAs) in bulk solution was studied using three complementary analytical methods: UV-Visible spectroscopy, X-ray absorption spectroscopy and differential pulse stripping voltammetry. The observed UV-Vis and X-ray absorption spectra showed that, under our experimental conditions, HAs did not induce reduction of Cr(VI) to its trivalent chemical form. The interaction between Cr(VI) and HAs has rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes. The reported results could contribute towards explaining the relative persistence of ecotoxic hexavalent chromium in soils. - Humic acids (HAs) did not induce reduction of Cr(VI) to its trivalent chemical form, as the interaction between Cr(VI) and HAs rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes.

  6. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains

  7. What are humic substances? : a molecular approach to the study of organic matter in acid soils

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner

    2004-01-01

    Molecular studies on the composition of organic matter in soils are scarce. In this thesis, a molecular approach to the study of organic matter in acid soils is presented, with a focus on andic, i.e. volcanic, soils. Analyses include both chemical extractions as well as pyrolysis-GC/MS and CPMAS 13C

  8. Liming of acid soils in Osijek-Baranja county

    OpenAIRE

    Dolijanović Željko; Andrijačić Martina; Đurđević Boris; Vukadinović Vladimir; Vukadinović Vesna; Jurišić Mladen; Bertić Blaženka; Jug Irena

    2011-01-01

    The negative trend of soil degradation process increases with intensive agricultural production. Therefore, there is a need for soil conditioning like liming, humification, fertilization, etc. to improve soil quality. One of the major problems that occur on agricultural soils of Croatia is acidification. A downward trend of soil pH is mainly present in soils of poor structure with intensive agricultural production. In agricultural practice liming often need...

  9. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb. PMID:27548978

  10. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  11. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    Science.gov (United States)

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  12. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Four types of soils, including brown coniferous forest soil, dark brown soil, black soil, and black calic soil, sampled from three different places in northeast China were used in this test. The functions of two root-derived organic acids and water were simulated and compared in the activation of mineral nutrients from the rhizosphere soil. The results showed that the organic acids could activate the nutrients and the activated degree of the nutrient elements highly depended on the amount and types of the organic acid excreted and on the physiochemical and biochemical properties of the soil tested. The activation effect of the citric acid was obviously higher than that of malic acid in extracting Fe, Mn, Cu, and Zn for all the tested soil types. However, the activation efficiencies of P, K, Ca, and Mg extracting by the citric acid were not much higher, sometimes even lower, than those by malic acid. The solution concentration of all elements increased with increase of amount of the citric acid added.

  13. EFFECT OF SIMULATED ACID RAIN ON NITRIFICATION AND NITROGEN MINERALIZATION IN FOREST SOILS

    Science.gov (United States)

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100cm of simulated acid rain (pH3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2...

  14. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China.

    Science.gov (United States)

    Yang, Sheng-Xiang; Liao, Bin; Yang, Zhi-Hui; Chai, Li-Yuan; Li, Jin-Tian

    2016-08-15

    Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pHacidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pHacidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils. PMID:27100018

  15. Soil chemical properties related to acidity under successive pig slurry application

    OpenAIRE

    Cledimar Rogério Lourenzi; Carlos Alberto Ceretta; Leandro Souza da Silva; Gustavo Trentin; Eduardo Girotto; Felipe Lorensini; Tadeu Luis Tiecher; Gustavo Brunetto

    2011-01-01

    Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development. The objective of this study was to evaluate the chemical properties related to soil acidity subjected to successive applications of pig slurry. The experiment was conducted in May 2000, in an experimental area of the Federal University of Santa Maria (UFSM) under no-tillage and lasted until January 2008. Nineteen surface applica...

  16. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    International Nuclear Information System (INIS)

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  17. Acidification of Forest Soils: Model Development and Application for Analyzing Impacts of Acidic Deposition in Europe

    OpenAIRE

    P. E. Kauppi; KÀmÀri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1984-01-01

    Acidification is considered as an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known as sources of acidification. Acidification causes the risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of the acid stress and the buff...

  18. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    OpenAIRE

    W. Huang; Liu, J; Zhou, G.; Zhang, D; Deng, Q

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation t...

  19. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils

    Energy Technology Data Exchange (ETDEWEB)

    Šimek, Miloslav, E-mail: misim@upb.cas.cz [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); University of South Bohemia, Faculty of Science, 370 05 České Budějovice (Czech Republic); Virtanen, Seija; Simojoki, Asko [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland); Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav [Biology Centre AS CR, v. v. i., Institute of Soil Biology, 370 05 České Budějovice (Czech Republic); Yli-Halla, Markku [Department of Food and Environmental Sciences, University of Helsinki, FI-00014 Helsinki (Finland)

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg C g{sup − 1} h{sup − 1}, as compared to 2.71 μg C g{sup − 1} h{sup − 1} in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng N g{sup − 1}d{sup − 1}). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. - Highlights: •Boreal acid sulphate soils contain large amounts of organic C and N in subsoils. •Microbial communities throughout the acid

  20. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    Science.gov (United States)

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  1. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  2. Relationship of soil qualities to maize growth under increasing phosphorus supply in acid soils of southern Cameroon

    Institute of Scientific and Technical Information of China (English)

    TCHIENKOUA; M.JEMO; R.NJOMGANG; C.NOLTE; N.SANGINGA; J.TAKOW

    2008-01-01

    A large array of soil properties influences plant growth response to phosphorus (P) fertilizer input in acid soils.We carried out a pot experiment using three contrasted acid soils from southern Cameroon with the following main objectives:i) to assess the main soil causal factors of different maize (Zea mays L.) growth response to applied P and ii) to statistically model soil quality variation across soil types as well as their relationships to dry matter production.The soils used are classified as Typic Kandiudox (TKO),Rhodic Kandiudult (RKU),and Typic Kandiudult (TKU).Analysis of variance,regression,and principal component analyses were used for data analysis and interpretation.Shoot dry matter yield (DMY) was significantly affected by soil type and P rate with no significant interaction.Predicted maximum attainable DMY was lowest in the TKO (26.2 g pot-1) as compared to 35.6 and 36.7 g pot-1 for the RKU and TKU,respectively.Properties that positively influenced DMY were the levels of inorganic NaHCO3-extractable P,individual basic cations (Ca,Mg,and K),and pH.Their effects contrasted with those of exchangeable A1 and C/N ratio,which significantly depressed DMY.Principal component analysis yielded similar results,identifying 4 orthogonal components,which accounted for 84.7% of the total system variance (TSV).Principal component 1 was identified as soil nutrient deficiency explaining 35.9% of TSV.This soil quality varied significantly among the studied soils,emerging as the only soil quality which significantly (P < 0.05) correlated with maize growth.The 2nd,3rd,and 4th components were identified as soil organic matter contents,texture,and HCl-extractable P,respectively.

  3. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    OpenAIRE

    A. A. Elisa; Ninomiya, S.; J. Shamshuddin; Roslan, I.

    2016-01-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the ma...

  4. Copper Recovery from Polluted Soils Using Acidic Washing and Bioelectrochemical Systems

    OpenAIRE

    Karin Karlfeldt Fedje; Oskar Modin; Ann-Margret Strömvall

    2015-01-01

    Excavation followed by landfilling is the most common method for treating soils contaminated by metals. However, as this solution is not sustainable, alternative techniques are required. Chemical soil washing is one such alternative. The aim of this experimental lab-scale study is to develop a remediation and metal recovery method for Cu contaminated sites. The method is based on the washing of soil or ash (combusted soil/bark) with acidic waste liquids followed by electrolytic Cu recovery by...

  5. STRUCTURAL AND FUNCTIONAL CHARACTERISTICS OF HUMIC ACID SOILS OF THE KRASNODAR REGION

    Directory of Open Access Journals (Sweden)

    Lobanov V. G.

    2015-05-01

    Full Text Available The structural and functional properties of humic acids of different types of poorly studied soils of the Krasnodar Region: ordinary black soil or chernozem (carbonated, meadowish chernozem and gray forest soils are investigated. We define the type of humus of the soil samples studied as fulvate-humate. Using traditional indicators of humus soil conditions the regularities of soil and ecological processes involving organic matter in soils under natural and anthropogenically factorial changes in the monitoring sites are revealed. The relationship of the optical properties of humic acids with the intensity of the processes of transformation of humic substances by increasing the depth of the soil sample is shown. By NMR spectroscopy, IR spectroscopy, and spectrophotometry in the visible spectrum differences and similarities in the structure of macromolecules of humic acids in soil samples. In terms of soil contamination with oil in a field experiment, on the monitoring site we have set a trend towards to redistribution in the ratio of functional groups of humic acid macromolecules: the proportion of aliphatic fragments increases. We have revealed an increase in the share of the mobile fraction of humic substances in terms of oil pollution. The article has the most suitable justification for these processes. The results can be used for prediction the environmental state of the soil under anthropogenic pollution

  6. Dissolution of Aluminum in Variably Charged Soils as Affected by Low-Molecular-Weight Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-Yu; XU Ren-Kou; JI Guo-Liang

    2005-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and Al detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of Al in the two investigated soils in the following order: citric > oxalic > malonic > malic > tartaric > salicylic > lactic > maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of Al increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-1, the dissolution of Al changed little with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L-1,the dissolution of Al increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of Al were also related to their sorption-desorption equilibrium in the soils.

  7. Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. A. MAQSOOD; S. HUSSAIN; T. AZIZ; M. ASHRAF

    2011-01-01

    Rhizosphere drives plant uptake of sparingly soluble soil zinc (Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes (Sehar-06 and Vatan),Zn fractious in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties; their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-efficient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.

  8. Crossing the pedogenetic threshold: Apparent phosphorus limitation by soil microorganisms in unglaciated acidic eastern hardwood forests

    Science.gov (United States)

    Deforest, J. L.; Smemo, K. A.; Burke, D. J.

    2010-12-01

    The availability of soil phosphorus (P) can significantly influence microbial community composition and the ecosystem-level processes they mediate. However, the threshold at which soil microorganisms become functionally P-limited is unclear because of soil acidity effect on P availability. We reason that acidic temperate hardwood forest ecosystems are, in fact, functionally P-limited, but compensation occur via soil microbial production of phosphatase enzymes. We tested this hypothesis in glaciated and unglaciated mature mixed-mesophytic forests in eastern Ohio where both soil pH and P availability had been experientially manipulated. We measured the activity of two P acquiring soil enzymes, phosphomonoesterase (PMono) and phosphodiesterase (PDi), to understand how soil acidity and available P influence microbial function. Our experimental treatments elevated ambient soil pH from below 4.5 to around 5.5 and increased readily available phosphate from 3 to ~25 mg P/kg on glaciated soils and from 0.5 to ~5 mg P/kg on unglaciated soils. The P treatment decreased the activity of PDi by 82% relative to the control on unglaciated soils, but we observed no P treatment effect on glaciated soils. A similar result was observed for PMono. Soil pH, alone, did not significantly influence enzyme activities. Results suggest that soil microorganisms are more likely to be P-limited in older unglaciated soils. However, dramatically higher phosphatase activity in response to very low P availability suggests that an underlying ecosystem P limitation can be ameliorated by soil microbial community dynamics. This mechanism may be more important for older, unglaciated soils that have already crossed a pedogenic threshold where P availability influences ecosystem and microbial function.

  9. Impact of acid atmospheric deposition on soils: Field monitoring and aluminium chemistry.

    OpenAIRE

    Mulder, J.

    1988-01-01

    The effect of acid atmospheric deposition on concentrations and transfer of major solutes in acid, sandy soils was studied. Emphasis was given to mobilization and transport of potentially toxic aluminum. Data on solute concentrations and fluxes in meteoric water as well as soil solutions were obtained from intensive monitoring programmes conducted at a number of sites in northwestern Europe and North-America. Specific hypotheses were tested in laboratory experiments.Atmospheric acid inputs do...

  10. Effects of organic acids on Cd adsorption and desorption by two anthropic soils

    Institute of Scientific and Technical Information of China (English)

    Jingui WANG; Jialong LV; Yaolong FU

    2013-01-01

    The objective of this experiment was to study the effects of malic, tartaric, oxalic, and citric acid on the adsorption and desorption characteristics of Cd by two typical anthropic soils (lou soil and irrigation-silted soil) in North-west China. Cadmium adsorption and desorption were studied under a range of temperatures (25℃, 30℃, 35℃, 40℃), organic acid concentrations (0.5-5.0 mmol·L-1), and pH values (2-8). The results showed that the Cd adsorption capacity of the lou soil was significantly greater than that of the irrigation-silted soil. Generally, Cd adsorption increased as the temperature increased. In the presence of NaNO3, the adsorption of Cd was endothermic with △H values of 31.365 kJ·mo1-1 for lou soil and 28.278 kJ·mol-1 for irrigation-silted soil. The endothermic reaction indicated that H bonds were the main driving force for Cd adsorption in both soils. However, different concentrations of organic acids showed various influences on the two soils. In the presence of citric acid, chemical adsorption and van der Waals interactions were the main driving forces for Cd adsorption rather than H bonds. Although the types of organic acids and soil properties were different, the effects of the organic acids on the adsorption and desorption of Cd were similar in the two soils. The adsorption percentage of Cd generally decreased as organic acid concentrations increased. In contrast, the adsorption percentage increased as the pH of the initial solution increased. The exception was that adsorption percentage of Cd increased slightly as oxalic acid concentrations increased. In contrast, the desorption percentage of Cd increased with increasing concentrations of organic acids but decreased as the initial solution pH increased.

  11. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  12. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  13. Nature of Soil Acidity in Relation to Properties and Lime Requirement of Some Inceptisols

    Institute of Scientific and Technical Information of China (English)

    A. K. DOLUI; S. BHATTACHARJEE

    2003-01-01

    Some Inceptisols representing the Singla catchment area in Karimgaunge district of Assam, India, were studied for lime requirement as influenced by the nature of soil acidity. The electrostatically bonded (EB)-H+ and EB-Al3+ acidities constituted 33 and 67 percent of exchangeable acidity while EB-H+, EB-Al3+,exchangeable and pH-dependent acidities comprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a major contribution towards the total potential acidity (67%~84%). Grand mean of lime requirement determined by the laboratory incubation method and estimated by the methods of New Woodruff, Woodruff and Peech as expressed in MgCaCO3 ha-1 was in the order: Woodruff (15.6) > New Woodruff (14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity and lime requirement methods with selected soil properties showed that pH in three media, namely water, 1 mol L-1 KCl and 0.01 mol L-1 CaCl2, had a significant negative correlation with different forms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positive correlations with EB-Al3+ acidity, exchangeable acidity, pH-dependent acidity and total potential acidity, and also lime requirement methods. Extractable Al showed positive correlations with different forms of acidity except EB-H+ and EB-Al3+ acidities. The lime requirement by different methods depended upon the extractable aluminium.Significant positive correlations existed between lime requirements and different forms of acidity of the soils except EB-H+ acidity and incubation method. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method did slightly better than the New Woodruff, incubation and Peech methods at estimating lime requirement and hence the Woodruff procedure may be recommended for routine soil testing because of its speed and simplicity.

  14. Solid components and acid buffering capacity of soils in South China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The effects of soil solid components on soil sensitivityto acid deposition were studied in this paper by sequentialextraction method. A multiple regression equation of soilsensitivity was set up on the basis of stepwise regressionanalysis. The results showed that organic matter expressed dualeffects that were decided by soil original pH value andexchangeable cation composition on acid buffering reactions. Thehydrolysis of activated oxides was a very important protonbuffering reaction when in low pH situation. The crystalline oxidesalso played a role in the buffering reactions, but the role wasrestricted by the rate of activation of oxides. Meanwhile, theresults by stepwise analysis showed that factors that hadsignificant effect on soil acid buffering capacity were content ofmontmorillite, soil original pH value, Alo, Mno and CEC indecreasing order. Finally, sixteen soils were classified into fourtypes of sensitive with single index cluster and multiple fuzzy cluster analysis respectively.

  15. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids. PMID:26201661

  16. Effects of acid rain on competitive releases of Cd, Cu, and Zn from two natural soils and two contaminated soils in hunan, China

    OpenAIRE

    Liao, Bo-han; Guo, Zhao-hui; Zeng, Qingru; Probst, Anne; Probst, Jean-Luc

    2007-01-01

    Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6– 3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, southcentralChina, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rai...

  17. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  18. Calibration of KE C Value in Acidic Red Soils with Fumigation-Extraction Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Commonly used KEC value (0.45) of the fumigation-extraction (FE) method was obtained on the basis of temperate neutral soils. To ascertain its applicability to acidic red soils widespread in southern China and other subtropical regions, the KEC value was investigated based on 8 acidic red soils by in situ labelling of native soil microorganisms using 14C-labelled glucose. Realistic KEC value for red soils could be obtained by in situ 14C-labelling as long as an incubation period of 72 h is adopted after addition of 14C glucose to soil. The single KEC values for the eight red soils ranged from 0.27 to 0.35 and averaged 0.31. Lower KEC value obtained in red soils probably resulted from different soil quality, compared with other types of soil,which causes possible changes in microbial community structure and extractability of cellular component.Microbial biomass C contents of the eight red soils measured using a unique and constant KEC value of 0.45 decreased by 22.2%~40% in comparison to those using variable KEC values. The results suggest that microbial biomass C would be significantly underestimated using the present KEC value and a calibration of the KEC value is necessary for red soils.``

  19. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    To date, N2O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N2O production in four subtropical acid forest soils (pH2O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N2O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N2O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N2O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N2O product ratios from nitrification. The ratio of N2O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N2O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N2O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N2O production. → While, contribution of autotrophic nitrification to N2O production was little. → Ratios of N2O-N emission from nitrification were higher than those in most previous references.

  20. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-An; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13 % in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54 % when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions. PMID:26620858

  1. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  2. Uranium Leaching from Contaminated Soil Utilizing Rhamnolipid, EDTA, and Citric Acid

    Directory of Open Access Journals (Sweden)

    Sara Asselin

    2014-01-01

    Full Text Available Biosurfactants have recently gained attention as “green” agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining and Leupp (control—no mining. The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 μM was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash.

  3. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    Science.gov (United States)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, pamoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  4. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  5. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Renata Wilma Vasconcelos

    2014-08-01

    Full Text Available Mangrove ecosystems are of great environmental significance, because of their fragility and role in feeding and breeding various animal species. In northeastern Brazil, the disorderly occupation of estuarine areas and the urban sprawl have led to a considerable loss of the original area occupied by mangroves. In the municipality of Cabedelo, State of Paraíba, there are about 4,900 ha of remnant mangrove areas in the estuarine complex of the Paraíba River. However, information about the attributes of mangrove soils at this location is quite scarce. The aim of this study was to quantify the soil organic matter and soil acidity in mangroves located in the estuary of the Paraíba River, State of Paraíba, Brazil, in order to increase the database of soil attributes in this region. The study area is in local influence of the Restinga de Cabedelo National Forest (Flona, an environmental conservation unit of the Chico Mendes Institute for Biodiversity Conservation. For the choice of sampling points, we considered an area that receives direct influence of the eviction of domestic and industrial effluents. The soil of the study area is an “Organossolo Háplico” in Brazilian Soil Classification (Histosol, and was sampled at four point sites: one upstream of the effluent discharge (P1, one in the watercourse receiving effluent water (P2, one downstream of the effluent discharge (P3 and another near Flona (P4, at 0-20 and 20-40 cm, in four replications in time (28/08/2012 in the morning and afternoon, and 21/01/2013 in the morning and afternoon. Potential acidity, pH and soil organic matter (SOM were determined. No significant differences were detected in the potential acidity of the four collection sites, which ranged from 0.38 to 0.45 cmolc dm-3. Soil pH was greatest at point P4 (7.0 and lowest at point P1 (5.8. The SOM was highest at point P1 (86.4 % and lowest at P2 (77.9 %. The attributes related to soil acidity were not sensitive to indicate

  6. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples.

    Science.gov (United States)

    Xu, Duanping; Xu, Zhonghou; Zhu, Shuquan; Cao, Yunzhe; Wang, Yu; Du, Xiaoming; Gu, Qingbao; Li, Fasheng

    2005-05-01

    Three kinds of soils in China, krasnozem, fluvo-aquic soil, and phaeozem, as well as the humic acids (HAs) isolated from them, were used to adsorb the herbicide butachlor from water. Under the experimental conditions, the adsorption amount of butachlor on soils was positively correlated with the content of soil organic matter. HAs extracted from different kinds of soils had different adsorption capacity for the tested herbicide, which was positively correlated with their content of carbonyls. The adsorption mechanism was studied using Fourier transform infrared spectroscopy and cross-polarization with magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) techniques. It was showed that the adsorption mainly took place on the C=O, phenolic and alcoholic O-H groups of HAs. It was also confirmed that the adsorption mechanism was hydrogen bonds formation between the above groups of HAs and butachlor molecules.

  7. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  8. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    OpenAIRE

    Theeba Manickam; Gerard Cornelissen; Robert T. Bachmann; Illani Z. Ibrahim; Jan Mulder; Hale, Sarah E.

    2015-01-01

    The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit). Rice husk biochar was applied once to both soils at two doses (2% and 5%), in a pot set ...

  9. [Short-term changes of pH value and Al activity in acid soils after urea fertilization].

    Science.gov (United States)

    Zeng, Qingru; Liao, Bohan; Jiang, Zhaohui; Zhou, Xihong; Tang, Can; Zhong, Ning

    2005-02-01

    Acidic soils are widely distributed in South China, and their acidity is the major environmental stress factor limiting the growth of most crops. It is well known that soil Al solubilized at low pH is a main toxic factor for plant growth. Our study with three acidic soils showed that soil pH increased quickly, while soil exchangeable Al decreased sharply with the increasing concentrations of applied urea. The time-course experiment revealed that the increase of soil pH was short-lived, with a subsequently slow drop after reached its maximum. Urea fertilization caused a drastic change of soil pH during 2-4 weeks of the experimental period. There was a negative relationship between soil pH and soil exchangeable Al. Biological toxicity test demonstrated that applying urea to acidic soils could obviously decrease the aluminum toxicity of maize in a short-term period.

  10. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids.

    Science.gov (United States)

    Vargas, Carmen; Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Moliner, Ana

    2016-07-01

    Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils. PMID:27030238

  11. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.

    Science.gov (United States)

    Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. PMID:26398447

  12. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    OpenAIRE

    Asif Naeem; Muhammad Akhtar; Waqar Ahmad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were sp...

  13. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    Science.gov (United States)

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  14. Understanding the effect low molecular weight organic acids on the desorption and availability of soil phosphorus

    Science.gov (United States)

    Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney; George, Timothy; Shand, Charles; Lumsdon, David; Cooper, Pat; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the soil solid phase after equilibration with increasing doses of citric acid (CA) and oxalic acid (OA) were studied in 2 soils with contrasting P status. The combined methods of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools to evaluate the changes in solid-to-solution interchange kinetics. A significant effect of CA and OA in soil solution P was observed only for doses over 1 mMol kg-1. Curiously, low organic acid doses (0.5-1 mMol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for doses over 2 mMol kg-1. The trivalent CA was able to promote a higher increase in soil solution P than the bivalent OA for both soils. Organic phosphorus was only significantly mobilized by organic acids in the low P soil, possibly because in the high P soil these P forms were less labile than inorganic P. Both CA and OA promoted a decrease in the adsorbed-to-solution distribution coefficient, desorption rate constants and an increase in the response time of solution P equilibration. The extent of this effect was shown to be both soil specific and organic acid specific. Since both organic acids negatively affected the kinetics of P interchange between the soil matrix and the soil solution, their net effect on P bioavailability is expected to be much lower than the observed increase in solution concentration.

  15. Organic Matter, Carbon and Humic Acids in Rehabilitated and Secondary Forest Soils

    OpenAIRE

    Lee Y. Leng; Ahmed, Osumanu H.; Nik M.A. Majid; Mohamadu B. Jalloh

    2009-01-01

    Problem Statement: Tropical rainforests cover about 19.37 million ha (60%) of Malaysias total area and about 8.71 million ha can be found in Sarawak, Malaysia. Excessive logging, mining and shifting cultivation contribute to deforestation in Sarawak. The objectives of this study were to: (i) Quantify soil Organic Matter (SOM), Soil Organic Carbon (SOC) and Humic Acids (HA) in rehabilitated and secondary forest soils and (ii) Compare SOM, SOC and HA sequestrations of both forests. Approach: So...

  16. P Limitation and Microbial Biogeochemistry in Acidic Forest Soils of the Northeastern United States

    Science.gov (United States)

    Smemo, K. A.; Deforest, J. L.; Burke, D. J.; Elliot, H. L.; Kluber, L. A.; Carrino-Kyker, S. R.

    2010-12-01

    In forest ecosystems with acidic soils, such as many hardwood forests of the Northeastern United States, net primary productivity should be limited by phosphorus (P) because P is biologically less available at pH temperate forests that have naturally acidic soil or are exposed to chronic acid deposition; such findings are contrary to biogeochemical expectations. We hypothesize that many eastern forests possess an underlying P limitation not realized at the ecosystem level. Instead, shifts in the composition, structure and function of soil microbial communities compensate by acquiring more P from organic sources and P limitation is therefore not manifested at the aboveground (plant) level. To test this hypothesis, we manipulated soil pH and P availability in 72 20 x 40 m mature hardwood forest plots across northeastern (glaciated) and southeastern (unglaciated) Ohio beginning in late summer 2009. Ten months after treatment initiation, soil pH has increased from 4.5 to 5.5 and soil P has increased from 3 to ~25 mg P/kg soil on glaciated soils and from 0.5 to ~5 mg P/kg soil on unglaciated soils. To quantify treatment responses, we measured the activity of soil extracellular enzymes associated with liberation of P, N, and C from organic matter, as well as pools of N and N cycling processes. We saw no significant effects of our treatments on pools of available ammonium or nitrate, nor did we see effects on net N mineralization and net nitrification rates. However, glaciated soils had significantly greater nitrate pools and higher N cycling rates than older unglaciated soils. Nitrogen and C cycling enzymes in treatment plots were not significantly different than control plots, but N-acetylglucosaminidase activity (N acquisition) was significantly greater in the unglaciated soils and β-glucosidase and cellobiosidase activities (C cycling) were greatest in the glaciated soils. In only the unglaciated soils was the activity of P acquisition enzymes (phosphomonoesterase

  17. Composition of exchangeable bases and acidity in soils of the Crimean Mountains

    Science.gov (United States)

    Kostenko, I. V.

    2015-08-01

    Acid forest and mountainous meadow soils of the Crimean Mountains were studied. The amount of hydrogen and aluminum ions extracted from these soils depended on the pH of extracting agents. The maximum values of the soil acidity were obtained upon the extraction with a strongly alkaline solution of sodium acetate in 0.05 N NaOH. The application of this extractant made it possible to determine the total exchange acidity, the total amount of extractable aluminum, and the total cation exchange capacity of the soils after the extraction of all the acidic components from them. The values of these characteristics were significantly higher than the values of the potential acidity and cation exchange capacity obtained by the routine analytical methods. Hydrogen predominated among the acidic components of the exchange acidity in the humus horizons, whereas aluminum predominated among them in the underlying mineral horizons. Hydrothermic conditions and the character of vegetation and parent materials were the major factors affecting the relationships between bases and acidic components in the soil adsorption complex.

  18. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Garrido-Rodríguez, B.; Arias-Estévez, M.;

    2015-01-01

    We applied three different doses of crushed mussel shell (CMS) on two Cu-polluted acid soils to study the effect of these amendments on the growth of the bacterial community during 730 days. Soil pH increased in the short and medium term due to CMS addition. In a first stage, bacterial growth...

  19. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    Science.gov (United States)

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  20. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    OpenAIRE

    Guohua Liang; Xingzhao Liu; Xiaomei Chen; Qingyan Qiu; Deqiang Zhang; Guowei Chu; Juxiu Liu; Shizhong Liu; Guoyi Zhou

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration...

  1. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    OpenAIRE

    Jinzhong Wan; Die Meng; Tao Long; Rongrong Ying; Mao Ye; Shengtian Zhang; Qun Li; Yan Zhou; Yusuo Lin

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximu...

  2. Effects of Fe oxide on N transformations in subtropical acid soils

    Science.gov (United States)

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-02-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3--N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3--N immobilization rate increased 8 fold. NO3--N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3--N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3--N immobilization caused by high Fe oxide content rather than a low pH.

  3. Mobility and speciation of Cd,Cu,and Zn in two acidic soils affected by simulated acid rain

    Institute of Scientific and Technical Information of China (English)

    GUO Zhao-hui; LIAO Bo-han; HUANG Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals(Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil(CRS) and yellow red soil(CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values.

  4. Soil acidity and mobile aluminum status in pseudogley soils in Čačak-Kraljevo basin

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2012-01-01

    Full Text Available Soil acidity and aluminum toxicity are considered most damaging soil conditions affecting the growth of most crops. This paper reviews the results of tests of pH, exchangeable acidity and mobile aluminum (Al concentration in profiles of pseudogley soils from Čačak-Kraljevo basin. For that purpose, 102 soil pits were dug in 2009 in several sites around Čačak- Kraljevo basin. The tests encompassed 54 field, 28 meadow, and 20 forest soil samples. Samples of soil in the disturbed state were taken from the Ah and Eg horizons (102 samples, from the B1tg horizon in 39 field, 24 meadow and 15 forest pits (a total of 78 samples and from the B2tg horizon in 14 field, 11 meadow, and 4 forest pits (a total of 29 samples. Mean pH values (1M KCl of the tested soil profiles were 4.28, 3.90 and 3.80 for the Ah, Eg and B1tg horizons, respectively. Soil pH of forest samples was lower than those in meadow and arable land samples (mean values of 4.06, 3.97 and 3.85 for arable land, meadow and forest samples, respectively. Soil acidification was especially intensive in deep horizons, as 27% (Ah, 77% (Eg and 87% (B1tg soil samples had the pH value below 4.0. Mean values of total exchangeable acidity (TEA were 1.55, 2.33 and 3.40 meq 100 g-1 for the Ah, Eg and B1tg horizons, respectively. The TEA values in forest soils were considerably higher (3.39 meq 100 g-1 than those in arable soils and meadow soils (1.96 and 1.93, respectively. Mean mobile Al contents of tested soil samples were 11.02, 19.58 and 28.33 mg Al 100 g-1 for the Ah, Eg and B1tg horizons, respectively. According to the pH and TEA values, mobile Al was considerably higher in the forest soils (the mean value of 26.08 mg Al 100 g-1 than in the arable soils and meadow soils (the mean values of 16.85 and 16.00 mg Al 100 g-1, respectively. The Eg and B1tg horizons of the forest soil had especially high mobile Al contents (the mean values of 28.50 and 32.95 mg Al 100 g-1, respectively. High levels of

  5. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  6. Dolomite application to acidic soils: a promising option for mitigating N2O emissions.

    Science.gov (United States)

    Shaaban, Muhammad; Peng, Qi-An; Hu, Ronggui; Wu, Yupeng; Lin, Shan; Zhao, Jinsong

    2015-12-01

    Soil acidification is one of the main problems to crop productivity as well as a potent source of atmospheric nitrous oxide (N2O). Liming practice is usually performed for the amelioration of acidic soils, but the effects of dolomite application on N2O emissions from acidic soils are still not well understood. Therefore, a laboratory study was conducted to examine N2O emissions from an acidic soil following application of dolomite. Dolomite was applied to acidic soil in a factorial design under different levels of moisture and nitrogen (N) fertilizer. Treatments were as follows: dolomite was applied as 0, 1, and 2 g kg(-1) soil (named as CK, L, and H, respectively) under two levels of moisture [i.e., 55 and 90 % water-filled pore space (WFPS)]. All treatments of dolomite and moisture were further amended with 0 and 200 mg N kg(-1) soil as (NH4)2SO4. Soil properties such as soil pH, mineral N (NH4 (+)-N and NO3 (-)-N), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and soil N2O emissions were analyzed throughout the study period. Application of N fertilizer rapidly increased soil N2O emissions and peaked at 0.59 μg N2O-N kg(-1) h(-1) under 90 % WFPS without dolomite application. The highest cumulative N2O flux was 246.32 μg N2O-N kg(-1) under 90 % WFPS without dolomite addition in fertilized soil. Addition of dolomite significantly (p ≤ 0.01) mitigated N2O emissions as soil pH increased, and H treatment was more effective for mitigating N2O emissions as compared to L treatment. The H treatment decreased the cumulative N2O emissions by up to 73 and 67 % under 55 and 90 % WFPS, respectively, in fertilized soil, and 60 and 68 % under 55 and 90 % WFPS, respectively, in unfertilized soil when compared to those without dolomite addition. Results demonstrated that application of dolomite to acidic soils is a promising option for mitigating N2O emissions.

  7. Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Volcanic Ash Soils:

    Directory of Open Access Journals (Sweden)

    Ei Ei Mon

    2009-01-01

    Full Text Available The quantification of the linear adsorption coefficient (Kd for soils plays a vital role to predict fate and transport of pesticides in the soil-water environment. In this study, we measured Kd values for 2,4-Dichlorophenoxyacetic acid (2,4-D adsorption onto Japanese volcanic ash soils with different amount of soil organic matter (SOM in batch experiments under different pH conditions. All measurements followed well both linear and Freundlich adsorption isotherms. Strong correlations were found between measured Kd values and pH as well as SOM. The 2,4-D adsorption increased with decreasing pH and with increasing SOM. Based on the data, a predictive Kd equation for volcanic ash soils, log (Kd = 2.04 - 0.37 pH + 0.91 log (SOM, was obtained by the multiple regression analysis. The predictive Kd equation was tested against measured 2,4-D sorption data for other volcanic ash soils and normal mineral soils from literature. The proposed Kd equation well predicted Kd values for other volcanic ash soils and slightly over- or under-predicted Kd values for normal mineral soils. The proposed Kd equation performed well against volcanic ash soils from different sites and countries, and is therefore recommended for predicting Kd values at different pH and SOM conditions for volcanic ash soils when calculating and predicting 2,4-D mobility and fate in soil and groundwater.

  8. Cu and Zn Speciation in an Acid Soil Amended with Alkaline Biosolids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewage sludge biosolids was conducted in order to assess metal bioavailability and environmental mobility. Soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution was determined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used for extraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soil solution existed in different fractions with variable lability and metals in the soil solid phase were also present in various chemical forms with potentially different bioavailability and environmental mobility. Alkalinestabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractions both in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.

  9. Sorption of a triazol derivative by soils: importance of surface acidity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H2O2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H2O2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.

  10. Remote sensing of acid sulfate soils using multispectral and gamma-ray data

    International Nuclear Information System (INIS)

    Acid sulfate soils are a significant environmental problem in coastal regions of Australia. Drainage and disturbance of coastal lands can result in acid soil degradation and the release of sulfuric acid and toxic metals into coastal waters. Remote sensing can provide a useful tool for detection of these soils and monitoring of their disturbance. As acid sulfate soils become oxidised with exposure to air, iron-minerals are produced and precipitate at the surface. This results from the breakdown of pyrite to form hydrated iron minerals and elemental sulfur, the oxidation of which produces acidity. The concentration of iron minerals at the surface can be an indicator of the level of acid sulfate soil activity in the near subsurface. These iron minerals include goethite, ferrihydrite and jarosite. Space-borne remote sensing scanners such as Landsat TM are capable of detecting iron minerals as a result of ferric ion absorption of solar radiation. Hyperspectral scanners are capable of further discrimination of individual minerals. This paper will discuss spectral characteristics of active acid sulfate soils and demonstrate the use of spectral unmixing algorithms on Landsat TM to detect problem areas at the surface. This method matches multispectral data to material reflectance-spectra known as end-members. These end-members or materials are then resolved mathematically as to their respective contributions to the overall reflectance (Bierwirth, 1990). In this way, abundances for particular materials can be derived.Digital elevation data was used to distinguish between the iron minerals due to weathering of bedrock in upland areas and acid sulfate soils on the plains. Also, the results of a high resolution (200m linespacing) airborne gamma-ray survey are presented. This data senses the concentration of radioelements down to about 40 cm depth and is largely unaffected by vegetation. Concentrations of gamma-emitting elements can indicate the type and depth of alluvium that

  11. Chicken manure biochar as liming and nutrient source for acid Appalachian soil.

    Science.gov (United States)

    Hass, Amir; Gonzalez, Javier M; Lima, Isabel M; Godwin, Harry W; Halvorson, Jonathan J; Boyer, Douglas G

    2012-01-01

    Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition. PMID:22751051

  12. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  13. Removal of heavy metals from a contaminated soil using tartaric acid

    Institute of Scientific and Technical Information of China (English)

    KE Xin; LI Pei-jun; ZHOU Qi-xing; ZHANG Yun; SUN Tie-heng

    2006-01-01

    This study reports the feasibility of remediation of a heavy metal (HM) contaminated soil using tartaric acid, an environmentally-friendly extractant. Batch experiments were performed to test the factors influencing remediation of the HM contaminated soil. An empirical model was employed to describe the kinetics of HM dissolution/desorption and to predict equilibrium concentrations of HMs in soil leachate. The changes of HMs in different fractions before and after tartaric acid treatment were also investigated. Tartaric acid solution containing HMs was regenerated by chestnut shells. Results show that utilization of tartaric acid was effective for removal of HMs from the contaminated soil, attaining 50%-60% of Cd, 40%-50% of Pb, 40%-50% of Cu and 20%-30% of Zn in the pH range of 3.5-4.0 within 24 h. Mass transfer coefficients for cadmium (Cd) and lead (Pb) were much higher than those for copper (Cu) and zinc (Zn). Sequential fractionations of treated and untreated soil samples showed that tartaric acid was effective in removing the exchangeable, carbonate fractions of Cd, Zn and Cu from the contaminated soil. The contents of Pb and Cu in Fe-Mn oxide fraciton were also significantly decreased by tartaric acid treatment. One hundred milliliters of tartaric acid solution containing HMs could be regenerated by 10 g chestnut shells in a batch reactor. Such a remediation procedure indicated that tartaric acid is a promising agent for remediation of HM contaminated soils. However, further research is needed before the method can be practically used for in situ remediation of contaminated sites.

  14. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China

    Science.gov (United States)

    Huang, Yongmei; Kang, Ronghua; Mulder, Jan; Zhang, Ting; Duan, Lei

    2015-11-01

    Elevated anthropogenic nitrogen (N) deposition has caused nitrate (NO3-) leaching, an indication of N saturation, in several temperate and boreal forests across the Northern Hemisphere. So far, the occurrence of N saturation in subtropical forests and its effects on the chemistry of the typically highly weathered soils, forest growth, and biodiversity have received little attention. Here we investigated N saturation and the effects of chronically high N inputs on soil and vegetation in a typical, subtropical Masson pine (Pinus massoniana) forest at Tieshanping, southwest China. Seven years of N flux data obtained in ambient conditions and in response to field manipulation, including a doubling of N input either as ammonium nitrate (NH4NO3) or as sodium nitrate (NaNO3) solution, resulted in a unique set of N balance data. Our data showed extreme N saturation with near-quantitative leaching of NO3-, by far the dominant form of dissolved inorganic N in soil water. Even after 7 years, NH4+, added as NH4NO3, was nearly fully converted to NO3-, thus giving rise to a major acid input into the soil. Despite the large acid input, the decrease in soil pH was insignificant, due to pH buffering caused by Al3+ mobilization and enhanced SO42- adsorption. In response to the NH4NO3-induced increase in soil acidification and N availability, ground vegetation showed significant reduction of abundance and diversity, while Masson pine growth further declined. By contrast, addition of NaNO3 did not cause soil acidification. The comparison of NH4NO3 treatment and NaNO3 treatment indicated that pine growth decline was mainly attributed to acidification-induced nutrient imbalance, while the loss in abundance of major ground species was the combining effect of N saturation and acidification. Therefore, N emission control is of primary importance to curb further acidification and eutrophication of forest soils in much of subtropical south China.

  15. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  16. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    Science.gov (United States)

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation 3.5 [equiv kg(-1)]. PMID:19144349

  17. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  18. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  19. Organic Matter, Carbon and Humic Acids in Rehabilitated and Secondary Forest Soils

    Directory of Open Access Journals (Sweden)

    Lee Y. Leng

    2009-01-01

    Full Text Available Problem Statement: Tropical rainforests cover about 19.37 million ha (60% of Malaysia’s total area and about 8.71 million ha can be found in Sarawak, Malaysia. Excessive logging, mining and shifting cultivation contribute to deforestation in Sarawak. The objectives of this study were to: (i Quantify soil Organic Matter (SOM, Soil Organic Carbon (SOC and Humic Acids (HA in rehabilitated and secondary forest soils and (ii Compare SOM, SOC and HA sequestrations of both forests. Approach: Soil samples were collected from a 16 year old rehabilitated forest and a secondary forest at Universiti Putra Malaysia, Bintulu Campus. Fifteen samples were taken at random with a soil auger at 0-20 cm and 20-40 cm depths. The bulk densities at these depths were determined by the coring method. The bulk density method was used to quantify the total C (TC, Total Organic Carbon (TOC, Organic Matter (OM, Humic Acids (HA and total N at the stated sampling depths. Results: Regardless of forest soil type and depth, the amount of SOM of the two forests was similar. Except for 20-40 cm of the secondary forest soil whereby the quantity of total C sequestered was significantly lower than that of the rehabilitated forest soil, C sequestration was similar irrespective of forest type and depth. Nevertheless, stable C (organic carbon sequestered in HA was generally higher in the rehabilitated forest soil compared with the secondary forest soil. This was attributed to higher yield of HA in the rehabilitated forest soil partly due to better humification at 20-40 cm in the rehabilitated forest soil. Conclusion: Hence, the findings suggest that organic C in HA realistically reflects C sequestration in the soils of the two forests investigated.

  20. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  1. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    Directory of Open Access Journals (Sweden)

    W. Huang

    2011-07-01

    Full Text Available Phosphorus (P is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF, coniferous and broad-leaved mixed forest (MF and monsoon evergreen broad-leaved forest (MEBF. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  2. Study on Humic Acids of the Soil Applied with Corn Stalk by Spectroscopy Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Jing-gui; WANG Ming-hui; JIANG Yi-mei; XU Yan

    2005-01-01

    Spectroscopy measurements (Fourier transform infrared differential spectroscopy, Carbon-13 nuclear magnetic resonance spectrometry, Matrix-assisted laser desorption/ionization-time of flight mass spectrometry) were performed to study the humic acids of the soil applied with corn stalk. The results showed that after incorporation of corn stalks into the soil, the soil humic acid (HA) changed significantly in different stages. During first 60 days, new HAs were formed by polymerization and seems to be similar to that of initial HAs from composting corn stalk, some little molecular organic matters also reacted with soil HAs and turned into parts of soil HAs. After 60 days of the corn stalk residue incorporation, new HAs were formed by polymerization of decomposed lignin molecules, some methylenes transformed into methyls and methoxyls since the 90th day. Application of corn stalk led to the increase of aliphatic components in soil HAs, the decrease in aromatic components of soil HAs and the suppression in oxidation degree of soil HAs. The average molecular weight of soil HAs also declined because of application of corn stalk.

  3. The tillage effect on the soil acid and alkaline phosphatase activity

    Directory of Open Access Journals (Sweden)

    Lacramioara Oprica

    2011-12-01

    Full Text Available Phosphatases (acid and alkaline are important in soils because these extracellular enzymes catalyze the hydrolysis of organic phosphate esters to orthophosphate; thus they form an important link between biologically unavailable and mineral phosphorous. Phosphatase activity is sensitive to environmental perturbations such as organic amendments, tillage, waterlogging, compaction, fertilizer additions and thus it is often used as an environmental indicator of soil quality in riparian ecosystems. The aim of the study was to assess the effect of tillage systems on phosphatases activity in a field experiment carried out in Ezăreni farm. The phosphatase activitiy were determined at two depths (7-10 cm and 15-25cm layers of a chernozem soil submitted to conventional tillage (CT in a fertilised and unfertilised experiment. Monitoring soil alkaline phosphatase activity showed, generally, the same in fertilized soil profiles collected from both depths; the values being extremely close. In unfertilized soils, alkaline phosphatase activity is different only in soils that were exposed to unconventional work using disc harrows and 30cm tillage. Both works type (no tillage and conventional tillage cause an intense alkaline phosphatase activity in 7-10 cm soil profile. Acid phosphatase activity is highly fluctuating in both fertilized as well unfertilized soil, this enzyme being influenced by the performed works.

  4. Simulation of soil response to acidic deposition scenarios in Europe

    International Nuclear Information System (INIS)

    The chemical response of European forest soils to three emission-deposition scenarios for the year 1960-2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gradient of 1.0 degree C longitude x 0.5 degree latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO3 concentrations (>0.02 molcm-3) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (> 0.2 molcm-3) and Al/BC ratio (>1 mol-1) and a low pH (3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable. 61 refs., 11 figs., 10 tabs

  5. Influence of some agricultural practices on the soil acidification in acid precipitation areas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Both acid precipitation and unreasonable agricultural practices are notorious artificial factors resulting in soil acidification. To sort out reasonable agricultural practices favorable to abating soil acidification, the task of this study was directed to a long-term field trial in Chongqing, during which chemical fertilizer, organic fertilizer were applied to different crop rotations and the soil pH value was measured. The results indicated that all treatments decreased pH value in the 0 to 20 cm soil layer after ten years. Problems were more serious when chlorine-containing fertilizer, excessive chemical fertilizer and mixed fertilizer were applied. It is demonstrated that balance rates of N, P and K fertilizers, application of muck in field are advantageous to abating soil acidification. Oil plants affect soil acidification more than cereal in different crop rotation.

  6. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    Science.gov (United States)

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  7. Report of the consultants' meeting on the use of nuclear techniques to develop management practices for increasing crop production and soil fertility in acid soils

    International Nuclear Information System (INIS)

    A Consultants' Meeting on 'The use of nuclear techniques to develop management practices for increasing crop production and soil fertility in acid soils' was held in Vienna at the IAEA headquarters from March 1-3, 1999. The meeting was attended by six consultants with expertise in tropical acid soils drawn from International Agricultural Research Organisations and universities together with staff members of the Joint FAO/IAEA Division. The consultants' presentations reviewed advances in approaches for the sustainable intensification of agricultural productivity in tropical acid soils in Latin America, Africa and South East Asia. The consultants also provided recommendations on the formulation and implementation of the future CRP

  8. Understanding the mechanism behind the nitrous acid (HONO) emissions from the northern soils

    Science.gov (United States)

    Bhattarai, Hem Raj; Siljanen, Henri MP; Biasi, Christina; Maljanen, Marja

    2016-04-01

    The interest of the flux of nitrous acid (HONO) from soils has recently increased. HONO is an important source of the oxidant OH- radical in the troposphere and thus results a reduction of the greenhouse gas methane (CH4) in the atmosphere. Soils have been recently found to be potential sources of HONO as these emissions are linked to other nitrogen cycle processes, especially presence of nitrite in soils. Ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) have been suggested as possible yet substantial sources of HONO. Along with soil pH, other physical properties such as C:N, nitrogen availability, soil moisture and temperature may effect HONO emissions. Our preliminary results demonstrate that drained acidic peatlands with a low C:N produces higher NO, N2O and HONO emissions compared to those in pristine peatlands and upland forest soils. This study will identify the hotspots and the process involved in HONO emissions in northern ecosystems. Along with HONO, we will examine the emissions of NO and N2O to quantify the related N-gases emitted. These results will add a new piece of information in our knowledge of the nitrogen cycle. Soil samples will be collected from several boreal and arctic sites in Finland, Sweden and Russia. In the laboratory, soil samples will be manipulated based on previously described soil physical properties. This will be followed by labelling experiment coupled with selective nitrification inhibitor experiment in the soils. Our first hypothesis is that northern ecosystems are sources of HONO. Second, is that the soil properties (C:N ratio, moisture, N-availability, pH) regulate the magnitude of HONO emissions from northern soils. Third is that the first step of nitrification (ammonium oxidation) is the main pathway to produce HONO. This study will show that the northern ecosystems could be sources of HONO and therefore increasing the oxidizing capacity of the lower atmosphere.

  9. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. Saiful Alam

    2013-01-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  10. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    Science.gov (United States)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  11. Emission control for precursors causing acid rain(V):Improvement of acid soil with the bio-briquette combustion ash

    Institute of Scientific and Technical Information of China (English)

    DONG Xu-hui; SAKAMOTO Kazuhiko; WANG Wei; GAO Shi-dong; ISOBE Yugo

    2004-01-01

    The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3-5 t/cm2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0%-10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%-8% of the bio-briquette combustion ash to the tested soil.

  12. Studies of the compositions of humic acids from Amazonian Dark Earth soils.

    Science.gov (United States)

    Novotny, Etelvino H; deAzevedo, Eduardo R; Bonagamba, Tito J; Cunha, Tony J F; Madari, Beáta E; de M Benites, Vinícius; Hayes, Michael H B

    2007-01-15

    The compositions of humic acids (HAs) isolated from cultivated and forested "Terra Preta de Indio" or Amazonian Dark Earth soils (anthropogenic soils) were compared with those from adjacent non-anthropogenic soils (control soils) using elemental and thermogravimetric analyses, and a variety of solid-state nuclear magnetic resonance techniques. The thermogravimetric index, which indicates the molecular thermal resistance, was greater for the anthropogenic soils than for the control soils suggesting polycyclic aromatic components in the former. The cultivated anthropogenic soils were more enriched in C and depleted in H than the anthropogenic soils under forest, as the result of the selective degradation of aliphatic structures and the possible enrichment of H-deficient condensed aromatic structures. The combination of variable amplitude cross-polarization (VACP) and chemical shift anisotropy with total suppression of spinning sidebands experiments with composite pi pulses could be used to quantify the aromaticity of the HAs from the anthropogenic soils. From principal component analysis, using the VACP spectra, it was possible to separate the different constituents of the HAs, such as the carboxylated aromatic structures, from the anthropogenic soils and plant derived compounds. The data show that the HAs from anthropogenic soils have high contents of aryl and ionisable oxygenated functional groups, and the major functionalities from adjacent control soils are oxygenated functional groups from labile structures (carbohydrates, peptides, and with evidence for lignin structures). The anthropogenic soils HAs can be considered to be more recalcitrant, and with more stable reactive functional groups which may, in part, explain their more sustainable fertility due to the organic matter contribution to the soil cation exchange capacity. PMID:17310698

  13. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China

    International Nuclear Information System (INIS)

    Tieshanping catchment in southwest China was supposed to a large pool of atmospheric mercury. This work was aimed to examine THg (total mercury) concentrations, pools and influence factors in the acidic forest. THg concentrations were highly elevated in the study area, which was significantly depended on TOM (total organic matter) concentrations and altitudinal elevation, whereas negatively correlated with soil pH. The pools of mercury accumulated in soils were correlated strongly with the stocks of TOM and altitude, ranged from 5.9 to 32 mg m−2 and averaged 14.5 mg m−2, indicating that the acidic forest was a great sink of atmospheric mercury in southwest China. THg concentrations in stream waters decreased with altitude increasing and regression analyses showed that soil/air exchange flux would be increased with the decrease of altitude. Present results suggest that elevation increasing decreases THg losses as low THg concentrations in runoffs and volatilization from soils. - Highlights: • Soil THg pools and influence factors were studied at an acidic catchment in southwestern China. • THg concentrations was increased significantly with TOM concentrations and altitude increasing, decreased with pH. • THg pools in soils were highly elevated and deepened on TOM pools and altitude. • Difference in THg output by volatilization and runoff was a major reason for THg distribution at different altitudes. - Mercury pools increased with altitude increasing as mercury lost more at low elevation area in acidic subtropical forest

  14. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control.

    Science.gov (United States)

    James, Richard A; Weligama, Chandrakumara; Verbyla, Klara; Ryan, Peter R; Rebetzke, Gregory J; Rattey, Allan; Richardson, Alan E; Delhaize, Emmanuel

    2016-06-01

    Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding.

  15. Effects of Hg and Cu on the activities of soil acid phosphatase

    Institute of Scientific and Technical Information of China (English)

    XU Dong-mei; CHEN Bo; LIU Wen-li; LIU Guang-shen; LIU Wei-ping

    2007-01-01

    Comparative study on the activity and kinectic properties of acid phosphatase (ACPase) of three soils amended with Hg and Cu at constant temperature and humidity was carried out. The results indicated that the inhibition on ACPase of the three sample soils by Hg and Cu varied with the content of soil organic matter and pH, where, Soil 1 was the most seriously contaminated due to its lowest content of organic matter and the lowest pH among three samples, Soil 2 took the second place, and Soil 3was the least contaminated. Except Soil 3, the activity of soil ACPase tended to increase along with the contact time under the same type and the same concentration of heavy metal. In particular the Vmax values of ACPase in all three samples decreased with increasing Hg and Cu concentration, whereas the Km values were affected weakly. According to the change of Vmax and Km values,Cu and Hg had the same inhibition effect on soil ACPase. Both of them may be a type of compound of non-competitive and anti-competitive inhibition. Statistic analyses indicated that activities of soil ACPase and Vmax values could serve as bioindicator to partially denote the heavy metal Hg and Cu contamination degree.

  16. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P < 0.05) in the incubated soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was < 10.0 mg kg(-1) following by-product application, as compared to 24 mg kg(-1) for plants growing in unamended soil. PMID:23947715

  17. Adsorption and desorption kinetics of carbofuran in acid soils.

    Science.gov (United States)

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, Pcarbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  18. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  19. N{sub 2}O production pathways in the subtropical acid forest soils in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Cai Zucong, E-mail: zccai@mail.issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhu Tongbin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2011-07-15

    To date, N{sub 2}O production pathways are poorly understood in the humid subtropical and tropical forest soils. A {sup 15}N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N{sub 2}O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N{sub 2}O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N{sub 2}O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N{sub 2}O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N{sub 2}O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N{sub 2}O product ratios from nitrification. The ratio of N{sub 2}O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: {yields} We studied N{sub 2}O production pathways in subtropical acid forest soil under aerobic conditions. {yields} Denitrification was the main source of N{sub 2}O production in subtropical acid forest soils. {yields} Heterotrophic nitrification accounted for 27.3%-41.8% of N{sub 2}O production. {yields} While, contribution of autotrophic nitrification to N{sub 2}O production was little. {yields} Ratios of N{sub 2}O-N emission from nitrification were higher than those in most previous references.

  20. A conceptual framework: Redefining forest soil's critical acid loads under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, Steven G., E-mail: steve_mcnulty@ncsu.ed [USDA Forest Service, Eastern Forests Environmental Assessment Threats Center, Southern Global Change Program, 920 Main Campus Dr. Suite 300, Raleigh, NC 27606 (United States); Boggs, Johnny L. [USDA Forest Service, Eastern Forests Environmental Assessment Threats Center, Southern Global Change Program, 920 Main Campus Dr. Suite 300, Raleigh, NC 27606 (United States)

    2010-06-15

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  1. A conceptual framework: Redefining forest soil's critical acid loads under a changing climate

    International Nuclear Information System (INIS)

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  2. Lignite-Derived Humic Acid Effect on Growth of Wheat Plants in Different Soils

    Institute of Scientific and Technical Information of China (English)

    M.M.TAHIR; M.KHURSHID; M.Z.KHAN; M.K.ABBASI; M.H.KAZMI

    2011-01-01

    Humic acid (HA), a fairly stable product of decomposed organic matter that consequently accumulates in ecological systems,enhances plant growth by chelating unavailable nutrients and buffering pH.We examined the effect of HA derived from lignite on growth and macronutrient uptake of wheat (Triticum aestivum L.) grown in earthen pots under greenhouse conditions.The soils used in the pot experiment were a calcareous Haplustalf and a non-calcareous Haplustalf collected from Raisalpur and Guliana, respectively,in Punjab Province, Pakistan.The experiment consisted of four treatments with HA levels of 0 (control without HA), 30, 60, and 90 mg kg-1 soil designated as HA0, HA1, HA2, and HA3, respectively.In the treatment without HA (HA0), nitrogen (N), phosphorus (P), and potassium (K) were applied at 200, 100, and 125 mg kg-1 soil, respectively.Significant differences among HA levels were recorded for wheat growth (plant height and shoot weight) and N uptake.On an average of both soils, the largest increases in plant height and shoot fresh and dry weights were found with HA2 (60 mg kg-1 soil), being 10%, 25%, and 18%, respectively, as compared to the control without HA (HA0).Both soils responded positively towards HA application.The wheat growth and N uptake in the non-calcareous soil were higher than those of the calcareous soil The HA application significantly improved K concentration of the non-calcareous soil and P and NO3-N of the calcareous soil.The highest rate of HA (90 mg kg- 1 soil) had a negative effect on growth and nutrient uptake of wheat as well as nutrient accumulation in soil, whereas the medium dose of HA (60 mg kg-1 soil) was more efficient in promoting wheat growth.

  3. Role of Low-Molecule-Weight Organic Acids and Their Salts in Regulating Soil pH

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-An; ZOU Bi; XIA Han-Ping; DING Yong-Zhen; TAN Wan-Neng; FU Sheng-Lei

    2008-01-01

    The process of organic materials increasing soil pH has not yet been fully understood.This study examined the role of cations and organic anions in regulating soil pH using organic compounds.Calcareous soil,acid soil,and paddy soil were incubated with different simple organic compounds,pH was determined periodically and CO2 emission was also measured.Mixing organic acids with the soil caused an instant decrease of soil pH.The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids.Decomposition of organic acids could only recover the soil pH to about its original level.Mixing organic salts with soil caused an instant increase of soil pH.Decomposition of organic salts of sodium resulted in a steady increase of soil pH,with final soil pH being about 2.7-3.2 pH units over the control.Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase,while those having the same cations but different anions led to very similar pH increases.Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na+.The results suggested that cations played a central role in regulating soil pH.Decarboxylation might only consume a limited number of protons.Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition,suggesting that only those plant residues containing high excess base cations could actually increase soil pH.

  4. Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil

    International Nuclear Information System (INIS)

    The significance of exchange sites on organic matter in the retention of radiocaesium in highly organic soils remains unclear. To quantify this retention, we measured the binding of 134Cs to a humic acid isolated from a British upland peat soil, under a range of chemical conditions. We interpreted our results using Humic Ion Binding Model V, a model of humic substance chemistry which simulates ion exchange by non-specific accumulation of cations adjacent to the humic molecules. Model V could simulate the humic acid-solution partitioning of Cs under all the solution conditions used. The model was used to estimate the contribution of organic matter to Cs sorption by the whole soil composite. An estimate of Cs sorption by illite frayed edge sites was also made. These simulations show that organic matter may play only a minor role in binding Cs, even in highly organic soils

  5. Contribution of ants in modifying of soil acidity and particle size distribution

    Science.gov (United States)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  6. Application of alkaline waste from pulp industry to acid soil with pine

    OpenAIRE

    Patricia Pértile; Jackson Adriano Albuquerque; Luciano Colpo Gatiboni; André da Costa; Maria Izabel Warmling

    2012-01-01

    In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a) changes in the physical and chemical properties of an a...

  7. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation.

    OpenAIRE

    Top, E. M.; Holben, W E; Forney, L J

    1995-01-01

    The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), whi...

  8. Impeded Acidification of Acid Sulfate Soils in an Inten- sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees. The lack of natural levees has allowed the inundation of the land by regular tidal flooding prior to the construction of flood mitigation work. Such physiographical conditions prevent the development of pre-drainage pyrite-derived soil acidifica- tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells. Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently, the creation of favourable environments for catalysed pyrite oxidation. Under current intensively drained conditions, the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering, resulting in low concentrations of soluble Fe in the pyritic layer, which could reduce the rate of pyrite oxidation.

  9. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... located in carbohydrates and amino acid metabolites show a curvilinear form during the first 30 days of incubation, indicating a variety of chemical compounds decaying at different rates. After this time, the decay curves became straight lines indicating a greater homogeneity of the metabolites. After 200...

  10. Phosphate fertilisers and management for sustainable crop production in tropical acid soils

    International Nuclear Information System (INIS)

    Extensive research has been conducted over the past 25 years on the management of plant nutrients, especially N and P, for crop production on acidic infertile tropical soils. Under certain conditions, the use of indigenous phosphate rock (PR) and modified PR products, such as partially acidulated PR or compacted mixtures of PR with superphosphates, are attractive alternatives, both agronomically and economically, to the use of conventional water-soluble P fertilisers for increasing crop productivity on Oxisols and Ultisols. A combination of the effects of proper P and N management including biological N2 fixation, judicious use of lime, and the use of acid-soil tolerant and/or P-efficient cultivars in cropping systems that enhance nutrient cycling and use efficiency, can provide an effective technology to sustainably increase crop productivity and production in tropical agro-ecosystems dominated by these acid soils. (author)

  11. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    Science.gov (United States)

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health. PMID:27329475

  12. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  13. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  14. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    Science.gov (United States)

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-08-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.

  15. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    Science.gov (United States)

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553

  16. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    Science.gov (United States)

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2016-02-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. PMID:26681519

  17. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  18. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    OpenAIRE

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixation by lucerne in acid soils.In a field experiment, lucerne seeds were either inoculated withR.meliloti only,or inoculated and pelleted with lime, before sowing in a sandy soil of pH 5.2. Lime-pelleting significantly im...

  19. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Noureddine, E-mail: nouryhamdi@gmail.com [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia); Srasra, Ezzeddine [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  20. Organic Carbon Stabilization of Soils Formed on Acidic and Calcareous Bedrocks in Neotropical Alpine Grassland, Peru

    Science.gov (United States)

    Yang, Songyu; Cammeraat, Erik; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2016-04-01

    Increasing evidence shows that Neotropical alpine ecosystems are vulnerable to global change. Since soils in the alpine grasslands of the Peruvian Andean region have large soil organic carbon (SOC) stocks, profound understanding of soil organic matter (OM) stabilization mechanisms will improve the prediction of the feedback between SOC stocks and global change. It is well documented that poor-crystalline minerals and organo-metallic complexes significantly contribute to the OM stabilization in volcanic ash soils, including those in the Andean region. However, limited research has focused on non-ash soils that also express significant SOC accumulation. A pilot study of Peruvian Andean grassland soils suggests that lithology is a prominent factor for such carbon accumulation. As a consequence of contrasting mineral composition and pedogenic processes in soils formed on different non-volcanic parent materials, differences in OM stabilization mechanisms may be profound and consequently may respond differently to global change. Therefore, our study aims at a further understanding of carbon stocks and OM stabilization mechanisms in soils formed on contrasting bedrocks in the Peruvian Andes. The main objective is to identify and compare the roles that organo-mineral associations and aggregations play in OM stabilization, by a combination of selective extraction methods and fractionations based on density, particle size and aggregates size. Soil samples were collected from igneous acidic and calcareous sedimentary bedrocks in alpine grassland near Cajamarca, Peru (7.17°S, 78.63°W), at around 3700m altitude. Samples were taken from 3 plots per bedrock type by sampling distinguishable horizons until the C horizons were reached. Outcomes confirmed that both types of soil accumulate large amounts of carbon: 405.3±41.7 t/ha of calcareous bedrock soil and 226.0±5.6 t/ha of acidic bedrock soil respectively. In addition, extremely high carbon contents exceeding 90g carbon per

  1. Effect of Nitrogen Fertilizers on Movement and Transformation of Phosphorus in an Acid Soil

    Institute of Scientific and Technical Information of China (English)

    DU Zhen-Yu; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2005-01-01

    The effects of two different nitrogen fertilizers (urea and NH4Cl) with monocalcium phosphate (MCP) on the movement and transformation of fertilizer P in soil microsites along with soil pH changes at different distances from the fertilizer application site were studied in an incubation experiment. A highly acidic red soil (Ultisol, pH 4.57) from south China with MCP fertilizer alone or in combination with NH4Cl or urea was added to the surface of soil cylinders and packed in wax blocks. After 7 and 28 days, the extraction and analysis of each 2 mm layer from the interface of the soil and fertilizer showed that added NH4Cl or urea did not change the movement distance of fertilizer P. However, P transformation was significantly affected (P < 0.05). After 7 days, at 0-8 mm distance from the fertilizer site the addition of urea significantly decreased the water-extractable P concentration; however, after 28 days the effect of N addition had disappeared. Also,at limited distances close to the fertilizer site NH4Cl application with MCP significantly increased acid-extractable P and available P, while with the addition of urea they significantly decreased. Compared with application of MCP alone,addition of urea significantly increased soil pH in fertilizer microsites, whereas the addition of NH4Cl significantly decreased soil pH.

  2. Recovery and management of actual acid sulphate soils in boyacá (colombia)

    OpenAIRE

    2010-01-01

    Acid sulphate soils (ASS), having very res­tricted use due to their extreme acidity, have been iden­tified within the upper Chicamocha river basin, Boyacá (Colombia). This situation has led to increasing degra­dation of the land, rendering around 3,000 ha of land unproductive. Production alternatives are thus being sought for recovering these flat upland areas, currently suffering from ASS, as they do have agricultural poten­tial. Soils were initially characterised and identified in a problem...

  3. Application of alkaline waste from pulp industry to acid soil with pine

    Directory of Open Access Journals (Sweden)

    Patricia Pértile

    2012-06-01

    Full Text Available In Brazil extensive areas are covered with pine forests, planted for pulp and paper production. This industry generates solid alkaline waste, such as dregs. The application of this dregs to forest soils is an alternative for soil acidity correction and plant nutrient supply, as well as a solution for its proper disposal. The purpose of this study was to compare the residual effect of surface application of dregs and dolomitic lime on (a changes in the physical and chemical properties of an acidic soil and (b pine tree development. The experiment was carried out in 2004 in Bocaina do Sul, Santa Catarina, consisting of the application of increasing dreg and lime rates to a Pinus taeda L. production area, on a Humic Cambisol, in a randomized block design with four replications and 10 x 10 m plots. The treatments consisted of levels of soil acidity amendments corresponding to the recommendations by the SMP method to reach pH 5.5 in the 0-20 cm layer, as follows: no soil amendment; dregs at 5.08 (1/4 SMP, 10.15 (1/2 SMP and 20.3 Mg ha-1 (1 SMP; and lime at 8.35 (1/2 SMP and 16.7 Mg ha-1 (1 SMP. Soil layers were sampled in 2010 for analyses of soil chemical and physical properties. The diameter at breast height of the 6.5 year old pine trees was also evaluated. Surface application of dregs improved soil chemical fertility by reducing acidity and increasing base saturation, similar to liming, especially in surface layers. Dregs, comparable to lime, reduced the degree of clay flocculation, but did not affect the soil physical quality. There was no effect of the amendments on increase in pine tree diameter. Thus, the alternative to raise the pH in forest soils to 5.5 with dregs is promising for the forestry sector with a view to dispose of the waste and increase soil fertility.

  4. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    Science.gov (United States)

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  5. Effect of EDTA and citric acid on phytoremediation of Cr- B[a]P-co-contaminated soil.

    Science.gov (United States)

    Chigbo, Chibuike; Batty, Lesley

    2013-12-01

    Polycyclic aromatic hydrocarbons and heavy metals in the environment are a concern, and their removal to acceptable level is required. Phytoremediation, the use of plants to treat contaminated soils, could be an interesting alternative to conventional remediation processes. This work evaluates the role of single and combined applications of chelates to single or mixed Cr + benzo[a]pyrene (B[a]P)-contaminated soil. Medicago sativa was grown in contaminated soil and was amended with 0.3 g citric acid, 0.146 g ethylenediaminetetraacetic acid (EDTA), or their combination for 60 days. The result shows that in Cr-contaminated soil, the application of EDTA + citric acid significantly (pcitric acid in Cr-contaminated soil (44 %) or EDTA and EDTA + citric acid in co-contaminated soil increased the removal of Cr from the soil (34 and 54 %, respectively). The dissipation of B[a]P in single B[a]P-contaminated soil was effective even without planting and amendment with chelates, while in co-contaminated soil, it was related to the application of either EDTA or EDTA + citric acid. This suggests that M. sativa with the help of chelates in single or co-contaminated soil can be effective in phytoextraction of Cr and promoting the biodegradation of B[a]P.

  6. Phospholipid Fatty Acid Profiles of Chinese Red Soils with Varying Fertility Levels and Land Use Histories

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analysis of phospholipid fatty acids (PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correlated with soil organic carbon,total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustalnability in these highly weathered soils.Soils for the eroded wasteland were rich in Gram-positive species.When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8~12 years before it reached a significantly different population.Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.However,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.

  7. Assessment of acid sulfate soil mapping utilizing chemical indicators in recipient waters

    Directory of Open Access Journals (Sweden)

    Beucher, A.

    2015-06-01

    Full Text Available In Finland, poor water quality and associated ecological damage in the coastal streams related to land use on acid sulfate (a.s. soils has been drawing a considerable amount of attention since the 1950’s. These soils originate from sulfide-bearing marine sediments mostly occurring in the coastal areas located below the highest shoreline of the former Litorina Sea. Of the many previous studies carried out on soil or water data, quite few gathered both and their geographic extent was relatively limited. This study aimed at assessing a.s. soil probability maps using two chemical indicators measured in the recipient waters (i.e. sulfate content and sulfate/chloride ratio for 24 catchments along the Finnish coast. All the available data was compiled for these catchments, which were surveyed using different methods (i.e. conventional mapping and two spatial modeling techniques: fuzzy logic and artificial neural networks. High sulfate contents and sulfate/ chloride ratios measured in these rivers were controlled by a.s. soils in the corresponding catchments. The extent of the most probable areas for a.s. soils in the surveyed catchments correlated with the two chemical indicators measured in the recipient waters, suggesting that the probability maps created with different methods are reliable and comparable. The use of a.s. soil related chemical indicators in water, thus, constitutes a complementary, independent and straightforward tool to assess a.s. soil probability maps.

  8. Agronomic Potential of Partially Acidulated Rock Phosphates in Acid Soils of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLI-MING; B.TRUONG; 等

    1995-01-01

    A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulated rock phosphates(PARP) in three representative solis sampled from subtripical China.The PARPs were manufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or with combination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation.Shoot dry weight and P accumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of these fertilizers with that of the raw rock phosphate(RP) and monocalcium phosphate (MCP).Results indicated that the effectiveness of various phosphates was determined both by the solubility of the phosphates and by the acidity and P-fixing capacity of the soils.The higher the watersoluble P contained,the better the effectiveness of the fertilizer was.Although plant P accumulation of PARP treatments was constantly lower than that of MCP treatment,some PARPs could still get a dry matter production similar to that of MCP treatment.PARP SP60,which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60 percent of acidulation and contained the highest soluble,P,was as effective as MCP in terms of dry matter production on all the soils.S60 and C1 which were both acidulated with sulfuric acid with the former at 60 percent of acidulation and the latter at 30 percent but with a further addition of monoammonium phosphate,were more than 80 percent as efective as MCP,Raw RP also showed a reasonable effectiveness which increased with soil acidity.It was suggested from the study that some of these APRPs could be expected to have a comparable field performance as soluble P fertilizers in the acid soil regions.

  9. Identification of bound alcohols in soil humic acids by gas chromatography-mass spectrometry

    OpenAIRE

    Berthier, Gersende; Dou, Sen; Peakman, Torren; Lichtfouse, Eric

    2000-01-01

    International audience Humic acids are complex, partly macromolecular, yellow-brownish substances occurring in soils, waters and sediments. In order to shed some light on their molecular structure, crop humic acids were cleaved by alkaline hydrolysis (KOH). The products were fractionated by thin layer chromatography to give mono-alcohols which were analysed as acetate derivatives by gas chromatography coupled to mass spectrometry. Linear alcohols, sterols, stanols and plant-derived triterp...

  10. Acidity Regimes of Soils Under Different Vegetations in the Changbai Mountains Region

    Institute of Scientific and Technical Information of China (English)

    YUTIANREN; GAOZIQIN; 等

    1997-01-01

    The acidity regimes of representative soils on the north slope of the Changbai Mountains were examined through determinations of pH and pCa of the soil paste as well as in-situ determinations,For soils under broad-leaf forest or broad-leaf-Korean pine forest,the pH decreased from the litte to lower layers gradually until it did not change or decreased further slightly .For soils under coniferous of Erans birch forest,ther was a minimum in pH at a depth of 3-6 cm where the content of humus was high,The pCa increased gradually from the soil surface downward to a constant value.The lime potential(pH-0.5pCa) showed a similar trend as the pH in its distribution.For a given soil,the measured pH value of the thick paste,ranging from 4.5 to 5.5,was lower by about 0.5 units than the value determined by the conventional method with a water to soil ratio of 5:1 ,The pH determined in situ was even lower.It was found that there was a firly close relationship between soil acidity and the type of vegetation.The pH showed a trend of decreasing from soils under broda-leaf forest through broad-leaf-conifer mixed rorest and coniferos forest to Ermans birch forest,and the pCa showed an opposite trend in variation.

  11. Soil quality under forest compared to other land-uses in acid soil of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sharmistha Pal

    2013-05-01

    Full Text Available Present research was undertaken to examine the impact of land useon soil fertility in an Alfisol, at Dharamshala district of north western Himalayan region, India. Soil samples were collected from 0-15, 15–30, 30–45 and 45-60 cm soil depths of five landuses viz. natural forest of Pinus roxburghii,grassland, horticulture, agriculture and wasteland. Soil was examined for pH, organic carbon (OC, electrical conductivity (EC, cation exchange capacity(CEC, available nitrogen (N, phosphorus (P, exchangeable calcium(Ca, magnesium (Mg, potassium (K, aluminium (Al, microbial biomasscarbon (MBC, microbial biomass nitrogen (MBN, microbial biomassphosphorus (MBP, acid phosphatase activity (APHA and dehydrogenaseactivity (DHA. Soil pH varied from 5.22 in forest and 5.72 in grassland. OC content was higher in forest (3.01%, followed by grassland (2.16% and was least (0.36% in deeper layers of agriculture. Highest N content was found under forest (699, 654, 623 and 597 kg/ha, at 0-15, 15-30, 30-45 and 45-60 cm depth, respectively, followed by grassland, horticulture and agriculture and least in wasteland. Maximum exchangeable Ca and Mg were found in grassland (0.801 c mol kg-1 and 0.402 c mol kg-1, respectively.Exchangeable K and Al were higher under forest (0.231 c mol kg-1 and 1.89 c mol kg-1, respectively least in wasteland. Soil biological properties were highest under surface soil of forest (576 mg kg-1, 31.24 mg kg-1, 6.55 mg kg-1, 29.6 mg PNP g-1h-1 and 35.65 μg TPF 24 h-1 g-1 dry soil, respectively for MBC, MBN, MBP, APHA and DHA and least in 45-60 cm layer, under wasteland. The forest had a higher fertility index and soil evaluation factor followed by grassland, horticulture, agriculture as compared to wasteland.

  12. SMASS - a simulation model of physical and chemical processes in acid sulphate soils; Version 2.1

    NARCIS (Netherlands)

    Bosch, van den H.; Bronswijk, J.J.B.; Groenenberg, J.E.; Ritsema, C.J.

    1998-01-01

    The Simulation Model for Acid Sulphate Soils (SMASS) has been developed to predict the effects of water management strategies on acidification and de-acidification in areas with acid sulphate soils. It has submodels for solute transport, chemistry, oxygen transport and pyrite oxidation. The model mu

  13. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Science.gov (United States)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  14. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  15. Soil acidity status in polluted and non-polluted areas in southern Finland

    International Nuclear Information System (INIS)

    From 359 study plots on coniferous forest soil in southern Finland, 232 humus and 359 mineral soil (top 5 cm) samples were taken in 1991 and analyzed for their cation exchange capacity, base saturation, pH, total S content (humus samples only), and extractable Al, Fe and Mn concentrations in order to assess the impact of acidic air pollution on soil acidity. The main sources of local air pollutants (SO2 and NOx) were from the capital region and an oil refinery. Although concentrations of S in the humus layer were 8% higher near the emission sources, it was concluded that air pollution has not resulted in a detectable increase in soil acidity. Mean values for humus layer pH (BaCl2), cation exchange capacity (CEC), base saturation, and extractable Al concentration for the overall study area were 2.9 (0.2), 310 (50) meq kg-1, 48 (12)% of CEC, and 530 (340) mg kg-1. The respective values for the mineral soil layer were 3.3 (0.3), 56 (19) meq kg-1, 13 (8)% of CEC, and 320 (130) mg kg-1. Standard deviations are given in parentheses. 24 refs, 2 figs, 5 tabs

  16. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  17. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  18. Balance of trichloroacetic acid in the soil top layer

    NARCIS (Netherlands)

    Hoekstra, E.J.; Leer, E.W.B. de; Brinkman, U.A.T.

    1999-01-01

    Since the ban on the use of trichloroacetic acid (TCAA) as a herbicide in several countries, TCAA is still found ubiquitously in the environment. The presence of TCAA nowadays is suggested to originate mainly from the atmospheric degradation of tetrachloroethene. Our mass balance calculations indica

  19. Interaction between uranium and humic acid (Ⅰ): Adsorption behaviors of U(Ⅵ) in soil humic acids

    Institute of Scientific and Technical Information of China (English)

    WEI Min; LIAO Jiali; LIU Ning; ZHANG Dong; KANG Houjun; YANG Yuanyou; YANG Yong; JIN Jiannan

    2007-01-01

    The adsorption behaviors of uranium on three soil humic acids (HAs), which were extracted from soils of different depths at the same site, were investigated under various experimental conditions. The adsorption results showed that U(Ⅵ) in solutions can be adsorbed by the three soil HAs, with the order of FHA (HA from 5 m depth of soil) >SHA (HA from the surface) >THA (HA from 10 m depth of soil) for adsorption efficiency in each desirable condition, and the adsorption reached equilibrium in about 240 min. Although the maximum adsorption efficiency was adsorption could be described with Langmiur isotherm or Freundlich isotherm equation. The L/S (liquid/solid, mL/g)ratio and pH were important factors influencing the adsorption in our adsorption system besides uranium concentration. The adsorption efficiency decreased with the increase of the L/S ratio and pH at the pH range of 2.0-3.0 for SHA and THA or 2.5 - 6.0 for FHA. However, no significant difference in adsorption of U(Ⅵ) was observed at the experimental temperature. All the results implied that humic substances have different characteristics in samples even collected at the same site.

  20. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  1. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-mei; Alshawabkeh Akram N; DENG Chang-fen; CANG Long; SI You-bin

    2004-01-01

    The electrokinetic removal of chromium and copper from contaminated soils by adding lactic acid in cathode chamber as an enhancing reagent was evaluated. Two sets of duplicate experiments with chromium contaminated kaolinite and with a silty soil sampled from a superfund site in California of USA and polluted by Cr and Cu, were carried out in a constant current mode. Changes of soil water content and soil pH before and after the electrokinetic experiments, and variations of voltage drop and electroosmosis flow during the treatments were examined. The results indicated that Cr, spiked as Cr(Ⅵ) in the kaolinite, was accumulated mainly in the anode chamber, and some of Cr and metal hydroxides precipitated in the soil sections in contact with the cathode, which significantly increased electrical energy consumption. Treatment of the soil collected from the site showed accumulation of large amounts of Cr and Cu in the anode chamber while none was detected in the cathode one. The results suggested that the two metals either complexed with the injected lactic acid at the cathode or existed as negatively charged complex, and electromigrated toward the anode under a voltage gradient.

  2. Movement of Phosphorus in a Calcareous Soil as Affected by Humic Acid

    Institute of Scientific and Technical Information of China (English)

    DU Zhen-Yu; WANG Qing-Hua; LIU Fang-Chun; MA Hai-Lin; MA Bing-Yao; S.S.MALHI

    2013-01-01

    When humic acid (HA) and phosphorus (P) fertilizer are simultaneously applied to soil,HA may affect the movement of P.A laboratory incubation experiment was conducted to quantify the effects of a commercial HA product co-applied with monocalcium phosphate (MCP) on the distance of P movement and the concentration of P in various forms at different distances from the P fertilizer application site in a calcareous soil from northern China.Fertilizer MCP (at a rate equivalent to 26.6 kg P ha-1) was applied alone or in combination with HA (at 254.8 kg HA ha-1) to the surface of soil packed in cylinders (150 mm high and 50 mm internal diameter),and then incubated at 320 g kg-1 moisture content for 7 and 28 d periods.Extraction and analysis of each 2 mm soil layer in columns showed that the addition of HA to MCP increased the distance of P movement and the concentrations of water-extractable P,acid-extractable P and Olsen P in soil.The addition of HA to MCP could enhance P availability by increasing the distance of P movement and the concentration of extractable P in soil surrounding the P fertilizer.

  3. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively. PMID:25893761

  4. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Science.gov (United States)

    Wan, Jinzhong; Meng, Die; Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  5. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    Science.gov (United States)

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  6. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid.

    Directory of Open Access Journals (Sweden)

    Jinzhong Wan

    Full Text Available This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.

  7. Role of amino acid metabolites in the formation of soil organic matter

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1972-01-01

    extracted by sodium hydroxide or by the chelating ion-exchange resin Dowex A-1 decreased during the period of incubation. The unlabelled soil carbon as a whole was more extractable by the resin treatment than the labelled. Sixteen protein amino acids and two amino sugars were detected in hydrolysates...

  8. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    Science.gov (United States)

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  9. Spatio-temporal variability of acid sulphate soils in the plain of reeds, Vietnam : impact of soil properties, water management and crop husbandry on the growth and yield of rice in relation to microtopography

    NARCIS (Netherlands)

    Husson, O.

    1998-01-01

    Acid sulphate soils in the Mekong delta cover 1.6 million hectares, of which 400 000 ha are located in the Plain of Reeds. Due to the presence of pyrite that yields acid when oxidised, all acid sulphate soils are (potentially) strongly acidic. Reclamation of the 150 000 ha of severely acid sulphate

  10. Fractionation of Moderately and Highly Stable Organic Phosphorus in Acid Soil

    Institute of Scientific and Technical Information of China (English)

    FANYEKUAN; LISHIJUN

    1998-01-01

    The fractionation of moderately and highly organic phosphorus(Po) in acid soil was studied by two methods .By the first method,after incubation for 40 d; the mineralization rates of eight constituents of stable Po in the soil were determined.By the second method ,five constituents of peecipitates of stable Po in the soil were separated,then the five precipiates were put back into the original soils and incubated for 40 d and 60 d .Then,mineralization rates of the five precipitates were determined.The same results were obtained by the two methods.When the pH of the alkali solution containing stable Po was adjusted from 3.00 to 3.10,the mineralization rate of moderately stable Po Was rapidly raised.Therefore,the pH 3.00 is the critical point between moderately and highly stable Po.

  11. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  12. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    OpenAIRE

    Karlovsky Petr; Steingrobe Bernd; Ratzinger Astrid; Hettwer Ursula; Khorassani Reza; Claassen Norbert

    2011-01-01

    Abstract Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrom...

  13. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    Science.gov (United States)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  14. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  15. Effect of a sulfonated azo dye and sulfanilic acid on nitrogen transformation processes in soil.

    Science.gov (United States)

    Topaç, F Olcay; Dindar, Efsun; Uçaroğlu, Selnur; Başkaya, Hüseyin S

    2009-10-30

    Introduction of organic dyes into soil via wastewater and sludge applications has been of increasing concern especially in developing or under-developed countries where appropriate management strategies are scarce. Assessing the response of terrestrial ecosystems to organic dyes and estimating the inhibition concentrations will probably contribute to soil remediation studies in regions affected by the same problem. Hence, an incubation study was conducted in order to investigate the impact of a sulfonated azo dye, Reactive Black 5 (RB5) and sulfanilic acid (SA), a typical representative of aromatic sulfonated amines, on soil nitrogen transformation processes. The results apparently showed that nitrogen related processes in soil can be used as bioindicators of anthropogenic stress caused by organic dyes. It was found that urease activity, arginine ammonification rate, nitrification potential and ammonium oxidising bacteria numbers decreased by 10-20% and 7-28% in the presence of RB5 (> 20 mg/kg dry soil) and SA (> 8 mg/kg dry soil), respectively. Accordingly, it was concluded that organic dye pollution may restrict the nitrogen-use-efficiency of plants, thus further reducing the productivity of terrestrial ecosystems. Furthermore, the response of soil microbiota to SA suggested that inhibition effects of the organic dye may continue after the possible reduction of the parent dye to associated aromatic amines.

  16. Effects of pH, organic acids, and inorganic ions on lead desorption from soils

    International Nuclear Information System (INIS)

    The desorption characteristics of lead in two variable charge soils (one developed from Arenaceous rock (RAR) and the other derived from Quaternary red earths (REQ)) were studied, and the effects of pH value, organic acid, and competitive ions were examined. Desorption of Pb2+ decreased from nearly 100.0 to 20.0% within pH 1.0-4.0 in both soils, and then the decrease diminished at pH > 4.0. Organic ligands at relatively low concentrations (≤10-3 mol L-1) slightly inhibited Pb2+ desorption, but enhanced Pb2+ desorption at higher concentrations. In this study, citric acid or acetic acid at higher concentrations (>10-3 mol L-1) had the greatest improvement of Pb2+ desorption, followed by malic acid; and the smallest was oxalic acid. Desorption of the adsorbed Pb2+ increased greatly with increasing concentrations of added Cu2+ or Zn2+. Applied Cu2+ increased Pb2+ desorption more than Zn2+ at the same loading. - The adsorption-desorption process is a basic and important reaction in soils controlling Pb2+ mobility and bioavailability

  17. Application of Phospholipid Fatty Acids in the Evaluation of Post-Katrina Wetland Soils

    Science.gov (United States)

    Holloway, J. M.; Swarzenski, C. M.; Krauss, K. W.; Doyle, T. W.

    2008-12-01

    The combined effects of Hurricanes Katrina (landfall Aug. 29, 2005) and Rita (landfall Sept. 24, 2005) resulted in a catastrophic loss of wetlands, with an estimated decrease of 562 km2 of land area (Barras, 2006) along the Gulf Coast of Louisiana. A study was initiated following the 2005 hurricane season to characterize storm impacts on coastal marsh soils, measuring soil organic carbon, biogeochemistry of soil pore waters, and soil microbial communities using phospholipids fatty acids (PLFA). Areas selected for study include Caernarvon, which had the greatest land loss through Katrina, and the Barataria Preserve, a unit within the Jean Lafitte National Historic Park. Marshes ranged from fresh water to saline. PLFA concentrations were generally greater in surface soils (28-144 nmol PLFA/g dry soil at 0-5 cm) than deeper soil (27-77 nmol/g at 10-15 cm; 18-20 nmol/g at 35-45 cm) for soils collected in March 2006. There was a notable exception to this trend. The concentration of PLFAs was greater at 15cm (51 nmol/g) than 5cm (28 nmol/g) in a remnant salt marsh soil from Caernarvon. The ratio of 17:0cy/17:0, a stress indicator, was greater in the 5 and 15 cm depths for this soil (6.4 and 7.3, respectively) than in other soils collected at this date (1.9-6.4 at 5 cm; 1.2-5.4 at 15 cm). The inverted PLFA biomass and elevated 17:0cy/17:0 at this location may reflect disturbance from Katrina 6 months after the storm. Differences in microbial community structure were noted between fresh-water and salt marshes, with a general decrease in PLFA concentrations with increasing salinity. A resampling of surface soil in September, 2007 showed an increase in PLFA concentration (64-148 nmol/g) and decreased 17:0cy/17:0 ratio (1.5-3.8). In addition, there were shifts in surface microbial communities, including an increase in a16:0 in fresh water marsh soils and in overall increase in 18:1ωc, a biomarker for eukaryotic microorganisms, including algae and fungi. These shifts may

  18. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging

    OpenAIRE

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H.

    2012-01-01

    Purpose The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. Materials and methods The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for diff...

  19. Evaluation of different approaches for modeling effects of acid rain on soils in China

    International Nuclear Information System (INIS)

    Acid deposition is an environmental problem of increasing concern in China. Acidic soils are common in the southern part of the country and soil acidification caused by acid deposition is expected to occur. Here we test and apply two different approaches for modeling effects of acid deposition and compare results with observed data from sites throughout southern China. The dynamic model MAGIC indicates that, during the last few decades, soil acidification rates have increased considerably due to acid deposition. This acidification will continue if sulfur deposition is not reduced, and if reduced more rapidly than base cation deposition. With the Steady State Mass Balance model (SSMB), and assuming that a molar ratio of Ca2+/Al3+<1 in soil water is harmful to vegetation, we estimate a slight probability for exceedance of the critical load for present deposition rates. Results from both modeling approaches show a strong dependence with deposition of base cations as well as sulfur. Hence, according to the models, changes in emission control of alkaline particulate matter prior to sulfur dioxide will be detrimental to the environment. Model calculations are, however, uncertain, particularly because available data on base cation deposition fluxes are scarce, and that model formulation of aluminum chemistry does not fully reproduce observations. An effort should be made to improve our present knowledge regarding deposition fluxes. Improvements to the model are suggested. Our work indicates that the critical loads presented in the regional acid deposition assessment model RAINS-Asia are too stringent. We find weaknesses in the SSMB approach, developed for northern European conditions, when applying it to Chinese conditions. We suggest an improved effort to revise the risk parameters for use in critical load estimates in China

  20. [Using kenaf (Hibiscus cannabinus) to reclaim multi-metal contaminated acidic soil].

    Science.gov (United States)

    Yang, Yu-Xi; Lu, Huan-Liang; Zhan, Shu-Shun; Deng, Teng-hao-bo; Lin, Qing-Qi; Wang, Shi-Zhong; Yang, Xiu-Hong; Qiu, Rong-Liang

    2013-03-01

    A five-year field trial was conducted at the surrounding area of Dabao Mountain Mine to explore the feasibility and availability of using kenaf (Hibiscus cannabinus) , a fiber crop with strong heavy metals tolerance and potential economic value, to reclaim the multi-metal contaminated acidic farmland soil. Different amendments were applied prior to the kenaf planting to evaluate their effects on the soil properties and kenaf growth. After the amendments application, the kenaf could grow well on the heavy metals contaminated soil with the Pb, Zn, Cu, Cd, and As concentrations being 1600, 440, 640, 7. 6, and 850 mg . kg-1, respectively. Among the amendments, dolomite and fly ash had better effects than limestone and organic fertilizer. With the application of dolomite and fly ash, the aboveground dry mass production of kenaf reached 14-15 t . hm-2, which was similar to that on normal soils, and the heavy metal concentrations in the bast fiber and stem of kenaf decreased significantly, as compared with the control. The mass of the bast fiber accounted for 32% -38% of the shoot production, and the extractable heavy metal concentrations in the bast fiber could meet the standard of 'technical specifications of ecological textiles' in China, suggesting that the bast fiber had potential economic value. It was suggested that planting kenaf combining with dolomite/fly ash application could be an effective measure to reclaim the multi-metal contaminated acidic farmland soil. PMID:23755502

  1. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    Institute of Scientific and Technical Information of China (English)

    Haihong; GU; Fuping; LI; Xiang; GUAN; Zhongwei; LI; Qiang; YU

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metals, and selecting economical and effective amendments is the key. The effects and mechanism of steel slag, the silicon-rich alkaline byproduct which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory reference for future research. Firstly, the paper analyzes current research situation of in situ immobilization with amendments. Then, it introduces the main physicochemical properties of steel slag, and the effect on soil pH value as well as heavy metal activity. Besides, the paper elaborates the promoting effect on silicon-requiring plant and the strengthening mechanism for its resistant capability of heavy metal. According to the analysis, the application of steel slag could be a potential valuable strategy to remediate acidic soil contaminated by heavy metal by modifying the transformation of heavy metals in both soil and plant, so that the translocation of heavy metal in food chain is reduced.

  2. Response of seedlings of Grevillea robusta A. Cunn to phosphorus fertilization in acid soils from Kenya

    International Nuclear Information System (INIS)

    Three experiments were conducted to assess the response of G. robusta to phosphorus fertilization using acid low-P soils from Eastern (Andosols, Gituamba) and Western (Acrisols, Kakamega) Kenya. In the first experiment, P was applied as Minjingu Phosphate rock (MPR, 12.9% total P) at 0, 25.8 and 38.7 kg P/kg soil into pots containing five kg soil. In the second experiment, 2g VAM soil + roots inoculum/5 kg soil was included in addition to the same MPR rates but only to Acrisol, Kakamega. In the third experiment, MPR and TSP were added to 2 kg soil (Acrisols, Kakamega) at a rate of 25.8 mg P kg-1 soil and 32P isotope dilution techniques were used to assess P uptake and divided into two destructive shoot harvests at 3 and 6 MAT (months after transplanting). Application of MPR in Andosols significantly (P <0.05) reduced height and root collar diameter of G. robusta as compared to the control whereas significant increases (P<0.05) in height and root collar diameter were recorded in the Acrisol in the P-fertilized treatments compared to control. Interaction soil with P fertilizer rates was highly significant (p<0.001) for both height and root collar diameter growth. The roots were not infected with VA-mycorrhizae after 12 months. At 3 MAT the percentage P derived from the MPR and TSP (%Pdff) was 3% and 6% respectively. P uptake decreased significantly (p<0.05) between 3 and 6 months. The results indicate that addition of P fertilizer and inoculation with VA-mycorrhizae to G. robusta in the two soils was probably required at the early stages of growth. Further research, especially extensive root studies (nursery and field) are required to explain the above observations. (author)

  3. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance.

  4. Manifestation of Preferential Flow and Nitrate Transport in Central European Soils on Acid Crystalline Rocks

    Science.gov (United States)

    Dolezal, F.; Cislerova, M.; Vogel, T.; Zavadil, J.; Vacek, J.; Kvitek, T.; Prazak, P.; Nechvatal, M.; Bayer, T.

    2006-12-01

    Large areas of Central Europe are occupied by highlands and peneplains of medium altitudes, built by acid crystalline rocks. The soils overlying them are typically of medium textures. They are neither markedly water- repellent nor greatly swelling and shrinking. These landscapes are characterized by high vulnerability of water bodies, both surface and subsurface. The existing methodologies of vulnerability assessment regard the heavier among these soils as little vulnerable to diffuse pollution, while in reality they may be virtually equally vulnerable, because of the short-circuiting effect of preferential flow and transport. Our experiment site was Valeèov (49° 38' 40" N, 14° 30' 25" E, 461 m a.s.l.) in the Bohemo-Moravian highland, with average annual precipitation 660 mm and average annual air temperature 7.2 ° C. The field trials, starting from 2001, were focused on growing potato under different conditions. Soil moisture content was measured by Theta- probe capacitance sensors, soil water suction by Watermark sensors and tensiometers. Nitrate leaching was monitored by soil solution sampling with ceramic suction cups and zero-tension lysimeters. The hydraulic conductivity of the soil was measured on small cores and by suction and pressure infiltrometers. The following preferential flow manifestations are analyzed and quantified: a) the spatial variability of soil moisture content and suction after rainstorms, b) the spatial and temporal variability of soil's hydraulic conductivity and its dependence on soil moisture content, c) the spatial variability of percolation volumes in parallel lysimeters, d) the variability of nitrate concentrations in the lysimeter leachate, e) the apparent absence of correlation between leachate volumes and leachate concentrations in lysimeters, f) the lower mean and higher variance of leachate concentrations in lysimeters, in comparison with those in suction cups.

  5. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. PMID:25261818

  6. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    Science.gov (United States)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  7. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    Science.gov (United States)

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2.

  8. Adsorption of Acid Phosphatase on Minerals and Soil Colloids in Presence of Citrate and Phosphate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aim of this work was to study the influence of phosphate and citrate, which are common inorganic andorganic anions in soils, on the adsorption of acid phosphatase by kaolin, goethite and the colloids separatedfrom yellow-brown soil (YBS) and latosol (LS) in central-south China. The YBS colloid has the major claymineral composition of 1.4 nm mineral, illite and kaolinite while the LS colloid mainly contains kaolinite andoxides. The adsorption isotherm of acid phosphatase on the examined soil colloids and minerals fitted tothe Langmuir model. The amount of enzyme adsorbed in the absence of ligands was in the order of YBScolloid >LS colloid>kaolin≈goethite. In the presence of phosphate or citrate, the amounts of the enzymeadsorbed followed the sequence YBS colloid>kaolin>LS colloid>goethite. The presence of ligands alsodecreased the binding energy between the enzyme and soil colloids or minerals. With the increase of ligandconcentration from 10 mmol L-1 to 400 m mol L-1, different behaviors for the adsorption of enzyme werefound in the colloid and mineral systems studied. A sharp decrease in enzyme adsorption was observed ongoethite while gradual decreases of enzyme adsorption were recorded in the two soil colloid systems. However,no any decrease was found for the amount of enzyme adsorbed on kaolin at higher ligand concentrations.When phosphate or citrate was introduced to the system before the addition of enzyme, the ligands usuallyenhanced the adsorption of enzyme. The results obtained in this study suggested the important role ofkaolinite mineral in the adsorption of enzyme molecules in acidic soils in the presence of various ligands.

  9. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  10. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    Science.gov (United States)

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P soils have begun to reverse.

  11. Assessment of the effect of acid deposition on forest soils in Stockholm County

    Energy Technology Data Exchange (ETDEWEB)

    Odlare, M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    1997-05-01

    The objective of this study was to assess how the acidity in the upper layer of forest soils in Stockholm County is affected by acid deposition. The acidity balance in a long-term perspective was assessed by a steady state mass balance model approach. The model involved a procedure where all significant acidifying processes were weighted against the neutralizing process. If the acidity balance reached a value higher than zero, the critical load of the soil has been exceeded. The acidity balance was calculated for 91 forest sample sites throughout Stockholm County. Two different data sets were used: 22 sites from the National Survey of Forest Soils and Vegetation, and 69 sites from the Forestry Board. The acidity balance was assessed in relation to four different scenarios: (1) Present deposition, whole tree harvesting; (2) Present deposition, stem harvesting; (3) 30% reduction in deposition, whole tree harvesting; and (4) 30% reduction in deposition, stem harvesting. A majority of the sites reached a positive acidity balance in all scenarios, i.e. they had exceeded the critical load. However, the values decreased with stem harvesting and 30% reduction in deposition. A 30% reduction together with stem harvesting gave the result that 59% of the sites from the National Survey of Forest Soils and Vegetation and 55% of the sites from the forestry Board achieved a positive balance. That is, almost half of the sites did not exceed the critical load. It is therefore likely that scenario 4 is close to the 50 percentile of exceeding the critical load. After studying the different parameters in the model, it seems that the most important factors for the difference between sites are base cation uptake and weathering. The sample sites that did not reach excessive levels had a low base cation uptake in comparison with other parameters and a relatively high weathering rate. It seems that acidification on the 91 sample sites is less dependent on acid deposition and more on tree

  12. Determination of Minimal Duration Essential for Isolation of Humic Acids From Soils in Forest Restoration Programmes

    OpenAIRE

    Mohd R. N. Hanisah; Osumanu H. Ahmed; Kasim Susilawati; Nik Muhamad A. Majid; Mohamadu B. Jalloh

    2008-01-01

    This study was conducted to investigate whether a simple and rapid method could be developed for extracting, fractionating and purifying soil HA in forest rehabilitation programmes. Humic acids from 10 g of soil were extracted with 100 mL of 0.10 M NaOH. Different extraction periods (4, 8, 12, 16, 20 and 24 h) were tested. Samples were centrifuged (16,211 G for 15 min) at the end of each extraction period. The dark-coloured supernatant liquor containing HA was decanted and the pH of the...

  13. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    OpenAIRE

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and ...

  14. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    Science.gov (United States)

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest. PMID:23359920

  15. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    Science.gov (United States)

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. PMID:26292078

  16. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  17. Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea.

    Science.gov (United States)

    An, Jinsung; Lee, Hyun A; Lee, Junseok; Yoon, Hye-On

    2015-01-01

    This study assessed the status of fluorine (F) in soil in the vicinity of a spillage of anhydrous hydrofluoric acid in Korea. Gaseous hydrogen fluoride dispersed was suspected to have contaminated the surrounding soil environment. Total and water soluble F concentrations in soil within a 1 km radius of the spillage were determined. Total F concentrations (mean=222±70.1 mg kg(-1)) were lower than the Korean limit value (i.e., 400 mg kg(-1)) and several reported measurements of background F concentrations in soils except for a single outlying case. Soluble F concentrations ranged from 0.111 to 6.40 mg kg(-1) (mean=2.20±1.80 mg kg(-1)). A negative correlation between the soluble F concentration of soil and distance from the spillage was observed. This indicates that the soluble F concentration has a crucial role in fractionating the F concentration arising from a 'non natural input' i.e., the spillage. The F content of rice samples seemed to be significantly influenced by the soluble F concentrations of soils. Rice samples collected from the control and affected areas contained 41 mg kg(-1) and 578 mg kg(-1) of total F, respectively.

  18. Organic amendment addition enhances phosphate fertiliser uptake and wheat growth in an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R. [Rutherglen Centre, Rutherglen, Vic. (Australia). Dept. of Primary Industries

    2008-07-01

    The effect of 2 organic amendments (lignite and compost) on wheat growth and phosphate fertiliser efficiency (triple superphosphate, TSP; di-ammonium phosphate, DAP) in an acid soil was investigated in a glasshouse experiment. Organic amendments were incorporated into the top 40 mm of soil at rates resulting in a 1% and 2.5% increase in soil C, and fertilisers were banded within the seed row at rates equivalent to 5, 10, and 25 kg P/ ha. When no P was applied, addition of both organic amendments increased shoot height, with greatest growth recorded in the compost-amended treatments. Addition of organic amendments and P fertiliser resulted in additive effects, with increased shoot height, tiller number, and shoot dry matter (DM) in both the lignite-and compost-amended soils with fertiliser addition. The addition of 1% C resulted in plant growth equal to that measured at a higher rate of addition (2.5% C), resulting in a higher relative efficiency of application. Tissue P uptake was significantly increased when soil amendment was combined with 25 kg P/ ha DAP addition. Significant differences in nutrient uptake were also measured for other important plant nutrients. As the addition of organic amendments resulted in increased DM compared with untreated soil per unit of P fertiliser applied, it is feasible that this growth response may translate into increased yield. However, further study is required to de. ne the agronomic and economic feasibility of broad-scale application of such amendments for production gains.

  19. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils

    Directory of Open Access Journals (Sweden)

    Ieva Jokubauskaite

    2015-04-01

    Full Text Available Soil quality has become an important issue in soil science. Dissolved organic carbon (DOC is believed to play an important role in soil processes and in the C, N and P balances, their supplies to plants in all types of soils. It is much more sensitive to soil management than is soil organic matter as a whole, and can be used as a key indicator of soil natural functions. This study aimed to assess the influence of different organic fertilizers on DOC and N, P accumulation. The study was carried out on a moraine loam soil at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry in 2012. Farmyard manure (FYM (60 t ha -1 and alternative organic fertilizers (wheat straw, rape residues, roots, stubble, perennial grasses were applied on two soil backgrounds - acid and limed. DOC was analysed using an ion chromatograph SKALAR. Application of organic amendments resulted in a significant increase of soil organic carbon (SOC content, which demonstrates a positive role of organic fertilizers in SOC conservation. The combination of different organic fertilizers and liming had a significant positive effect on DOC concentration in the soil. The highest DOC content (0.241 g kg-1 was established in the limed soil fertilized with farmyard manure. The most unfavourable status of DOC was determined in the unlimed, unfertilized soil. The limed and FYM-applied soil had the highest nitrogen (1.47 g kg-1 and phosphorus (0.84 g kg-1 content compared to the other treatments. Organic fertilizers gave a significant positive effect on SOC and DOC content increase in the topsoil. This immediate increase is generally attributed to the presence of soluble materials in the amendments. Application of organic fertilizers in acid and limed soil increased the nutrient stocks and ensured soil chemical indicators at the optimal level for plant growth and thus may provide a mechanism as well as prediction opportunities for soil fertility, conservation

  20. Growth response of Grevillea robusta A. Cunn. seedlings to phosphorus fertilization in acid soils from Kenya

    Directory of Open Access Journals (Sweden)

    Karanja N.K.

    1999-01-01

    Full Text Available Three experiments were conducted to assess the response of Grevillea robusta to phosphorus fertilization using acid soils showing low P levels from Eastern (Gituamba-Andosols and Western (Kakamega-Acrisols Kenya. In the first experiment P was applied as Minjingu phosphate rock (MPR- 13/P at 0, 52 and 77 kg P per ha into 5 kg of soil. In the second experiment 2 g vesicular arbuscular mycorrhizae (VAM soil + root inoculum per 5 kg soil was included in addition to the same MPR rates using Kakamega soil only. In the third experiment, MPR and triple superphosphate (TSP were added to 5 kg Kakamega soil at a rate of 25.8 mg P per kg soil, and 32P isotope dilution techniques were used to assess P uptake in the shoot harvested at 3 and 6 MAT (months after transplanting. Application of MPR to the Andosol reduced height and root collar diameter of G. robusta significantly (p < .05 as compared to the control. Significant increases (p < .05 in height and root collar diameter where P was added compared to control were recorded with the Acrisol. Soil interaction with P fertilizer rates was highly significant (p < .001 for both height and root collar diameter growth. The roots were not infected with VAM upon harvesting at 12 months. At 3 MAT the percentage P derived from the MPR and TSP was 3/ and 6/ respectively. P uptake decreased significantly (p < .05 between 3 and 6 months. The results indicated that addition of P fertilizer in the Acrisols was probably required at the early stages of G. robusta growth but further research and particularly root studies are required to ascertain the above observations.

  1. Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

    OpenAIRE

    Tian, Qiuying; Zhang, Xinxin; Gao, Yan; Bai, Wenming; Ge,Feng; Ma, Yibing; Zhang, Wen-Hao

    2013-01-01

    Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2]...

  2. Acid and Alkali Buffer Capacity of Typical Fluvor-Aquic Soil in Huang-HuaiHai Plain

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping; ZHANG Jia-bao; ZHU An-ning; ZHANG Cong-zhi

    2009-01-01

    Soil acid and alkali buffer capacity, as a major indicator for evaluating its vulnerability and resistibility to acidification and alkalization, is an important factor affecting the sustainable agriculture, through knowledge on which soil acidification process can be predicted and modified. In this study, titration curve method was adopted to investigate the pH buffer capacity (pHBC) of fluvor-aquic soil, and separate titration curves were established by adding incremental amounts of either standardized hydrochloric acid (HCl) (0.12 mol L-1) or sodium hydroxide (NaOH) (0.10 mol L-1) to soil suspended in deionized water (soil:solution=1:5). Soil pH was measured after 7 d resuspension and isothermal equilibrium (T= 25℃). Linear regressions were fitted to the linear portion of each titration curve and the slopes of these lines were derived as the soil pHBC. The results showed that significant correlations between the amounts of adding acid or alkali and each pH change were presented, and titration curve method was feasible for measurement of pHBC on typical fluvor-aquic soil in Huang-Huai-Hai Plain, and the coefficients of determination were higher than the similar researches on acid soil (R2= 0.96). The slope-derived pHBC of acid and alkali were 158.71 and 25.02 mmol kg-1, respectively. According to the classification of soil buffer systems, the soil tested belongs to the calcium carbonate buffer system, carbonates contribute the most to pHBC, and the contribution of soil organic matter relatively less than it.

  3. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary; Incubation and pot experiments

    International Nuclear Information System (INIS)

    A series of experiments was conducted to compare the agronomic effectiveness of phosphate rock (from Algeria) and of single superphosphate (from Russia, Kola) on a moderately acidic pseudogley brown forest soil (Szentgyoergyvoelgy) and on a slightly acidic chernozem brown forest soil (Kompolt). Dynamics of water-soluble and ammonium lactate-soluble P-contents (AL-P) and soil pH-H2O changes were studied in a half-year long incubation experiment. A follow-up pot experiment with the same soils was carried out with winter rape as test plants. Both experiments were set up with similar P fertilizer sources and P rates (100, 200, and 400 mg mineral acid soluble P2O5 per kg soil). At the beginning of incubation experiment, the water-soluble P content of the pseudogley brown forest soil was influenced by both the sources of P and the experimental conditions. The water-soluble P content decreased with time. After the 15th to 20th day of incubation, when the fast binding process of the water-soluble P ended, the effects of the P forms decreased. In this stage, the effects of environmental conditions depended on the form of the P fertilizer. The water-soluble P content of the phosphate rock-treated samples was affected to a great extent by soil water content, while the incubation temperature had a greater effect in soils treated with superphosphate. The AL-P content of soils was increased similarly by addition of equal rates of phosphate rock and super-phosphate at the beginning of incubation. The AL-P content of phosphate rock-treated soils was higher throughout the incubation period than of the superphosphate-treated soils -treated. Temperature had a greater effect on the AL-P content of soils than soil water content. As the AL-extraction may dissolve a substantial amount of the undecomposed phosphate rock, this method is not applicable to soil testing of available P forms from phosphate rock-treated soils. Initial soil pH decreased on average by 0.5 units in the

  4. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary; Incubation and pot experiments

    International Nuclear Information System (INIS)

    A series of experiments was conducted to compare the agronomic effectiveness of phosphate rock (from Algeria) and of single superphosphate (from Russia, Kola) on a moderately acidic pseudogley brown forest soil (Szentgyoergyvoelgy) and on a slightly acidic chernozem brown forest soil (Kompolt). Dynamics of water-soluble and ammonium lactate-soluble P-contents (AL-P) and soil pH-H2O changes were studied in a half-year long incubation experiment. A follow-up pot experiment with the same soils was carried out with winter rape as test plants. Both experiments were set up with similar P fertilizer sources and P rates (100, 200, and 400 mg mineral acid soluble P2O5 per kg soil). At the beginning of incubation experiment, the water-soluble P content of the pseudogley brown forest soil was influenced by both the sources of P and the experimental conditions. The water-soluble P content decreased with time. After the 15th to 20th day of incubation, when the fast binding process of the water-soluble P ended, the effects of the P forms decreased. In this stage, the effects of environmental conditions depended on the form of the P fertilizer. The water-soluble P content of the phosphate rock-treated samples was affected to a great extent by soil water content, while the incubation temperature had a greater effect in soils treated with superphosphate. The AL-P content of soils was increased similarly by addition of equal rates of phosphate rock and super-phosphate at the beginning of incubation. The AL-P content of phosphate rock-treated soils was higher throughout the incubation period than of the superphosphate-treated soils -treated. Temperature had a greater effect on the AL-P content of soils than soil water content. As the AL-extraction may dissolve a substantial amount of the undecomposed phosphate rock, this method is not applicable to soil testing of available P forms from phosphate rock-treated soils. Initial soil pH decreased on average by 0.5 units in the

  5. A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils

    Energy Technology Data Exchange (ETDEWEB)

    Conesa, Hector M.; Gonzalez-Alcaraz, Maria N. [Universidad Politecnica de Cartagena (Spain). Dept. de Ciencia y Tecnologia Agraria; Wieser, Mirjam; Studer, Bjoern; Schulin, Rainer [ETH Zuerich (Switzerland). Inst. of Terrestrial Ecosystems

    2012-04-15

    Purpose: The effects of the addition of an acidic fertilizer solution and/or slaked lime (5.5 g Ca(OH){sub 2}kg{sup -1}) on a slightly acidic shooting range soil (pH 6.1, % organic carbon 5.4) with moderate metal (e.g., 620 mg kg{sup -1} Pb) and metalloid (17 mg kg{sup -1} Sb) concentrations on metal and Sb solubility and plant accumulation were investigated. Materials and methods: In a pot experiment, we grew Plantago lanceolata, Lolium perenne and Triticum aestivum. The pH, dissolved organic carbon (DOC), and metal and Sb concentrations in the leachate were monitored. Results and discussion: The addition of slaked lime increased the soil pH from 6.1 to 7.2 and the DOC from 100 to 300 mg l{sup -1}. In contrast to Sb, we found a correlation between DOC and soluble Cu concentrations. The addition of the acidic fertilizer significantly increased Mn- and Pb-NaNO{sub 3} extractable concentrations. Slaked lime decreased at first, Pb-, Mn- Ni- and Zn-NaNO{sub 3} extractable concentrations, but with time, these concentrations increased. Metal accumulation in shoots was in general low. The highest concentrations were obtained in shoots of L. perenne for Mn (135 mg kg{sup -1} DW). Spikes of T. aestivum accumulated more Cu, Mn, Ni and Zn than shoots. Grains of T. aestivum had higher Zn concentrations (up to 37 mg kg{sup -1}) than spikes and shoots (up to 22 and 19 mg kg{sup -1}, respectively). Antimony concentrations were always below 2 mg kg{sup -1} for the three species studied. Conclusions: Under these growing conditions, these three plant species showed to be suitable for the phytomanagement of moderately contaminated shooting range areas. (orig.)

  6. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth

    Directory of Open Access Journals (Sweden)

    W. Mindari

    2014-10-01

    Full Text Available Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / chelate of cation, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and plant nutrients uptake. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of K+ and NH4+ cations, thus increasing the availability of nutrients and of maize growth. Eighteen treatments consisted of three humic acid sources (compost, peat and coal, two cation additives (K+ and NH4+, and three doses of humic acid-based buffer (10, 20, and 30 g / 3kg, were arranged in a factorial completely randomized with three replicates. The treatments were evaluated against changes in pH, electric conductivity (EC, cation exchange capacity (CEC, chlorophyll content, plant dry weight and plant height. The results showed that the addition of K+ and NH4+ affected pH, CEC, K+, NH4+, and water content of the buffer. Application of humic acid-based buffer significantly decreased soil pH from > 7 to about 6.3, decreased soil EC to 0.9 mS / cm, and increased exchangeable Na from 0.40 to 0.56 me / 100g soil, Ca from 15.57 to 20.21 me/100 g soil, Mg from 1.76 to 6.52 me/100 g soil, and K from 0.05-0.51 me / 100g soil. Plant growth (plant height, chlorophyll content, leaf area, and stem weight at 35 days after planting increased with increasing dose of humic acid. The dose of 2.0g peat humic acid + NH4+ / 3 kg of soil or 30g peat humic acid + K+ / 3 kg of oil gave the best results of maize growth.

  7. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Arao, Tomohito, E-mail: arao@affrc.go.jp [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan); Maejima, Yuji; Baba, Koji [National Institute for Agro-Environmental Sciences, Soil Environmental Division, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2011-10-15

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. - Highlights: > Pot experiments using agricultural soil contaminated with aromatic arsenicals (AAs). > Methylphenylarsinic acid (MPAA) was the most abundant AA in rice and soybean. > MPAA concentration in rice grains was dramatically reduced via 0.2% AC amendment. > MPAA concentration in soybean seeds was also reduced via 0.2% AC amendment. > AC amendment effectively reduced AAs in rice and soybean. - Activated charcoal amendment to soil contaminated with diphenylarsinic acid reduced aromatic arsenicals in rice and soybean.

  8. Reduction of Ammonia Loss from Urea through Mixing with Humic Acids Isolated from Peat Soil (Saprists)

    OpenAIRE

    Regis Bernard; Osumanu H. Ahmed; Nik M.A. Majid; Mohamadu B. Jalloh

    2009-01-01

    Problem statement: Application of urea as a source of nitrogen fertilizer has an adverse effect on ammoniacal loss to the environment. This study was conducted to reduce ammonia loss from urea by mixing with Humic Acids (HA) isolated from Saprists peat. Approach: The effects of urea amended with four different amounts of humic acids, 0.25, 0.50, 0.75 and 1.00 g were evaluated in laboratory conditions using a closed dynamic air flow system. The mineral soil that was used as medium for the stud...

  9. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    Science.gov (United States)

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  10. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-chun; WANG Guang-huo; YAO Huai-ying

    2007-01-01

    The microbial communities under irrigated rice cropping with different fertilizer treatments, including control (CK), PK, NK, NP, NPK fertilization, were investigated using phospholipid fatty acid (PLFA) profile method. The results of this study revealed that the fertilizer practice had an impact on the community structure of specific microbial groups. The principal components analysis (PCA) showed that proportion of the actinomycete PLFAs (10Me 18:0 and 10Me 16:0) were the lowest in the PK treatment and the highest in the NPK treatment, which means that soil nitrogen status affected the diversity of actinomycetes, whereas nitrogen cycling was related to the actinomycets. Under CK treatment, the ratio of Gram-positive to Gram-negative bacteria was lower compared with that in fertilizer addition treatments, indicating that fertilizer application stimulated Gram-positive bacterial population in paddy soil. The fatty acid 18:2ω6, 9, which is considered to be predominantly of fungal origin, was at low level in all the treatments. The ratio of cy19:0 to 18:1ω7, which has been proposed as an indicator of stress conditions, decreased in PK treatment. Changes of soil microbial community under different fertilizer treatments of paddy soil were detected in this study; however, the causes that lead to changes in the microbial community still needs further study.

  11. Carbon Mineralization in Acidic, Xeric Forest Soils: Induction of New Activities †

    OpenAIRE

    Tate, Robert L.

    1985-01-01

    Carbon mineralization was examined in Lakehurst and Atsion sands collected from the New Jersey Pinelands and in Pahokee muck from the Everglades Agricultural Area. Objectives were (i) to estimate the carbon mineralization capacities of acidic, xeric Pinelands soils in the absence of exogenously supplied carbon substrate (nonamended carbon mineralization rate) and to compare these activities with those of agriculturally developed pahokee muck, and (ii) to measure the capacity for increased car...

  12. Influence of soil phenolic constituents on plant uptake of 32P-labelled phosphate from an acid tea soil of Sri Lanka

    International Nuclear Information System (INIS)

    Phenols are believed to play a dominant role in the formation and composition of humus, a subject of fundamental importance to soil productivity. In the present study, greenhouse techniques were used to examine the comparative effects of phenol-rich and non-phenolic plant residues as soil amendments on uptake of 32P-labelled phosphate from a high P-fixing acid soil. The results indicate that: (i) incorporation of phenol-rich plant residues increases 'soil phenolic content'; (ii) this increase in soil phenolic content does not result in a corresponding decrease in P fixation capacity or an increase in plant uptake of labelled P; (iii) plant residues having low degradability are more effective in decreasing P fixation capacity of soil and thus increasing plant uptake of labelled P. (author)

  13. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity

    International Nuclear Information System (INIS)

    Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BCw; 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BCw base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL. - A comprehensive uncertainty analysis, with advanced techniques and full list and full value ranges of all individual parameters, was used to examine a simple mass balance model and address questions of error partition and uncertainty reduction in critical acid load estimates that were not fully answered by previous studies

  14. Amelioration of Saline-Sodic Soils with Tillage Implements and Sulfuric Acid Application

    Institute of Scientific and Technical Information of China (English)

    M.SADIQ; G.HASSAN; S.M.MEHDI; N.HUSSAIN; M.JAMIL

    2007-01-01

    Amelioration of saline-sodic soils through land preparation with three tillage implements(disc plow,rotavator and cultivator)each followed by application of sulfuric acid at 20%of gypsum(CaSO4·2H2O)requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites,i.e., Jhottianwala, Gabrika(Thabal),and Thatta Langar,in Tehsil Piudi Bhattian,Hafizabad District,Pakistan.Within 2.5 years,there was a decrease in the salinity parameters measured(electrical conductivity,pH,and sodium adsorption ratio),with a gradual increase in rice and wheat grain yields.It was observed that the disc plow,which not only ensured favorable yields but also helped improve soil health at all the three sites,was the most effective tillage implement.Also,application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.

  15. Impeded Acidification of Acid Sulfate Soils in an Inter—sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    C.LIN; R.T.BUSH; 等

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees,The lack of natural levees has allowed the inuudation of the land by regular tidal flooding prior to the construction of flood mitigation work.Such physiographical conditions prevent the development of pre-draingae pyrite-derived soil acidifica-tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells.Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently,the creation of favourable environments for catalysed pyrite oxidation.Under current intensively drained onditions,the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering,resulting in low concentrations of soluble Fe in the pyritic layer,which could reduce the rate of pyrite oxidation.

  16. Potential origin and formation for molecular components of humic acids in soils

    Science.gov (United States)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  17. Soil acidity status in the vicinity of the Severonikel copper-nickel industrial complex, Kola Peninsula

    Science.gov (United States)

    Kashulina, G. M.; Kubrak, A. N.; Korobeinikova, N. M.

    2015-04-01

    The physicochemical properties of soils exposed to emissions from the Severonikel industrial complex (one of the largest sources of SO2 and heavy metals in northern Europe) for 70 years were studied. The results showed that even after the long-term impact of heavy SO2 emissions, the , the content of exchangeable bases, and the base saturation remained at the medium and high levels inherent to undisturbed soils of the region studied. An exclusion was the illuvial horizon of the podzols, where a relative reduction of the (at the level of low values of the natural variation) was revealed. At the same time, the hydrolytic acidity and cation exchange capacity in most samples of podzols, peat eutrophic, and mountain soils in the zone exposed to emissions (local zone) were also reduced. This fact is explained by indirect effects of the emissions: the gradual decrease in the organic matter content in the soils due to the destruction of the vegetation, the absence of fresh plant falloff, the development of erosion, and the disturbance of the hydrological regime of the soils and landscapes.

  18. Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data

    Institute of Scientific and Technical Information of China (English)

    Xian-Zhong SHI; Mehrooz ASPANDIAR; David OLDMEADOW

    2014-01-01

    Acid sulphate soil (ASS) is a kind of soil which is harmful to the environment. ASS is hard to efficiently assess efficiently in the subsurface, although it is detectable on the surface by remote sensing. This paper aims to explore a new way to rapidly assess ASS in the subsurface by introducing a proximal hyperspectral instrument, namely the HyloggerTM system which can rapidly scan soil cores and provide high resolution hyperspectral data. Some minerals in ASS, which usually act as indicators of the severity of ASS, such as iron oxides, hydroxides, and sulphates, as well as some clay minerals, such as kaolinite, have diagnostic spectral absorption features in the reflectance spectral range (400-2500 nm). Soil cores were collected from a study area and hyperspectral data were acquired by HyloggerTM scanning. The main minerals related to ASS were characterized spectrally, and were subsequently identified and mapped in the soil cores based on their reflectance spectral characteristics. Traditional X-ray diffraction (XRD) and scanning electron microscope (SEM) were also applied to verify the results of the mineral identification. The main results of this study include the spectral characterisation of ASS and its main compositional minerals, as well as the distribution of these relevant minerals in different depth of cores.

  19. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals

    Institute of Scientific and Technical Information of China (English)

    Soyoung Park; Ki Seob Kim; Jeong-Tae Kim; Daeseok Kang; Kijune Sung

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study.A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb,200 mg/kg for Cu,12 mg/kg for Cd,and 160 mg/kg for Ni.Three plant species,Brassica campestris,Festuca arundinacea,and Helianthus annuus,were selected for the phytodegradation experiment.Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA.The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B.campestris,F.arundinacea,and H.annuus,enhancing percentage degradation to 86%,64%,and 85% from 45%,54%,and 66%,respectively.The effect of HA was also observed in the degradation of n-alkanes within 30 days.The rates of removal of n-alkanes in soil planted with B.campestris and H.annuus were high for n-alkanes in the range of C11-C28.A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA.The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA.The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.

  20. Determination of Minimal Duration Essential for Isolation of Humic Acids From Soils in Forest Restoration Programmes

    Directory of Open Access Journals (Sweden)

    Mohd R. N. Hanisah

    2008-01-01

    Full Text Available This study was conducted to investigate whether a simple and rapid method could be developed for extracting, fractionating and purifying soil HA in forest rehabilitation programmes. Humic acids from 10 g of soil were extracted with 100 mL of 0.10 M NaOH. Different extraction periods (4, 8, 12, 16, 20 and 24 h were tested. Samples were centrifuged (16,211 G for 15 min at the end of each extraction period. The dark-coloured supernatant liquor containing HA was decanted and the pH of the solution adjusted to 1.0 using 6 M HCl. After acidification, the fractionation periods evaluated were 4, 8, 12, 16, 20 and 24 h. After each fractionation period, the sample was transferred to a polyethylene bottle and centrifuged (16,211 G for 10 min. The HA were purified by suspending them in 100 mL distilled water, centrifuged (16,211 G for 10 min. After repeating this procedure three times, the supernatant was analyzed for Na, Mg and K. Standard procedures were used to characterize the HA (C, E4/E6, phenolic OH, carboxylic COOH, total acidity and soil (pH, C, organic matter. Although there was significant effect of different extraction periods on yield of HA, there was no significant relationship between fractionation period and yield of HA. There was also no significant relationship between fractionation periods and yield of HA for different extraction periods studied. In terms of purification, the distilled water used in this study was able to effectively purify HA (e.g., reduction in mineral matter such as Na+ of the soil without altering the true nature of HA as C, E4/E6, phenolic OH, carboxylic COOH, total acidity values of the acids were consistent with those reported in the literature. The significance of this work is that it enables the isolation of HA from soil within 9 h (4 h extraction period, 4 h fractionation period and 1 h purification period instead of the existing range of 2-7 days, hence helping in facilitating the idea of producing for

  1. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    Science.gov (United States)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  2. Estimating High-Affinity Methanotrophic Bacterial Biomass, Growth, and Turnover in Soil by Phospholipid Fatty Acid 13C Labeling

    OpenAIRE

    Maxfield, P. J.; E. R. C. Hornibrook; Evershed, R. P.

    2006-01-01

    A time series phospholipid fatty acid (PLFA) 13C-labeling study was undertaken to determine methanotrophic taxon, calculate methanotrophic biomass, and assess carbon recycling in an upland brown earth soil from Bronydd Mawr (Wales, United Kingdom). Laboratory incubations of soils were performed at ambient CH4 concentrations using synthetic air containing 2 parts per million of volume of 13CH4. Flowthrough chambers maintained a stable CH4 concentration throughout the 11-week incubation. Soils ...

  3. Significance of Ligand Exchange Relating to Sulfate in Retarding Acidification of Variable Charge Soils Caused by Acid Rain

    Institute of Scientific and Technical Information of China (English)

    WANGJINGHUA; YUTIANREN

    1996-01-01

    For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H+ ion activities remained in the suspension.The difference in H+ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.

  4. Mapping of Sugar and Amino Acid Availability in Soil around Roots with Bacterial Sensors of Sucrose and Tryptophan

    OpenAIRE

    Jaeger, C. H.; Lindow, S E; Miller, W.; Clark, E.; Firestone, M K

    1999-01-01

    We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was us...

  5. Quantifying the role of forest soil and bedrock in the acid neutralization of surface water in steep hillslopes

    International Nuclear Information System (INIS)

    The role of soil and bedrock in acid neutralizing processes has been difficult to quantify because of hydrological and biogeochemical uncertainties. To quantify those roles, hydrochemical observations were conducted at two hydrologically well-defined, steep granitic hillslopes in the Tanakami Mountains of Japan. These paired hillslopes are similar except for their soils; Fudoji is leached of base cations (base saturation 30%), because the erosion rate is 100-1000 times greater. The results showed that (1) soil solution pH at the soil-bedrock interface at Fudoji (4.3) was significantly lower than that of Rachidani (5.5), (2) the hillslope discharge pH in both hillslopes was similar (6.7-6.8), and (3) at Fudoji, 60% of the base cations leaching from the hillslope were derived from bedrock, whereas only 20% were derived from bedrock in Rachidani. Further, previously published results showed that the stream pH could not be predicted from the acid deposition rate and soil base saturation status. These results demonstrate that bedrock plays an especially important role when the overlying soil has been leached of base cations. These results indicate that while the status of soil acidification is a first-order control on vulnerability to surface water acidification, in some cases such as at Fudoji, subsurface interaction with the bedrock determines the sensitivity of surface water to acidic deposition. - Bedrock plays a major role in neutralizing acid when overlying soils have been leached of base cations

  6. Bypass flow and its role in leaching of raised beds under different land use types on an acid sulphate soil.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Booltink, H.W.G.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    A better understanding of leaching processes in raised beds is useful in assessing management options for acid sulphate soils. Field and laboratory studies were carried out to quantify the effects of soil physical properties and bypass flow on leaching processes of new, 1-year-old and 2-year-old rai

  7. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L.) Gaertn.] woodlands

    OpenAIRE

    Anna Orczewska; Anna Piotrowska; Joanna Lemanowicz

    2012-01-01

    Black alder, an N-fixing tree is considered to accelerate the availability of phosphorus in soils due to the increased production of phosphatase enzymes, which are responsible for the P release from the litter. Acid phosphatase activity plays a pivotal role in organic P mineralization in forest soils and in making P available to plants. In order to check whether Alnus glutinosa stimulates acid phosphomonoesterase (PHACID) activity, we compared enzyme activities, total P concentration (PTOT), ...

  8. Multitracer studies on the effects of model acid rain on the adsorption of trace elements on soils

    International Nuclear Information System (INIS)

    Using a multitracer technique, the effects of acid rain pH on the adsorption of 15 trace elements on soil were studied. Kaolin, forest soil (original and with partially removed oxides), black soil (original and without organic matter) and Kureha soil (original, with partially removed oxides, and without organic matter) were employed as the adsorbents. Instead of H2SO4 solution, HCl solution was selected as the model acid rain based on the results of adsorption experiments on kaolin. In general, the percentage adsorption of cationic elements on three original soils and kaolin increased with increasing pH. The adsorption of oxyanionic elements, As and Se, on three soils was high over the entire pH range studied, while that on kaolin was low and decreased with an increase in pH. The differences in the physical and chemical properties of soils were reflected on the adsorption. The organic matter in soil had positive effects on the extent of adsorption of most elements studied, while the oxides apparently showed positive effects only for Fe and Se adsorption. The results indicate that acid rain decreases the retention of cations in soil and that it increases or does not change the adsorption of anions. (orig.)

  9. Efficiency of hexane extraction of napropamide from Aldrich humic acid and soil solutions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.F.; Letey, J.; Farmer, W.J.; Nelson, S.D.; Anderson, M.; Ben-Hur, M.

    1999-12-01

    Dissolved organic matter (DOM) has been shown to form a stable complex with napropamide [2({alpha}-naphthoxy)-N,N-diethyl propionamide] and to facilitate its transport through soil columns. Liquid-liquid extraction of organics is a common method to transfer napropamide from water into an organic phase for gas chromatography analysis. A study was conducted to determine the effect of Aldrich humic acid, soil-derived dissolved organic matter, electrical conductivity, and hydrogen ion activity on the ability of hexane to extract napropamide from solutions and from soil extracts. The electrical conductivity from solutions and from soil extracts. The electrical conductivity of Aldrich humic acid solutions were adjusted to 0.01, 0.97, and 1.69 dS m{sup {minus}1} by adding NaCl and CaCl{sub 2}, and pH was adjusted using HCl and NaOH. Electrical conductivity had no effect on extraction efficiency. In the absence of DOM pH had no effect on extraction efficiency. In the absence of DOM pH had no effect on extraction efficiency. Extraction efficiency decreased with increasing DOM concentration. Maximum reduction in extraction efficiency occurred in the presence of DOM when solution pH was near neutrality. A maximum extraction efficiency of 100% was observed in the absence of DOM and a minimum of 68% when napropamide was added to DOM solutions at pH 8.2 and then lowered to pH 5.6. Management practices such as liming and allowing napropamide to dry on the soil may increase environmental transport. Also quantification of napropamide in environmental samples can be affected by DOM.

  10. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil

    Science.gov (United States)

    Hrapovic, L.; Rowe, R. K.

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8)×10 8 and (0.1-1)×10 8 cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  11. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  12. Simple and Rapid Method of Isolating Humic Acids from Tropical Peat Soils (Saprists

    Directory of Open Access Journals (Sweden)

    Shamsuddin Rosliza

    2009-01-01

    Full Text Available Problem Statement: The isolation (extraction, fractionation and purification of humic acids (HA from soils is laborious, time consuming and expensive. The extraction, fractionation and purification periods of these substances vary from 12 h-7 days. In order to facilitate production of HA at competitive cost, this study was conducted to investigate whether a simple and rapid procedure could be developed for isolation of HA from well decomposed tropical peat soils (Saprists. Approach: A 0.1 M KOH was used to isolate HA of air dry peat soil at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h extraction periods after which samples (liquid obtained after centrifugation at 16,211 G for 15 min were fractionated (using 6 M HCl at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h. Samples were purified by washing them five times using distilled water instead of using HCl, HF, and an expensive process called dialysis that requires 1 to 7 days to purify HA. Each washing time was 10 min. Standard procedures were used to ascertain the purity (Ash, C, E4/E6, carboxylic, phenolic, total acidity, and K, Ca, Mg, and Na and quantity of HA yield. Statistical Analysis System (SAS was used for statistical analysis. Results: Although there was a linear relationship between extraction period and HA yield, there was no relationship between fractionation period and yield of HA. Distilled water used in this study was effective in purifying HA of the Saprists within 1 h without altering the true chemical nature of HA as it significantly reduced the mineral content of HA. Besides, C, E4/E6, carboxylic, phenolic, and total acidity of the isolated HA were typical of standard ones. Conclusion: The isolation of HA from peat soils can be reduced to 9 h (4 h extraction period, 4 h fractionation period and 1 h purification period instead of the existing range of 1 to 7 days.

  13. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    Science.gov (United States)

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress. PMID:25205121

  14. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Directory of Open Access Journals (Sweden)

    Asif Naeem

    2013-01-01

    Full Text Available In calcareous soils, phosphorus (P retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms ( were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1 were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation.

  15. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    Science.gov (United States)

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  16. Soil amendments modify phosphate sorption in an acid soil: the importance of P source (KH{sub 2}PO{sub 4}, TSP, DAP)

    Energy Technology Data Exchange (ETDEWEB)

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R. [Rutherglen Center, Rutherford, Vic. (Australia)

    2007-07-01

    Soil acidity is a widespread problem in Victoria, Australia, affecting at least 4 million ha of agricultural land. Soil amendments such as lime and organic materials may ameliorate acid soils, resulting in raised soil pH and increased availability of plant nutrients such as phosphorus (P). The addition of lime, lignite, and compost significantly modified P sorption in an acid soil, with the degree of change highly dependent upon the source of P applied. The application of 2.5 t/ha of lime increased P sorption for all P sources, while P sorption was decreased in the lignite and compost treatments when di-ammonium phosphate (DAP) was applied. Lime and compost addition increased the solution pH, with no change in pH in the lignite treatment. Addition of TSP decreased the pH in all treatments, while DAP addition only increased solution pH in the untreated soil and the lignite treatment. The addition of soil amendments had a significant effect on solution cation concentrations, due to both the influx of cations, and the resultant changes in solution pH. The source of P applied (KH{sub 2}PO{sub 4}, TSP (triple superphosphate), DAP) also had a significant effect due to both the counter-ions present and the pH of each P source (e. g. TSP pH 2.7; DAP pH 7.4). The lignite treatment decreased total P sorption relative to the other amendments. The combination of lignite and DAP resulted in both the greatest decrease in P sorption, and the formation of soluble Al-organic complexes. Therefore, a combination of lignite and DAP may be of use in decreasing P sorption in acid soils.

  17. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    OpenAIRE

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitri...

  18. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  19. Pyrene fate affected by humic acid amendment in soil slurry systems

    Directory of Open Access Journals (Sweden)

    McLean Joan E

    2008-09-01

    Full Text Available Abstract Background Humic acid (HA has been found to affect the solubility, mineralization, and bound residue formation of polycyclic aromatic hydrocarbons (PAHs. However, most of the studies on the interaction between HA and PAH concentrated on one or two of the three phases. Few studies have provided a simple protocol to demonstrate the overall effects of HA on PAH distribution in soil systems for all three phases. Methods In this study, three doses of standard Elliott soil HA (ESHA, 15, 187.5, and 1,875 μg ESHA/g soil slurry, were amended to soil slurry systems. 14C-pyrene was added to the systems along with non-radiolabeled pyrene; 14C and 14CO2 were monitored for each system for a period of 120 days. Results The highest amendment dose significantly increased the 14C fraction in the aqueous phase within 24 h, but not after that time. Pyrene mineralization was significantly inhibited by the highest dose over the 120-day study. While organic solvent extractable 14C decreased with time in all systems, non-extractable or bound 14C was significantly enhanced with the highest dose of ESHA addition. Conclusion Amendment of the highest dose of ESHA to pyrene contaminated soil was observed to have two major functions. The first was to mitigate CO2 production significantly by reducing 14CO2 from 14C pyrene mineralization. The second was to significantly increase stable bound 14C formation, which may serve as a remediation end point. Overall, this study demonstrated a practical approach for decontamination of PAH contaminated soil. This approach may be applicable to other organic contaminated environments where active bioremediation is taking place.

  20. Identification of Scirpus triqueter root exudates and the effects of organic acids on desorption and bioavailability of pyrene and lead in co-contaminated wetland soils.

    Science.gov (United States)

    Hou, Yunyun; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Chen, Xueping; Liang, Xia; He, Chiquan

    2015-11-01

    Root exudates (REs) of Scirpus triqueter were extracted from the rhizosphere soil in this study. The components in the REs were identified by GC-MS. Many organic acids, such as hexadecanoic acid, pentadecanoic acid, vanillic acid, octadecanoic acid, citric acid, succinic acid, glutaric acid, and so on, were found. Batch simulated experiments were conducted to evaluate the impacts of different organic acids, such as citric acid, artificial root exudates (ARE), succinic acid, and glutaric acid in REs of S. triqueter on desorption of pyrene (PYR) and lead (Pb) in co-contaminated wetland soils. The desorption amount of PYR and Pb increased with the rise in concentrations of organic acids in the range of 0-50 g·L(-1), within shaking time of 2-24 h. The desorption effects of PYR and Pb in soils with various organic acids treatments decreased in the following order: citric acid > ARE > succinic acid > glutaric acid. The desorption rate of PYR and Pb was higher in co-contaminated soil than in single pollution soil. The impacts of organic acids in REs of S. triqueter on bioavailability of PYR and Pb suggested that organic acids enhanced the bioavailability of PYR and Pb in wetland soil, and the bioavailability effects of organic acids generally followed the same order as that of desorption effects. PMID:26154043

  1. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R. [Rutherglen Center, Rutherglen, Vic. (Australia)

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

  2. Reduction of Ammonia Loss from Urea through Mixing with Humic Acids Isolated from Peat Soil (Saprists

    Directory of Open Access Journals (Sweden)

    Regis Bernard

    2009-01-01

    Full Text Available Problem statement: Application of urea as a source of nitrogen fertilizer has an adverse effect on ammoniacal loss to the environment. This study was conducted to reduce ammonia loss from urea by mixing with Humic Acids (HA isolated from Saprists peat. Approach: The effects of urea amended with four different amounts of humic acids, 0.25, 0.50, 0.75 and 1.00 g were evaluated in laboratory conditions using a closed dynamic air flow system. The mineral soil that was used as medium for the study was Bekenu series (typic paleudults. Amnonia loss, soil pH, exchangeable ammonium, available nitrate, exchangeable K, Ca, Mg and Na were determined using standard procedures. Results: All the treatments with HA significantly reduced ammoinia loss compared to urea alone. Increasing the amount of HA also significantly retained soil exchangeable ammonium and available nitrate. Treatments with HA had no significant effect on the concentrations of Mg, K and Ca, except for Na. The effect of HA in the mixtures on ammonia loss was related to their effect on the formation of ammonium over ammonia. Conclusion: Surface-applied urea fertilizer efficiency could be increased when coated with 1.00 g of HA.

  3. Yield, chemical composition and persistence of alfalfa on moderately acidic mountain soil

    Directory of Open Access Journals (Sweden)

    Josip Leto

    2006-12-01

    Full Text Available Due to its excellent nutritional characteristics and high yields, alfalfa is the most important forage crop in roughage production. The main limiting factor in global food production is soil acidification. At the moment, about 40% of world agricultural soils are acidic. It is difficult to grow alfalfa on acid soils (pH 0.05. Average DM yield of all cultivars in the year 2000 was 7.07 t/ha, in the year 2001 it was 10.94 t/ha, and finally in the year 2002 it was 12.78 t/ha. Significant differences in DM yields were recorded between cuttings (P0.05. Mean crude protein content was 28.2%, while contents of crude fat, crude fibers and non nitrogen free extract (NFE were 3.73%, 16.15%, 29.19%, respectively. No significant differences in alfalfa ground cover were recorded between cultivars in autumn or in spring in all experimental years (P>0.05. Significant differences in alfalfa ground cover in autumn (P<0.05 and in spring (P<0.01 were recorded between years. The lowest average ground cover was recorded in last experimental year: in the autumn of the year 2001(72.81% and in the spring of the year 2002 (64.37%. All investigated alfalfa cultivars are suitable for growing in similar agroecological conditions.

  4. Ammonia Volatilization from Urea Applied to Acid Paddy Soil in Southern China and Its Control

    Institute of Scientific and Technical Information of China (English)

    CAIGUI-XIN; PENGGUANG-HAO; 等

    1992-01-01

    Results showed that ammonia loss from urea broadcast into floodwater and incorporated into soil at transplanting was as high as 40% of applied N,and the corresponding total nitrogen (N) loss was 56%.Ammonia loss was measured with simplified micrometeorological method (ammonia sampler),and total N loss was concurrently measured using 15N balance technique.The experiment was conducted under strong sunshine conditions on acid paddy soil derived from Quaternary red clay.The ammonia loss in this particular condition was much greater than those obtained from previous studies when urea was also applied to acid paddy soil but under cloudy conditions.It is concluded that the strong sunshine conditions with high temperature and shallow floodwater during the period of present experiment favoured ammonia volatilization.Application of stearyl alcohol on the surface of the floodwater reduced ammonia loss to 23% of applied N.However,the effect of stearyl alcohol was short-lived,probably due to the microbiological decomposition.

  5. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?

    Science.gov (United States)

    Chen, Xue; Yang, Yazhou; Liu, Danqing; Zhang, Chunhua; Ge, Ying

    2015-12-01

    The bioavailability of cadmium (Cd) to rice may be complicated by chemical and biological factors in the rhizosphere. The aim of this work is to investigate how soil iron (Fe) redox transformations and low-molecular-weight organic acid (LMWOA) exudation from root affect Cd accumulation in rice. Two soils (a paddy soil and a saline soil) with different physicochemical properties were used in this study. Soil redox conditions were changed by flooding and addition of organic matter (OM). Two days after the soil treatments, rice seedlings were transplanted in a vermiculite-soil system and grown for 10 days. We measured pH and Eh, LMWOA, Fe and Cd contents in rice, and their fractions in the soils and vermiculite. Cadmium accumulation in rice declined in both soils upon the flooding and OM treatment. Iron dissolution in the paddy soil and its deposition in the rhizosphere significantly increased upon the OM addition, but the concentration of Fe plaque on the rice root significantly declined. Conversely, although Fe transformed into less active fractions in the saline soil, Fe accumulation on the surface and in the tissue of root was considerably enhanced. The secretion of LMWOA was remarkably induced when the OM was amended in the saline soil, but the same effect was not observed in the paddy soil. Reduction of Cd uptake by rice could be attributed to different factors in the two soils. For the paddy soil, the lowered Cd bioavailability was likely due to the competition of Fe and Cd for the binding sites on the vermiculite surface. For the saline soil, however, rice responded to the low Fe mobility through more LMWOA exudation and Fe plaque formation, and their increases could explain the decrease of rice Cd.

  6. Role of Phospho enol pyruvate Carboxylase in the Adaptation of a Tropical Forage Grass to Low-Phosphorus Acid Soils

    OpenAIRE

    Begum, Hasna Hena; Osaki, Mitsuru; Nanamori, Masahito; Watanabe, Toshihiro; Shinano, Takuro; Rao, Idupulapati M.

    2006-01-01

    As Brachiaria hybrid cv. 'Mulato' has adapted to acid soils with extremely low phosphorus (P) contents, its low-P-tolerance mechanisms were investigated and compared with those of wheat (Triticum aestivum L.) and rice (Oryza sativa L. cv. 'Kitaake'). Among the three plant species, the highest P-use efficiency (PUE) in low-P soil was recorded in the Brachiaria hybrid, which increased remarkably under P-deficiency and soil acidity, while P-deficiency had less effect on the PUE of wheat and rice...

  7. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  8. Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods

    Institute of Scientific and Technical Information of China (English)

    HEJIZHENG; A.VIOLANTE; 等

    1998-01-01

    Potassium chloride, Na-pyrophosphate,CuCl2,NH4-oxalate,dithionit-citrate-bicarbonate(DCB) and Na-citrate solutions were employed to etract aluminum(Al) and iron(Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains,Hunan Province,China,Many evidences showed that separate pyrophosphate extracted mainly KCl-extractable Al,organo-Al complexes and some inorganic Al compounds,whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes,CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils .Separate oxalate did not extract all KCl-pyrophosphate-CuCl2-oxalate seuentially extractable Al and Fe ,Also,separate DCB did not extract all KCl-pyrophosphate-CuCl2-oxalate-DCB sequentially extractable Al. The forms of Al extacted by oxalate and DCB from the soils were majorly noncrystalline.The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.

  9. BORON CONCENTRATION IN HUMIC AND FULVIC ACID EXTRACTS OF SOIL EPIPEDON IN SAN VITALE PINEWOOD (RAVENNA, ITALY

    Directory of Open Access Journals (Sweden)

    Maddalena Pennisi

    2010-08-01

    Full Text Available Humified Soil Organic Matter (SOM plays a crucial role in the assessment of soil quality since it makes up a significant part of the total organic carbon and nitrogen in soils. High concentrations of humic and fulvic acids may be presents in soils and subordinately in sediments. These substances can potentially act as a significant reservoir of adsorbed boron as well as a source of this element to soil solution, rivers, and lakes. The aim of this study was to investigate boron in humic substances (e.g. humic and fulvic acids of soil epipedon. The San Vitale pinewood was selected as the study site and three samples - classified as Sodic Psammaquents and Typic Psammaquants - of the A1-horizon epipedon were analyzed for humic and fulvic acids and boron contents. The knowledge of the mechanisms of boron interaction with SOM is important for a better understanding of the water/rock interaction in the superficial soil environment, and to envisage the application of the blending of boron into humic acid granules in agricultural practices.

  10. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties.

    Science.gov (United States)

    Wang, A-nan; Teng, Ying; Hu, Xue-feng; Wu, Long-hua; Huang, Yu-juan; Luo, Yong-ming; Christie, Peter

    2016-01-15

    Diphenylarsinic acid (DPAA) is formed during the leakage of arsenic chemical weapons in sites and poses a high risk to biota. However, remediation methods for DPAA contaminated soils are rare. Here, the photocatalytic oxidation (PCO) process by nano-sized titanium dioxide (TiO2) was applied to degrade DPAA in soil. The degradation pathway was firstly studied, and arsenate was identified as the final product. Then, an orthogonal array experimental design of L9(3)(4), only 9 experiments were needed, instead of 81 experiments in a conventional one-factor-at-a-time, was used to optimize the operational parameters soil:water ratio, TiO2 dosage, irradiation time and light intensity to increase DPAA removal efficiency. Soil:water ratio was found to have a more significant effect on DPAA removal efficiency than other properties. The optimum conditions to treat 4 g soil with a DPAA concentration of 20 mg kg(-1) were found to be a 1:10 soil: water ratio, 40 mW cm(-2) light intensity, 5% TiO2 in soil, and a 3-hour irradiation time, with a removal efficiency of up to 82.7%. Furthermore, this method (except for a change in irradiation time from 3 to 1.5h) was validated in nine different soils and the removal efficiencies ranged from 57.0 to 78.6%. Removal efficiencies were found to be negatively correlated with soil electrical conductivity, organic matter content, pH and total phosphorus content. Finally, coupled with electron spin resonance (ESR) measurement, these soil properties affected the generation of OH• by TiO2 in soil slurry. This study suggests that TiO2 photocatalytic oxidation is a promising treatment for removing DPAA from soil. PMID:26410709

  11. Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils

    DEFF Research Database (Denmark)

    Ferrari, Alejandro E.; Ravnskov, Sabine; Larsen, John;

    2015-01-01

    Analysis of phospholipids (PLFA) and neutral lipids fatty acids (NLFA) was used to characterizeno-till productive agricultural soils associated with different crop rotation levels, replicated across a400 km transect in the Argentinean pampas, during two sampling seasons, summer and winter....... Highrotation (HR) management consisted in maize–wheat–soybean intense rotation including cover crops.Low rotation (LR) management trend to soybean monocultures. Soils from nearby naturalenvironments (NEs) were used as references. Fatty acids concentration in soils (nmol/g) decreased c.a.50% from summer...... of NLFA in winter samples as ifhigh crop rotation improves lipids reserves in soil during winter more than in monocropping soilmanagement. In conclusion, PLFA and particularly NLFA profiles appear to provide useful andcomplementary information to obtain a footprint of different soil use and managements...

  12. Rapid Cloning and Expression of Glutaryl-7-Aminocephalosporanic Acid Acylase Genes from Soil Samples

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; YU Huimin; LI Qiang; SHEN Zhongyao

    2005-01-01

    A polymerase chain reaction (PCR)-based strategy was developed to rapidly obtain the gene encoding for an industrially important enzyme, glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase. Different soil samples were cultured with a Pseudomonas selective medium to enrich specific microorganisms, and then the genomic DNA was extracted to serve as PCR templates. PCR primers for GL-7-ACA acylase gene amplification were designed on the basis of bioinformatics searches and analyses. The method was used to successfully amplify three GL-7-ACA acylase genes from different soil samples. The GL-7-ACA acylase genes were then cloned and overexpressed in Escherichia coli with a relatively high level of 266 unit·L-1.

  13. Iron Monosulfide Distribution in Three Coastal Floodplain Acid Sulfate Soils, Eastern Australia

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These proper ties included pH, reactive iron (FeR), pore-water sulfate (SO42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-1 in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (FesS4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.

  14. Steady-state critical loads of acidity for forest soils in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Shaun A. WATMOUGH

    2010-08-01

    Full Text Available There has been growing interest in acid rain research in western Canada where sulphur (S and nitrogen (N emissions are expected to increase during the next two decades. One region of concern is southern British Columbia, specifically the Georgia Basin, where emissions are expected to increase owing to the expansion of industry and urban centres (Vancouver and Victoria. In the current study, weathering rates and critical loads of acidity (S and N for forest soils were estimated at nineteen sites located within the Georgia Basin. A base cation to aluminium ratio of 10 was selected as the critical chemical criterion associated with ecosystem damage. The majority of the sites (58% had low base cation weathering rates (≤50 meq m–2 y–1 based on the PROFILE model. Accordingly, mean critical load for the study sites, estimated using the steady-state mass balance model, ranged between 129–168 meq m–2 y–1. Annual average total (wet and dry S and N deposition during the period 2005–2006 (estimated by the Community Multiscale Air Quality model, exceeded critical load at five–nine of the study sites (mean exceedance = 32–46 meq m–2 y–1. The high-elevation (>1000 m study sites had shallow, acid sensitive, soils with low weathering rates; however, critical loads were predominantly exceeded at sites close to Vancouver under higher modelled deposition loads. The extent of exceedance is similar to other industrial regions in western and eastern Canada.

  15. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  16. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    Science.gov (United States)

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  17. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.

    Science.gov (United States)

    Debela, F; Arocena, J M; Thring, R W; Whitcombe, T

    2013-02-15

    Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.

  18. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Kimberly [School of Natural Science, Hampshire College, 869 West Street, Amherst, MA 01002 (United States); Amarasiriwardena, Dulasiri [School of Natural Science, Hampshire College, 869 West Street, Amherst, MA 01002 (United States)]. E-mail: dula@hampshire.edu; Xing, Baoshan [Department of Plant and Soil Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-09-15

    Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind 'tightly' to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil. - The distribution of arsenic species [i.e., As (III), As (V), and methylated arsenic species (DMA, MMA)] on the soil surface and in a depth profile as well as those associated with humic acids is discussed.

  19. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard

    International Nuclear Information System (INIS)

    Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind 'tightly' to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil. - The distribution of arsenic species [i.e., As (III), As (V), and methylated arsenic species (DMA, MMA)] on the soil surface and in a depth profile as well as those associated with humic acids is discussed

  20. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    Science.gov (United States)

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  1. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.

    Science.gov (United States)

    Tsang, Daniel C W; Olds, William E; Weber, Paul A; Yip, Alex C K

    2013-11-01

    Utilising locally available industrial by-products for in situ metal stabilisation presents a low-cost remediation approach for contaminated soil. This study explored the potential use of inorganic (acid mine drainage (AMD) sludge and zero-valent iron) and carbonaceous materials (green waste compost, manure compost, and lignite) for minimising the environmental risks of As and Cu at a timber treatment site. After 9-month soil incubation, significant sequestration of As and Cu in soil solution was accomplished by AMD sludge, on which adsorption and co-precipitation could take place. The efficacy of AMD sludge was comparable to that of zero-valent iron. There was marginal benefit of adding carbonaceous materials. However, in a moderately aggressive environment (Toxicity Characteristic Leaching Procedure), AMD sludge only suppressed the leachability of As but not Cu. Therefore, the provision of compost and lignite augmented the simultaneous reduction of Cu leachability, probably via surface complexation with oxygen-containing functional groups. Under continuous acid leaching in column experiments, combined application of AMD sludge with compost proved more effective than AMD sludge with lignite. This was possibly attributed to the larger amount of dissolved organic matter with aromatic moieties from lignite, which may enhance Cu and As mobility. Nevertheless, care should be taken to mitigate ecological impact associated with short-term substantial Ca release and continuous release of Al at a moderate level under acid leaching. This study also articulated the engineering implications and provided recommendations for field deployment, material processing, and assessment framework to ensure an environmentally sound application of reactive materials. PMID:24144464

  2. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment.

    Science.gov (United States)

    Spaccini, Riccardo; Song, XiangYun; Cozzolino, Vincenza; Piccolo, Alessandro

    2013-11-13

    The molecular composition of soil organic matter (SOM) in three agricultural fields under different managements, was evaluated by off-line thermochemolysis followed by gas chromatography mass spectrometry analysis (THM-GC-MS). While this technique enabled the characterization of SOM components in coarse textured soil, its efficiency in heavy textured soils was seriously affected by the interference of clay minerals, which catalyzed the formation of secondary artifacts in pyrolysates. Soil demineralization with hydrofluoric acid (HF) solutions effectively improved the reliable characterization of organic compounds in clayey soils by thermochemolysis, while did not alter significantly the results of coarse textured soil. A wide range of lignin monomers and lipids molecules, of plant and microbial origin, were identified in the pyrograms of HF treated soils, thereby revealing interesting molecular differences between SOM management practices. Our results indicated that clay removal provided by HF pretreatment enhanced the capacity of thermochemolysis to be a valuable and accurate technique to study the SOM dynamics also in heavy-textured and OC-depleted cultivated soils.

  3. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles.

    Science.gov (United States)

    Imran, Muhammad; Shaharoona, Baby; Crowley, David E; Khalid, Azeem; Hussain, Sabir; Arshad, Muhammad

    2015-10-01

    The aim of this study was to examine the stability of structurally different azo dyes in soil and their impact on the microbial community composition by analyzing phospholipid fatty acid (PLFA) profiles. Sterile and non-sterile soils were amended with three azo dyes, including: Direct Red 81, Reactive Black 5 and Acid Yellow 19 at 160mgkg(-1) soil. The results showed that the azo dyes were quite stable and that large amounts of these dyes ranging from 17.3% to 87.5% were recoverable from the sterile and non-sterile soils after 14 days. The maximum amount of dye was recovered in the case of Direct Red 81. PLFA analysis showed that the azo dyes had a significant effect on microbial community structure. PLFA concentrations representing Gram-negative bacteria in dye-amended soil were substantially less as compared to the PLFA concentration of Gram-positive bacteria. Acid Yellow 19 dye had almost similar effects on the PLFA concentrations representing bacteria and fungi. In contrast, Reactive Black 5 had a greater negative effect on fungal PLFA than that on bacterial PLFA, while the opposite was observed in the case of Direct Red 81. To our knowledge, this is the first study reporting the stability of textile azo dyes in soil and their effects on soil microbial community composition.

  4. Influence of soil substrate and ozone plus acid mist on the frost resistance of young Norway spruce.

    Science.gov (United States)

    Senser, M

    1990-01-01

    The needles of clonal Norway spruce grown in environmental chambers on two different soils (an acidic soil 1 and a calcareous soil 2) and exposed to two levels of ozone fumigation (a low level combined with neutral mist = control, and an elevated one combined with acid mist = treatment) were analyzed for their frost hardiness. No effect of ozone was observed on either the development of frost resistance during the hardening phase or on the decrease in frost resistance during the dehardening phase. The preliminary results of Brown et al. (1987) and Barnes and Davidson (1988), which indicated that ozone treatment predisposes plants to winter injury, could thus not be confirmed. Frost resistance was, however, distinctly influenced by the content of the mineral nutrients of the soils. The pronounced K(+) deficiency of the needles of the trees growing on the neutral soil (Alps) had less effect on the development of frost resistance than did the Ca(++) and Mg(++) deficiency of the needles of the trees grown on the acidic soil 1 (Bavarian Forest). The variability of frost resistance between the different clones on soil 1 was partly attributed to fluctuations in the mineral nutrient content of the needles, rather than to a genetic predisposition. PMID:15092284

  5. Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

    Directory of Open Access Journals (Sweden)

    A. Chaab

    2016-12-01

    Full Text Available The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid. The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enhanced movement of cadmium and chromium in soil column. Humic acid is more effective than compost on the mobility of cadmium and chromium in soil. Mobility of cadmium and chromium in the lower depths of soil column were increased. Cadmium and chromium concentration in shoots and roots enhanced due to increasing those concentration in soil and application of organic substances. Increase in cadmium in shoots can be attributed to the high mobility of this element in maize plant. Maize root chromium concentration was greater than shoot chromium concentration. Humic acid was more effective than compost as cadmium and chromium concentration in root and shoot was concerned. Low mobility of chromium in plant and accumulation of chromium in roots can be reasons of decreasing of chromium concentration in shoot of plant and its bioaccumulation.

  6. Integrated soil and water management in acid sulphate soils. Balancing agricultural production and environmental requirements in the Mekong Delta, Viet Nam.

    NARCIS (Netherlands)

    Le Quang Minh,

    1996-01-01

    The objectives of this study in the Mekong delta, Vietnam, were: (1) to obtain a better understanding of the effects of soil physical properties and flow types on solute transport in ASS emphasing aluminum; (2) to quantify environmental hazards resulting from amelioration activities in acid sulphate

  7. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  8. Acid rain. Problems for water, soil and organisms; Saurer Regen. Probleme fuer Wasser, Boden und Organismen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The papers presented in this volume give an overview of geographic-geological and soil-chemical aspects of sites of soil and water acidification. Natural and anthropogenous components of soil acidification and their influence on the water yield situation of forests are discussed. Further subjects are the water chemistry of stagnant and running waters, the impact of water acidification on living organisms as demonstrated by means of selected examples, and possibilities for biological indication of the acidic condition of rivers and lakes. Part of the lectures were presented at the symposium ``Acidification of rivers and lakes in Baden-Wuerttemberg - state of knowledge, causes, effects, counter-measures`` held at Stuttgart from November 27th to 28th, 1989. (vhe) [Deutsch] Die in diesem Band vorgestellten Beitraege geben einen Ueberblick ueber geographisch-geologische und bodenchemische Standortaspekte der Boden- und Gewaesserversauerung. Natuerliche und anthropogene Komponenten der Bodenversauerung und deren Einfluss auf die Abflussbilanz von Waeldern werden besprochen. Weitere Themen sind Wasserchemie stehender und fliessender Gewaesser, die Auswirkungen der Gewaesserversauerung auf lebende Organismen, dargestellt an ausgewaehlten Beispielen, und die Moeglichkeiten der Bioindikation des Saeurezustandes von Gewaessern. Ein Teil der Beitraege wurden auf dem Symposium ``Gewaesserversauerung in Baden-Wuerttemberg - Kenntnisstand, Ursachen, Auswirkungen Massnahmen`` vom 27-28.11.1989 in Stuttgart vorgetragen. (vhe)

  9. Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil

    International Nuclear Information System (INIS)

    Batch incubation experiments were conducted to study the effects of different nitrogen (N) fertilizers (NH4HCO3, CO(NH2)2, and NaNO3) on hexachlorobenzene (HCB) dechlorination in an acidic paddy soil. Results showed that NH4HCO3 and CO(NH2)2 had similar effects on HCB dechlorination, and their application amount was a crucial factor on reductive dechlorination. The addition of a proper amount of 0.14 g NH4HCO3- or CO(NH2)2-N to 500 g soil promoted HCB dechlorination, however, the application of a high amount (0.84 g) of NH4HCO3- or CO(NH2)2-N inhibited HCB dechlorination. Additional NaNO3 served as an electron acceptor and led to lower soil pH, thus inhibited HCB dechlorination. Detected dechlorinated products showed that the dominant pathway of HCB dechlorination was HCB → pentachlorobenzene (PeCB) → 1,2,3,5-tetrachlorobenzene (TeCB) → 1,3,5-trichlorobenzene (TCB), and PeCB was the main metabolite. The role of methanogenic bacteria in HCB dechlorination was uncertain and conditions-dependent.

  10. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, N.; McBride, M.B.

    Copper and zinc sorption-desorption studies were carried out over a range of pH values using clay fractions separated from two horizons of an acid soil from New York. In the pH range of high sorption, as much as 95% of the sorbed metal could not be desorbed and thus was considered fixed. Sorption and fixation of Cu and Zn increased rapidly above pH 4 and 5, respectively, for the whole soil clays. Following removal of the oxide fraction by oxalate and citrate-dethionite extractions, sorption and fixation were reduced considerably at pH values below the onset of hydrolysis of the metals in bulk solution. Citrate-dithionite extraction was more effective than oxalate in reducing Zn sorption and fixation. These extraction procedures had less effect on the ability of the clays to sorb and fix Cu. It is concluded that microcrystalline and noncrystalline oxides in the clay fraction of this soil, representing < 20% off the clay by weight, provide reactive surfaces for the chemisorption of Cu and Zn. At low pH, adsorption at these surfaces may be the dominant mechanism of heavy metal immobilization, especially in the subsoil horizons.

  11. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    Science.gov (United States)

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review. PMID:26454260

  12. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    Science.gov (United States)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  13. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis.

    Science.gov (United States)

    Li, Ying-Hui; Huang, Bi-Xia; Shan, Xiao-Quan

    2003-03-01

    Determination of low molecular weight organic acids in soils and plants by capillary zone electrophoresis was accomplished using a phthalate buffer and indirect UV detection mode. The influence of some crucial parameters, such as pH, buffer concentration and surfactant were investigated. A good separation of seven organic acids was achieved within 5 min using an electrolyte containing 15 mmol L(-1) potassium hydrogen phthalate, 0.5 mmol L(-1) myristyltrimethylammonium bromide (MTAB), and 5% methanol (MeOH) (v/v) at pH 5.60, separation voltage -20 kV, and temperature 25 degrees C. The relative standard deviation (n=5) of the method was found to be in range 0.18-0.56% for migration time and 3.2-4.8% for peak area. The limit of detection ranged between 0.5 micro mol L(-1) to 6 micro mol L(-1) at a signal-to-noise ratio of 3. The recovery of standard organic acids added to real samples ranged from 87 to 119%. This method was simple, rapid and reproducible, and could be applied to the simultaneous determination of organic acids in environmental samples. PMID:12664177

  14. SCC of XT0 and Its Deteriorated Microstructure in Simulated Acid Soil Environment

    Institute of Scientific and Technical Information of China (English)

    Zhiyong Liu; Guoli Zhai; Xiaogang Li; Cuiwei Du

    2009-01-01

    In order to study the stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint in acid soil environment of southeast of China, two simulating methods were used here. The one was to obtain the bad microstructures in heat affected zone by annealing at 1300℃ for 10 min and air cooling to room temperature,the other was to get a series of simulating solutions of the acid soil environment. SCC susceptibilities of X70pipeline steels'before and after being normalized in the simulated solutions were studied by slow strain rate test (SSRT) and microstructural observation of fracture areas. Potentiodynamic polarization curves were used to study the electrochemical behaviour of different microstructures. SCC does occur to both the as-received material and normalized microstructure after heat treatment as the polarization potential decreased. Hydrogen embrittlement (HE) is indicated occurring to all tested materials at -850 mV (vs SCE) and -1200 mV(vs SCE). The SCC mechanisms are different within varying potential range. Anodic dissolution is the key cause as polarization potential higher than null current potential, and HE will play a more important role as polarization potential lower than the null current potential.

  15. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    Science.gov (United States)

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review. PMID:26796895

  16. A laboratory method to estimate the efficiency of plant extract to neutralize soil acidity

    Directory of Open Access Journals (Sweden)

    Marcelo E. Cassiolato

    2002-06-01

    Full Text Available Water-soluble plant organic compounds have been proposed to be efficient in alleviating soil acidity. Laboratory methods were evaluated to estimate the efficiency of plant extracts to neutralize soil acidity. Plant samples were dried at 65ºC for 48 h and ground to pass 1 mm sieve. Plant extraction procedure was: transfer 3.0 g of plant sample to a becker, add 150 ml of deionized water, shake for 8 h at 175 rpm and filter. Three laboratory methods were evaluated: sigma (Ca+Mg+K of the plant extracts; electrical conductivity of the plant extracts and titration of plant extracts with NaOH solution between pH 3 to 7. These methods were compared with the effect of the plant extracts on acid soil chemistry. All laboratory methods were related with soil reaction. Increasing sigma (Ca+Mg+K, electrical conductivity and the volume of NaOH solution spent to neutralize H+ ion of the plant extracts were correlated with the effect of plant extract on increasing soil pH and exchangeable Ca and decreasing exchangeable Al. It is proposed the electrical conductivity method for estimating the efficiency of plant extract to neutralize soil acidity because it is easily adapted for routine analysis and uses simple instrumentations and materials.Tem sido proposto que os compostos orgânicos de plantas solúveis em água são eficientes na amenização da acidez do solo. Foram avaliados métodos de laboratório para estimar a eficiência dos extratos de plantas na neutralização da acidez do solo. Os materiais de plantas foram secos a 65º C por 48 horas, moídos e passados em peneira de 1mm. Utilizou-se o seguinte procedimento para obtenção do extrato de plantas: transferir 3.0 g da amostra de planta para um becker, adicionar 150 ml de água deionizada, agitar por 8h a 175 rpm e filtrar. Avaliaram-se três métodos de laboratório: sigma (Ca + Mg + K do extrato de planta, condutividade elétrica (CE do extrato de planta e titulação do extrato de planta com solu

  17. Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Jun; ZHOU Jian-Min; WANG Huo-Yan; CHEN Xiao-Qin

    2008-01-01

    Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems.Cypermethrin and its metabolite 3-phenoxybenzoic acid (PBA) have exerted adverse biological impacts on the environment; therefore,it is critically important to develop different methods to enhance their degradation.In this study,incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen (N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil.The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil.The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha-1.The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA.However,oversupplying N significantly reduced degradation of these compounds.Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N.In particular,dehydrogenase activities in the soil generally increased with the addition of N,except in the soil where N was applied at the highest level.The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.

  18. Mineral Dissolution and Metal Mobility From Rhizosphere and Non-rhizosphere Soils by Low Molecular Weight Organic Acids

    Science.gov (United States)

    Little, D. A.; Field, J. B.; Welch, S. A.

    2005-12-01

    This research is part of an ongoing investigation of micro-biogeochemistry in the rhizosphere of co-occurring Eucalyptus mannifera and Acacia falciformis on the Southern Tablelands of New South Wales, Australia. While there is still considerable controversy in the literature regarding the roles of low molecular weight organic acids in soil processes there is growing evidence suggesting low molecular weight compounds, especially di-carboxylic acids, have large impacts on mineral dissolution and metal mobility in the rhizosphere. Rhizosphere and non-rhizosphere samples from adjacent E. mannifera and A. falciformis trees were subjected to four separate treatments in sets of 3 replicates; +oxalic acid, +malic acid, +citric acid or +NaCl control solution. These three acids were chosen because they are produced by rhizosphere species and they form stable complexes with nutrient elements such as Phosphorus (P), Iron (Fe), and Calcium (Ca). Solution samples were collected at day 1, day 8 and day 15 for pH measurement and analysed for major and trace elements by ICP-AES and ICP-MS. The results of the preliminary dissolution experiments show that milli-molar concentrations of individual organic acids, malate and oxalate, and in particular citrate, greatly increase the release of major and trace metals to solution compared to inorganic controls. Concentrations of Al and Fe in organic acid solutions were up to 10 times greater than in the inorganic controls. Si concentrations were a factor of 2-5 greater in the organic acid solutions, suggesting preferential weathering of Fe and Al oxyhydroxide phases rather than primary silicate minerals. Dissolution of elements such as Si, Al and Fe from rhizosphere soils were about twice that observed from non-rhizosphere soils, further supporting this. Interestingly Ti and Zr, which are usually considered to be immobile during chemical weathering and are not usually taken up by plants, were also mobilised from the rhizosphere soils

  19. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Full text: Upland rice is the staple food for 100 million people including some of the poorest people in the world. The upland ecosystem in West Africa is very important to rice production. About 70% of upland rice is in the humid zone of the subregion. Like in other parts of the humid tropics, acid-related soil infertility is the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. For increasing and stabilising rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant rice cultivars with soil and plant nutrient management. Research conducted on Alfisols and Ultisols of the humid forest and savannah zones in West Africa showed that upland rice is a very robust crop and possesses a wide range in tolerance to acid soil conditions. Recent research at WARDA also showed that the tolerance to acid soil conditions can be further enhanced through the use of interspecific Oryza sativa and O. glaberrima Steud. progenies. The development of interspecific progenies has not only increased the rice plant's tolerance to acid soil conditions, but they also possess superior overall adaptability to the diverse upland rice growing environments in the subregion. Our research in the diagnosis of acid soil infertility problems on the Ultisols and Alfisols in the humid savannah and forest zones indicated that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency is more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially as important on the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P

  20. Manganese and zinc in acidic agricultural soils from Central Spain: Distribution and phytoavailability prediction with chemical extraction tests

    OpenAIRE

    Rico Selas, M.Isabel; Álvarez Álvarez, José Manuel; López Valdivia, Luis Manuel; Novillo Carmona, Jesus; Obrador Pérez, Ana Francisca

    2009-01-01

    The extractability and distribution of manganese (Mn) and zinc (Zn) were evaluated in acidic agricultural soils from Central Spain. Both single (0.1 M hydrochloride [HCl] and 0.05 M ethylenediaminetetraacetate [EDTA]) and sequential extraction procedures (SEP) (modified Tessier procedure and Community Bureau of Reference [BCR] protocol) were applied to 29 representative soils that belong to the Alfisol, Inceptisol, and Entisol orders. Average relative Mn extractabilities with respect to the t...

  1. A Study on Acidic Buffering Ability of Soils in Hunan Province.%湖南土壤酸缓冲性能研究

    Institute of Scientific and Technical Information of China (English)

    吴甫成; 王晓燕; 邹君; 彭世良

    2001-01-01

    Elected from six soil types, this paper collects twentysix soil species, measures soil acidic buffering curve and soil aciddamage capacity. The results indicate that soil parent material, soil type and anthropogenic affection degree are the principal factors which affect soil acidic buffering capacily. As the experiment shows, apply alkaline ameliorators to soils, their acidic buffering ability can be enhanced greatly.%选用湖南6个土类26个土壤样品,测定其酸缓冲曲线和酸害容量,了解到土壤酸缓冲性能受成土母质、土壤类型、人类耕作等因素影响,而施加碱性物质则能显著提高土壤酸缓冲性能。

  2. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, Arnaud [George E. Brown, Jr. Salinity Laboratory, USDA-ARS, 450 West Big Springs Road, Riverside, CA 92507-4617 (United States) and Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: aboivin@ussl.ars.usda.gov; Amellal, Samira [Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: samira.amellal@ensaia.inpl-nancy.fr; Schiavon, Michel [Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: michel.schiavon@ensaia.inpl-nancy.fr; Genuchten, Martinus Th. van [George E. Brown, Jr. Salinity Laboratory, USDA-ARS, 450 West Big Springs Road, Riverside, CA 92507-4617 (United States)]. E-mail: rvang@ussl.ars.usda.gov

    2005-11-15

    The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization. - Pesticide availability varies with its residence time in soil.

  3. Nodulation of cowpeas and survival of cowpeas Rhizobia in acid, aluminum-rich soils. [Vigna unguiculata; Rhizobium

    Energy Technology Data Exchange (ETDEWEB)

    Hartel, P.G.; Whelan, A.M.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether the reduced nodulation of cowpeas (Vigna unguiculata (L.) Walp) grown in certain acid, Alrich soils resulted from the poor survival of the potentially infective rhizobia. Two strains of Rhizobium capable of nodulating cowpeas were used. The lowest pH for growth in defined liquid medium was 4.2 for one strain and 3.9 for the other. Only the latter was Al tolerant and could grow in a defined liquid medium containing 50 ..mu..M KAl(SO/sub 4/)/sub 2/. The survival of the bacteria and their ability to nodulate cowpeas in three soils were measured after the soils were amended with Ca or Al salts to give pH values ranging from 5.7 to 4.1 and extractable-Al concentrations from < 0.1 to 3.7 cmol(p/sup +/)/kg of soil. Only small differences in survival in 7 or 8 weeks were noted between the two strains. Plants inoculated with the Al-sensitive strain bore significantly fewer nodules in the more acid, Al-rich soils than in the same soils with higher pH values and less extractable Al. No significant reduction in nodule number was evident for plants inoculated with the Al-tolerant strain and grown in the more acid, Al-rich soils compared to cowpeas grown in the same soils with higher pH values and less extractable Al. It is suggested that the Al content of soil is not a major factor in the survival of cowpea rhizobia but that it does have a significant effect on nodulation. 24 references, 3 figures, 2 tables.

  4. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    Science.gov (United States)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  5. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5 in the...... soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio in the...

  6. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation

    DEFF Research Database (Denmark)

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen;

    2016-01-01

    bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth......, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate...

  7. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site.

    Science.gov (United States)

    Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng

    2015-05-15

    Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites.

  8. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil.

    Science.gov (United States)

    Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong

    2016-01-01

    Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250

  9. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil

    Directory of Open Access Journals (Sweden)

    Hongmiao eWu

    2016-03-01

    Full Text Available Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274 and Kosakonia sacchari W. (KU324465, and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence.

  10. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  11. Regulation of N2O and NOx emission patterns in six acid temperate beech forest soils by soil gas diffusivity, N turnover, and atmospheric NOx concentrations

    OpenAIRE

    Eickenscheidt, Nadine; Brumme, Rainer

    2013-01-01

    Low gas diffusivity of the litter layer is held responsible for high seasonal nitrous oxide (N2O) and low nitric oxide (NO) emissions from acid beech forest soils with moder type humus. The objectives were (i) to evaluate whether these beech forest soils generally exhibit high seasonal N2O emissions and (ii) to assess the influence of gas diffusivity and nitrogen (N) mineralisation on N oxide fluxes.We measured N2O and NOx (NO + NO2) fluxes in six German beech stands and determined net N turn...

  12. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    Science.gov (United States)

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (pcatchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  13. Anaerobic soil disinfestation: Carbon rate effects on tomato plant growth and organic acid production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) is a non-chemical soil disinfestation technique proposed for the control of soil-borne pathogens, plant parasitic-nematodes, and weeds in different crops. ASD is applied in three steps: 1) Soil amendment with a labile carbon (C) source; 2) Cover the soil with tota...

  14. Phosphorus in Finnish soils in the 1900s with particular reference to the acid ammonium acetate soil test

    OpenAIRE

    Saarela, Into

    2002-01-01

    Comprehensive research into phosphorus (P) in soils and crops began in Finland in the early 1900s. The average amount of total P in the ploughed topsoil layer of mineral soils was about two tonnes per hectare in the 1930s, before the abundant use of fertilisers. The main chemical fractions of P in mineral soils were organic matter, primary apatite and secondary complexes of the hydrous oxides of Al and Fe. Of the smaller amounts of P in light peat soils, as much as 80% was present in stable o...

  15. Introduction to Soil Acidification and Use of Conditioners on Acid Soil%土壤酸化及酸性土壤调理剂应用概述

    Institute of Scientific and Technical Information of China (English)

    陈绍荣; 余根德; 白云飞; 陈德康; 宁维

    2013-01-01

    Acidification of soil not only aggravates leaching and fixation of soil nutrients and promotes the release and activation of poisonous elements, but also affects the life activity of soil micro organism and increases the ambient pressure. An introduction is given to present status and causes of soil acidification in China, and on this point measures are proposed for improvement of soil acidification by application of such acid soil conditioners as lime, boron and refined organic manure.%土壤酸化不仅会加剧土壤营养元素的淋溶和固定、促进有毒元素的释放和活化,而且会影响土壤微生物的生命活动、增加环境压力.概述了我国土壤酸化的现状及原因,针对性地提出了施用石灰类、硼泥类、精制有机肥类等酸性土壤调理剂改良治理土壤酸化的措施.

  16. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China

    Institute of Scientific and Technical Information of China (English)

    CHENG FengXian; CAO GuiQin; WANG XiuRong; ZHAO Jing; YAN XiaoLong; LIAO Hong

    2009-01-01

    Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different Iow-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest ni-trogenase activity, on a typical Iow-P acid soil in South China. The results showed that, without inocu-lation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inocuiants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respec-tively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on Iow-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering

  17. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (Psoil, compared with the control, the treatments of pH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease

  18. Source and compositional changes of soil organic matter in an acidic forest soil - from top- to subsoil

    Science.gov (United States)

    Angst, Gerrit; John, Stephan; Rethemeyer, Janet; Kögel-Knabner, Ingrid; Mueller, Carsten W.

    2014-05-01

    Subsoils can significantly contribute to the terrestrial C pool. While processes of C turnover and storage in topsoils are generally well understood, little is known about subsoils. Our project, embedded within the DFG research group FOR 1806, aims to contribute to the knowledge about subsoil C by differentiating soil organic matter (SOM) in terms of its origin and its composition. In order to obtain a meaningful sample set we studied three soil ditches, 3.15 m in length and 2.15 m in depth, in a podzolic Cambisol under European beech (Fagus sylvatica L.) north of Hannover, Germany. In a to date unique sampling approach we took 64 soil samples in a regular vertical grid in each of the soil profiles, thus identifying possible gradients between top- and subsoil. The samples were subjected to a combined density and particle size fractionation to separate particulate organic matter (POM) from mineral compartments. We especially aimed at obtaining the combined fine silt and clay fraction which is thought to be most important in the long term stabilization of SOM. The chemical composition of the so obtained fractions and the bulk soil was revealed by C, N and 13C CPMAS NMR measurements. The source of OM in the soil was investigated by tracing the biopolymers cutin and suberin across the soil profile. Cutin occurs mainly in the cuticula of leaves while suberin mainly constitutes the endodermal cell walls of plant roots. In soils the two polymers can thus be used as proxies for above and belowground OM input respectively. To release the constituting monomers of the two biopolymers from the soil samples the latter were pretreated with organic solvents to extract free lipids. The soil residues were subsequently subjected to a base hydrolysis and the so obtained extracts were measured with GC/MS. The organic C contents of the bulk soil decrease significantly with depth in all transects from around 15 mg g-1 to 2 mg g-1. This is likely associated with the very high sand and

  19. Effects of Humic Acid and Solution pH on Dispersion of Na—and Ca—Soil Clays

    Institute of Scientific and Technical Information of China (English)

    LANYEQING; HUQIONGYING; 等

    1996-01-01

    Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement.In this study,two typical soils from the south of China were chosen for investigating roles of pH and humic acid(HA) on dispersion of soil clays.Critical flocculation concentration (CFC) of the soil clay suspension was determined by using light transmission at a wavelength of 600 nm.The results indicated that effects of pH and HA on dispersion of the soil clays were closely related to the type of the major minerals makin up the soil and to the valence of the exchangeable cations as well.At four rates of pH(4,6,8and 10),the CFC for the Na-yellow-brown soil treated with H2O2 was increased from 0.32 to 0.56,6.0 to 14.0,10.0 to 24.6 and 26.0 to 52.0mmol L-1 NaCl,respectively when Na-HA was added at the rate of from 0 to 40mgL-1,With the same Na-HA addition and three pH(6,8and 10)treatments,the CFC for the Na-red soil was incresed from 0.5 to 20.0,1.0 to 40.0 and 6.0 to 141.0mmol L-1 NaCl,respectively.Obviously,pH and HA has greater effects on clay dispersion of the red soil(dominated by 1:1 minerals and oxides) than on that of the yellow-brown soil(dominated by 2:1minerals).However,at three rates of pH(6,8and 10) and with the addition of Ca-HA from 0 to 40mg L-1,the CFC of the Ca-yellow-brown soil and Ca-red soil treated with H2O2 was increased from 0.55 to 0.81,0.75 to 1.28,0.55 to 1.45and 0.038 to 0.266.0.25 to 0.62,0.7to 1.6mmol CaCl2 L-1,respectively.So,Na-soil claye are more sensitive to pH and HA than Ca-soil clays.

  20. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils

    OpenAIRE

    SHAHIRA A. TARRAF; Talaat, Iman M.; ABO EL-KHAIR B. EL-SAYED; LAILA K. BALBAA

    2015-01-01

    Abstract. Tarraf SA, Talaat IM, El-Sayed AEB, Balbaa LK. 2015. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils. Nusantara Bioscience 7: 33-37. Two pot experiments were conducted to study the effect of foliar application of algae extract and amino acids mixture on the growth and chemical constituents of fenugreek plants (Trigonella foenum-graecum L.). Plants were sprayed with different concentrations of algae extract (0.0, 2....

  1. Dynamics of phosphorus fractions in the rhizosphere of fababean (Phaseolus vulgaris L.) and maize (Zea mays L.) grown in calcareous and acid soils

    NARCIS (Netherlands)

    Li, G.; Li, Haigang; Leffelaar, P.A.; Shen, J.; Zhang, F.

    2015-01-01

    The dynamics of soil phosphorus (P) fractions were investigated, in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Plants were grown in a mini-rhizotron with a thin (3 mm) soil layer, which was in contact with the root-mat, and considered as r

  2. Effect of Pig Manure Application on Structural Characteristics of Humic Acids in Brown Soil

    Institute of Scientific and Technical Information of China (English)

    DOUSEN; TANSHI-WEN; 等

    1991-01-01

    The effect of application of pig manure (PM) on the structural characteristics of humic acids (HAs) of brown soil was studied in field and incubation experiments.The results showed that the number-average molecular weights (Mn),the ratios of C/H,C/H and O/C,the contents of carboxyl and phenolic hydroxyl groups,the content of aromatic C,the values of E2,E4 and λExmax of HAs all decreased;whereas,the contents of alkyl C and O--alkyl C,the ratio of carboxyl to phenolic hydroxyl groups,the degree of oxidation stability,te absorption intensity at 285mμ (UV),and 2920cm-1 of HAs increased after the application of PM.The above results indicated that the molecular structure of HAs tended to be more aliphatic and simpler after the application of PM.

  3. Compound amino acids added in media improved Solanum nigrum L. phytoremediating CD-PAHS contaminated soil.

    Science.gov (United States)

    Wei, Shuhe; Bai, Jiayi; Yang, Chuanjie; Zhang, Qianru; Knorrm, Klaus-Holger; Zhan, Jie; Gao, Qianhui

    2016-01-01

    Cd hyperaccumulator Solanum nigrum L. was a promising plant used to simultaneously remediate Cd-PAHs combined pollution soil through its extra accumulation capacity and rhizosphere degradation. This article compared the strengthening remediation role of cysteine (Cys), glycine (Gly) and glutamic acid (Glu) with EDTA and TW80. The results showed that the addition of 0.03 mmol L(-1) Cys, Gly, and Glu didn't significantly impact (p Cd concentration. Therefore, Cd capacity (µg pot(-1)) in shoots of S. nigrum was significantly increased (p Cd might lie in the addition of Cys, Gly, and Glu which reduced pH and increased extractable Cd concentration in rhizosphere and phytochelatines (PCs) concentration in leaves. As for the degradation of PAHs in rhizosphere, increased microorganism number might be play important role.

  4. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  5. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    Directory of Open Access Journals (Sweden)

    Stanislava Vondráčková

    Full Text Available High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8 and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism.We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs.Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions.In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  6. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  7. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    International Nuclear Information System (INIS)

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents (μg/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.

    Science.gov (United States)

    Shaker, Medhat A; albishri, Hassan M

    2014-09-01

    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical. PMID:24997970

  9. Extraction and Characterization of Humic Acids and Humin Fractions from a Black Soil of China

    Institute of Scientific and Technical Information of China (English)

    XING Bao-Shan; LIU Ju-Dong; LIU Xiao-Bing; HAN Xiao-Zeng

    2005-01-01

    Twenty-three progressive extractions were performed to study individual humic acids (Has) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E2/Ea increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of Has increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 Has and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.

  10. Influence of various water management and agronomic packages on the chemical changes and on the growth of rice in acid sulphate soils.

    NARCIS (Netherlands)

    Le Ngoc Sen,

    1988-01-01

    In potential acid sulphate soils acidity may arise from any combination of reclamation and drainage lowering the groundwater table in adjacent areas, and unusually dry seasons affecting the regional groundwater table. In the long run, natural processes of deacidification will finally make these soil

  11. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    Full Text Available Biochar (BC application to soil suppresses emission of nitrous- (N2O and nitric oxide (NO, but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2 were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  12. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Science.gov (United States)

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  13. Suitability of Isotope Kinetic Approach to Assess Phos—phorus Status and Bioavailability of Major Acidic Soils in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XIONGLIMING; J.C.FARDEAU

    1997-01-01

    A 32P isotope kinetic approach was used to describe the chemical status and bioavailability of phosphorus in 32 acidic soils from subtropical China.By determining the residual radoactivity,rt,in soil solution at different time,t,after introduction of the isotope in an amount of R into the steady soil-water system,a well-defined isotope kinetic model was established,and upon this model the decrease rate ,n,of log(rt/R) with respect to logt,the mean sojourn time of phosphate ions in solution,the mean exchange rate and the mean flux of phosphate ions between soil solid and solution phases were calculated.Other parameters,such as the exchangeable P within the first minute of isotope exchange(E1),and P in various compartments that could be exchanged with solution phosphte ions at different perods of time,were also obtained.For these acidic soils,the r1/R had a significant correlation with the contents of clay and free Al2O3 where r1 is the radioactivity in solution 1 minute after introduction of the isotope into the system.Parameter n also had a significant correlation with clay content and a neagtive correlation with soil pH,E1 values and Cp,the P concentration in soil solution,also Significantly correlated with clay and sesquioxide contents of the soils.these indicated that these isotope kinetic parameters were largely influenced by P-fixing components of the soils.For the soils with strong P-fixing ability,the E1 values overestimated labile P pools and hence their correlations with A values and plant P uptake were not significant .The other iostope kinetic parameters also had no significant correlation with plant P uptak.On the other hand,the convetional chemical-extracted p correlated better with plant P uptake .It was concluded that the iostope kinetic method could assess the p chemical status yet it would inappropriate in predicting plant available P for soils with a high P-fixing ability as the problem of an overestimation of soil lable P in these soils was

  14. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  15. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    Science.gov (United States)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  16. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (Pacid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere effects, and have impact on nutrient cycling in tea plantation. PMID:25985647

  17. Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation, and soil by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    A simple, fast, efficient, and sensitive method was developed for analysis of glyphosate and its degradate, aminomethylphosphonic acid (AMPA), in water, vegetation, and soil. Aqueous extracts were passed through reverse phase and cation exchange columns and directly injected into a tandem mass spect...

  18. Accumulation of Rare Earth Elements in Spinach and Soil under Condition of Using REE and Acid Rain Stress

    Institute of Scientific and Technical Information of China (English)

    严重玲; 洪业汤; 林鹏; 王世杰; 李心清; 梁洁

    2002-01-01

    The content and distribution characteristics of REE in spinach and soil under using REE and acid rain stress were studied by pot experiments. The results show that the content of REE is 0.527~0.696 (μgg-1) in the above-ground portion of spinach, 2.668~3.003 (μg*g-1) in the under-ground portion of spinach and 229.09~250.30 (μg*g-1) in the soil. With the acidity of acid rain increasing, the leaching of REE in plants and soil is strengthened and the amount of REE reduces with decreasing of pH value. After REE are used, though plants show the selective absorption to Ce group elements (especially spraying on leaves), regardless under acid rain stress or using REE or not, the distribution model of REE in the above-ground and under-ground portion of plants is basically the same with the control. Plants also follow the Oddo-Harkins rule of the REE of distribution abundance, light rare earth elements is enriched, the minus of Eu is abnormal and admeasure of Ce is a rich model. The results show that REE in plants mainly come from soil and are affected by it.

  19. Phthalic acid and benzo[a]pyrene in soil-plant-water systems amended with contaminated sewage sludge

    DEFF Research Database (Denmark)

    Mougin, C.; Dappozze, F.; Brault, A.;

    2006-01-01

    than 30% after 90 days in the situation of direct soil contamination, amendment with contaminated digested or composted sludge. It is reduced to 10% in the presence of the raw sludge. In that case, the values of phospholipidic fatty acids and dehydrogenase activity are the highest. By contrast, benzo...

  20. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability.

    Science.gov (United States)

    Soler-Rovira, Pedro; Madejón, Engracia; Madejón, Paula; Plaza, César

    2010-05-01

    The purposes of this study were to determine the Cu(II) binding behavior of humic acids (HAs) isolated from biosolid compost (BI), leonardite (LE), a metal-contaminated soil, and the soil remediated with either BI or LE in relation to their structural properties, and to explore the role exerted by the HA fractions in controlling soil Cu(II) bioavailability. Potentiometric titrations at pH 5 and ionic strength 0.1M and the Langmuir model were used to obtain the Cu(II) complexing capacity of the HAs examined and the conditional stability constant of the Cu(II)-HA complexes. The Cu(II) complexing capacity increased as the content of acidic ligands, especially COOH groups, aromaticity, and humification degree increased, following the order BI-HAacidic functional moieties in HAs may play an important role in the Cu(II) behavior. PMID:20303567

  1. Influence of Neutral Salts and pH on Exchangeable Acidity of Red Soil and Latosol Colloids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the present work, the exchangeable acidity of a red soil colloid and a latosol colloid at different pH during reacting with four neutral salts was measured. The results show that the exchangeable acidity increased with increasing amounts of the neutral salts added, and the relation between them was almost linear. When the amount of the neutral salt added was lower than a certain value, the slope of the line was high, and the slope turned low when the amount exceeded that value, so there was a turning point in each line. The addition amounts of the neutral salts for the turning points were affected by the cation species of the neutral salts, but pH had less effect on them. After the turning points occurred, the exchangeable acidity of the red soil colloid still gradually increased with the addition amounts of the neutral salts, but that of the latosol colloid did not increase any more.The exchangeable acidity in NaClO4, KClO4 and NaCl solutions increased at first, and then decreased with increasing pH, that is to say, peak values appeared. The peak positions of the exchangeable acidity in relation to pH changed with neutral salt solutions and were affected by the surface characteristics of the soil colloids, but not affected by the amounts of the neutral salts added. The exchangeable acidity in the Ba(NO3)2 solution increased continuously with increasing pH. The exchangeable acidity of the red soil colloid was obviously larger than that of the latosol colloid.``

  2. Soil chemical properties and maize yield after application of organic and inorganic amendments to an acidic soil in southwestern Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Busari, M. A.; Salako, F. K.; Adetunji, M. T.

    2008-07-01

    A factorial experiment with a randomised complete block design (three replicates) was performed to determine the effects of poultry manure (PM), lime (L) and NPK 15-15-15 fertilizer on soil chemical properties, and to determine the effects of their combinations on soil productivity and maize yield. The factors were PM (0, 5 and 10 Mg ha-1), L as CaCO{sub 3} (0 and 250 kg ha-1) and NPK 15-15-15 (0 and 100 kg ha-1). The soil had a loamy sand texture. The application of L and PM increased the surface soil pH in a similar fashion. In both years of the experiment, the effective cation exchange capacity (ECEC) of the soil after the combined application of 10 Mg ha-1 PM, L and NPK was significantly higher than after the individual application of L or NPK or their combination (5.75-7.65 cmol kg-1 compared to 3.36-4.57 cmol kg-1). The application of 10 Mg ha-1 PM with L and/or NPK reduced the possibility of Mn toxicity, with soil levels ranging from 108 to 136 mg kg-1. The combined use of the three amendments gave the highest leaf nutrient concentrations. The highest maize grain yield (4.62 Mg ha-1) was obtained with L + 10 Mg ha-1 PM; with no amendment the grain yield was 1.9 Mg ha-1. The application of PM enhanced the effects of L and Nk in improving soil productivity. However, separate applications of 5 and 10 Mg ha-1 PM similarly affected soil productivity; the sandy nature of the soil at depths of 0-20 cm seems to have prevented differences between the two rates from becoming manifested. (Author) 33 refs.

  3. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    Directory of Open Access Journals (Sweden)

    Shun-an Zheng

    Full Text Available Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV, thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6 and the treatments (SAR at pH 3.0 and 4.5 were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  4. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  5. Forest soil response to acid and salt additions of sulfate. 3. Solubilization and composition of dissolved organic carbon

    International Nuclear Information System (INIS)

    A year-long experiment, using reconstructed spodosol and intact alfisol soil columns, was conducted to examine the effects of various simulated throughfall solutions on soil C dynamics. Soil organic C solubilization, dissolved organic C fractions, and decomposition rates were studied using simulated acidic and salt throughfall solutions. Based on the results of the study the authors propose that throughfall solutions of pH above 3.7 will have little or no influences on dissolved organic C cycling in the types of spodosol and alfisol forest soils used here. However, at pH 3.0 some alterations in organic C solubilization, dissolved organic C fractions, and mobility could be expected

  6. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Science.gov (United States)

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372

  7. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al.

    Science.gov (United States)

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling.

  8. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Science.gov (United States)

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  9. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  10. Use of alkaline flyash-based products to amend acid soils: Plant growth response and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Spark, K.M.; Swift, R.S. [University of Queensland, Gatton, Qld. (Australia)

    2008-07-01

    Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain about 80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25-5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.

  11. Dssimilatory Fe(Ⅲ) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids

    Institute of Scientific and Technical Information of China (English)

    HE Jiangzhou; QU Dong

    2008-01-01

    Dissimilatory Fe(Ⅲ) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(Ⅲ) reduction predominantly comes from pure cultures of dissimilatory Fe(Ⅲ) reducing bacteria (DFRB). The objective of this study was to compare the effects of glucose and a selection of short organic acids (citrate, succinate, pyruvate, propionate, acetate, and formate) on Fe(Ⅲ) reduction via the anaerobic culture of three paddy soil solutions with Fe(OH)3 as the sole electron acceptor. The results showed significant differences in Fe(Ⅲ) reduction among the three paddy soil solutions and suhstrate types. Bacteria from the Sichuan paddy soil responded quickly to substrate supply and showed higher Fe(Ⅲ) reducing activity than the other two soil types. Bacteria in the Jiangxi paddy soil culture solution could not use propionate as a source of electrons for Fe(Ⅲ) reduction. Similarly, bacteria in the Jilin paddy soil culture could not use succinate effectively. Pyruvate was readily used by cultures from all three paddy soil solutions, thus indicating that there were some similarities in substrate utilization by bacteria for Fe(Ⅲ) reduction. The use of glucose and citrate as substrate for dissimilatory Fe(Ⅲ) reduction indicates important ecological implications for this type of anoxic respiration.

  12. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    Science.gov (United States)

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.

  13. Changes in the chemical composition of an acidic soil treated with marble quarry and marble cutting wastes.

    Science.gov (United States)

    Tozsin, Gulsen; Oztas, Taskin; Arol, Ali Ihsan; Kalkan, Ekrem

    2015-11-01

    Soil acidity greatly affects the availability of plant nutrients. The level of soil acidity can be adjusted by treating the soil with certain additives. The objective of this study was to determine the effect of marble quarry waste (MQW) and marble cutting waste (MCW) on the chemical composition and the acidity of a soil. Marble wastes at different rates were applied to an acid soil. Their effectiveness in neutralizing the soil pH was compared with that of agricultural lime. The changes in the chemical composition of the soil were also evaluated with column test at the end of a 75-day incubation period. The results indicated that the MQW and MCW applications significantly increased the soil pH (from 4.71 up to 6.54), the CaCO3 content (from 0.33% up to 0.75%), and the exchangeable Ca (from 14.79 cmol kg(-1) up to 21.18 cmol kg(-1)) and Na (from 0.57 cmol kg(-1) up to 1.07 cmol kg(-1)) contents, but decreased the exchangeable K (from 0.46 cmol kg(-1) down to 0.28 cmol kg(-1)), the plant-available P (from 25.56 mg L(-1) down to 16.62 mg L(-1)), and the extractable Fe (from 259.43 mg L(-1) down to 55.4 mg L(-1)), Cu (from 1.97 mg L(-1) down to 1.42 mg L(-1)), Mn (from 17.89 mg L(-1) down to 4.61 mg L(-1)) and Zn (from 7.88 mg L(-1) down to 1.56 mg L(-1)) contents. In addition, the Cd (from 0.060 mg L(-1) down to 0.046 mg L(-1)), Ni (from 0.337 mg L(-1) down to 0.092 mg L(-1)) and Pb (from 28.00 mg L(-1) down to 20.08 mg L(-1)) concentrations decreased upon the treatment of the soil with marble wastes.

  14. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  15. Spin Labeling ESR Investigation of a Role of Humic Acids at Covalent Binding of Xenobiotics to Soil

    Science.gov (United States)

    Aleksandrova, Olga

    2014-05-01

    The environmental risk of organic xenobiotic chemicals released into soils is controlled by their sorption and binding processes. However, the molecular mechanisms of reversible and irreversible interactions of xenobiotics with soil constituents and an influence of humic substances on this interaction are only partly understood. New methods and approaches aimed at understanding of molecular mechanisms in the soil environment and a role of humic substances in the sorption and binding processes are today required to manage and keep the quality of soil used and fertilized in agricultural industry. The paper presents a new approach of using stable ESR spin labels to investigate a role of humic substances in the interactions of organic xenobiotic chemicals with constituents of natural soil via the typical functional groups of xenobiotics, such as Amines. At the experiment, the nitroxide spin labels, such as TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl), Amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and Aniline spin labels (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), were added to samples of different natural soils, such luvisol, cambisol and chernozem. Amino-TEMPO and Aniline spin labels include the aliphatic amino and aromatic amino functional groups, respectively. A significant broadening of the ESR spectrum of Aniline spin labels incubated in different soils indicated a stable effect of covalent binding of the spin labels to soil constituents via the aromatic amino, whereas the ESR spectra of the other two spin labels were not broadened that pointed at the absence of covalent binding of spin labels via the aliphatic amino. As shown, a part of bound spin labels via the aromatic amino increased with increasing of the concentration of humic acids in soil. The same broadened signals were also be detected with the humic acids extracted from the investigated soils. A strong covalent binding of spin labels to humic substances via the aromatic amines was

  16. Fluorescence characterization of metal ion-humic acid interactions in soils amended with composted municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, Cesar; Polo, Alfredo [Consejo Superior de Investigaciones Cientificas, Centro de Ciencias Medioambientales, Madrid (Spain); Brunetti, Gennaro; Senesi, Nicola [University of Bari, Dipartimento di Biologia e Chimica Agroforestale ed Ambientale, Bari (Italy)

    2006-12-15

    Fluorescence spectroscopy has been used to probe the structural properties and Cu(II), Zn(II), Cd(II), and Pb(II)-binding behavior of humic acid (HA)-like fractions isolated from a municipal solid waste compost (MSWC) and HAs from unamended and MSWC-amended soils. The main feature of the fluorescence spectra, in the form of emission-excitation matrix (EEM) plots, was a broad peak with the maximum centered at an excitation/emission wavelength pair that was much shorter (340/437 nm) for MSWC-HA than for unamended and MSWC-amended soil HAs (455/513 and 455/512 nm, respectively). Fluorescence intensity for MSWC-amended soil HA was less than that for unamended soil HA. These results were indicative of more aromatic ring polycondensation and humification of soil HAs, and of partial incorporation of simple and low-humified components of MSWC-HA into native soil HA, as a result of MSWC amendment. Titrations of HAs with Cu(II), Zn(II), Cd(II), and Pb(II) ions at pH 6 and ionic strength 0.1 mol L{sup -1} resulted in a marked decrease of the fluorescence intensities of untreated HAs. By successfully fitting a single-site fluorescence-quenching model to titration data, the metal ion complexing capacities of each HA and the stability constants of metal ion-HA complexes were obtained. The binding capacities and stability constants of MSWC-HA were smaller than those of the unamended soil HA. Application of MSWC to soil slightly reduced the metal-ion-binding capacities and affinities of soil HAs. (orig.)

  17. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2013-08-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the major energy-generating compounds (i.e., ammonia and oxygen. The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force

  18. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Science.gov (United States)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  19. Alleviation of Subsoil Acidity of Red Soil in Southeast China with Lime and Gypsum

    Institute of Scientific and Technical Information of China (English)

    SUNBO; R.MOREAU; 等

    1998-01-01

    Application of lime or gypsum is a common agricultrual practice to ameliorate soils with low pH which prohibits crop prduction,Its integrated effect on soil properties in a red soil derved from Quaternary red clay in Southeast China is discussed in this paper,Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH4,but lime addition had a contrary effect.Generally,application of lime and /or gypsum has little on soil electrical properties.Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth ,The effect of lime reached only to 5 cm below its application layer.With leaching,Ca transferred from top soil to subsoil and decreased exchangeable Al in subsiol.Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.

  20. Gaseous Nitrogen Losses from Coastal Acid Sulfate Soils:A Short-Term Study

    Institute of Scientific and Technical Information of China (English)

    B. C. T. MACDONALD; O. T. DENMEAD; I.WHITE; G. BYRANT

    2011-01-01

    NOx and N2O emissions from coastal acid sulfate soils (CASS) cultivated for sugarcane production were investigated on the coastal lowlands of northern New South Wales, Australia. Two series of short-term measurements were made using chambers and micrometeorological techniques. Series 1 occurred during the wet season, the water-filled pore space (WFPS) was between 60%-80% and the site flooded during the measurements. Measurements were made directly after the harvest of soybean crop, which fixed an estimated 100 kg N ha-1, and the emission amounted to 3.2 kg NOx-N ha-1 (12 d) and 1.8 kg N2O-N ha-1 (5 d). Series 2 was made towards the end of the dry season when the WFPS was less than 60%. In Series 2, after an application of 50 kg N ha-1, emissions were markedly less, amounting to 0.9 kg N ha-1 over 10 d. During both series when the soil was moist, emissions of NOx were larger than those of N2O. The emission of NOx appeared to be haphazard, with little time dependence, but there was a clear diurnal cycle for N2O, emphasising the need for continuous measurement procedures for both gases. Theseresults suggest that agricultural production on CASS could be important sources of greenhouse gases and nitrogen practices will need to be optimised to reduce the offsite effects of atmospheric warming, acidification or nitrification. Many questions still remain unanswered such as the emissions during the soybean bean filling stage and crop residue decomposition, the longer-term losses following the fertiliser application and emissions from CASS under different land uses.

  1. Case studies related to the management of soil acidity and infertility in the West-African Moist Savannah

    International Nuclear Information System (INIS)

    Although the soil pH and base status of the soils in the West African Moist Savannah Zone (MSZ) are usually favourable, their buffer capacity is usually low, indicating that while soil acidity may not be a problem initially, inappropriate management of these soils may induce soil-acidity-related problems in the medium to long term. The current paper addresses 3 topics that are closely related to the management of soil pH (acidity) in the West African MSZ. A first experiment addressed the release of P from low reactivity phosphate rock (PR) by mixing it with various N fertilizers. Mixing ammonium-sulphate, urea, and calcium-ammonium nitrate with PR substantially enhanced the soil Olsen-P content, but not for soils with an initial pH above 5.5, while potassium nitrate did not change the Olsen-P content. Changes in soil pH could be predicted based on the production of nitrate from ammonium (nitrification) and the soil buffer capacity. A second experiment examined the changes in topsoil pH as affected by long term management based on the application of organic inputs derived from hedgerow trees (Leucaena leucocephala and Senna siamea), fertilizer, or both. Maize crop yields declined steadily over the 16 years studied, but the least so in the Senna + fertilizer treatment where in 2002 still 2.2 t ha-1 of maize were obtained. The fertilizer only treatment led to a yield of 0.4 t ha-1 in 2002, while the absolute control without any inputs yielded a mere 40 kg ha-1 in the same year. Nitrogen fertilizer use efficiency was usually higher in the Senna treatment compared to the control or the Leucaena treatment. Interactions between fertilizer and organic matter additions were negative for the Leucaena treatments in the first three years, and positive for the Senna treatment in the last 6 years. Trees had a positive effect on the maintenance of exchangeable cations in the topsoil. Exchangeable Ca, Mg and K - and hence ECEC - were only slightly reduced after 16 years of

  2. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    Science.gov (United States)

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  3. Acid rain research program. Annual progress report, July 1976--September 1977. [Effects on plants and soil microbiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Francis, A.J.; Raynor, G.S.

    1977-12-01

    Experiments were carried out and chemical aspects of ambient precipitation were determined using a sequential precipitation collector for the period July 1976 through September 1977. A related report provides experimental details. In experiments with plants, experiments were aimed to document: the foliar response of six clones of hybrid poplar to simulated acid rain; effects of buffered solutions and various anions on vegetative and sexual development of gametophytes of the fern (Pteridium aquilinum) and the acid-sensitive steps of symbiotic nitrogen fixation of the garden pea (Pisum sativum). After five 6 min daily exposures to simulated rain of pH 2.7, up to 10 percent of the leaf area of some poplar clones was injured. Lesions developed mostly near stomata and vascular tissue as shown with other plant species. Acidic solutions have a marked effect on sperm motility and fertilization (sexual reproduction) of bracken fern. Since sexual reproduction of ferns is very sensitive to mildly acidic conditions under laboratory conditions, experiments are planned to view the response of sexual stages of other plant species. Nodulation and symbiotic nitrogen fixation in Pisum is very sensitive to nutrient solution acidity. Specific isolates of Rhizobium bacteria are used and the medium pH can be maintained rigidly. In experiments to determine the effects of excess acidity on soil microbiological processes, the rate of denitrification may be slowed so drastically that increases of N/sub 2/O in the atmosphere may result with a subsequent reduction in soil nitrogen levels.

  4. Contributions of separate reactions to the acid-base buffering of soils in brook floodplains (Central Forest State Reserve)

    Science.gov (United States)

    Sokolova, T. A.; Tolpeshta, I. I.; Rusakova, E. S.

    2016-04-01

    The acid-base buffering of gleyic gray-humus soils developed in brook floodplains and undisturbed southern-taiga landscapes has been characterized by the continuous potentiometric titration of soil water suspensions. During the interaction with an acid, the major amount of protons (>80%) is consumed for the displacement of exchangeable bases and the dissolution of Ca oxalates. In the O and AY horizons, Mn compounds make the major contribution (2-15%) to the acid buffering. The buffer reactions with the participation of Al compounds make up from 0.5 to 1-2% of the total buffering capacity, and the protonation of the surface OH groups of kaolinite consumes 2-3% of the total buffering capacity. The deprotonation of OH groups on the surface of Fe hydroxides (9-43%), the deprotonation of OH groups on the surface of illite crystals (3-19%), and the dissolution of unidentified aluminosilicates (9-14%) are the most significant buffer reactions whose contributions have been quantified during the interaction with a base. The contribution of the deprotonation of OH groups on the surface of kaolinite particles is lower (1-5%) because of the small specific surface area of this mineral, and that of the dissolution of Fe compounds is insignificant. In the AY horizon, the acid and base buffering of soil in the rhizosphere is higher than beyond the rhizosphere because of the higher contents of organic matter and nonsilicate Fe and Al compounds.

  5. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Directory of Open Access Journals (Sweden)

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  6. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  7. Circulating fluidized bed combustion product addition to acid soil: alfalfa (Medicago sativa L.) composition and environmental quality.

    Science.gov (United States)

    Chen, Liming; Dick, Warren A; Kost, David

    2006-06-28

    To reduce S emissions, petroleum coke with a high concentration of S was combusted with limestone in a circulating fluidized bed (CFB) boiler. The combustion process creates a bed product that has potential for agricultural uses. This CFB product is often alkaline and enriched in S and other essential plant nutrients, but also contains high concentrations of Ni and V. Agricultural land application of CFB product is encouraged, but little information is available related to plant responses and environmental impacts. CFB product and agricultural lime (ag-lime) were applied at rates of 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) to an acidic soil (Wooster silt loam). The 2.0x LR application rate of CFB product was equivalent to 67.2 Mg ha(-1). Alfalfa yield was increased 4.6 times by CFB product and 3.8 times by ag-lime compared to untreated control. Application of CFB product increased the concentration of V in soil and alfalfa tissue, but not in soil water, and increased the concentration of Ni in soil and soil water, but not in alfalfa tissue. However, these concentrations did not reach levels that might cause environmental problems.

  8. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  9. Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato.

    Directory of Open Access Journals (Sweden)

    Anita Sós-Hegedűs

    Full Text Available The non-protein amino acid β-aminobutyric acid (BABA is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks.

  10. Cu retention in an acid soil amended with perlite winery waste.

    Science.gov (United States)

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2016-02-01

    The effect of perlite waste from a winery on general soil characteristics and Cu adsorption was assessed. The studied soil was amended with different perlite waste concentrations corresponding to 10, 20, 40 and 80 Mg ha(-1). General soil characteristics and Cu adsorption and desorption curves were determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also detected in the perlite waste-amended soils. The effect of perlite waste addition to the soil had special relevance on its Cu adsorption capacity at low coverage concentrations and on the energy of the soil-Cu bonds.

  11. Spatial and temporal variability in microbial activities of coastal acid saline soils of Goa, India

    Science.gov (United States)

    Mahajan, G. R.; Manjunath, B. L.; Latare, A. M.; D'Souza, R.; Vishwakarma, S.; Singh, N. P.

    2015-11-01

    The aim of the present investigation was to study the spatio-temporal variability of the microbial activities in coastal saline soils (locally called Khazan) of Goa, India (west coast region). The coastal soil salinity is a major constraint for reduced crop yields and abandonment of farming in these areas. Three replicated global positioning based soil samples (0-0.20 m depth) from each of four salinity groups i.e. non-saline (EC=0.08±0.06 dS m-1), weakly saline (EC=2.04±0.06 dS m-1), moderately saline (EC=3.50±0.57 dS m-1) and strongly saline (EC=5.49±0.49 dS m-1) during three seasons-monsoon, post-monsoon and pre-monsoon were collected. Soil microbial activity in terms of soil microbial carbon (MBC), MBC as a fraction of soil organic carbon (SOC) (MBC/SOC), basal soil respiration (BSR), metabolic quotient (qCO2) and soil enzyme activities-dehydrogenase, phosphatase and urease was tested. In all the seasons, the soil cationic composition depended significantly (p monsoon > during pre-monsoon season. The mean MBC and MBC/SOC of non-saline soils were 1.61 and 2.28 times higher than that of strongly saline soils, whereas qCO2 of strongly saline soils was 2.4 times higher than that of non-saline soils. This indirectly indicates the salinity stress on the soil microorganisms. Irrespective of season, the soil enzyme activities decreased significantly (p<0.05) with increasing salinity levels. Suitable countermeasures needs to be taken up to alleviate the depressive salinity effect on the microbial and activity for the sustainable crop production in the coastal saline soils of Goa, India.

  12. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  13. Adsorption of chloroacetanilide herbicides on soil and its components Ⅲ. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca2 + -, Mg2 + -. Al3 + -and Fe3 + -saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ ≤ Fe3+ which coincided with the iucreasing aciditv of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  14. Physiological responses of needles of Pinus massoniana elite families to phosphorus stress in acid soil

    Institute of Scientific and Technical Information of China (English)

    HE You-lan; LIU Ai-qin; Mulualem Tigabu; WUPeng-fei; MA Xiang-qing; WANG Chen; Per Christer Oden

    2013-01-01

    Pinus massoniana Lamb.is a major timber species widely planted in the South China,where the soil is acidic and deficient in phosphorus (P) due to fixation by aluminum and iron.Understanding the physiological responses to rhizospheric insoluble P is essential for enhancing plantation productivity.Thus,a sand culture experiment was conducted with four levels of P treatment (0,5,20 g insoluble P and 10 g soluble P),and 11 P.massoniana elite families.Physiological responses were measured after two months of stress.Compared to the normal soluble P treatment,the insoluble P treatment significantly reduced the proline content and the APase activity in the needles,while it significantly increased the catalase activity by 1.3-fold and malondialdehyde content by 1.2-fold.Soluble protein content was unaffected by the treatments,but chlorophyll content was significantly lower in P-deprived treatment compared with soluble and insoluble P treatments.These physiological responses also exhibited highly significant variation among families (p < 0.01).The findings suggest that increased catalase activities in the presence of insoluble P might be involved in the activation of an anti-oxidation defense mechanism that scavenges the reactive oxygen species elicited by the stress.And this response has a strong genetic control that can be exploited to identify desirable genotypes.

  15. Factors Controlling Deoxygenation of "Floodwater" Overlying an Acid Sulfate Soil: Experimental Modeling

    Institute of Scientific and Technical Information of China (English)

    C. LIN; P. G. HASKINS; J. LIN

    2003-01-01

    An incubation experiment was conducted to simulate the effect of flooding on water deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated "floodwater" could be deoxygenated immediately following "flooding" and it is likely that this was caused mainly by decomposition of organic debris from the inundated plants. Deoxygenation eventually led to the depletion of dissolved oxygen (DO) in the "floodwater"and it is highly possible that this resulted in the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide, and organic nitrogen to ammonia (ammonification). The accumulation of these reduced substances allows the "floodwater" to develop DO-consuming capacity (DOCC). When the "floodwater" is mixed with the introduced oxygenated water, apart from the dilution effects, the reduced substances contained in the "floodwater" oxidize to further consume DO carried by the introduced water. However, it appears that the DO drop in the mixed water can only last for a few hours if no additional DO-depleted "floodwater" is added.Entry of atmospheric oxygen into the water can raise the DO level of the mixed water and lower water pH through the oxidation of the reduced substances.

  16. Isolation, Identification and Characterization of Two Aluminum-Tolerant Fungi from Acidic Red Soil.

    Science.gov (United States)

    He, Genhe; Wang, Xiaodong; Liao, Genhong; Huang, Shoucheng; Wu, Jichun

    2016-09-01

    Acidic red soil from a forest in Jiangxi Province was selected to isolate aluminum (Al)-resistant microbes, from which eight fungi were isolated. Two strains (S4 and S7) were found to be extremely tolerant to Al concentrations of up to 550 mmol L(-1) and could grow at low pH levels (3.20-3.11). Morphological and 26S rDNA sequence analyses indicated that strain S4 belonged to Eupenicillium, while strain S7 was an unclassified Trichocomaceae. Further investigation showed that both strains were endowed with the ability to resist Al; strain S4 accumulated such a substantial amount of Al that its growth was limited to a larger extent than strain S7. The lower amounts of Al adsorbed in the mycelium and the much larger amounts of Al retained in the medium, in addition to the color change of the culture solution, implied that these two strains may resist Al by preventing Al from entering the cell and by chelating Al by secreting unique metabolites outside of the cell. PMID:27407299

  17. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    Science.gov (United States)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  18. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  19. Effect of Organic Acids and Protons on Release of Non-Exchangeable NH4+ in Flooded Paddy Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Song; SHAO Xing-Hua; LIN Xian-Yong; H. W. SCHERER

    2005-01-01

    In a model experiment, which imitated the rhizosphere of rice, the effect of organic acids (oxalic acid, citric acid) and protons on the release of non-exchangeable NH4+ and the resin adsorption of N was studied in a paddy soil, typical for Zhejiang Province, China. Oxalic and citric acids under low pH conditions, in combination with proton secretion, favored the mobilization of NH4+ ions and increased resin adsorption of N. The release of non-exchangeable NH4+ was associated with less formation of iron oxides. These could coat clay minerals and thus hinder the diffusion of NH4+ ions out of the interlayer. Protons enhanced the release of NH4+, and then they could enter the wedge zones of the clay minerals and displace non-exchangeable NH4+ ions.

  20. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  1. Tree-ring analysis by pixe for a historical record of soil chemistry response to acidic air pollution

    Science.gov (United States)

    Legge, Allan H.; Kaufmann, Henry C.; Winchester, John W.

    1984-04-01

    Tree cores have been analyzed intact in 1 mm steps, corresponding to time intervals in the rings as short as half a growing season, providing a chronological record of 16 elemental concentrations extending over thirty years back to 1950. Samples were collected in a forested region of western Canada in sandy soil which was impacted by acid-forming gases released by a sulfur recovery sour natural gas plant. Tree core samples of the hybrid lodgepole-Jack pine ( Pinns contorta Loud. × Pinus banksiana Lamb.) were taken in five ecologically similar locations between 1.2 and 9.6 km from the gas plant stacks. Concentrations of some elements showed patterns suggesting that the annual rings preserved a record of changing soil chemistry in response both to natural environmental conditions and to deposition from sulfur gas emissions, commencing after plant start-up in 1959 and modified by subsequent modifications in plant operating procedures. These patterns were most pronounced nearest the gas plant. Certain other elements did not exhibit these patterns, probably reflecting greater importance of biological than of soil chemical properties. The high time resolution of tree-ring analysis, which can be achieved by PIXE, demonstrates that the rings preserve a historical record of elemental composition which may reflect changes in soil chemistry during plant growth as it may be affected by both natural ecological processes and acidic deposition from the atmosphere.

  2. Fatty Acids Profile during Anaerobic Digestion of Night Soil-Effect of temperature, Calcium Carbonate and Selectively-enriched Inoculum

    OpenAIRE

    S. I. Alam; Singh, L; Maurya, M. S.

    1996-01-01

    Anaerobic biodegradation of night soil was carried out at 5-30 degree centigrade with 1.8-10.62 per cent volatile solids (VS). Biogas production increased with the temperature and VS up to 6.2 per cent. Further increase in VS caused higher Volatile fatty acids (VFA) accumulation resulting in decreased gas production. Acetate and propionate accounted for 62-83 per cent of total VFA. Butyrate to isobutyrate ratio increased with VS. Calcium Carbonate promoted VS degradation, biogas produc...

  3. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  4. Effect of Organic Based N Fertilizer on Dry Matter (Zea mays L., Ammonium and Nitrate Recovery in an Acid Soil of Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Susilawati Kasim

    2009-01-01

    Full Text Available Problem statement: Exchangeable ammonium (NH4+ could be recovered by humic and fulvic acids from humic substances. The ability of these acids in fixing or retaining NH4+ has been demonstrated in many findings and reports. Both acids could affect the plant growth, nutrients uptake by enhancing photosynthesis rate and root growth among others. Thus, in this study, the effect of both acids (in liquid form on soil exchangeable NH4+, dry matter production and available nitrate (NO3- was investigated. Approach: Humic molecules were isolated using standard procedures, followed by liquid organic N fertilizers formulation. Organic based N fertilizers were applied to soil in pots at 10 Days After Planting (DAP and 28 DAP. Treated soils and plant parts were sampled at 54 DAP or at tasselling stage. Soil samples were analyzed for pH, ammonium and nitrate content. The plant samples were weighed to assess dry matter production. Results: Under acid condition, organic based liquid N fertilizers (fulvic acid or both, humic and fulvic acids increased accumulation of NH4+in soil. The presence of carboxylic groups in humic molecules increased NH4+ retention with increasing soil's stock labile carbon. However, low percentage of these acids reduced their full effect on dry matter production. The availability of nitrate was not statistically different for all treatments. Low soil pH could had reduced nitrification processes and simultaneously soil NO3- content. Conclusion: Liquid form of humic and/or fulvic acids could play an important role in enhancing urea efficiency. However, their contribution needs to be studied in detail in relation to humic molecules characteristics. This study had a potential in the development of liquid and foliar organic fertilizers.

  5. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J.-C. [INRA, Departement Environnement et Agronomie, Versailles (France)]. E-mail: fardeau@versailles.inra.fr; Zapata, F. [IAEA, Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Programme, Vienna (Austria)

    2002-05-15

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P{center_dot}kg{sup -1}, and incubated for one month in moist conditions. In another series, 1000 mg P kg{sup -1} applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg{sup -1} as triple superphosphate (TSP) were added. The {sup 32}P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  6. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2015-04-01

    Full Text Available Using a pulse-chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of root-associated soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h and DNA (30 h turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 d, while phospholipid fatty acids (PLFAs had the slowest turnover (42 d. PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

  7. GIS analysis of vulnerability to acidic deposition of soils in a region of the Northern Appennines; Uso di tecniche GIS per lo studio della sensibilita` alle deposizioni acide dei suoli di una area dell`Appennino piacentino e parmense

    Energy Technology Data Exchange (ETDEWEB)

    Vincini, Massimo [Piacenza, Univ. Cattolica del Sacro Cuore (Italy). Lab. Centralizzato Radioisotopi; Solinas, Chiara [Piacenza, Univ. Cattolica del Sacro Cuore (Italy). Fac. di Agraria. Istituto di Entomologia e Patologia Vegetale

    1997-04-01

    A study on the vulnerability to acidic depositions of the soils of forested ecosystems is conducted by GIS analysis in a region of the Northern Appennines. On the basis of soil pH and yearly precipitation the yearly soil intake of H{sup +} from unpolluted rain (pH 5.6) is calculated by Henderson-Hasselbach equation. The area of possible vulnerability to strong acidic anions such as SO{sub 4}{sup 2-} (soil pH {<=} 5.8 and lime content {<=} 0.5 %) is related to yearly precipitation in order to show the extension and the localization of forested ecosystems whose soils are more likely affected by base leaching as a long-term consequence of acidic depositions.

  8. Influence of humic acid applications on modulus of rupture, aggregate stability, electrical conductivity, carbon and nitrogen content of a crusting problem soil

    Science.gov (United States)

    Gümüş, İ.; Şeker, C.

    2015-11-01

    Soil structure is often said to be the key to soil productivity since a fertile soil, with desirable soil structure and adequate moisture supply, constitutes a productive soil. Soil structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root penetration and crop yield. The objective of this work is to study humic acid (HA) application on some physical and chemical properties in weakly structured soils. The approach involved establishing a plot experiment in laboratory conditions. Different rates of HA (control, 0.5, 1, 2 and 4 %) were applied to soil during three incubation periods (21, 42 and 62 days). At the end of the each incubation period, the changes in physicochemical properties were measured. Generally, HA addition increased electrical conductivity values during all incubation periods. HA applications decreased soil modulus of rupture. Application of HA at the rate of 4 % significantly increased soil organic carbon contents. HA applications at the rate of 4 % significantly increased both mean soil total nitrogen content and aggregate stability after three incubation periods (p < 0.05). Therefore, HA has the potential to improve the structure of soil in the short term.

  9. Effect of three organic amendments and of the lime on the readiness and the phosphorous adsorption in an acid soil

    International Nuclear Information System (INIS)

    To observe the effects of the organic materials and lime on the availability and sorption of phosphorus in a strongly acid soil (Inceptic Hapludox), poor in P, a greenhouse experiment and a laboratory studied were conducted. Plastic pots were filled with 400 g of soil to which was given a basic N.P.K.S. fertilization with applications of 90 kg P2O-5 hectare chicken manure, compost or cowpea (Vigna Unguiculata) were added to soil at the rates of 0.0; 0,8 and 2,4 g O.M. 100 g-1 separate soil samples were amended with 1,5 ton CaCO3 hectare. Soils were incubated for periods of 2, 14 and 54 days; after each period, pH, exchangeable AL and available P were determined. In soils incubated 54 days, the P sorption was evaluated trough isotherms and was interrelated the available P with the P sorption. Either, organic materials or lime increased the available P. Chicken manure let levels between 25 and 120 mg P kg-1 the compost between 12 and 37, the cowpea between 6 and 15 and the lime between 3 and 8 mg P kg-1. The availability of phosphorus increase with increasing rates of the organics materials but is reduced upon elapsing the incubated period. The treatments decreased drastically exchangeable al and this had relationship to the increase of the available P. The behavior in the P sorption was fitted to freundlich equation. The basic fertilization did not modify the p sorption while the organic amendments and the lime reduced it in different degree. The value of K, in the expression of the isotherms, shows an important reduction of the P sorption capacity in soil, caused by the chicken manure. An inverse relationship was observed between the p available and the value of K

  10. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan

    Science.gov (United States)

    Jaeger; Lindow; Miller; Clark; Firestone

    1999-06-01

    We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was used as a biosensor. Strain 299RTice exhibits tryptophan-dependent ice nucleation activity, while strain 299R(p61RYice) expresses ice nucleation activity proportional to sucrose concentration in its environment. Both biosensors exhibited up to 100-fold differences in ice nucleation activity in response to varying substrate abundance in culture. The biosensors were introduced into the rhizosphere of the annual grass Avena barbata and, as a control, into bulk soil. Neither strain exhibited significant ice nucleation activity in the bulk soil. Both tryptophan and sucrose were detected in the rhizosphere, but they showed different spatial patterns. Tryptophan was apparently most abundant in soil around roots 12 to 16 cm from the tip, while sucrose was most abundant in soil near the root tip. The largest numbers of bacteria (determined by acridine orange staining and direct microscopy) occurred near root sections with the highest apparent sucrose or tryptophan exudation. High sucrose availability at the root tip is consistent with leakage of photosynthate from immature, rapidly growing root tissues, while tryptophan loss from older root sections may result from lateral root perforation of the root epidermis. PMID:10347061

  11. GC-based detection of aldononitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil.

    Science.gov (United States)

    Liang, Chao; Read, Harry W; Balser, Teri C

    2012-01-01

    Quantitative approaches to characterizing microorganisms are crucial for a broader understanding of the microbial status and function within ecosystems. Current strategies for microbial analysis include both traditional laboratory culture-dependent techniques and those based on direct extraction and determination of certain biomarkers. Few among the diversity of microbial species inhabiting soil can be cultured, so culture-dependent methods introduce significant biases, a limitation absent in biomarker analysis. The glucosamine, mannosamine, galactosamine and muramic acid have been well served as measures of both the living and dead microbial mass, of these the glucosamine (most abundant) and muramic acid (uniquely from bacterial cell) are most important constituents in the soil systems. However, the lack of knowledge on the analysis restricts the wide popularization among scientific peers. Among all existing analytical methods, derivatization to aldononitrile acetates followed by GC-based analysis has emerged as a good option with respect to optimally balancing precision, sensitivity, simplicity, good chromatographic separation, and stability upon sample storage. Here, we present a detailed protocol for a reliable and relatively simple analysis of glucosamine and muramic acid from soil after their conversion to aldononitrile acetates. The protocol mainly comprises four steps: acid digestion, sample purification, derivatization and GC determination. The step-by-step procedure is modified according to former publications. In addition, we present a strategy to structurally validate the molecular ion of the derivative and its ion fragments formed upon electron ionization. We applied GC-EI-MS-SIM, LC-ESI-TOF-MS and isotopically labeled reagents to determine the molecular weight of aldononitrile acetate derivatized glucosamine and muramic acid; we used the mass shift of isotope-labeled derivatives in the ion spectrum to investigate ion fragments of each derivatives. In

  12. Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy.

    Science.gov (United States)

    Nardi, Serenella; Pizzeghello, Diego; Bragazza, Luca; Gerdol, Renato

    2003-07-01

    Concentrations of aliphatic acids, phenolic acid, and inorganic nutrients, as well as hormone-like activity, were determined in soil dissolved organic matter (DOM) from two forest sites in N Italy showing differing degrees of silver fir regeneration. In the site where silver fir recruitment was abundant, humification processes prevailed, and the soil DOM had a high content in aliphatic and phenolic acids. This enhanced the hormone-like activity in the soil, which could in turn promote growth of silver fir seedlings. In the site with poor fir recruitment, the soil DOM underwent rapid mineralization and was richer in inorganic nutrients, but had lower concentrations of aliphatic and phenolic acids, and lower hormone-like activity. PMID:12921435

  13. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir].

    Science.gov (United States)

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong

    2015-12-01

    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.

  14. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir].

    Science.gov (United States)

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong

    2015-12-01

    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid. PMID:27011985

  15. Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis

    Science.gov (United States)

    Chan, Kok-Gan; Chong, Teik-Min; Adrian, Tan-Guan-Sheng; Kher, Heng Leong; Grandclément, Catherine; Faure, Denis; Yin, Wai-Fong; Dessaux, Yves; Hong, Kar-Wai

    2016-01-01

    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment.

  16. Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis

    Science.gov (United States)

    Chan, Kok-Gan; Chong, Teik-Min; Adrian, Tan-Guan-Sheng; Kher, Heng Leong; Grandclément, Catherine; Faure, Denis; Yin, Wai-Fong; Dessaux, Yves; Hong, Kar-Wai

    2016-01-01

    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment. PMID:27512520

  17. Structural features of humic acids from a soil toposequence in Western Siberia

    OpenAIRE

    klenov, B. M.; González-Vila, Francisco Javier; Almendros Martín, Gonzalo

    2008-01-01

    Western Siberia occupies the middle part of Russia. This area extends more than 3000 km from the West to East and more than 1500 km from the North to the South and it is characterized by a diversity of natural conditions. In the Western Siberia the latitudinal and vertical zonality of soil and plant cover is more clearly pronounced. Soil-forming conditions, environmental situation and soil genesis have been studied rather completely where, to some degree, the changes of humus composition have...

  18. Influence of various water management and agronomic packages on the chemical changes and on the growth of rice in acid sulphate soils.

    OpenAIRE

    Le Ngoc Sen

    1988-01-01

    In potential acid sulphate soils acidity may arise from any combination of reclamation and drainage lowering the groundwater table in adjacent areas, and unusually dry seasons affecting the regional groundwater table. In the long run, natural processes of deacidification will finally make these soils productive. But this natural process is very slow and may take decades for any significant improvement. Thus natural reclamation does not provide the solution to the immediate need of increasing ...

  19. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  20. Nutrient leaching potential following application of papermill lime-sludge to an acidic clay soil

    OpenAIRE

    S. C. Vettorazzo; F. C. S. Amaral; J. C. Chitolina

    2001-01-01

    This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1), on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased ...