WorldWideScience

Sample records for acid sensing ion

  1. Acid-Sensing Ion Channels and Pain

    Directory of Open Access Journals (Sweden)

    Qihai Gu

    2010-05-01

    Full Text Available Pathophysiological conditions such as inflammation, ischemia, infection and tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing ion channels (ASICs are proton-gated cation channels expressed in both central and peripheral nervous systems. Increasing evidence suggests that ASICs represent essential sensors for tissue acidosis-related pain. This review provides an update on the role of ASICs in pain sensation and discusses their therapeutic potential for pain management.

  2. Acid-sensing ion channels and migraine

    Directory of Open Access Journals (Sweden)

    Yu-qi KANG

    2015-09-01

    Full Text Available Acid-sensing ion channels (ASICs are ligand-gated ion channels that are activated by extracellular protons (H+, which belong to epithelial sodium channels/degenerin (ENaC/DEG superfamily. ASICs are widely distributed in central nervous system, peripheral nervous system, digestive system and some tumor tissues. Different ASIC subunits play important roles in various pathophysiological processes such as touch, sour taste, learning and memory, including inflammation, ischemic stroke, pain, learning and memory decline, epilepsy, multiple sclerosis (MS, migraine, irritable bowel syndrome and tumor. Research over the last 2 decades has achieved substantial advances in migraine pathophysiology. It is now largely accepted that inflammatory pathways play a key role and three main events seem to take place: cortical spreading depression (CSD, activation of the trigeminovascular system (i.e. dural nociceptors, peripheral and central sensitization of this pain pathway. However, the exact mechanisms that link these three events to each other and to inflammation have so far remained to be studied. This article takes an overview of newly research advances in structure, distribution and the relationship with migraine of ASICs.  DOI: 10.3969/j.issn.1672-6731.2015.09.013

  3. Acid-sensing ion channels in pain and disease.

    Science.gov (United States)

    Wemmie, John A; Taugher, Rebecca J; Kreple, Collin J

    2013-07-01

    Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.

  4. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P. [Univ. of Wisconsin, Madison, WI (United States)

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  5. Acid-sensing ion channels contribute to neurotoxicity.

    Science.gov (United States)

    Chu, Xiang-Ping; Grasing, Kenneth A; Wang, John Q

    2014-02-01

    Acidosis that occurs under pathological conditions not only affects intracellular signaling molecules, but also directly activates a unique family of ligand-gated ion channels: acid-sensing ion channels (ASICs). ASICs are widely expressed throughout the central and peripheral nervous systems and play roles in pain sensation, learning and memory, and fear conditioning. Overactivation of ASICs contributes to neurodegenerative diseases such as ischemic brain/spinal cord injury, multiple sclerosis, Parkinson's disease, and Huntington's disease. Thus, targeting ASICs might be a potential therapeutic strategy for these conditions. This mini-review focuses on the electrophysiology and pharmacology of ASICs and roles of ASICs in neuronal toxicity.

  6. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons

    OpenAIRE

    Sutherland, Stephani P.; Christopher J. Benson; Adelman, John P.; McCleskey, Edwin W.

    2000-01-01

    Cardiac afferents are sensory neurons that mediate angina, pain that occurs when the heart receives insufficient blood supply for its metabolic demand (ischemia). These neurons display enormous acid-evoked depolarizing currents, and they fire action potentials in response to extracellular acidification that accompanies myocardial ischemia. Here we show that acid-sensing ion channel 3 (ASIC3), but no other known acid-sensing ion channel, reproduces the functional featur...

  7. Epithelial Sodium and Acid-Sensing Ion Channels

    Science.gov (United States)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  8. Acid-sensing ion channels: trafficking and synaptic function

    Directory of Open Access Journals (Sweden)

    Zha Xiang-ming

    2013-01-01

    Full Text Available Abstract Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs, to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  9. Receptor for protons: First observations on Acid Sensing Ion Channels.

    Science.gov (United States)

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  10. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells.

    Science.gov (United States)

    Wu, Yu; Gao, Bo; Xiong, Qiu-Ju; Wang, Yu-Chan; Huang, Da-Ke; Wu, Wen-Ning

    2017-06-01

    Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca(2+)]i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.

  11. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain.

    Science.gov (United States)

    Gonzales, Eric B; Sumien, Nathalie

    2017-02-15

    Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.

  12. Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons.

    Science.gov (United States)

    Cao, Qingqing; Wang, Wei; Gu, Juan; Jiang, Guohui; Bian, Xiling; Wang, Kewei; Xu, Zucai; Li, Jie; Chen, Guojun; Wang, Xuefeng

    2016-01-01

    Recent studies have indicated that acid-sensing ion channels may play a significant role in the termination of epilepsy. In particular, acid-sensing ion channel 3 (ASIC3) is expressed in the central nervous system and is most sensitive to extracellular pH. However, whether ASIC3 plays a role in epilepsy is unknown. In this study, qRT-PCR, Western blot, immunohistochemistry, double immunofluorescence labeling, and slice recordings were used. We first detected elevated ASIC3 expression patterns in the brains of temporal lobe epilepsy patients and epileptic rats. ASIC3 was expressed in neurons and glia in both humans and in an experimental model of epilepsy, and ASIC3 was colocalized with inhibitory GABAergic interneurons. By blocking ASIC3 with its antagonist APETx2, we observed that injected APETx2 shortened the latency to seizure and increased the incidence of generalized tonic clonic seizure compared to the control group in models of both pilocarpine- and pentylenetetrazole (PTZ)-induced seizures. Additionally, blocking ASIC3 significantly decreased the frequency of action potential (AP) firing in interneurons. Moreover, APETx2 significantly reduced the amplitudes and frequencies of miniature inhibitory postsynaptic currents (mIPSCs) while showed no differences with the APETx2 + bicuculline group and the bicuculline group. These findings suggest that elevated levels of ASIC3 may serve as an anti-epileptic mechanism via postsynaptic mechanisms in interneurons. It could represent a novel therapeutic strategy for epilepsy treatment.

  13. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    Science.gov (United States)

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  14. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.

  15. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  16. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism.

    Directory of Open Access Journals (Sweden)

    Huaiyu Yang

    2009-07-01

    Full Text Available The acid-sensing ion channel 1 (ASIC1 is a key receptor for extracellular protons. Although numerous structural and functional studies have been performed on this channel, the structural dynamics underlying the gating mechanism remains unknown. We used normal mode analysis, mutagenesis, and electrophysiological methods to explore the relationship between the inherent dynamics of ASIC1 and its gating mechanism. Here we show that a series of collective motions among the domains and subdomains of ASIC1 correlate with its acid-sensing function. The normal mode analysis result reveals that the intrinsic rotation of the extracellular domain and the collective motions between the thumb and finger induced by proton binding drive the receptor to experience a deformation from the extracellular domain to the transmembrane domain, triggering the channel pore to undergo "twist-to-open" motions. The movements in the transmembrane domain indicate that the likely position of the channel gate is around Leu440. These motion modes are compatible with a wide body of our complementary mutations and electrophysiological data. This study provides the dynamic fundamentals of ASIC1 gating.

  17. Does closure of acid-sensing ion channels reduce ischemia/reperfusion injury in the rat brain?

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Yinghui Xu; Zhigang Lian; Jian Zhang; Tingzhun Zhu; Mengkao Li; Yi Wei; Bin Dong

    2013-01-01

    Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.

  18. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    Science.gov (United States)

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  19. Black mamba venom peptides target acid-sensing ion channels to abolish pain.

    Science.gov (United States)

    Diochot, Sylvie; Baron, Anne; Salinas, Miguel; Douguet, Dominique; Scarzello, Sabine; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Friend, Valérie; Alloui, Abdelkrim; Lazdunski, Michel; Lingueglia, Eric

    2012-10-25

    Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.

  20. Optical control of trimeric P2X receptors and acid-sensing ion channels.

    Science.gov (United States)

    Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan

    2014-01-07

    P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.

  1. Modulation of Ionotropic Glutamate Receptors and Acid-Sensing Ion Channels by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    John Q Wang

    2012-05-01

    Full Text Available Ionotropic glutamate receptors (iGluR are ligand-gated ion channels and are densely expressed in broad areas of mammalian brains. Like iGluRs, acid-sensing ion channels (ASIC are ligand (H+-gated channels and are enriched in brain cells and peripheral sensory neurons. Both ion channels are enriched at excitatory synaptic sites, functionally coupled to each other, and subject to the modulation by a variety of signaling molecules. Central among them is a gasotransmitter, nitric oxide (NO. Available data show that NO activity-dependently modulates iGluRs and ASICs via either a direct or an indirect pathway. The former involves a NO-based and cGMP-independent posttranslational modification (S-nitrosylation of extracellular cysteine residues in channel subunits or channel-interacting proteins. The latter is achieved by NO activation of soluble guanylyl cyclase, which in turn triggers an intracellular cGMP-sensitive cascade to indirectly modulate iGluRs and ASICs. The NO modification is usually dynamic and reversible. Modified channels undergo significant, interrelated changes in biochemistry and electrophysiology. Since NO synthesis is enhanced in various neurological disorders, the NO modulation of iGluRs and ASICs is believed to be directly linked to the pathogenesis of these disorders. This review summarizes the direct and indirect modifications of iGluRs and ASICs by NO and analyzes the role of the NO-iGluR and NO-ASIC coupling in cell signaling and in the pathogenesis of certain related neurological diseases.

  2. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  3. Prolactin potentiates the activity of acid-sensing ion channels in female rat primary sensory neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-04-01

    Prolactin (PRL) is a polypeptide hormone produced and released from the pituitary and extrapituitary tissues. It regulates activity of nociceptors and causes hyperalgesia in pain conditions, but little is known the molecular mechanism. We report here that PRL can exert a potentiating effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons. First, PRL dose-dependently increased the amplitude of ASIC currents with an EC50 of (5.89 ± 0.28) × 10(-8) M. PRL potentiation of ASIC currents was also pH dependent. Second, PRL potentiation of ASIC currents was blocked by Δ1-9-G129R-hPRL, a PRL receptor antagonist, and removed by intracellular dialysis of either protein kinase C inhibitor GF109203X, protein interacting with C-kinase 1(PICK1) inhibitor FSC-231, or PI3K inhibitor AS605240. Third, PRL altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Four, PRL exacerbated nociceptive responses to injection of acetic acid in female rats. Finally, PRL displayed a stronger effect on ASIC mediated-currents and nociceptive behavior in intact female rats than OVX female and male rats and thus modulation of PRL may be gender-dependent. These results suggest that PRL up-regulates the activity of ASICs and enhances ASIC mediated nociceptive responses in female rats, which reveal a novel peripheral mechanism underlying PRL involvement in hyperalgesia.

  4. Role of acid-sensing ion channel 3 in sub-acute-phase inflammation

    Directory of Open Access Journals (Sweden)

    Chen Chien-Ju

    2009-01-01

    Full Text Available Abstract Background Inflammation-mediated hyperalgesia involves tissue acidosis and sensitization of nociceptors. Many studies have reported increased expression of acid-sensing ion channel 3 (ASIC3 in inflammation and enhanced ASIC3 channel activity with pro-inflammatory mediators. However, the role of ASIC3 in inflammation remains inconclusive because of conflicting results generated from studies of ASIC3 knockout (ASIC3-/- or dominant-negative mutant mice, which have shown normal, decreased or increased hyperalgesia during inflammation. Results Here, we tested whether ASIC3 plays an important role in inflammation of subcutaneous tissue of paw and muscle in ASIC3-/- mice induced by complete Freund's adjuvant (CFA or carrageenan by investigating behavioral and pathological responses, as well as the expression profile of ion channels. Compared with the ASIC3+/+ controls, ASIC3-/- mice showed normal thermal and mechanical hyperalgesia with acute (4-h intraplantar CFA- or carrageenan-induced inflammation, but the hyperalgesic effects in the sub-acute phase (1–2 days were milder in all paradigms except for thermal hyperalgesia with CFA-induced inflammation. Interestingly, carrageenan-induced primary hyperalgesia was accompanied by an ASIC3-dependent Nav1.9 up-regulation and increase of tetrodotoxin (TTX-resistant sodium currents. CFA-inflamed muscle did not evoke hyperalgesia in ASIC3-/- or ASIC3+/+ mice, whereas carrageenan-induced inflammation in muscle abolished mechanical hyperalgesia in ASIC3-/- mice, as previously described. However, ASIC3-/- mice showed attenuated pathological features such as less CFA-induced granulomas and milder carrageenan-evoked vasculitis as compared with ASIC3+/+ mice. Conclusion We provide a novel finding that ASIC3 participates in the maintenance of sub-acute-phase primary hyperalgesia in subcutaneous inflammation and mediates the process of granuloma formation and vasculitis in intramuscular inflammation.

  5. Acidotoxicity and acid-sensing ion channels contribute to motoneuron degeneration.

    Science.gov (United States)

    Behan, A T; Breen, B; Hogg, M; Woods, I; Coughlan, K; Mitchem, M; Prehn, J H M

    2013-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition with no cure. Mitochondrial dysfunction, Ca(2+) overloading and local hypoxic/ischemic environments have been implicated in the pathophysiology of ALS and are conditions that may initiate metabolic acidosis in the affected tissue. We tested the hypothesis that acidotoxicity and acid-sensing ion channels (ASICs) are involved in the pathophysiology of ALS. We found that motoneurons were selectively vulnerable to acidotoxicity in vitro, and that acidotoxicity was partially reduced in asic1a-deficient motoneuron cultures. Cross-breeding of SOD1(G93A) ALS mice with asic1a-deficient mice delayed the onset and progression of motor dysfunction in SOD1 mice. Interestingly, we also noted a strong increase in ASIC2 expression in motoneurons of SOD1 mice and sporadic ALS patients during disease progression. Pharmacological pan-inhibition of ASIC channels with the lipophilic amiloride derivative, 5-(N,N-dimethyl)-amiloride hydrochloride, potently protected cultured motoneurons against acidotoxicity, and, given post-symptom onset, significantly improved lifespan, motor performance and motoneuron survival in SOD1 mice. Together, our data provide strong evidence for the involvement of acidotoxicity and ASIC channels in motoneuron degeneration, and highlight the potential of ASIC inhibitors as a new treatment approach for ALS.

  6. Acid-sensing ion channels (ASICs: therapeutic targets for neurological diseases and their regulation

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    2013-06-01

    Full Text Available Extracellular acidification occurs not only in pathologicalconditions such as inflammation and brain ischemia, but alsoin normal physiological conditions such as synaptic transmission.Acid-sensing ion channels (ASICs can detect a broadrange of physiological pH changes during pathological andsynaptic cellular activities. ASICs are voltage-independent,proton-gated cation channels widely expressed throughout thecentral and peripheral nervous system. Activation of ASICs isinvolved in pain perception, synaptic plasticity, learning andmemory, fear, ischemic neuronal injury, seizure termination,neuronal degeneration, and mechanosensation. Therefore,ASICs emerge as potential therapeutic targets for manipulatingpain and neurological diseases. The activity of these channelscan be regulated by many factors such as lactate, Zn2+, andPhe-Met-Arg-Phe amide (FMRFamide-like neuropeptides byinteracting with the channel’s large extracellular loop. ASICsare also modulated by G protein-coupled receptors such asCB1 cannabinoid receptors and 5-HT2. This review focuses onthe physiological roles of ASICs and the molecularmechanisms by which these channels are regulated. [BMBReports 2013; 46(6: 295-304

  7. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  8. Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures.

    Science.gov (United States)

    Wu, Hao; Wang, Chao; Liu, Bei; Li, Huanfa; Zhang, Yu; Dong, Shan; Gao, Guodong; Zhang, Hua

    2016-04-01

    The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC.

  9. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  10. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    Institute of Scientific and Technical Information of China (English)

    Wang-sheng Duanmu; Liu Cao; Jing-yu Chen; Hong-fei Ge; Rong Hu; Hua Feng

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treat-ment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These ifndings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippo-campus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury.

  11. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model.

    Science.gov (United States)

    Vergo, Sandra; Craner, Matthew J; Etzensperger, Ruth; Attfield, Kathrine; Friese, Manuel A; Newcombe, Jia; Esiri, Margaret; Fugger, Lars

    2011-02-01

    Although there is growing evidence for a role of excess intracellular cations, particularly calcium ions, in neuronal and glial cell injury in multiple sclerosis, as well as in non-inflammatory neurological conditions, the molecular mechanisms involved are not fully determined. We previously showed that the acid-sensing ion channel 1 which, when activated under the acidotic tissue conditions found in inflammatory lesions opens to allow influx of sodium and calcium ions, contributes to axonal injury in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. However, the extent and cellular distribution of acid-sensing ion channel 1 expression in neurons and glia in inflammatory lesions is unknown and, crucially, acid-sensing ion channel 1 expression has not been determined in multiple sclerosis lesions. Here we studied acute and chronic experimental autoimmune encephalomyelitis and multiple sclerosis spinal cord and optic nerve tissues to describe in detail the distribution of acid-sensing ion channel 1 and its relationship with neuronal and glial damage. We also tested the effects of amiloride treatment on tissue damage in the mouse models. We found that acid-sensing ion channel 1 was upregulated in axons and oligodendrocytes within lesions from mice with acute experimental autoimmune encephalomyelitis and from patients with active multiple sclerosis. The expression of acid-sensing ion channel 1 was associated with axonal damage as indicated by co-localization with the axonal injury marker beta amyloid precursor protein. Moreover, blocking acid-sensing ion channel 1 with amiloride protected both myelin and neurons from damage in the acute model, and when given either at disease onset or, more clinically relevant, at first relapse, ameliorated disability in mice with chronic-relapsing experimental autoimmune encephalomyelitis. Together these findings suggest that blockade of acid-sensing ion channel 1 has the potential to provide both neuro

  12. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  13. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity

    Science.gov (United States)

    Moshourab, Rabih A; Wetzel, Christiane; Martinez-Salgado, Carlos; Lewin, Gary R

    2013-01-01

    Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function. PMID:23959680

  14. The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention

    Institute of Scientific and Technical Information of China (English)

    Tian-dong LENG; Zhi-gang XIONG

    2013-01-01

    In the nervous system,a decrease in extracellular pH is a common feature of various physiological and pathological processes,including synaptic transmission,cerebral ischemia,epilepsy,brain trauma,and tissue inflammation.Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems.Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors,growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception,mechanosensation,synaptic plasticity,learning and memory.However,the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes,such as brain ischemia and multiple sclerosis.Based on the well-demonstrated role of ASlC1a activation in acidosis-mediated brain injury,small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders,such as stroke.

  15. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia.

    Science.gov (United States)

    Wang, Huan; Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming; Huang, Yan

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis.

  16. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons

    Directory of Open Access Journals (Sweden)

    Antonia eGonzález-Garrido

    2015-12-01

    Full Text Available Acid-sensing ion channels (ASICs are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4 that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs. These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations and N,N,N’,N’–tetrakis-(2-piridilmetil-etilendiamina (TPEN increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2 and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  17. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    Science.gov (United States)

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  18. Coxsackievirus and adenovirus receptor (CAR) mediates trafficking of acid sensing ion channel 3 (ASIC3) via PSD-95.

    Science.gov (United States)

    Excoffon, Katherine J D A; Kolawole, Abimbola O; Kusama, Nobuyoshi; Gansemer, Nicholas D; Sharma, Priyanka; Hruska-Hageman, Alesia M; Petroff, Elena; Benson, Christopher J

    2012-08-17

    We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid sensing ion channel (ASIC3), a H(+)-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Loss of Acid sensing ion channel-1a and bicarbonate administration attenuate the severity of traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Terry Yin

    Full Text Available Traumatic brain injury (TBI is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 (- after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs, we also studied ASIC1a(-/- mice and found reduced neurodegeneration after FPI. Both HCO3 (- administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.

  20. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Taufiq, E-mail: mtur2@cam.ac.uk; Smith, Ewan St. John

    2014-07-18

    Highlights: • We have made a reasonable model of rat ASIC3 using published structure of chicken ASIC1. • We have docked sea anemone toxin APETx2 on the model. • We have identified two putative sites for toxin binding. • We have argued for plausibility one site over the other. • We have identified the residues that are likely to be critical for APETx2–ASIC3 interaction. - Abstract: Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein–protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the ‘hot-spots’ that are likely to be critical for ASIC3–APETx2 interaction.

  1. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions.

    Science.gov (United States)

    Wee, Shui Shui; Ng, Yann Huey; Ng, Sing Muk

    2013-11-15

    Carbon dots have great potential to be utilised as an optical sensing probe due to its unique photoluminescence and less toxic properties. This work reports a simple and novel synthesis method of carbon dots via direct acid hydrolysis of bovine serum albumin protein in a one-pot approach. Optimisation of the important synthetic parameters has been performed which consists of temperature effect, acid to protein ratio and kinetics of reaction. Higher temperature has promoted better yield with shorter reaction time. The carbon dots obtained shows a strong emission at the wavelength of 400 nm with an optimum excitation of 305 nm. The potential of the carbon dots as optical sensing probe has been investigated on with different cations that are of environmental and health concern. The fluorescence of the carbon dots was significantly quenched particularly by lead (II) ions in a selective manner. Further analytical study has been performed to leverage the performance of the carbon dots for lead (II) ions sensing using the standard Stern-Volmer relationship. The sensing probe has a dynamic linear range up to 6.0 mM with a Stern-Volmer constant of 605.99 M(-1) and a limit of detection (LOD) of 5.05 μM. The probe performance was highly repeatable with a standard deviation below 3.0%. The probe suggested in this study demonstrates the potential of a more economical and greener approach that uses protein based carbon dots for sensing of heavy metal ions.

  2. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain

    Directory of Open Access Journals (Sweden)

    Chen Wei-Hsin

    2011-11-01

    Full Text Available Abstract Background Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3 in both carrageenan- and complete Freund's adjuvant (CFA-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation. Methods Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG neurons. Results In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation. Conclusions In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.

  3. Regulation of acid-sensing ion channel 1a function by tissue kallikrein may be through channel cleavage.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Liu, Ling; Zhou, Houguang; Dong, Qiang

    2011-02-18

    Recently, we have demonstrated that serine protease tissue kallikrein (TK) can protect cortical neurons against ischemia-acidosis/reperfusion-induced injury, and that this effect might be mediated by acid-sensing ion channels (ASICs). However, little is known about how TK regulates the function of ASICs. Here we provided evidence that the regulation of ASIC1a function by TK was probably correlated with its cleavage. High concentration of TK (3μM) partially cleaved the extracellular loop of ASIC1a, followed by a marked decrease of LDH release and an increase of cell survival at pH 6.2. Pretreatment with a protease inhibitor aprotinin inhibited the cleavage of ASIC1a and prevented functional regulation by TK. However, the cleavage of ASIC2a, which was not functionally modified by TK, was not observed. Therefore, we propose that the limited proteolysis of extracellular loop within ASIC1a might be one of the potential regulatory mechanisms of ASIC1a function by TK. © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Research strategies for pain in lumbar radiculopathy focusing on acid-sensing ion channels and their toxins.

    Science.gov (United States)

    Lin, Jiann-Her; Chiang, Yung-Hsiao; Chen, Chih-Cheng

    2015-01-01

    In lumbar radiculopathy, the dorsal root or dorsal root ganglia (DRG) are compressed or affected by herniated discs or degenerative spinal canal stenosis. The disease is multi-factorial and involves almost all types of pain, such as ischemic, inflammatory, mechanical, and neuropathic pain. Acid-sensing ion channels (ASICs) activated by extracellular acidosis play an important role in pain generation, and the effects of ASICs are widespread in lumbar radiculopathy. ASICs may be involved in the disc degeneration process, which results in disc herniation and, therefore, the compression of the dorsal roots or DRG. ASIC3 is involved in inflammatory pain and ischemic pain, and, likely, mechanical pain. ASIC1a and ASIC3 may have an important effect on control of the vascular tone of the radicular artery. In the central nervous system, ASIC1a modulates the central sensitization of the spinal dorsal horn. Thus, toxins targeting ASICs, because of their specificity, may help elucidate the roles of ASICs in lumbar radiculopathy and could be developed as novel analgesic agents.

  5. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms.

    Science.gov (United States)

    Cristofori-Armstrong, Ben; Rash, Lachlan D

    2017-04-27

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan, E-mail: wanghuan7@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Huang, Yan, E-mail: aydhy@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China)

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  7. Knockdown of acid-sensing ion channel 1a (ASIC1a) suppresses disease phenotype in SCA1 mouse model.

    Science.gov (United States)

    Vig, Parminder J S; Hearst, Scoty M; Shao, Qingmei; Lopez, Maripar E

    2014-08-01

    The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.

  8. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    Science.gov (United States)

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain.

  9. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.

    Science.gov (United States)

    Suresh, Venkata M; Bandyopadhyay, Arkamita; Roy, Syamantak; Pati, Swapan K; Maji, Tapas Kumar

    2015-07-20

    Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn-on sensing and capture of F(-) ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn-on blue emission for F(-) ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B-F interactions facilitate rapid sequestration of F(-) by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times.

  10. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.

    Science.gov (United States)

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-02-05

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.

  11. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    Science.gov (United States)

    Pourmand, Nader (Inventor); Vilozny, Boaz (Inventor); Actis, Paolo (Inventor); Seger, R. Adam (Inventor); Singaram, Bakthan (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  12. Ion-gap sensing for engine control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This article reports that in addition to detecting misfire to conform with California onboard diagnostic (OBD II) regulations, Delco Electronics and Mecel AB engineers are looking at ion-gap sensing to control knock, A/F ratio, and other possible engine control parameters. The combustion of fuel in an engine cylinder produces ions. Detection of those ions by the spark plug (ion-gap sensing), and use of the resulting ion currents, has been employed in engine management systems since 1988. Saab introduced the first application, for cam-phase sensing. The main driving force for ion-gap sensing is OBD II requirements for 100% misfire detection at all speeds and loads. The technique has been expanded in subsequent applications to include misfire, knock, and pre-ignition detection and control, and more recently in combustion-ion detection using a capacitance-type, ion-current measurement method. Use of the ion current`s wave shape to control knock allows elimination of the separate piezoelectric type (PZT) sensor. Future applications could provide additional engine-control features including air/fuel ratio measurement and control.

  13. Evidence for the Participation of Acid-Sensing Ion Channels (ASICs) in the Antinociceptive Effect of Curcumin in a Formalin-Induced Orofacial Inflammatory Model.

    Science.gov (United States)

    Wu, Yongfu; Qin, Dongyun; Yang, Huiling; Fu, Hui

    2017-05-01

    Curcumin, a major bioactive component of turmeric, has diverse therapeutic effects such as anti-inflammatory, antioxidant, anticancer, and antinociceptive activities. The acid-sensing ion channels (ASICs), which can be activated by acute drops in the extracellular pH, play an important role in nociception. However, very little is known about the interaction between ASICs and curcumin in nociception of inflammation. In our study, we investigated whether the antinociceptive effects of curcumin are mediated via ASICs using an orofacial nociceptive model and in vitro western blotting, immunofluorescence, whole-cell patch-clamp recordings in the trigeminal system. Intraperitoneally administered curcumin at a dose of 50 mg/kg can reduce hyperalgesia in both the phases of a formalin-induced orofacial nociceptive model. Curcumin reduced the amplitude of ASICs currents in a dose-dependent manner in trigeminal ganglion (TG) neurons, and curcumin also reduced the protein quantity but did not change the distribution of ASICs in TG. Thus, our results indicate that curcumin can reduce formalin-induced ASICs activation and thus inhibit ASICs-mediated inflammatory pain hypersensitivity.

  14. Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3

    Directory of Open Access Journals (Sweden)

    Lachlan D. Rash

    2012-07-01

    Full Text Available APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3 and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.

  15. 酸敏感离子通道参与伤害性感受的研究%Advance in nociception mediated by acid sensing ion channels

    Institute of Scientific and Technical Information of China (English)

    刘鹤; 曹君利

    2013-01-01

    背景 组织酸化是炎症、缺血/缺氧、骨质破坏等多种疼痛条件下的共同病理特征.酸敏感离子通道(acid-sensingion channels,ASICs)是一类兴奋性阳离子通道,表达在神经系统,可直接被细胞外质子激活,介导组织酸化所致的伤害性感受. 目的 以ASICs为疼痛治疗靶标,将为疼痛治疗提供一条新途径. 内容 综述ASICs参与组织酸化所致伤害性感受的相关研究. 趋向 近年来,研究发现ASICs在介导组织酸化所致伤害性感受过程中发挥重要作用,以ASICs为靶点,将为开发新型镇痛药物和疼痛治疗提供新思路.%Background Tissue acidosis is a common pathological feature of many painful conditions including inflammation,ischemia and bone destruction.Acid sensing ion channels (ASICs) are excitatory cation channels directly activated by extracellular protons that are expressed in the nervous system,and mediate nociception indcued by tissue acidosis.Objective It will provide a new approach to take ASICs for pain treatment targets.Content The studies of ASICs in mediating nociception associated with tissue acidosis is reviewed.Trend Recent studies show that ASICs play a key role in mediating nociception associated with tissue acidosis,and it will provide a novel approach for development new analgesic drugs and pain treatment targeted ASICs.

  16. Rotation sensing with trapped ions

    CERN Document Server

    Campbell, W C

    2016-01-01

    We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.

  17. l-Amino acid sensing by the extracellular Ca2+-sensing receptor

    OpenAIRE

    Conigrave, Arthur D; Quinn, Stephen J.; Brown, Edward M.

    2000-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaR) recognizes and responds to (i.e., “senses”) Ca2+o as its principal physiological ligand. In the present studies, we document that the CaR is activated not only by extracellular calcium ions but also by amino acids, establishing its capacity to sense nutrients of two totally different classes. l-Amino acids, especially aromatic amino acids, including l-phenylalanine and l-tryptophan, stereoselectively mobilized Ca2+ ions in the presence ...

  18. Increased expression of acid-sensing ion channel 3 within dorsal root ganglia in a rat model of bone cancer pain.

    Science.gov (United States)

    Qiu, Fang; Wei, Xiaoli; Zhang, Shuzhuo; Yuan, Weixiu; Mi, Weidong

    2014-08-20

    In an attempt to investigate the underlying mechanisms of cancer-induced bone pain, we investigated the presence of acid-sensing ion channel 3 (ASIC3) in dorsal root ganglia (DRG) neurons in an animal model of bone cancer pain. Forty-five female Sprague-Dawley rats were randomized into three groups: sham-operation group (sham), cancer-bearing animals killed after 7 days (C7), and cancer-bearing animals killed after 14 days (C14). After establishment of the bone cancer pain model, pain-related behavioral tests were performed to determine the paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia, respectively. Reverse transcription-PCR, western blot, and immunofluorescence were used to determine mRNA and protein expression of ASIC3 in ipsilateral and contralateral lumbar 4-5 DRG neurons. Compared with the sham group, paw withdrawal threshold of mechanical allodynia and thermal hyperalgesia in the C14 group showed a significant decrease (P<0.01) from postoperation day 7 to the termination of the experiment. Compared with the sham group, the ipsilateral but not contralateral mRNA of ASIC3 was upregulated in the C14 group. Meanwhile, the ipsilateral protein expression of ASIC3 was increased in the C7 and C14 group compared with the sham group. Double-labeled immunofluorescence showed that ASIC3 and isolectin-B4 (IB4)-colocalized small DRG neurons in the C14 group were more than that in the sham group. Furthermore, we also found that there were more ASIC3 and neurofilament 200 (NF200)-colocalized DRG neurons in the C14 group than in the sham group. The upregulation of mRNA and protein levels of ASIC3 suggested its potential involvement in the development and maintenance of cancer-induced bone pain.

  19. Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus.

    Science.gov (United States)

    Mango, D; Braksator, E; Battaglia, G; Marcelli, S; Mercuri, N B; Feligioni, M; Nicoletti, F; Bashir, Z I; Nisticò, R

    2017-01-27

    Acid-sensing ion channels (ASICs), members of the degenerin/epithelial Na(+) channel superfamily, are widely distributed in the mammalian nervous system. ASIC1a is highly permeable to Ca(2+) and are thought to be important in a variety of physiological processes, including synaptic plasticity, learning and memory. To further understand the role of ASIC1a in synaptic transmission and plasticity, we investigated metabotropic glutamate (mGlu) receptor-dependent long-term depression (LTD) in the hippocampus. We found that ASIC1a channels mediate a component of LTD in P30-40 animals, since the ASIC1a selective blocker psalmotoxin-1 (PcTx1) reduced the magnitude of LTD induced by application of the group I mGlu receptor agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) or induced by paired-pulse low frequency stimulation (PP-LFS). Conversely, PcTx1 did not affect LTD in P13-18 animals. We also provide evidence that ASIC1a is involved in group I mGlu receptor-induced increase in action potential firing. However, blockade of ASIC1a did not affect DHPG-induced polyphosphoinositide hydrolysis, suggesting the involvement of some other molecular partners in the functional crosstalk between ASIC1a and group I mGlu receptors. Notably, PcTx1 was able to prevent the increase in GluA1 S845 phosphorylation at the post-synaptic membrane induced by group I mGlu receptor activation. These findings suggest a novel function of ASIC1a channels in the regulation of group I mGlu receptor synaptic plasticity and intrinsic excitability.

  20. Modeling ion sensing in molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Caroline J.; Smeu, Manuel, E-mail: manuel.smeu@northwestern.edu; Ratner, Mark A., E-mail: ratner@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2014-02-07

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H{sup +}), alkali metal cations (M{sup +}), calcium ions (Ca{sup 2+}), and hydronium ions (H{sub 3}O{sup +}) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C{sub 9}H{sub 7}NS{sub 2}), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M{sup +} + QDT species containing monovalent cations, where M{sup +} = H{sup +}, Li{sup +}, Na{sup +}, or K{sup +}. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  1. 酸敏感离子通道在类风湿关节炎中作用的研究进展%Research progress on role of acid-sensing ion channels in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    周仁鹏; 陈飞虎

    2015-01-01

    Acid-sensing ion channels ( ASICs) are cation chan-nels activated by extracellular H+, which belong to the amilo-ride-sensitive epithelial Na+ channels/degenerin ( ENaC/DEG ) superfamily. These channels are widely expressed in the central and peripheral nervous systems and have crucial biological func-tions. Recent studies have demonstrated that ASICs play an im- portant role in the pathogenesis of rheumatoid arthritis. This re-view concerns the cell biological characteristics of ASICs as well as its role in inflammation, pain, cartilage destruction and other aspects in rheumatoid arthritis.%酸敏感离子通道( acid-sensing ion channels, ASICs)是一类胞外H+激活的阳离子通道,属于阿米洛利敏感的上皮钠通道/退变素( epithelial Na+ channels/ degenerin, ENaC/DEG)超家族中的一员,该通道广泛分布在周围和中枢神经系统中,并且具有重要的生物学功能。近来研究表明,ASICs在类风湿关节炎发病过程中发挥着重要作用。该文对ASICs的细胞生物学特点以及ASICs在类风湿关节炎中对炎症、疼痛和软骨损伤等方面的作用进行综述。

  2. Molecular mechanisms of acid-base sensing by the kidney.

    Science.gov (United States)

    Brown, Dennis; Wagner, Carsten A

    2012-05-01

    A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.

  3. Ion Atmosphere Near Nucleic Acids

    Science.gov (United States)

    Mohanty, Udayan

    2015-03-01

    We will discuss all­atom structure based model that explicitly includes ionic effects, i.e., electrostatic interactions with explicit magnesium ions and implicit KCl that allow us to carry out explicit solvent molecular dynamics simulations of adenine riboswitch and SAM­I riboswitch. Our predictions for the excess ions around the riboswitch, and the magnesium­RNA interaction free energy will be compared with experimental data. We will provide upper and lower bounds for preferential interaction coefficient, a statistical mechanical quantity that is a measure of excess ion atmosphere around a polyelectrolyte. We will discuss the role of surface charge density of mobile ions from added salt in determining the counterion release entropy associated with chain collapse. Finally, the Poisson's ratio of oligomeric DNA will be determined. (Work done in collaboration with R. Hayes, J. Noel, P. Whitford, S. Hennelly, J. Onuchic, and K. Sanbonmatsu.) Work supported by fellowship from John Simon Guggenheim Memorial Foundation.

  4. Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion?

    Directory of Open Access Journals (Sweden)

    Jadranka Milikić

    2016-06-01

    Full Text Available Different carbon electrodes were explored for application in electroanalysis, namely for sensing of bismuth ion as model analyte. Carbon materials tested included glassy carbon, basal and edge plane pyrolytic graphite, as well as nanostructured carbonized polyaniline prepared in the presence of 3,5-dinitrosalicylic acid. Bismuth ion was chosen as model analyte as protocol for its detection and quantifications is still to be determined. Herein, anodic stripping voltammetry was used with study of effect of several parameters such as scan rate and deposition time. Electrode based on carbonized polyaniline showed the highest activity for bismuth ion sensing in terms of the highest current densities recorded both in a laboratory and in real sample, while basal plane pyrolytic graphite electrode gave the lowest limit of detection.

  5. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    Science.gov (United States)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  6. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight. T....... The present review describes the current status of promiscuous L-α-amino acid sensors, the calcium sensing receptor (CaSR), the GPRC6A receptor, the T1R1/T1R3 receptor and also their molecular pharmacology, expression pattern and physiological significance....

  7. Ion exchange properties of humus acids

    Science.gov (United States)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  8. Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing.

    Science.gov (United States)

    Bakker, Eric; Bhakthavatsalam, Vishnupriya; Gemene, Kebede L

    2008-05-15

    For about 100 years, potentiometry with ion-selective electrodes has been one of the dominating electroanalytical techniques. While great advances in terms of selective chemistries and materials have been achieved in recent years, the basic manner in which ion-selective membranes are used has not fundamentally changed. The potential readings are directly co-dependent on the potential at the reference electrode, which requires maintenance and for which very few accepted alternatives have been proposed. Fouling or clogging of the exposed electrode surfaces will lead to changes in the observed potential. At the same time, the Nernst equation predicts quite small potential changes, on the order of millivolts for concentration changes on the order of a factor two, making frequent recalibration, accurate temperature control and electrode maintenance key requirements of routine analytical measurements. While the relatively advanced selective materials developed for ion-selective sensors would be highly attractive for low power remote sensing application, one should consider solutions beyond classical potentiometry to make this technology practically feasible. This paper evaluates some recent examples that may be attractive solutions to the stated problems that face potentiometric measurements. These include high-amplitude sensing approaches, with sensitivities that are an order of magnitude larger than predicted by the Nernst equation; backside calibration potentiometry, where knowledge of the magnitude of the potential is irrelevant and the system is evaluated from the backside of the membrane; controlled current coulometry with ion-selective membranes, an attractive technique for calibration-free reagent delivery without the need for standards or volumetry; localized electrochemical titrations at ion-selective membranes, making it possible to design sensors that directly monitor parameters such as total acidity for which volumetric techniques were traditionally used

  9. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@daad-alumni.de [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: alfontal@bgu.ac.il [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2012-02-15

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  10. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the struc

  11. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de

    1998-01-01

    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the

  12. Quorum sensing mechanism in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  13. MRI probes for sensing biologically relevant metal ions.

    Science.gov (United States)

    Bonnet, Célia S; Tóth, Eva

    2010-03-01

    Given the important role of metal ions in fundamental biological processes, the visualization of their concentration in living animals by repeatable, noninvasive imaging techniques, such as MRI, would be highly desirable. A large number of metal-responsive MRI contrast agents, the majority based on Gd(3+) complexes, have been reported in recent years. The contrast-enhancing properties (relaxivity) of a Gd(3+) complex can be most conveniently modulated by interaction with the sensed metal cation via changes in the number of water molecules bound directly to Gd(3+) or changes in the size of the complex, which represent the two major strategies to develop metal sensitive MRI probes. Here, we survey paramagnetic lanthanide complexes involving Gd(3+) agents and paramagnetic chemical exchange saturation transfer probes designed to detect the most important endogenous metal ions: calcium, zinc, iron and copper. Future work will likely focus on extending applications of these agents to living animals, as well as on exploring new ways of creating molecular MRI probes in order to meet requirements such as higher specificity or lower detection limits.

  14. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Science.gov (United States)

    Egawa, Yuya; Miki, Ryotaro; Seki, Toshinobu

    2014-01-01

    In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR) studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine. PMID:28788510

  15. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes

    Directory of Open Access Journals (Sweden)

    Yuya Egawa

    2014-02-01

    Full Text Available In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye. Some boronic acid-substituted azobenzenes were attached to a polymer or utilized for supramolecular chemistry to produce glucose-selective binding, in which two boronic acid moieties cooperatively bind one glucose molecule. In addition, boronic acid-substituted azobenzenes have been applied not only for glucose monitoring, but also for the sensing of glycated hemoglobin and dopamine.

  16. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing.

    Science.gov (United States)

    Huang, Hongduan; Liao, Lei; Xu, Xiao; Zou, Mingjian; Liu, Feng; Li, Na

    2013-12-15

    The electron-transfer based quenching effect of commonly encountered transition metal ions on the photoluminescence of grapheme quantum dots (GQDs) was for the first time investigated, and was found to be associated with electron configuration of the individual metal ion. Ethylene diamine tetraacetic acid (EDTA), the metal ion chelator, can competitively interact with metal ions to recover the quenched photoluminescence of GQDs. Basically, metal ions with empty or completely filled d orbits could not quench the photoluminescence of GQDs, but this quenching effect was observed for the metal ions with partly filled d orbits. Based on the quenching-recovering strategy, a simple optical metal sensing platform was established by taking Ni(2+) as an example. Using the nickel ion-specific chelating reagent, dimethylglyoxime (DMG), to replace EDTA, a detection limit of 4.1 μM was obtained in standard solution. This proposed strategy does not need further functionalization of GQDs, facilitating the application for simple, fast and cost-effective screening of metal ions.

  17. Ion-exchange chromatographic analysis of peroxynitric acid.

    Science.gov (United States)

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm.

  18. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening.

  19. MOLECULAR PATHOPHYSIOLOGY AND PHARMACOLOGY OF THE VOLTAGE-SENSING DOMAIN OF NEURONAL ION CHANNELS

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2015-07-01

    Full Text Available Voltage-gated ion channels (VGIC are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGIC in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided in two main regions: the Pore Module (PM and the Voltage-Sensing Module (VSM. The PM (helices S5 and S6 and intervening linker is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4, undergoes the first conformational changes in response to membrane voltage. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters, to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively

  20. Microbial Nucleic Acid Sensing in Oral and Systemic Diseases.

    Science.gov (United States)

    Crump, K E; Sahingur, S E

    2016-01-01

    One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis

  1. Fluorescent sensing and determination of mercury (II) ions in water

    African Journals Online (AJOL)

    2011-11-28

    Nov 28, 2011 ... towards the mercury (II) ion among various alkali, alkaline earth, and transition metal ions. The mercury (II) .... the metal stock solution was added to 13 separate test tubes. The test ..... positive curvature in Stern-Volmer plots.

  2. DMPD: Nucleic acid-sensing TLRs as modifiers of autoimmunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17082566 Nucleic acid-sensing TLRs as modifiers of autoimmunity. Deane JA, Bolland ...S. J Immunol. 2006 Nov 15;177(10):6573-8. (.png) (.svg) (.html) (.csml) Show Nucleic acid-sensing TLRs as modifiers of autoimmunit...y. PubmedID 17082566 Title Nucleic acid-sensing TLRs as modifiers of autoimmunity. Aut

  3. Ion-Mediated Nucleic Acid Helix-Helix Interactions

    OpenAIRE

    Tan, Zhi-Jie; Chen, Shi-Jie

    2006-01-01

    Salt ions are essential for the folding of nucleic acids. We use the tightly bound ion (TBI) model, which can account for the correlations and fluctuations for the ions bound to the nucleic acids, to investigate the electrostatic free-energy landscape for two parallel nucleic acid helices in the solution of added salt. The theory is based on realistic atomic structures of the helices. In monovalent salt, the helices are predicted to repel each other. For divalent salt, while the mean-field Po...

  4. Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK : The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a

    NARCIS (Netherlands)

    Deplazes, Evelyne; Davies, Josephine; Bonvin, Alexandre M J J; King, Glenn F; Mark, Alan Edward

    2016-01-01

    Peptides that bind to ion channels have attracted much interest as potential lead molecules for the development of new drugs and insecticides. However, the structure determination of large peptide-channel complexes using experimental methods is challenging. Thus structural models are often derived f

  5. Engineering bacterial two-component system PmrA/PmrB to sense lanthanide ions.

    Science.gov (United States)

    Liang, Haihua; Deng, Xin; Bosscher, Mike; Ji, Quanjiang; Jensen, Mark P; He, Chuan

    2013-02-13

    The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.

  6. Enhanced quantum sensing with multi-level structures of trapped ions

    Science.gov (United States)

    Aharon, N.; Drewsen, M.; Retzker, A.

    2017-09-01

    We present a method of enhanced sensing of AC magnetic fields. The method is based on the construction of a robust qubit by the application of continuous driving fields. Specifically, magnetic noise and power fluctuations of the driving fields do not operate within the robust qubit subspace, hence robustness to both external and controller noise is achieved. The scheme is applicable to either a single ion or an ensemble of ions. We consider trapped-ion based implementation via the dipole transitions, which is relevant for several types of ions, such as the {}40{{Ca}}+, {}88{{Sr}}+ and the {}138{{Ba}}+ ions. Taking experimental errors into account, we conclude that the coherence time of the robust qubit can be improved by up to ∼4 orders of magnitude compared to the coherence time of the bare states. We show how the robust qubit can be utilised for the task of sensing AC magnetic fields in the range ∼ 0.1 - 100 {MHz} with an improvement of ∼2 orders of magnitude of the sensitivity. In addition, we present a microwave-based sensing scheme that is suitable for ions with a hyperfine structure, such as the {}9{{Be}}+,{}25{{Mg}}+,{}43{{Ca}}+,{}87{{Sr}}+,{}137{{Ba}}+,{}111{{Cd}}+,{}171{{Yb}}+ and the {}199{{Hg}}+ ions. This scheme enables the enhanced sensing of high-frequency fields at the GHz level.

  7. SAXS studies of ion-nucleic acid interactions.

    Science.gov (United States)

    Pollack, Lois

    2011-01-01

    Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.

  8. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    CERN Document Server

    Kuchmizhak, Aleksandr; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2015-01-01

    Simple high-performance two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique a thin noble metal film on a dielectric substrate is irradiated by a tightly focused single nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depends on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. The plasmon...

  9. Precipitation of humic acid with divalent ions

    DEFF Research Database (Denmark)

    Andersen, Niels Peder Raj; Mikkelsen, Lene Haugaard; Keiding, Kristian

    2001-01-01

    and Ba2+. The phase diagram model can not account for the observed precipitation in region III and However, in region IV the HA appears to posses colloidal properties, which is supported by precipitation taking place at a constant zeta-potential -21mV with the same amount of added barium ion regardless...

  10. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors.

    Science.gov (United States)

    Wang, Feifei; Chen, Zhong-Hua; Shabala, Sergey

    2017-07-01

    Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Electrochemical, optical and metal ion sensing properties of dithizone derivatised electrodes

    CERN Document Server

    Mirkhalaf, F

    1998-01-01

    studied. Possible applications of these modified electrodes with potential control in metal ion detection are described. The electrochemical and SPR responses for the metal ion sensing by the monolayer films were compared with those of polymer films containing the same ligand. Derivatisation of electrode surfaces with ultra-thin films of organic molecules has been extensively studied for many applications in recent years. The present study is based on a new approach in the preparation and use of these electrodes for metal ion sensing. Modification of electrode surfaces with a ligand specific to heavy metal ions has been described. A new derivative of dithizone (DDz) and its secondary metal complexes have been synthesised and attached onto indium tin oxide (ITO) and gold electrodes. This was achieved by covalent bonding between carboxyl groups in DDz and terminal amine groups of molecules self-assembled on the electrode surfaces. These monolayer films were characterised by cyclic voltammetry, by in situ and ex...

  12. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body.

    Science.gov (United States)

    Prabhakar, Nanduri R; Peers, Chris

    2014-01-01

    Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function.

  13. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    Science.gov (United States)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  14. Ion-mediated nucleic acid helix-helix interactions.

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2006-07-15

    Salt ions are essential for the folding of nucleic acids. We use the tightly bound ion (TBI) model, which can account for the correlations and fluctuations for the ions bound to the nucleic acids, to investigate the electrostatic free-energy landscape for two parallel nucleic acid helices in the solution of added salt. The theory is based on realistic atomic structures of the helices. In monovalent salt, the helices are predicted to repel each other. For divalent salt, while the mean-field Poisson-Boltzmann theory predicts only the repulsion, the TBI theory predicts an effective attraction between the helices. The helices are predicted to be stabilized at an interhelix distance approximately 26-36 A, and the strength of the attractive force can reach -0.37 k(B)T/bp for helix length in the range of 9-12 bp. Both the stable helix-helix distance and the strength of the attraction are strongly dependent on the salt concentration and ion size. With the increase of the salt concentration, the helix-helix attraction becomes stronger and the most stable helix-helix separation distance becomes smaller. For divalent ions, at very high ion concentration, further addition of ions leads to the weakening of the attraction. Smaller ion size causes stronger helix-helix attraction and stabilizes the helices at a shorter distance. In addition, the TBI model shows that a decrease in the solvent dielectric constant would enhance the ion-mediated attraction. The theoretical findings from the TBI theory agree with the experimental measurements on the osmotic pressure of DNA array as well as the results from the computer simulations.

  15. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    Science.gov (United States)

    Zhang, Xiu-Mei; Li, Peng; Gao, Wei; Liu, Feng; Liu, Jie-Ping

    2016-12-01

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H2O)4]·3H2O (Ln=Gd (1) and Tb (2) and Dy (3), H3TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1-3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO)2 double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectively sense Pb2+ and Fe3+ ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb2+ and Fe3+ ions is exceedingly rare example.

  16. Dynamic Chemistry-Based Sensing: A Molecular System for Detection of Saccharide, Formaldehyde, and the Silver Ion.

    Science.gov (United States)

    Chang, Xingmao; Wang, Zhaolong; Qi, Yanyu; Kang, Rui; Cui, Xinwen; Shang, Congdi; Liu, Kaiqiang; Fang, Yu

    2017-09-05

    Development of artificial complex molecular systems is of great importance in understanding complexity in natural processes and for achieving new functionalities. One of the strategies is to create them via optimized utilization of noncovalent interactions and dynamic covalent bonds. We report here on a new complex molecular system, which was constructed by integrating the multiple interactions containing a dynamic covalent interaction between 1,2-diol and boronic acid, a coordination interaction between the silver ion and pyridyl, and an easy accessible reaction between secondary amine and formaldehyde. By employing the three dynamic interactions, a pyrene (Py) labeled fluorophore, PPB, was designed and synthesized. The compound reacts with fructose (F), a monosaccharide, in aqueous phase and produces a fluorescent adduct, PPB-F, which can be further used as a sensing platform for formaldehyde (FA) and the silver ion. The respective dynamic interactions are accompanied with color changes due to the reversible switching between Py-monomer emission and excimer emission. The respective experimental detection limits (DLs) for the three analytes are much lower than 0.2 mM, 0.1 mM, and 2.5 μM, respectively. The presence of relevant compounds or ions shows little effect upon the sensing. No doubt, the results as presented show that the integration of supramolecular interactions including dynamic covalent bonds can be employed as a general strategy to develop new functional molecular systems or materials.

  17. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, Songyue; Nieuwkasteele, van Jan W.; Berg, van den Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  18. A novel start algorithm for CNG engines using ion sense technology

    NARCIS (Netherlands)

    Bie, T. de; Ericsson, M.; Rask, P.

    2000-01-01

    This paper presents a start algorithm that is able to control the air/fuel ratio (AFR) during the cranking phase and immediately hereafter, where the ordinary ?-control is not yet enabled. The control is based on the ion sense principle, which means that a current through the spark plug is measured

  19. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces

    Science.gov (United States)

    Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi

    2013-01-01

    Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed. PMID:24363454

  20. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces.

    Science.gov (United States)

    Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi

    2013-11-01

    Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed.

  1. Chemical Noise Reduction via Mass Spectrometry and Ion/Ion Charge Inversion: Amino Acids

    Science.gov (United States)

    Hassell, Kerry M.; LeBlanc, Yves C.; McLuckey, Scott A.

    2011-01-01

    Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species comprised of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced by using multiply-charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nano-electrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode. PMID:21456599

  2. Boronic acids for sensing and other applications - a mini-review of papers published in 2013

    National Research Council Canada - National Science Library

    Lacina, Karel; Skládal, Petr; James, Tony D

    2014-01-01

    Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications...

  3. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    Science.gov (United States)

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  4. Sensing behavior and logic operation of a colorimetric fluorescence sensor for Hg2 +/Cu2 + ions

    Science.gov (United States)

    He, Tian; Lin, Cuiling; Gu, Zhengye; Xu, Luonan; Yang, Anle; Liu, Yuanyuan; Fang, Huajun; Qiu, Huayu; Zhang, Jing; Yin, Shouchun

    2016-10-01

    A BODIPY-based 1 as a colorimetric fluorescence sensor was synthesized, and its metal sensing property was investigated. 1 displayed high selectivity and sensitivity towards Hg2 + and Cu2 + ions among 15 different metal cations. The addition of Hg2 + and Cu2 + ions into 1 in CH3CN resulted in a significant bathochromic shift of the UV absorption spectra from 533 nm to 560 nm and 593 nm, respectively, changing the corresponding colors from pink to purple and blue. When excited at 530 nm, the fluorescence intensity of 1 was quenched over 75% upon addition of Hg2 + ions, while 1 with Cu2 + ions exhibited significant fluorescence enhancement with a 23 nm red-shift. Based on these results, three logic gates (OR, IMPLICATION, and INHIBIT) were obtained by controlling the chemical inputs.

  5. Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing.

    Science.gov (United States)

    Ruas de Souza, Ana P; Foster, Christopher W; Kolliopoulos, Athanasios V; Bertotti, Mauro; Banks, Craig E

    2015-06-21

    Screen-printed back-to-back microband electroanalytical sensors are applied to the quantification of lead(II) ions for the first time. In this configuration the electrodes are positioned back-to-back with a common electrical connection to the two working electrodes with the counter and reference electrodes for each connected in the same manner as a normal "traditional" screen-printed sensor. Proof-of-concept is demonstrated for the electroanalytical sensing of lead(II) ions utilising square-wave anodic stripping voltammetry where an increase in the electroanalytical sensitivity is observed by a factor of 5 with the back-to-back microband configuration at a fixed lead(II) ion concentration of 5 μg L(-1) utilising a deposition potential and time of -1.2 V and 30 seconds respectively, compared to a conventional (single) microband electrode. The back-to-back microband configuration allows for the sensing of lead(II) ions with a linear range from 5 to 110 μg L(-1) with a limit of detection (based on 3σ) corresponding to 3.7 μg L(-1). The back-to-back microband configuration is demonstrated to quantify the levels of lead(II) ions within drinking water corresponding to a level of 2.8 (±0.3) μg L(-1). Independent validation was performed using ICP-OES with the levels of lead(II) ions found to correspond to 2.5 (±0.1) μg L(-1); the excellent agreement between the two methods validates the electroanalytical procedure for the quantification of lead(II) ions in drinking water. This back-to-back configuration exhibits an excellent validated analytical performance for the determination of lead(II) ions within drinking water at World Health Organisation levels (limited to 10 μg L(-1) within drinking water).

  6. Fluorogenic ratiometric dipodal optode containing imine-amide linkages: Exploiting subtle thorium (IV) ion sensing

    Energy Technology Data Exchange (ETDEWEB)

    Tayade, Kundan [School of Chemical Sciences, North Maharashtra University, Jalgaon (India); Kaur, Amanpreet [Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Tetgure, Sandesh [School of Chemical Sciences, North Maharashtra University, Jalgaon (India); Chaitanya, G. Krishana [School of Chemical Sciences, Swami Ramanand Tirth Marathawada University, Nanded (India); Singh, Narinder [Department of Chemistry, Indian Institute of Technology, Ropar, Punjab (India); Kuwar, Anil, E-mail: kuwaras@gmail.com [School of Chemical Sciences, North Maharashtra University, Jalgaon (India)

    2014-12-10

    Highlights: • A highly selective, simple, noncyclic, imine-amide based dipodal off–on fluorescence chemosensor for Th{sup 4+} ion is reported. • Sensing mechanism is based upon twisted plane intramolecular charge–transfer upon interaction with cations. • Th{sup 4+} ion on detection limit (as low as 0.1 μM) is reported. • This system can also be applied in real samples. - Abstract: The (13E,19E)-N1′,N3′-bis[4-(diethylamino)-2-hydroxybenzylidene]malonohydrazide (L) has been developed for the detection of Th{sup 4+} ions using dual channel signalling system. The UV–vis absorbance and fluorescence spectroscopic data revealed the formation of L–Th{sup 4+} complex in 1:1 equilibrium. The density functional theory (DFT) also confirms the optimum binding cavity for the recognition of metal ion. The binding constant computed from different mathematical models for an assembly of L–Th{sup 4+}. The detection limit of L for Th{sup 4+} recognition is to a concentration down to 0.1 μM (0.023 μg g{sup −1}). The present sensing system is also successfully applied for the detection of Th{sup 4+} ion present in soil near nuclear atomic plants.

  7. Catalytic protection of stannous ion by ascorbic acid in diphosphonic acids solutions

    Institute of Scientific and Technical Information of China (English)

    LiuGuo-Zheng; LiuFei; 等

    1998-01-01

    The protective ability of ascorbic acid(Vc) on stannous ion and the influence of light irradiation on the stability of stannous ion in diphosphonate medium at pH=5 have been examined in order to attain minimal loss of stannous ion during the production of lyophilized radiopharmaceutical kits.The sum of stanous ion and Vc was determined with iodometric method.It was shown that the protective ability of Vc was still strong at Vc concentration much lower than that of stannous ion and the illumination by fluorescent lamp was unfavorable to the stability of stannous ion.The change of pH in the range 3-9 did not affect the action of Vc significantly.

  8. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    OpenAIRE

    Guangsheng Zhang; Lei Cao; Shanhai Ge; Chao-Yang Wang; Shaffer, Christian E.; Christopher D. Rahn

    2015-01-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and t...

  9. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    Science.gov (United States)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  10. Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion

    DEFF Research Database (Denmark)

    2015-01-01

    A process for the preparation of lactic acid and 2-hydroxy- 3-butenoic acid or esters thereof from a sugar in the presence of a metallo-silicate material, a metal ion and a solvent, wherein the metal ion is selected from one or more of the group consisting of potassium ions, sodium ions, lithium ...... ions, rubidium ions and caesium ions....

  11. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Salazar, Eric; Levin, Lonny R; Goss, Greg G; Buck, Jochen

    2010-01-05

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.

  12. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  13. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Directory of Open Access Journals (Sweden)

    Mercedes Crego-Calama

    2007-09-01

    Full Text Available Fluorescent self assembled monolayers (SAMs on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface avoids the need for complex receptordesign, allowing for a combinatorial approach to sensing systems based on small molecules.Now we show the fabrication of an effective microarray for the screening of metal ions andthe properties of the sensing SAMs. A collection of fluorescent sensing SAMs wasgenerated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show variedresponses to a series cations such as Cu2+ , Co2+ , Pb2+ , Ca2+ and Zn2+ . These surfaces are notdesigned to complex selectively a unique analyte but rather they are intended to producefingerprint type responses to a range of analytes by less specific interactions. The unselectiveresponses of the library to the presence of different cations generate a characteristic patternfor each analyte, a “finger print” response.

  14. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Science.gov (United States)

    Basabe-Desmonts, Lourdes; van der Baan, Frederieke; Zimmerman, Rebecca S.; Reinhoudt, David N.; Crego-Calama, Mercedes

    2007-01-01

    Fluorescent self assembled monolayers (SAMs) on glass were previously developed in our group as new sensing materials for metal ions. These fluorescent SAMs are comprised by fluorophores and small molecules sequentially deposited on a monolayer on glass. The preorganization provided by the surface avoids the need for complex receptor design, allowing for a combinatorial approach to sensing systems based on small molecules. Now we show the fabrication of an effective microarray for the screening of metal ions and the properties of the sensing SAMs. A collection of fluorescent sensing SAMs was generated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show varied responses to a series cations such as Cu2+, Co2+, Pb2+, Ca2+ and Zn2+. These surfaces are not designed to complex selectively a unique analyte but rather they are intended to produce fingerprint type responses to a range of analytes by less specific interactions. The unselective responses of the library to the presence of different cations generate a characteristic pattern for each analyte, a “finger print” response.

  15. Complexity analysis of the glutamic acid ion-exchanged wastewater

    Institute of Scientific and Technical Information of China (English)

    林艳; 王瑞明; 徐国华; 王腾飞; 井瑞洁

    2008-01-01

    In this paper,the glutamic acid ion-exchanged wastewater has been studied.Kjeldahl determination method,Fehling reagent.muffle furnace method.and so on were used.It can be sure that the wastewater's COD is 50250 mg/L.and total solids is 13.76%.it contains:glutamic acid 0.3%:total reducing sugar 0.414%;fat 0.4274%;ammonium sulphate 10.0758%;microbial protein 0.8045%;ash 0.27%:others 1.4683%.

  16. Design and synthesis of a new terbium complex-based luminescent probe for time-resolved luminescence sensing of zinc ions.

    Science.gov (United States)

    Ye, Zhiqiang; Xiao, Yunna; Song, Bo; Yuan, Jingli

    2014-09-01

    Luminescent probes/chemosensors based on lanthanide complexes have shown great potentials in various bioassays due to their unique long-lived luminescence property for eliminating short-lived autofluorescence with time-resolved detection mode. In this work, we designed and synthesized a new dual-chelating ligand {4'-[N,N-bis(2-picolyl)amino]methylene-2,2':6',2'-terpyridine-6,6'-diyl} bis(methylenenitrilo) tetrakis(acetic acid) (BPTTA), and investigated the performance of its Tb(3+) complex (BPTTA-Tb(3+)) for the time-resolved luminescence sensing of Zn(2+) ions in aqueous media. Weakly luminescent BPTTA-Tb(3+) can rapidly react with Zn(2+) ions to display remarkable luminescence enhancement with high sensitivity and selectivity, and such luminescence response can be realized repeatedly. Laudably, the dose-dependent luminescence enhancement shows a good linear response to the concentration of Zn(2+) ions with a detection limit of 4.1 nM. To examine the utility of the new probe for detecting intracellular Zn(2+) ions, the performance of BPTTA-Tb(3+) in the time-resolved luminescence imaging of Zn(2+) ions in living HeLa cells was investigated. The results demonstrated the applicability of BPTTA-Tb(3+) as a probe for the time-resolved luminescence sensing of intracellular Zn(2+) ions.

  17. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-01-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas. PMID:28393841

  18. Fluorogenic ratiometric dipodal optode containing imine-amide linkages: exploiting subtle thorium (IV) ion sensing.

    Science.gov (United States)

    Tayade, Kundan; Kaur, Amanpreet; Tetgure, Sandesh; Chaitanya, G Krishana; Singh, Narinder; Kuwar, Anil

    2014-12-10

    The (13E,19E)-N1',N3'-bis[4-(diethylamino)-2-hydroxybenzylidene]malonohydrazide (L) has been developed for the detection of Th(4+) ions using dual channel signalling system. The UV-vis absorbance and fluorescence spectroscopic data revealed the formation of L-Th(4+) complex in 1:1 equilibrium. The density functional theory (DFT) also confirms the optimum binding cavity for the recognition of metal ion. The binding constant computed from different mathematical models for an assembly of L-Th(4+). The detection limit of L for Th(4+) recognition is to a concentration down to 0.1 μM (0.023 μg g(-1)). The present sensing system is also successfully applied for the detection of Th(4+) ion present in soil near nuclear atomic plants.

  19. Luminescent, freestanding composite films of Au15 for specific metal ion sensing.

    Science.gov (United States)

    George, Anu; Shibu, E S; Maliyekkal, Shihabudheen M; Bootharaju, M S; Pradeep, T

    2012-02-01

    A highly luminescent freestanding film composed of the quantum cluster, Au(15), was prepared. We studied the utility of the material for specific metal ion detection. The sensitivity of the red emission of the cluster in the composite to Cu(2+) has been used to make a freestanding metal ion sensor, similar to pH paper. The luminescence of the film was stable when exposed to several other metal ions such as Hg(2+), As(3+), and As(5+). The composite film exhibited visual sensitivity to Cu(2+) up to 1 ppm, which is below the permissible limit (1.3 ppm) in drinking water set by the U.S. environmental protection agency (EPA). The specificity of the film for Cu(2+) sensing may be due to the reduction of Cu(2+) to Cu(1+)/Cu(0) by the glutathione ligand or the Au(15) core. Extended stability of the luminescence of the film makes it useful for practical applications.

  20. Multi-ion sensing of dipolar noise sources in ion traps

    Science.gov (United States)

    Galve, F.; Alonso, J.; Zambrini, R.

    2017-09-01

    Trapped-ion quantum platforms are subject to "anomalous" heating due to interactions with electric-field noise sources of nature not yet completely known. There is ample experimental evidence that this noise originates at the surfaces of the trap electrodes, and models assuming fluctuating pointlike dipoles are consistent with observations, but the exact microscopic mechanisms behind anomalous heating remain undetermined. Here we show how a two-ion probe displays a transition in its dissipation properties, enabling experimental access to the mean orientation of the dipoles and the spatial extent of dipole-dipole correlations. This information can be used to test the validity of candidate microscopic models, which predict correlation lengths spanning several orders of magnitude. Furthermore, we propose an experiment to measure these effects with currently available traps and techniques.

  1. Boronic acids for sensing and other applications - a mini-review of papers published in 2013.

    Science.gov (United States)

    Lacina, Karel; Skládal, Petr; James, Tony D

    2014-01-01

    Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.

  2. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia-Parajo, M.F.; Hulst, van N.F.; Ravoo, B.J.; Reinhoudt, D.N.; Berg, van den A.

    2005-01-01

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to th

  3. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC.

    Science.gov (United States)

    Wiemuth, Dominik; Assmann, Marc; Gründer, Stefan

    2014-01-01

    The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.

  4. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  5. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jie; Ju, Yuyun; Liu, Juanjuan; Zhang, Huige [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xingguo, E-mail: chenxg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China)

    2015-01-07

    Highlights: • A new method for synthesis of the BPEI-CuNCs is established. • A facile approach for Fe{sup 3+} ion sensing by fluorescence quenching is developed. • The method for Fe{sup 3+} sensing has high sensitivity and excellent selectivity. - Abstract: In this report we reported a facile one-pot method for synthesis of water-soluble and stable fluorescent CuNCs at room temperature, in which branched polyethyleneimine (BPEI) served as capping scaffold and ascorbic acid as reducing agent. The prepared BPEI-CuNCs exhibited excellent properties such as good water-solubility, photostability and high stability toward high ionic strength. Based on the electron transfer induced fluorescence quenching mechanism, this fluorescence probe was used for the sensitive and selective determination of ferric ions (Fe{sup 3+}) in aqueous solution. The limit of detection was 340 nM in the linear range of 0.5–1000 μM, which was lower than the maximum level of Fe{sup 3+} permitted in drinking water by the U.S. Environmental Protection Agency. The method was successfully applied to the detection of Fe{sup 3+} in tap water, Yellow River water and human urine samples with the quantitative spike recoveries ranging from 95.3% to 112.0%.

  6. Non-Specific Zn2+ Ion Sensing Using Ultrasmall Gadolinium Oxide Nanoparticle as a Magnetic Resonance Imaging Contrast Agent.

    Science.gov (United States)

    Bony, Badrul Alam; Baeck, Jong Su; Chang, Yongmin; Lee, Gang Ho

    2016-03-01

    The gadolinium oxide (Gd2O3) nanoparticles are well-known potential candidates for a positive magnetic resonance imaging (MRI) contrast agent owing to their large longitudinal water proton relaxivity (r1) value with r2/r1 ratio close to one (r2 = transverse water proton relaxivity). In addition they may be used to sense metal ions because their r1 and r2 values can be altered in the presence of metal ions. This may allow us to study metabolic processes involving metal ions and to diagnose disease related to abnormal concentrations of metal ions in the body in a non-invasive way. In this study ultrasmall Gd2O3 nanoparticles were for the first time applied to non-specifically sense Zn2+ ions in aqueous solution. We explored this by measuring r1 and r2 values in the presence of Zn2+ ions in solution.

  7. Selective sensing of saccharides using simple boronic acids and their aggregates.

    Science.gov (United States)

    Wu, Xin; Li, Zhao; Chen, Xuan-Xuan; Fossey, John S; James, Tony D; Jiang, Yun-Bao

    2013-10-21

    The reversible boronic acid-diol interaction empowers boronic acid receptors' saccharide binding capacities, rendering them a class of lectin mimetic, termed "boronlectins". Boronic acids follow lectin functions not just in being able to bind saccharides, but in multivalent saccharide binding that enhances both affinity and selectivity. For almost a decade, efforts have been made to achieve and improve selectivity for given saccharide targets, most notably glucose, by using properly positioned boronic acids, offering multivalent interactions. Incorporation of several boronic acid groups into a covalent framework or non-covalent assembly of boronic acid are two general methods used to create such smart sensors, of which the latter resembles lectin oligomerisation that affords multivalent saccharide-binding architectures. In this review, we discuss supramolecular selective sensing of saccharides by using simple boronic acids in their aggregate forms, after a brief survey of the general aspects of boronic acid-based saccharide sensing.

  8. Oleic Acid and Octanoic Acid Sensing Capacity in Rainbow Trout Oncorhynchus mykiss Is Direct in Hypothalamus and Brockmann Bodies

    Science.gov (United States)

    Librán-Pérez, Marta; López-Patiño, Marcos A.; Míguez, Jesús M.; Soengas, José L.

    2013-01-01

    In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set of experiments, we evaluated in hypothalamus and BB exposed to increased oleic acic or octanoic acid concentrations changes in parameters related to FA metabolism, FA transport, nuclear receptors and transcription factors, reactive oxygen species (ROS) effectors, components of the KATP channel, and (in hypothalamus) neuropeptides related to food intake. In a second set of experiments, we evaluated in hypothalamus the response of those parameters to oleic acid or octanoic acid in the presence of inhibitors of fatty acid sensing components. The responses observed in vitro in hypothalamus are comparable to those previously observed in vivo and specific inhibitors counteracted in many cases the effects of FA. These results support the capacity of rainbow trout hypothalamus to directly sense changes in MCFA or LCFA levels. In BB increased concentrations of oleic acid or octanoic acid induced changes that in general were comparable to those observed in hypothalamus supporting direct FA sensing in this tissue. However, those changes were not coincident with those observed in vivo allowing us to suggest that the FA sensing capacity of BB previously characterized in vivo is influenced by other neuroendocrine systems. PMID:23533628

  9. Adsorption of chromium ion (VI) by acid activated carbon

    OpenAIRE

    A. A. Attia; Khedr,S. A.; Elkholy,S. A.

    2010-01-01

    The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S), and utilized as an adsorbent for the removal of Cr(VI) from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S...

  10. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    Science.gov (United States)

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

  11. Gold nanoparticles with cyclic phenylazomethines: one-pot synthesis and metal ion sensing.

    Science.gov (United States)

    Shomura, Ryo; Chung, Keum Jee; Iwai, Hideo; Higuchi, Masayoshi

    2011-07-01

    New gold nanoparticles covered with cyclic phenylazomethine (CPA) were obtained by a one-pot synthesis. It is confirmed by XPS that imines of CPA in the nanoparticles (Au-CPA) are partially reduced to amines. The amine part of CPA in Au-CPA is attached to the surfaces of gold nanoparticles, and the imine part works as a redox-active site. A glassy carbon electrode modified with Au-CPA was revealed to work as an electrochemical probe for metal ion sensing.

  12. The twisted ion-permeation pathway of a resting voltage-sensing domain.

    Science.gov (United States)

    Tombola, Francesco; Pathak, Medha M; Gorostiza, Pau; Isacoff, Ehud Y

    2007-02-01

    Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD. Neither mechanism is well understood. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions ('omega current') in the resting conformation ('S4 down'). Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.

  13. Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode.

    Science.gov (United States)

    Ghahraman Afshar, Majid; Crespo, Gastón A; Bakker, Eric

    2012-10-16

    Ion-selective membranes based on porous polypropylene membranes doped with an ionophore and a lipophilic cation-exchanger are used here in a new tandem measurement mode that combines dynamic electrochemistry and zero current potentiometry into a single protocol. Open circuit potential measurements yield near-nernstian response slopes in complete analogy to established ion-selective electrode methodology. Such measurements are well established to give direct information on the so-called free ion concentration (strictly, activity) in the sample. The same membrane is here also operated in a constant current mode, in which the localized ion depletion at a transition time is visualized by chronopotentiometry. This dynamic electrochemistry methodology gives information on the labile ion concentration in the sample. The sequential protocol is established on potassium and calcium ion-selective membranes. An increase of the ionophore concentration in the membrane to 180 mM makes it possible to determine calcium concentrations as high as 3 mM by chronopotentiometry, thereby making it possible to directly detect total calcium in undiluted blood samples. Recovery times after current perturbation depend on the current amplitude but can be kept to below 1 min for the polypropylene based ion-selective membranes studied here. Plasticized PVC as membrane material is less suited for this protocol, especially when the measurement at elevated concentrations is desired. An analysis of current amplitudes, transition times, and concentrations shows that the data are described by the Sand equation and that migration effects are insignificant. A numerical model describes the experimental findings with good agreement and gives guidance on the required selectivity in order to observe a well-resolved transition time and on the expected errors due to insufficient selectivity. The simulations suggest that the methodology compares well to that of open circuit potentiometry, despite giving

  14. Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis.

    Science.gov (United States)

    He, Liangmei; Chen, Yayun; Wu, Yuanbing; Xu, Ying; Zhang, Zixiang; Liu, Zhiping

    2017-07-01

    Colorectal cancer (CRC) is a leading cause of cancer-related deaths that is often associated with inflammation initiated by activation of pattern recognition receptors (PRRs). Nucleic acid sensing PRRs are one of the major subsets of PRRs that sense nucleic acid (DNA and RNA), mainly including some members of Toll-like receptors (TLR3, 7, 8, 9), AIM2-like receptors (AIM2, IFI16), STING, cGAS, RNA polymerase III, and DExD/H box nucleic acid helicases (such as RIG-I like receptors (RIG-I, MDA5, LPG2), DDX1, 3, 5, 7, 17, 21, 41, 60, and DHX9, 36). Activation of these receptors eventually leads to the release of cytokines and activation of immune cells, which are well known to play crucial roles in host defense against intracellular bacterial and virus infection. However, the functions of these nucleic acid sensing PRRs in the other diseases such as CRC and colitis remain largely unknown. Recent studies indicated that nucleic acid sensing PRRs contribute to CRC and/or colitis development, and therapeutic modulation of nucleic acid sensing PRRs may reduce the risk of CRC development. However, until now, a comprehensive review on the role of nucleic acid sensing PRRs in CRC and colitis is still lacking. This review provided an overview of the roles as well as the mechanisms of these nucleic acid sensing PRRs (AIM2, STING, cGAS, RIG-I and its downstream molecules, DDX3, 5, 6,17, and DHX9, 36) in CRC and colitis, which may aid the diagnosis, therapy, and prognostic prediction of CRC and colitis.

  15. Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors

    Institute of Scientific and Technical Information of China (English)

    Xiaobing He; Huaijie Jia; Zhizhong Jing; Dingxiang Liu

    2013-01-01

    Foreign nucleic acids,the essential signature molecules of invading pathogens that act as danger signals for host cells,are detected by endosomal nucleic acid-sensing tolllike receptors (TLRs) 3,7,8,9,and 13.These TLRs have evolved to recognize ‘non-self' nucleic acids within endosomal compartments and rapidly initiate innate immune responses to ensure host protection through induction of type Ⅰ interferons,inflammatory cytokines,chemokines,and co-stimulatory molecules and maturation of immune cells.In this review,we highlight our understanding of the recognition of pathogen-associated nucleic acids and activation of corresponding signaling pathways through endosomal nucleic acid-sensing TLRs 3,7,8,9,and 13 for an enormous diversity of pathogens,with particular emphasis on their compartmentalization,intracellular trafficking,proteolytic cleavage,autophagy,and regulatory programs.

  16. Thermodynamics of Ion Pair Formations Between Charged Poly(Amino Acid)s.

    Science.gov (United States)

    Petrauskas, Vytautas; Maximowitsch, Eglė; Matulis, Daumantas

    2015-09-17

    Electrostatic interactions between the positively and negatively charged amino acids in proteins play an important role in macromolecular stability, binding, and recognition. Numerous amino acids in proteins are ionizable and may exist in negatively (e.g., Glu, Asp, Cys, Tyr) or positively (e.g., Arg, Lys, His, Orn) charged form dependent on pH and their pKas. In this work, isothermal titration calorimetry was used to determine the average standard values of thermodynamic parameters (the Gibbs free energy, enthalpy, entropy, and the heat capacity) of interaction between the positively charged amino acid homopolymers (polyarginine, polylysine, and polyornithine) and the negatively charged homopolymers (polyaspartic and polyglutamic acids). These values are of potential use in the computational models of interacting proteins and other biological macromolecules. The study showed that oppositely charged poly(amino acid)s bound each other with the stoichiometry of one positive to one negative charge. Arginine bound to the negatively charged amino acids with exothermic enthalpy and higher affinity than lysine. This result also suggests that positive charges in proteins should not be considered entirely equivalent if carried by lysine or arginine. The difference in binding energy of arginine and lysine association with the negatively charged amino acids was attributed to the enthalpy of the second ionic hydrogen bond formation between the guanidine and carboxylic groups. Despite the favorable enthalpic contribution, all such ion pair formation reactions were largely entropy-driven. Consistent with previously observed ionic interactions, the positive heat capacity was always observed during the amino acid ion pair formation.

  17. INTERACTION OF AMINO ACID WITH ION EXCHANGE RESIN Ⅲ.FURTHER INVESTIGA TION OF SUPEREQUIVALENT ADSORPTION MECHANISM OF AMINO ACID ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; SHAOTong; 等

    1994-01-01

    The adsorption isotherms of glycine,alanine and oxidized glutathion on strong acid cation and strong base anion exchange resins from aqueous solutions were measured and the superequivalent adsorptions of glycine and alanine observed.The infrared spectra of glycine adsorbed on the cation and the anion exchange resins,001×7 and 201×7,were measured.From these results,it is concluded that the amino acid adsorption on the ion exchange resin proceeds not only through ion exchange and proton transfer mechanisms,but also through aminecarboxylate interaction between the adsorbed amino acid molecules,and the formation of second layer of amino acid molecules is the mechanism of superequivalent adsorption of amino acid,the carboxylate or amine groups of the first layer of amino acid molecules on the ion exchange resin act as the exchange sites for the second layer of amino acid molecules.

  18. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    Directory of Open Access Journals (Sweden)

    Bianca Schweiger

    2015-02-01

    Full Text Available Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP and non-imprinted polymer (NIP layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  19. Europium Luminescence Used for Logic Gate and Ions Sensing with Enoxacin As the Antenna.

    Science.gov (United States)

    Lu, Lixia; Chen, Chuanxia; Zhao, Dan; Sun, Jian; Yang, Xiurong

    2016-01-19

    Luminescent lanthanide ion complexes have received increasing attention because of their unique optical properties. Herein, we discovered that the luminescence of europium(III) (Eu(3+)) could be regulated by Ag(+) and SCN(-) in seconds with enoxacin (ENX) as the antenna. Under given conditions, only the simultaneous introduction of Ag(+) and SCN(-) could remarkably enhance the luminescence intensity of Eu(3+)-ENX complexes. This phenomenon has been exploited to design an "AND" logic gate and specific luminescence turn-on assays for sensitively sensing Ag(+) and SCN(-) for the first time. Furthermore, the addition of S(2-) resulted in efficient luminescence quenching of the Eu(3+)/ENX/Ag(+)/SCN(-) system due to the strong affinity between Ag(+) and S(2-). Thus, a new luminescent sensing platform for S(2-) was established, which exhibited excellent selectivity and high sensitivity. S(2-) could be detected within the concentration range of 100 nM to 12.5 μM with a detection limit of 60 nM. Such sensing system features simplicity, rapidity, and flexibility. Moreover, this proposed Eu(3+)-based luminescent assay could be successfully applied in the real environmental water sample analysis.

  20. Bio-Sensing of Cadmium(II Ions Using Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jindrich Kynicky

    2011-11-01

    Full Text Available Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II ions. We were focused on monitoring the effects of different cadmium(II ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 µg mL−1 on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein, the enzyme glutathione S-transferase (190–5,827 µmol/min/mg of protein, and sulfhydryl groups (9.6–274.3 µmol cysteine/mg of protein. The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-D-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II ion treatment conditions was completed seeking data about the possibility of cadmium(II ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.

  1. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    Science.gov (United States)

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed.

  2. Acidic Tumor Microenvironment and pH-Sensing G protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Calvin R. Justus

    2013-12-01

    Full Text Available The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8, GPR68 (OGR1, and GPR132 (G2A, regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  3. Luminescent sub-nanometer clusters for metal ion sensing: a new direction in nanosensors.

    Science.gov (United States)

    Chakraborty, Indranath; Udayabhaskararao, T; Pradeep, T

    2012-04-15

    We describe the application of a recently discovered family of materials called quantum clusters, which are sub-nanometer particles composed of a few atoms with well-defined molecular formulae, exhibiting intense absorption and emission in the visible region in metal ion sensing, taking Ag(25) as an example. The changes in the optical properties of the cluster, in both absorption and emission upon exposure to various metal ions in aqueous medium are explored. The cluster can detect Hg(2+) down to ppb levels. It can also detect 5d block ions (Pt(2+), Au(3+) and Hg(2+)) down to ppm limits. Hg(2+) interacts with the metal core as well as the functional groups of the capping agents and the interaction is concentration-dependent. To understand the mechanism behind this type of specific interaction, we have used spectroscopic and microscopic techniques such as UV-vis spectroscopy, luminescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Specific reasons responsible for the interaction of Hg(2+) have been proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Differential Ability of Bovine Antimicrobial Cathelicidins to Mediate Nucleic Acid Sensing by Epithelial Cells

    Science.gov (United States)

    Baumann, Arnaud; Kiener, Mirjam Susanna; Haigh, Brendan; Perreten, Vincent; Summerfield, Artur

    2017-01-01

    Cathelicidins encompass a family of cationic peptides characterized by antimicrobial activity and other functions, such as the ability to enhance the sensing of nucleic acids by the innate immune system. The present study aimed to investigate the ability of the bovine cathelicidins indolicidin, bactenecin (Bac)1, Bac5, bovine myeloid antimicrobial peptide (BMAP)-27, BMAP-28, and BMAP-34 to inhibit the growth of bacteria and to enhance the sensing of nucleic acid by the host’s immune system. BMAP-27 was the most effective at killing Staphylococcus aureus, Streptococcus uberis, and Escherichia coli, and this was dependent on its amphipathic structure and cationic charge. Although most cathelicidins possessed DNA complexing activity, only the alpha-helical BMAP cathelicidins and the cysteine-rich disulfide-bridged Bac1 were able to enhance the sensing of nucleic acids by primary epithelial cells. We also compared these responses with those mediated by neutrophils. Activation of neutrophils with phorbol myristate acetate resulted in degranulation and release of cathelicidins as well as bactericidal activity in the supernatants. However, only supernatants from unstimulated neutrophils were able to promote nucleic acid sensing in epithelial cells. Collectively, the present data support a role for certain bovine cathelicidins in helping the innate immune system to sense nucleic acids. The latter effect is observed at concentrations clearly below those required for direct antimicrobial functions. These findings are relevant in development of future strategies to promote protection at mucosal surfaces against pathogen invasion. PMID:28203238

  5. Development of an autonomous sensing device - detector based on miniature, solid-state ion-selective sensors

    OpenAIRE

    2009-01-01

    Simple construction, good detection limit, very low power demand, and simple experimental setup coupled with miniaturization opportunities arising from solid-state format makes ISEs an excellent prospect for integration in autonomous sensing devices and ultimately their integration in large wireless chemo-sensing networks.1, 2 The goal of our work is connected with preparation of ion-sensor prototypes suitable for this future application. We are focused on the fabrication of all-solid-state ...

  6. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Upama Baruah

    2014-01-01

    Full Text Available We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.

  7. ION-EXCLUSION CHROMATOGRAPHIC DETERMINATION OF CARBOXYLIC ACIDS USED TO SUPPORT THE MICROBIALLY MEDIATED REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    Science.gov (United States)

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...

  8. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids

    Science.gov (United States)

    Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Böttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jörg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jürgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A

    2012-01-01

    Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1β-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150

  9. Electronic tongue system for remote multi-ion sensing using blind source separation and wireless sensor network

    Science.gov (United States)

    Chung, Wen-Yan; Cruz, Febus Reidj G.; Szu, Harold; Pijanowska, Dorota G.; Dawgul, Marek; Torbicz, Wladyslaw; Grabiec, Piotr B.; Jarosewicz, Bohdan; Chiang, Jung-Lung; Cheng, Cheanyeh; Chang, Kuo-Chung; Truc, Le Thanh; Lin, Wei-Chiang

    2010-04-01

    This paper presents an electronic tongue system with blind source separation (BSS) and wireless sensor network (WSN) for remote multi-ion sensing applications. Electrochemical sensors, such as ion-sensitive field-effect transistor (ISFET) and extended-gate field-effect transistor (EGFET), only provide the combined concentrations of all ions in aqueous solutions. Mixed hydrogen and sodium ions in chemical solutions are observed by means of H+ ISFET and H+ EGFET sensor array. The BSS extracts the concentration of individual ions using independent component analysis (ICA). The parameters of ISFET and EGFET sensors serve as a priori knowledge that helps solve the BSS problem. Using wireless transceivers, the ISFET/EGFET modules are realized as wireless sensor nodes. The integration of WSN technology into our electronic tongue system with BSS capability makes distant multi-ion measurement viable for environment and water quality monitoring.

  10. Adsorption of chromium ion (VI by acid activated carbon

    Directory of Open Access Journals (Sweden)

    A. A. Attia

    2010-03-01

    Full Text Available The activated carbon produced from olive stones was chemically activated using sulfuric acid, (OS-S, and utilized as an adsorbent for the removal of Cr(VI from aqueous solution in the concentration range 4-50 mg/L. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial chromium ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon (OS-S were compared with the acid-treated commercial activated carbon (CAC-S. The optimum efficiency shows that the Cr(VI uptake being attained at pH 1.5. The equilibrium adsorption data was better fitted to the Langmuir adsorption model. The results of kinetic models showed that the pseudo-first-order kinetic model was found to correlate the experimental data well. It was concluded that activated carbon produced from olive stones (OS-S has an efficient adsorption capacity compared to (CAC-S sample.

  11. Recent Advances in Fluorescent Arylboronic Acids for Glucose Sensing

    Directory of Open Access Journals (Sweden)

    Jon Stefan Hansen

    2013-12-01

    Full Text Available Continuous glucose monitoring (CGM is crucial in order to avoid complications caused by change in blood glucose for patients suffering from diabetes mellitus. The long-term consequences of high blood glucose levels include damage to the heart, eyes, kidneys, nerves and other organs, among others, caused by malign glycation of vital protein structures. Fluorescent monitors based on arylboronic acids are promising candidates for optical CGM, since arylboronic acids are capable of forming arylboronate esters with 1,2-cis-diols or 1,3-diols fast and reversibly, even in aqueous solution. These properties enable arylboronic acid dyes to provide immediate information of glucose concentrations. Thus, the replacement of the commonly applied semi-invasive and non-invasive techniques relying on glucose binding proteins, such as concanavalin A, or enzymes, such as glucose oxidase, glucose dehydrogenase and hexokinases/glucokinases, might be possible. The recent progress in the development of fluorescent arylboronic acid dyes will be emphasized in this review.

  12. Fe-nitrilotriacetic acid coordination polymer nanowires: an effective sensing platform for fluorescence-enhanced nucleic acid detection

    Science.gov (United States)

    Zhou, Yunchun; Liu, Qian; Sun, Xuping; Kong, Rongmei

    2017-02-01

    The determination of specific nucleic acid sequences is key in identifying disease-causing pathogens and genetic diseases. In this paper we report the utilization of Fe-nitrilotriacetic acid coordination polymer nanowires as an effective nanoquencher for fluorescence-enhanced nucleic acid detection. The detection is fast and the whole process can be completed within 15 min. This nanosensor shows a low detection limit of 0.2 nM with selectivity down to single-base mismatch. This work provides us with an attractive sensing platform for applications.

  13. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    Science.gov (United States)

    Masek, Pavel; Keene, Alex C

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  14. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli

    2012-01-01

    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  15. TRPV1 senses both acidic and basic pH

    OpenAIRE

    Dhaka, Ajay; Uzzell, Valerie; Dubin, Adrienne; Mathur, Jayanti; Petrus, Matt; Bandell, Michael; Patapoutian, Ardem

    2009-01-01

    Maintaining physiological pH is required for survival, and exposure to alkaline chemicals such as ammonia (smelling salts) elicits severe pain and inflammation through unknown mechanisms. TRPV1, the capsaicin receptor, is an integrator of noxious stimuli including heat and extracellular acidic pH. Here we report that ammonia activates TRPV1, TRPA1 (another polymodal nocisensor), and other unknown receptor(s) expressed in sensory neurons. Ammonia and intracellular alkalization activate TRPV1 t...

  16. Application of partially fluorinated carboxylic acids as ion-pairing reagents in LC/ESI-MS.

    Science.gov (United States)

    Yamamoto, Eiichi; Ishihama, Yasushi; Asakawa, Naoki

    2014-09-01

    This report describes the application of partially fluorinated carboxylic acids as ion-pairing reagents for basic analytes in high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS) in positive-ion mode. Partially fluoridated carboxylic acids such as difluoroacetic acid, 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid functioned as volatile paired-ion similarly as trifluoroacetic acid (TFA). These acids provided basic analytes larger retention factor (k) compared to acetic acid or formic acid in LC. The ESI-MS signal strength of analytes with these acids were higher than that of TFA and was analogous to that of acetic acid or formic acid. The performances of partially fluorinated carboxylic acids in LC and ESI-MS for basic analytes were analyzed by multivariate statistical analysis using physicochemical descriptors of acids. Equations obtained in the analysis enabled us the quantitative evaluation of the performance of fluorinated carboxylic acids as ion-pair reagents for basic analytes in LC/ESI-MS.

  17. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  18. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    Science.gov (United States)

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  19. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing

    Institute of Scientific and Technical Information of China (English)

    LI Kai; LIU Hong; ZHANG Qing-Chuan; XUE Chang-Guo; WU Xiao-Ping

    2007-01-01

    Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.

  20. Adsorption of gaseous formaldehyde and carboxylic acids by ammonium-ion-exchanged alpha-zirconium phosphate.

    Science.gov (United States)

    Hayashi, A; Fujimoto, Y; Ogawa, Y; Nakayama, H; Tsuhako, M

    2005-03-01

    Ammonium-ion-exchanged alpha-Zr(HPO(4))(2)H(2)O (alpha-ZrP) was obtained as a single phase with the interlayer distance of 9.4 A by the ion-exchange of proton with ammonium ion. The ammonium ion-exchanged alpha-ZrP could adsorb ill-smelling gases, such as formaldehyde and carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid). The adsorption amounts of carboxylic acids increased in the order, butyric acidacidacidacid, whereas the adsorption amount of formaldehyde was the same as that of butyric acid. It was cleared that the adsorbed formaldehyde was partially decomposed to formic acid and methanol by self oxidation-reduction reaction in the interlayer region as evidenced by solid-state NMR. Thereby the interlayer distance after the adsorption of formaldehyde expanded to 14.4 A. In the case of formic acid, it was cointercalated into the interlayer region, and the interlayer distance expanded to 11.1 A. On the other hand, the interlayer distance of the other carboxylic acid-adsorbed compounds decreased to 7.6 A due to release by the evacuation.

  1. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films

    Institute of Scientific and Technical Information of China (English)

    Amandeep Kaur Bal; Rafinder Singh; R.K. Bedi

    2012-01-01

    ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at different fluences ranging from 5×1011 to 5×1013 ions/cm2. The structural and gas sensing properties of pristine and irradiated films have been discussed. X-ray diffraction (XRD) pattern of pristine and irradiated films reveal that the films are polycrystalline in nature and crystallinity increases after irradiation. In this study, highly porous In203 nanorods evolved when being irradiated at a fluence of 5×1013 ions/cm2 while ZnO film shows decrease in number of nanowires. The ammonia sensing performance of the Ni^7+ irradiated In203 films shows an improvement as compared to its pristine counterpart.

  2. DMPD: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18641647 Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune dise... (.csml) Show Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases....iral infection andautoimmune diseases. Authors Gilliet M, Cao W, Liu YJ. Publication Nat Rev Immunol. 2008 A

  3. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy.

    Science.gov (United States)

    Li, Wenhao; Yi, Xiaoli; Liu, Xing; Zhang, Zhirong; Fu, Yao; Gong, Tao

    2016-03-10

    Hyaluronic acid (HA)-based doxorubicin (DOX) nanoparticles (HA-NPs) were fabricated via ion-pairing between positively charged DOX and negatively charged HA, which displayed near-spherical shapes with an average size distribution of 180.2nm (PDI=0.184). Next, HA-NPs were encapsulated in liposomal carriers to afford HA-based DOX liposomes (HA-LPs), which also showed near-spherical morphology with an average size of 130.5nm (PDI=0.201). HA-NPs and HA-LPs displayed desirable sustained-release profiles compared to free DOX, and moreover, HA-LPs were proven to prevent premature release of DOX from HA-NPs. Cell based studies demonstrated HA-NPs and HA-LPs were selectively taken up by CD44(+) tumor cells, and DOX was released intracellularly to target the cell nuclei. Both HA-NPs and HA-LPs showed comparable levels of penetration efficiency in tumor spheroids. In vivo studies revealed that HA-NPs and HA-LPs significantly prolonged the blood circulation time of DOX, decreased accumulation in the normal tissues and enriched drugs into the tumors. Furthermore, HA-NPs and HA-LPs greatly enhanced therapeutic efficacy of DOX in tumor-bearing mice and minimized systemic toxicity against vital organs. In sum, HA-NPs and HA-LPs represent promising nanocarriers for CD44(+) tumor-targeted delivery.

  4. Adsorption of uranyl ion on acid-modified zeolitic mineral clinoptilolite

    Directory of Open Access Journals (Sweden)

    Matijašević Srđan D.

    2009-01-01

    Full Text Available In this paper, the results of adsorption of uranyl ion on acid-modified zeolitic mineral clinoptilolite are presented. Adsorption was investigated at different amounts of solid phase in suspension, as well as at different pH values. The modified clinoptilolite samples were obtained by treatment of clinoptilolite with acids: hydrochloric, oxalyc and citric. Starting and modified clinoptilolites were characterized by chemical analysis, thermal (DT/TG analysis and by determination of cation exchange capacity, while starting and nonadsorbed amounts of uranyl ion were determined by fluorometric method. Uranyl ion adsorption experiments on natural unmodified zeolitic mineral showed that uranyl ion adsorption was low (29.2% and that treatment of clinoptilolite with acids significantly increases the adsorption of uranyl ion (>90%. In the case of acid treated clinoptilolites, the highest adsorption of uranyl ion was achieved on clinoptilolite modified with hydrochloric acid. Kinetics of adsorption showed that adsorption of uranyl ion begins very fast and that the most of uranyl ion was adsorbed in first 30 min. Practically, there were no changes in uranyl ion adsorption within next 72 h.

  5. Effect of sun elevation upon remote sensing of ocean color over an acid waste dump site

    Science.gov (United States)

    Bressette, W. E.

    1978-01-01

    Photographic flights were made over an ocean acid waste dump site while dumping was in progress. The flights resulted in wide angle, broadband, spectral radiance film exposure data between the wavelengths of 500 to 900 nanometers for sun elevation angles ranging from 26 to 42 degrees. It is shown from densitometer data that the spectral signature of acid waste discharged into ocean water can be observed photographically, the influence of sun elevation upon remotely sensed apparent color can be normalized by using a single spectral band ratioing technique, and photographic quantification and mapping of acid waste through its suspended iron precipitate appears possible.

  6. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    Science.gov (United States)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  7. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly.

    Science.gov (United States)

    Bull, Steven D; Davidson, Matthew G; van den Elsen, Jean M H; Fossey, John S; Jenkins, A Toby A; Jiang, Yun-Bao; Kubo, Yuji; Marken, Frank; Sakurai, Kazuo; Zhao, Jianzhang; James, Tony D

    2013-02-19

    Boronic acids can interact with Lewis bases to generate boronate anions, and they can also bind with diol units to form cyclic boronate esters. Boronic acid based receptor designs originated when Lorand and Edwards used the pH drop observed upon the addition of saccharides to boronic acids to determine their association constants. The inherent acidity of the boronic acid is enhanced when 1,2-, 1,3-, or 1,4-diols react with boronic acids to form cyclic boronic esters (5, 6, or 7 membered rings) in aqueous media, and these interactions form the cornerstone of diol-based receptors used in the construction of sensors and separation systems. In addition, the recognition of saccharides through boronic acid complex (or boronic ester) formation often relies on an interaction between a Lewis acidic boronic acid and a Lewis base (proximal tertiary amine or anion). These properties of boronic acids have led to them being exploited in sensing and separation systems for anions (Lewis bases) and saccharides (diols). The fast and stable bond formation between boronic acids and diols to form boronate esters can serve as the basis for forming reversible molecular assemblies. In spite of the stability of the boronate esters' covalent B-O bonds, their formation is reversible under certain conditions or under the action of certain external stimuli. The reversibility of boronate ester formation and Lewis acid-base interactions has also resulted in the development and use of boronic acids within multicomponent systems. The dynamic covalent functionality of boronic acids with structure-directing potential has led researchers to develop a variety of self-organizing systems including macrocycles, cages, capsules, and polymers. This Account gives an overview of research published about boronic acids over the last 5 years. We hope that this Account will inspire others to continue the work on boronic acids and reversible covalent chemistry.

  8. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    Science.gov (United States)

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-01

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  9. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions.

    Science.gov (United States)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-13

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca(2+), Li(+), Na(+), NH4(+)) at concentrations up to 25 mM. This material can be combined further with disposable chips, demonstrating its promise as an effective ion-selective sensing component for practical applications.

  10. Effect of Li+ ion sensitization and optical temperature sensing in Gd2O3: Ho3+/Yb3+

    Science.gov (United States)

    Singh, Priyam; Shahi, P. K.; Rai, Anita; Bahadur, A.; Rai, S. B.

    2016-08-01

    Ho3+/Yb3+ codoped Gd2O3 phosphor has been synthesized by solution combustion method. The concentrations of Ho3+ and Yb3+ were optimized to be 0.3 and 2.0 mol% respectively for maximum emission intensity. The effect of Li+ ion co-doping on phase structure and photo luminescence were investigated. It is found that there is no change in phase of the sample due to Li+ ion co-doping. However the Upconversion (UC) and Downshifting (DS) emission show a remarkable enhancement in intensity. It is concluded that, this enhancement in the emission intensity is mainly due to the change in crystal field around the Ho3+ ion and reduction in quenching centers. The optimum doping concentration of Li+ ion was found to be 20 mol%. We have further explored the temperature sensing behavior using the FIR technique. The maximum sensitivity is found to be 0.0092 K-1 at 505 K.

  11. Bond energies and structures of ammonia-sulfuric acid positive cluster ions.

    Science.gov (United States)

    Froyd, Karl D; Lovejoy, Edward R

    2012-06-21

    New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.

  12. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid

    Indian Academy of Sciences (India)

    Saikat Mandal; P R Selvakannan; Sumant Phadtare; Renu Pasricha; Murali Sastry

    2002-10-01

    Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.

  13. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Science.gov (United States)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  14. Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Wenrong Yang

    2001-08-01

    Full Text Available Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

  15. Indirect UV detection-ion-exclusion/cation-exchange chromatography of common inorganic ions with sulfosalicylic acid eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Mori, Masanobu; Nakatani, Nobutake; Arai, Kaori; Masuno, Tomoe; Koseki, Masakazu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2013-01-01

    Herein, we describe indirect UV detection-ion-exclusion/cation-exchange chromatography (IEC/CEC) on a weakly acidic cation-exchange resin in the H(+)-form (TSKgel Super IC-A/C) using sulfosalicylic acid as the eluent. The goal of the study was to characterize the peaks detected by UV detector. The peak directions of analyte ions in UV at 315 nm were negative because the molar absorbance coefficients of analyte anions and cations were lower than that of the sulfosalicylic acid eluent. Good chromatographic resolution and high signal-to-noise ratios of analyte ions were obtained for the separations performed using 1.1 mM sulfosalicylic acid and 1.5 mM 18-crown-6 as the eluent. The relative standard deviations (RSDs) of the peak areas ranged from 0.6 to 4.9%. Lower detection limits of the analytes were achieved using indirect UV detection at 315 nm (0.23 - 0.98 μM) than those obtained with conductometric detection (CD) (0.61 - 2.1 μM) under the optimized elution conditions. The calibration curves were linear in the range from 0.01 to 1.0 mM except for Cl(-), which was from 0.02 to 2.0 mM. The present method was successfully applied to determine common inorganic ions in a pond water sample.

  16. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    Science.gov (United States)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  17. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    Science.gov (United States)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  18. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    Science.gov (United States)

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  19. Highly Charged Protein Ions: The Strongest Organic Acids to Date.

    Science.gov (United States)

    Zenaidee, Muhammad A; Leeming, Michael G; Zhang, Fangtong; Funston, Toby T; Donald, William A

    2017-07-10

    The basicity of highly protonated cytochrome c (cyt c) and myoglobin (myo) ions were investigated using tandem mass spectrometry, ion-molecule reactions (IMRs), and theoretical calculations as a function of charge state. Surprisingly, highly charged protein ions (HCPI) can readily protonate non-polar molecules and inert gases, including Ar, O2 , and N2 in thermal IMRs. The most HCPIs that can be observed are over 130 kJ mol(-1) less basic than the least basic neutral organic molecules known (tetrafluoromethane and methane). Based on theoretical calculations, it is predicted that protonated cyt c and myo ions should spontaneously lose a proton to vacuum for charge states in which every third residue is protonated. In this study, HCPIs are formed where every fourth residue on average is protonated. These results indicate that protein ions in higher charge states can be formed using a low-pressure ion source to reduce proton-transfer reactions between protein ions and gases from the atmosphere. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative mapping by remote sensing of an ocean acid-waste dump

    Science.gov (United States)

    Ohlhorst, C. W.

    1978-01-01

    Results from quantitative analysis show that airplane remotely sensed spectral data can be used to quantify and map an acid-waste dump in terms of its particulate iron concentration. These same data, however, could not be used to map the dump in terms of total suspended solids, organic suspended solids, or inorganic suspended solids concentrations. A single-variable equation using the ratio of band 2 (440 to 490 nm) radiance to band 4 (540 to 580 nm) radiance was used to quantify the iron concentration in the acid-waste dump. The acid waste that was mapped varied in age from freshly dumped to 31/2 hr. Particulate iron concentrations in the acid waste were estimated to range up to 1.1 mg/l at a depth of 0.46 m. A classification technique was developed to identify pixels in the data set affected by sun glitter.

  1. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    Science.gov (United States)

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  2. Warmth suppresses and desensitizes damage-sensing ion channel TRPA1

    Directory of Open Access Journals (Sweden)

    Wang Sen

    2012-03-01

    Full Text Available Abstract Background Acute or chronic tissue damage induces an inflammatory response accompanied by pain and alterations in local tissue temperature. Recent studies revealed that the transient receptor potential A1 (TRPA1 channel is activated by a wide variety of substances that are released following tissue damage to evoke nociception and neurogenic inflammation. Although the effects of a noxious range of cold temperatures on TRPA1 have been rigorously studied, it is not known how agonist-induced activation of TRPA1 is regulated by temperature over an innocuous range centred on the normal skin surface temperature. This study investigated the effect of temperature on agonist-induced currents in human embryonic kidney (HEK 293 cells transfected with rat or human TRPA1 and in rat sensory neurons. Results Agonist-induced TRPA1 currents in HEK293 cells were strongly suppressed by warm temperatures, and almost abolished at 39°C. Such inhibition occurred when TRPA1 was activated by either electrophilic or non-electrophilic agonists. Warming not only decreased the apparent affinity of TRPA1 for mustard oil (MO, but also greatly enhanced the desensitization and tachyphylaxis of TRPA1. Warming also attenuated MO-induced ionic currents in sensory neurons. These results suggest that the extent of agonist-induced activity of TRPA1 may depend on surrounding tissue temperature, and local hyperthermia during acute inflammation could be an endogenous negative regulatory mechanism to attenuate persistent pain at the site of injury. Conclusion These results indicate that warmth suppresses and desensitizes damage-sensing ion channel TRPA1. Such warmth-induced suppression of TRPA1 may also explain, at least in part, the mechanistic basis of heat therapy that has been widely used as a supplemental anti-nociceptive approach.

  3. Substitutional group dependent colori/fluorimetric sensing of Mn2+, Fe3+ and Zn2+ ions by simple Schiff base chemosensor

    Science.gov (United States)

    Hariharan, P. S.; Anthony, Savarimuthu Philip

    2015-02-01

    Schiff base is one of the easiest synthesizable chemosensor and exhibit strong coordination with metal ions; the property that has been vastly exploited for metal ions sensing. Simple Schiff base chemosensors (1a-d and 2a-d) were synthesized and demonstrated substitutional group dependent colorimetric sensing of metal ions. Chemosensor without (1a, 2a) and OCH3 substitution (1b, 2b) did not show any significant colour change for metal ions. However, a highly selective colorimetric change (colourless to pink) for Mn2+ ions (10-6 M) was observed with diethylamine substituted 1c, 2c. Hydroxyl substitution (1d, 2d) leads to selective colorimetric sensing (colourless to orange) of Fe3+ ions (10-6 M). PVA thin films of 2c/2d were fabricated and demonstrated selective colorimetric sensing of Mn2+ and Fe3+ ions. The practical applicability of the synthesized chemosensors were also demonstrated by performing selective colorimetric sensing of Mn2+ and Fe3+ ions in real samples such as tap, ground, pond and river water. Effect of substitution on the fluorescence selectivity of Zn2+ has also been investigated.

  4. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  5. Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius.

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-04-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-L-homoserine lactone, and an N-dodecanoyl-L-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position -45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation.

  6. Investigation of Ion Release from Ni-Cr Alloy in Various Acidity Conditions

    OpenAIRE

    Stipetić, J.; Ćatić, A.; A. Čelebić; Baučić, I.; Rinčić, N.; Rajić-Meštrović, S.

    2002-01-01

    Cytotoxicity is in direct correlation to the level of ion release, with non-precious alloys having higher ion release than that of precious alloys. The most often used non-precious dental alloy is Ni-Cr alloy. The aim of the investigation was to determine the type and quantity of ions released from Ni-Cr alloy (Wiron 99(r), Bego, Germany), in acid solutions with different pH values, and to determine the influence of the type of acid solution, its pH value, and duration of interaction on io...

  7. Trace determination of cobalt ion by using malic acid-malonic acid double substrate oscillating chemical system

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Wu Yang; Jie Ren; Miao Guo; Xiao Dong Chen; Wen Bin Wang; Jin Zhang Gao

    2008-01-01

    A novel kinetic method for determination of trace amounts of cobalt ion was proposed and validated. The method is based on adding malic acid into classical Belousov-Zhabotinskii (B-Z) oscillating chemical system to form a double substrate one. The results showed that when the concentration of cobalt ion was in the range of 5.27× 10-8 to 5.37×10-12mol L-1 the change of the oscillating period was directly proportional to the negative logarithm of cobalt ion concentration. The sensitivity and precision of the developed method were quite satisfactory. The limit of detection was down to 5.20 x 10-13 mol L-1 which was a highest sensitivity found for determination of metal ions using oscillating chemical reaction so far. Some factors influencing the determination were also examined. The method has been successfully used to determine cobalt ion in vitamin B12 injection.

  8. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-09-01

    Full Text Available The mammalian target of rapamycin (mTOR is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs, especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9 and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1 also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity.

  9. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    Science.gov (United States)

    Zheng, Liufeng; Zhang, Wei; Zhou, Yuanfei; Li, Fengna; Wei, Hongkui; Peng, Jian

    2016-01-01

    The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity. PMID:27690010

  10. A Zn(II) coordination polymer and its photocycloaddition product: syntheses, structures, selective luminescence sensing of iron(III) ions and selective absorption of dyes.

    Science.gov (United States)

    Hu, Fei-long; Shi, Yi-Xiang; Chen, Huan-Huan; Lang, Jian-Ping

    2015-11-21

    One coordination polymer [Zn2(L)2(bpe)2(H2O)2] (1) (L = 4,4'-((1,2-phenylenebis(methylene))bis(oxy))dibenzoic acid; bpe = (E)-1,2-di(pyridin-4-yl)ethene) was prepared and structurally determined. Compound 1 has a chain structure in which its pair of bpe ligands is arranged in a head-to-tail manner with their C=C bonds being close enough for a [2 + 2] cycloaddition reaction. Upon exposure to UV light, compound 1 undergoes a single-crystal-to-single-crystal (SCSC) [2 + 2] photodimerization to generate one 2D coordination polymer [Zn(L)(rctt-tpcb)0.5(H2O)] (1a) (rctt (regio cis, trans, trans)-tpcb = tetrakis(4-pyridyl)cyclobutane). The tpcb ligands in the crystals of 1a show an intriguing in situ thermal isomerisation. The nanospheres of 1 can be obtained by recrystallization in DMSO/alcohol. The nanospheres of 1a can also be readily produced from the corresponding nanospheres of 1 by the photocyclodimerization method. Compared with those of 1a, the nanospheres of 1 display highly selective sensing of Fe(3+) ions over mixed metal ions through fluorescence quenching. Moreover, the nanospheres of 1a can rapidly adsorb CR (congo red), MB (methylene blue) or RhB (rhodamine B) over MO (methyl orange) from aqueous solutions. This work offers a new photoinduced post-synthetic method for the synthesis of multifunctional MOFs, which show luminescence sensing of Fe(3+) ions and dye adsorption properties.

  11. Determination of organic acids in biological fluids by ion chromatography: plasma lactate and pyruvate and urinary vanillylmandelic acid.

    Science.gov (United States)

    Rich, W; Johnson, E; Lois, L; Kabra, P; Stafford, B; Marton, L

    1980-09-01

    We describe the general aspects of ion chromatography and how on-line counted ion-exchange techniques can be utilized to determine pyruvic and lactic acids in plasma and vanillymandelic acid in urine. Pyruvate and lactate are extracted from deproteinized plasma by use of an ion-exclusion resin. After elution from the resin, the plasma extract is chromatographed on an anion-exchange column, with 0.66 mmol/L sodium bicarbonate as the mobile phase. The effluent is detected with an electrical conductivity cell. Vanillylmandelic acid is extracted from diluted urine by use of an anion-exchange resin. After elution from resin, the urine extract is chromatographed on an ion-exclusion column, followed by electrochemical detection. We evaluated the procedures for precision, linearity, analytical recovery, intefering substances, and correlation with an established procedure. the combination of a preliminary resin extraction, an ion chromatographic separation, and a conductivity or electrochemical detector results in rapid, specific methods that can be adapted for use in the clinical laboratory. Preliminary data for other organic acids are presented.

  12. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein.

    Directory of Open Access Journals (Sweden)

    Sara Janssen

    Full Text Available BACKGROUND: Ghrelin is an important regulator of energy--and glucose homeostasis. The octanoylation at Ser(3 is essential for ghrelin's biological effects but the mechanisms involved in the octanoylation are unknown. We investigated whether the gustatory G-protein, α-gustducin, and the free fatty acid receptors GPR40 and GPR120 are involved in the fatty acid sensing mechanisms of the ghrelin cell. METHODS: Wild-type (WT and α-gustducin knockout (gust(-/- mice were fed a glyceryl trioctanoate-enriched diet (OD during 2 weeks. Ghrelin levels and gastric emptying were determined. Co-localization between GPR40, GPR120 and ghrelin or α-gustducin/α-transducin was investigated by immunofluorescence staining. The role of GPR120 in the effect of medium and long chain fatty acids on the release of ghrelin was studied in the ghrelinoma cell line, MGN3-1. The effect of the GPR40 agonist, MEDICA16, and the GPR120 agonist, grifolic acid, on ghrelin release was studied both in vitro and in vivo. RESULTS: Feeding an OD specifically increased octanoyl ghrelin levels in the stomach of WT mice but not of gust(-/- mice. Gastric emptying was accelerated in WT but not in gust(-/- mice. GPR40 was colocalized with desoctanoyl but not with octanoyl ghrelin, α-gustducin or α-transducin positive cells in the stomach. GPR120 only colocalized with ghrelin in the duodenum. Addition of octanoic acid or α-linolenic acid to MGN3-1 cells increased and decreased octanoyl ghrelin levels, respectively. Both effects could not be blocked by GPR120 siRNA. MEDICA16 and grifolic acid did not affect ghrelin secretion in vitro but oral administration of grifolic acid increased plasma ghrelin levels. CONCLUSION: This study provides the first evidence that α-gustducin is involved in the octanoylation of ghrelin and shows that the ghrelin cell can sense long- and medium-chain fatty acids directly. GPR120 but not GPR40 may play a role in the lipid sensing cascade of the ghrelin cell.

  13. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  14. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    Science.gov (United States)

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.

  15. Using amino acids for the chromatofocusing of metal ions on silica with bonded tetraethylenepentamine groups

    Science.gov (United States)

    Ivanov, A. V.

    2014-09-01

    Amino acid-based eluents are used for the chromatofocusing of metal ions on Tetren-SiO2 chelating sorbent (silica with bonded tetraethylenepentamine groups) for the first time. The smoothest quasilinear pH gradients form for eluents based on glutamic and aspartic acids. The separation of Mn2+, Cr3+, Co2+, Ni2+, and Cu2+ is achieved.

  16. Quantitative Assessment of Amino Acid Damage upon keV Ion Beam Irradiation Through FTIR Spectroscopy

    Science.gov (United States)

    Huang, Qing; Ke, Zhigang; Su, Xi; Yuan, Hang; Zhang, Shuqing; Yu, Zengliang

    2010-06-01

    Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N+ and Ar+ ion beams of 25 keV with fluence ranging from 5×1015 ions/cm2 to 2.5×10 ions/cm2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fluence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.

  17. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  18. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  19. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  20. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  1. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    Science.gov (United States)

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  2. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2013-10-01

    Full Text Available Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing.

  3. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with ... central area and major road systems and possible aerosol sources include biomass ..... Tanzania than at European rural sites32 and Asia.33,34. To determine the ...

  4. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  5. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, P.; Sekar, C., E-mail: Sekar2025@gmail.com

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10{sup −7} to 3 × 10{sup −5} M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. - Highlights: • EDTA- hydroxyapatite (HA) nanoparticles have been synthesized by microwave irradiation method. • A novel amperometric Uric Acid biosensor has been fabricated using E-HA/GCE. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • The sensor was applied for the detection of UA in human blood serum and urine.

  6. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085 (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang Pengyi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: zpy@tsinghua.edu.cn; Pan Gang; Chen Hao [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085 (China)

    2008-12-15

    The great enhancement of ferric ion on the photochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) under 254 nm UV light was reported. In the presence of 10 {mu}M ferric ion, 47.3% of initial PFOA (48 {mu}M) was decomposed and the defluorination ratio reached 15.4% within 4 h reaction time. While the degradation and defluorination ratio greatly increased to 80.2% and 47.8%, respectively, when ferric ion concentration increased to 80 {mu}M, and the corresponding half-life was shortened to 103 min. Though the decomposition rate was significantly lowered under nitrogen atmosphere, PFOA was efficiently decomposed too. Other metal ions like Cu{sup 2+} and Zn{sup 2+} also slightly improved the photochemical decomposition of PFOA under irradiation of 254 nm UV light. Besides fluoride ion, other intermediates during PFOA decomposition including formic acid and five shorter-chain perfluorinated carboxylic acids (PFCAs) with C7, C6, C5, C4 and C3, respectively, were identified and quantified by IC or LC/MS. The mixture of PFOA and ferric ion had strong absorption around 280 nm. It is proposed that PFOA coordinates with ferric ion to form a complex, and its excitation by 254 nm UV light leads to the decomposition of PFOA in a stepwise way.

  7. Real-time, in-situ analysis of silver ions using nucleic acid probes modified silica microfiber interferometry.

    Science.gov (United States)

    Yu, Bo; Huang, Yunyun; Zhou, Jun; Guo, Tuan; Guan, Bai-Ou

    2017-04-01

    A sensitive Ag(+) sensor based on nucleic acid probes modified silica microfiber interferometry is designed and developed. The probes on microfiber surface plays the part on catching Ag(+) as tentacles, while their conformation change from random coils to hairpins. It induces the fiber surface refractive index change, which is captured by the optical fiber and translated into a significant wavelength shift in the interferometric fringe. Such a combination enables an improved concentration sensitivity of 0.22nm/log M and limit of detection of 1.36 × 10(-9)M, taking the advantage of real-time and in-situ analysis. It shows good selectivity in the present of many other metal ions and offers potential to analysis in real matrix, especially in the environmental samples must be analyzed in a short time. This may provide insights into the preparation of sensing platforms for optical quantification of other small molecular, supplementing the existing tools.

  8. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2010-11-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (Americium 241 ion source which has been used previously. Our results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of one minute it is ~6 × 104 molecules of H2SO4 per cm3. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  9. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2011-03-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241 ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6 × 104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  10. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  11. Colorimetric and fluorescent sensor for selective sensing of Hg{sup 2+} ions in semi aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Udhayakumari, Duraisamy [Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India); Velmathi, Sivan, E-mail: velmathis@nitt.edu [Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2013-04-15

    A highly sensitive and selective detection of Hg{sup 2+} ion with simple salophen probe was developed. In DMSO: water (40:60, v/v) solution, Hg{sup 2+} ions coordinate with imine and shows color turn-off from yellow to colorless. Receptor 1 showed its ability for sensing Hg{sup 2+} cations sensitively through three channels: colorimetric, UV–vis and fluorescence spectroscopy. Hg{sup 2+} ions coordinate to the imine (Receptor 1) through NONO binding site forming 1:1 complex. It exhibits fluorescent 'Turn-on' behavior based on solvent polarity. The detection limit of our receptor with mercury is 1 μg L{sup −1}. -- Graphical abstract: A highly sensitive and rapid detection of Hg{sup 2+} with simple salophen probe was developed. In DMSO: water (40:60, v/v) solution, Hg{sup 2+} ions coordinate with imine and shows color turn-off from yellow to colorless. Receptor 1 showed its ability for sensing Hg{sup 2+} cations sensitively through three channels: colorimetric, UV–vis and Fluorescence Spectroscopy. Hg{sup 2+} ions coordinate to the imine (Receptor 1) through the NONO binding site forming 1:1 complex. It exhibits fluorescent 'Turn-on' behavior based on solvent polarity. The detection limit of our receptor with mercury is 1 μg L{sup −1}. Highlights: ► Hg{sup 2+} ions coordinate with imine and shows color turn-off from yellow to colorless. ► The binding constant of the receptor 1 (DMSO) with Hg{sup 2+} ion (DMSO) is 1.35×10{sup 5}. ► Hg{sup 2+} ions coordinate to the imine through NONO binding site forming 1:1 complex. ► The receptor 1 shows fluorescent 'Turn-on' behavior based on solvent polarity. ► The detection limit of receptor 1 with mercury is 1 μg L{sup −1}.

  12. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Science.gov (United States)

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization.

  13. Bay Functionalized Perylenediimide with Pyridine Positional Isomers: NIR Absorption and Selective Colorimetric/Fluorescent Sensing of Fe(3+) and Al(3+) Ions.

    Science.gov (United States)

    Kundu, Anu; Pitchaimani, Jayaraman; Madhu, Vedichi; Sakthivel, Pachagounder; Ganesamoorthy, Ramasamy; Anthony, Savarimuthu Philip

    2017-03-01

    Bay functionalized perylene diimide substituted with pyridine isomers, (2-pyridine (2HMP-PDI), 3-pyridine (3-HMP-PDI) and 4-pyridine (4-HMP-PDI)) have been synthesized and explored for selective coloro/fluorimetric sensing of heavy transition metal ions. HMP-PDIs showed strong NIR absorption (760-765 nm) in DMF. The absorption and fluorescence of HMP-PDIs have been tuned by make use of pyridine isomers. Reddish-orange color was observed for 2-HMP-PDI (λmax = 437, 551, 765 nm) whereas 4-HMP-PDI exhibited light green (λmax = 432, 522, 765 nm). 3-HMP-PDI showed orange-yellow (λmax = 431, 524, 762 nm). The fluorescence spectra of 2-, 3- and 4-HMP-PDI showed λmax at 585, 538, 546 nm, respectively. Interestingly, HMP-PDI dyes showed selective color change (intense pink color) and fluorescence quenching for Fe(3+) and Al(3+) metal ions in DMF. Absorbance spectra revealed complete disappearance of NIR absorption and intensification/appearance of new peak at lower wavelength. The concentration dependent studies suggest that 4-HMP-PDI can detect up to 36.52 ppb of Fe(3+) and 43.12 ppb of Al(3+) colorimetrically. The interference studies in presence of other metal ions confirmed the good selectivity for Fe(3+) and Al(3+). The mechanistic studies indicate that Lewis acidic character of Fe(3+) and Al(3+) ions were responsible for selective color change and fluorescence quenching.

  14. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination.

    Science.gov (United States)

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity.

  15. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  16. Dimerisation of isobutene on acidic ion-exchange resins

    OpenAIRE

    Honkela, Maija

    2005-01-01

    Dimerisation of isobutene produces diisobutenes that can be hydrogenated to isooctane (2,2,4-trimethyl pentane). Isooctane can be used as a high octane gasoline component. The aim of this work was to study the selective production of diisobutenes through the dimerisation of isobutene on ion-exchange resin catalysts and to construct kinetic models for the reactions in the system for reactor design purposes. High selectivities for diisobutenes were obtained in the presence of polar componen...

  17. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    Science.gov (United States)

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  18. [Thermodynamic characteristics of nucleic acid complexes with silver ions].

    Science.gov (United States)

    Minasian, K A; Poletaev, A I; Borob'ev, A F

    1981-01-01

    By means of mixing reaction calorimetry the enthalpy of the complexes formation between Ag+ ions and DNA and dsRNA was measured. It was shown that Ag+ ions are able to form two types of complexes (I and II) with dsRNA. Using the method of the competitive reaction with chloride ions the stability constants of complex formation were obtained for dsRNA-Ag+ complexes for different temperatures. These measurements gave the delta H and delta S values for both complexes: delta HI = -74,9 +/- 7,1 kjouls/mol, delta SI = -100.0 +/- 25.0 jouls/mol deg; delta HII = -39,8 +/- 4,2 kjouls/mol, delta SII = +2 +/- 14 jouls/mol deg. The calorimetric results of delta H determination are the same within the limits of experimental errors. The enthalpy term of dsRNA-Ag+ complexes proved to bring the main contribution into the free energy of complex formation.

  19. Structure and simulation of a Zundel ion stabilized by 8-hydroxyquinoline-5, 7 disulphonic acid

    Science.gov (United States)

    Venkatakrishnan, Hasthi Annapurna; Venkatakrishnan, Ramaseshan; Pennathur, Anuj Krishnasundar; Pennathur, Gautam

    2016-07-01

    8-hydroxyquinoline-5, 7 disulphonic was synthesized and recrystallized in methanol to strip away molecules of water. The structure of the molecule revealed that Zundel ion was stabilized in the crystal. Ab-initio molecular dynamics simulation was then carried out to understand the dynamics of proton hopping in this complex. During the course of simulation, the Zundel ion coordinates with a water molecule to form an open H7O3+ structure. This transition state structure de-solvated rapidly forming Zundel ion facilitating proton hopping in the first solvation shell. One of the sulphonic acid groups in the 5 or 7 position of the 8-hydroxyquinoline 5,7 disulphonic acid bonds with the Zundel ion favoring the proton to be transferred to the nearby water molecule through the formation of proton defects. The simulation results support the structural diffusion mechanism and that charged complex migrates through the hydrogen bond network.

  20. Acid-induced structural modifications of unsaturated Fatty acids and phenolic olive oil constituents by nitrite ions: a chemical assessment.

    Science.gov (United States)

    Napolitano, Alessandra; Panzella, Lucia; Savarese, Maria; Sacchi, Raffaele; Giudicianni, Italo; Paolillo, Livio; d'Ischia, Marco

    2004-10-01

    The structural modifications of the unsaturated fatty acid components of triglycerides in extra virgin olive oil (EVOO) following exposure to nitrite ions in acidic media were determined by two-dimensional (2D) NMR spectroscopy, aided by (15)N labeling and GC analysis, allowing investigation of the matrix without fractionation steps. In the presence of excess nitrite ions in a 1% sulfuric acid/oil biphasic system, extensive double bond isomerization of the oleic/linoleic acid components of triglycerides was observed associated with nitration/oxidation processes. Structurally modified species were identified as E/Z-nitroalkene, 1,2-nitrohydroxy, and 3-nitro-1-alkene(1,5-diene) derivatives based on (1)H, (13)C, and (15)N 2D NMR analysis in comparison with model compounds. Minor constituents of EVOO, including phenolic compounds and tocopherols, were also substantially modified by nitrite-derived nitrating species, even under milder reaction conditions relevant to those occurring in the gastric compartments. Novel nitrated derivatives of tyrosol, hydroxytyrosol, and oleuropein (6-8) were identified by LC/MS analysis of the polar fraction of EVOO and by comparison with synthetic samples. Overall, these results provide the first systematic description at the chemical level of the consequences of exposing EVOO to nitrite ions at acidic pH and offer an improved basis for further investigations in the field of toxic nitrosation/nitration reactions and dietary antinitrosating agents.

  1. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article deals with the determination of the adsorption properties of metal ions and humic acid in water on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media,distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu2+, Cd2+) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu2+, Cd2+,and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid.

  2. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    Science.gov (United States)

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples.

  3. Efficient Generation of Chemiluminescence during the reduction of manganese(IV) ions with lactic acid

    Science.gov (United States)

    Tsaplev, Yu. B.

    2016-12-01

    The kinetics and mechanism of chemiluminescence during the reduction of manganese(IV) ions with lactic acid in an H2SO4-AcOH medium are studied. Kinetic spectrophotometric measurements are used to determine the profiles of change in the concentrations of Mn(IV) and Mn(III) ions during the reaction. The results from kinetic spectrophotometric measurements are compared to the light yield kinetics. The quantum chemiluminescence and chemiexcitation yields reach record values.

  4. Corrosion Inhibition Synergism between Lanthanum(Ⅲ) Ion and 8-Hydroxyquinoline for Zinc in Hydrochloric Acid

    Institute of Scientific and Technical Information of China (English)

    木冠南; 唐丽斌; 李学铭

    2002-01-01

    The effects of La3+ ion and chelate reagent 8-hydroxyquinoline on the corrosion rate of zinc in hydrochloric acid were investigated by using weight loss method and electrochemical method. It is found that in a specific concentration range of La3+ ion and 8-hydroxyquinoline, the obvious corrosion inhibition synergism is obtained. The mechanism of corrosion inhibition synergism was discussed on basis of adsorption theory.

  5. Arsine oxidation with heteropoly acid in the presence of halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Dorfman, Ya.A.; Aleshkova, M.M.; Doroshkevich, D.M.; Kel' man, I.V. (AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii)

    1984-12-01

    Kinetics and mechanism of arsine oxidation by phosphomolybdovanadium heteropoly acid are studied in the presense of halide ions as catalysts. It is established that intrasphere arsine oxidation in an intermediate V(5) complex with AsH/sub 3/ and halide-ion is a limiting stage of the proposed mechanism. The quantum-chemical calculation of the electronic structure of intermediate complexes, which supports the above mechanism is carried out. The method of theoretical estimation of the activation energy is proposed.

  6. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2007-08-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH{sup -} formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H{sup +} produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications. (author)

  7. Removal of fluoride ion from aqueous solution by a cerium-poly(hydroxamic acid) resin complex.

    Science.gov (United States)

    Haron, M J; Yunus, W M

    2001-05-01

    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.

  8. Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization.

    Science.gov (United States)

    Abe, Takayuki; Lee, Albert; Sitharam, Ramaswami; Kesner, Jordan; Rabadan, Raul; Shapira, Sagi D

    2017-04-18

    Cytosolic sensing of nucleic acids initiates tightly regulated programs to limit infection. Oocyte fertilization represents a scenario wherein inappropriate responses to exogenous yet non-pathogen-derived nucleic acids would have negative consequences. We hypothesized that germ cells express negative regulators of nucleic acid sensing (NAS) in steady state and applied an integrated data-mining and functional genomics approach to identify a rheostat of DNA and RNA sensing-the inflammasome component NLRP14. We demonstrated that NLRP14 interacted physically with the nucleic acid sensing pathway and targeted TBK1 (TANK binding kinase 1) for ubiquitination and degradation. We further mapped domains in NLRP14 and TBK1 that mediated the inhibitory function. Finally, we identified a human nonsense germline variant associated with male sterility that results in loss of NLRP14 function and hyper-responsiveness to nucleic acids. The discovery points to a mechanism of nucleic acid sensing regulation that may be of particular importance in fertilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  10. Ion-exclusion chromatography determination of organic acid in uridine 5'-monophosphate fermentation broth.

    Science.gov (United States)

    Niu, Huanqing; Chen, Yong; Xie, Jingjing; Chen, Xiaochun; Bai, Jianxin; Wu, Jinglan; Liu, Dong; Ying, Hanjie

    2012-09-01

    Simultaneous determination of organic acids using ion-exclusion liquid chromatography and ultraviolet detection is described. The chromatographic conditions are optimized when an Aminex HPX-87H column (300 × 7.8 mm) is employed, with a solution of 3 mmol/L sulfuric acid as eluent, a flow rate of 0.4 mL/min and a column temperature of 60°C. Eight organic acids (including orotic acid, α-ketoglutaric acid, citric acid, pyruvic acid, malic acid, succinic acid, lactic acid and acetic acid) and one nucleotide are successfully quantified. The calibration curves for these analytes are linear, with correlation coefficients exceeding 0.999. The average recovery of organic acids is in the range of 97.6% ∼ 103.1%, and the relative standard deviation is in the range of 0.037% ∼ 0.38%. The method is subsequently applied to obtain organic acid profiles of uridine 5'-monophosphate culture broth fermented from orotic acid by Saccharomyces cerevisiae. These data demonstrate the quantitative accuracy for nucleotide fermentation mixtures, and suggest that the method may also be applicable to other biological samples.

  11. POLY(AMINOMETHYLENEPHOSPHONIC ACID FOR SOLVENT EXTRACTION OF METAL IONS

    Directory of Open Access Journals (Sweden)

    M’hamed Kaid

    2011-09-01

    Full Text Available Diaminododecyltetramethylenetetraphosphonic acid (DADTMTPA has been investigated in liquid - liquid extraction of Zn (II and Cu (II in acetate media. The extraction of both cations was carried out in different media with the addition of CH3COONa, CH3COOH, HCl and H2SO4 at different pH values. The maximum extraction yield for copper is 70% after addition of 10 mg of sodium acetate and for zinc is 30% after addition of acetic acid at pHi = 5.5, in one step.

  12. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    Science.gov (United States)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  13. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    Science.gov (United States)

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.

  14. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2011-11-01

    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  15. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    Science.gov (United States)

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-07-16

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  16. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA

    OpenAIRE

    Wu, Yuan-Yan; Zhang, Zhong-Liang; Zhang, Jin-Si; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Cobalt Hexamm...

  17. Using polyatomic primary ions to probe an amino acid and a nucleic base in water ice

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, X.A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: x.conlan@postgrad.manchester.ac.uk; Biddulph, G.X. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: G.Biddulph@postgrad.manchester.ac.uk; Lockyer, N.P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Vickerman, J.C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: John.Vickerman@manchester.ac.uk

    2006-07-30

    In this study on pure water ice, we show that protonated water species [H{sub 2}O] {sub n}H{sup +} are more prevalent than (H{sub 2}O) {sub n} {sup +} ions after bombardment by Au{sup +} monoatomic and Au{sub 3} {sup +} and C{sub 60} {sup +} polyatomic projectiles. This data also reveals significant differences in water cluster yields under bombardment by these three projectiles. The amino acid alanine and the nucleic base adenine in solution have been studied and have been shown to have an effect on the water cluster ion yields observed using an Au{sub 3} {sup +} ion beam.

  18. Effect of ions on the measurement of sulphuric acid in the CLOUD experiment at CERN

    CERN Document Server

    Rondo, L; Ehrhart, S; Schobesberger, S; Franchin, A; Junninen, H; Petäjä, T; Sipilä, M; Worsnop, D R; Curtius, J

    2014-01-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e., with and without the presence of ions, were carried out under precisely controlled conditions. The sulphuric acid concentration was measured with a Chemical Ionization Mass Spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulphuric acid concentration (m/z 97, i.e., HSO4−) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCR) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically invo...

  19. A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks.

    Science.gov (United States)

    Gong, Tingting; Liu, Junfeng; Liu, Xinxin; Liu, Jie; Xiang, Jinkun; Wu, Yiwei

    2016-12-15

    Water soluble CdTe quantum dots (QDs) have been prepared simply by one-pot method using potassium tellurite as stable tellurium source and thioglycolic acid (TGA) as stabilizer. The fluorescence of CdTe QDs can be improved 1.3-fold in the presence of l-cysteine (Cys), however, highly efficiently quenched in the presence of silver or mercury or copper ions. A sensitive and selective sensing platform for analysis of silver, mercury and copper ions has been simply established based on CdTe QDs in the presence of l-cysteine. Under the optimum conditions, excellent linear relationships exist between the quenching degree of the sensing platform and the concentrations of Ag(+), Hg(2+) and Cu(2+) ranging from 0.5 to 40ngmL(-1). By using masking agents of sodium diethyldithiocarbamate (DDTC) for Ag(+) and Cu(2+), NH4OH for Ag(+) and Hg(2+) and 1-(2-Pyridylazo)-2-naphthol (PAN) for Hg(2+) and Cu(2+), Hg(2+), Cu(2+) and Ag(+) can be exclusively detected in coexistence with other two ions, and the detection limits (3σ) were 0.65, 0.063 and 0.088ngmL(-1) for Ag(+), Hg(2+) and Cu(2+), respectively. This effective sensing platform has been used to detection of Ag(+), Hg(2+) and Cu(2+) in water and various drinks with satisfactory results.

  20. PEDOT-Au nanocomposite films for electrochemical sensing of dopamine and uric acid.

    Science.gov (United States)

    Mathiyarasu, J; Senthilkumar, S; Phani, K L N; Yegnaraman, V

    2007-06-01

    In this work, conducting polymer impregnated gold nanoparticles are synthesized through a sequence of chemical and electrochemical routes. The nanocomposite film is characterized using UV-vis, FTIR spectroscopy, and SEM techniques to study the formation of oxidized PEDOT and Au0. The advantages of these films are demonstrated for sensing biologically important compounds such as dopamine and uric acid in presence of excess ascorbic acid, one of the major interferants in the detection of DA and UA (mimicking the physiological conditions), with superior selectivity and sensitivity when compared to the polymer film alone. Simultaneous determination is realized at 115 mV and 246 mV for DA and UA, respectively. The PEDOT matrix is recognized to be responsible for the peak separation (selectivity) while also favouring catalytic oxidation of the above compounds and the nanometer-sized gold particles allow nanomolar sensing of DA and UA (sensitivity). Thus, it is possible to detect nanomolar levels of DA and UA in presence of excess of AA. The combined effect of Au nanoparticles and the PEDOT matrix is rationalized that the Aunano surrounded by a "hydrophobic sheath (PEDOT)" tending to reside within these hydrophobic regions of PEDOT, thus favouring the selectivity and sensitivity of the DA/UA detection. This new generation of nanocomposites is expected to enhance the value of electroanalytical techniques, as it is possible to tune their properties suiting the analytical needs.

  1. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    Science.gov (United States)

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  2. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography].

    Science.gov (United States)

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2012-04-01

    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  3. A Terbium Metal-Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg(2+) Ions in Aqueous Solution.

    Science.gov (United States)

    Xia, Tifeng; Song, Tao; Zhang, Gege; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2016-12-19

    A series of isomorphic lanthanide metal-organic frameworks (MOFs) Ln(TATAB)⋅(DMF)4 (H2 O)(MeOH)0.5 (LnTATAB, Ln=Eu, Tb, Sm, Dy, Gd; H3 TATAB=4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoic acid) have been solvothermally synthesized and structurally characterized. Among these MOFs, TbTATAB exhibits good water stability and a high fluorescence quantum yield. Because mercury ions (Hg(2+) ) have a high affinity to nitrogen atoms, and the space between multiple nitrogen atoms from triazine and imino groups is suitable for interacting with Hg(2+) ions, TbTATAB shows highly selective and sensitive detection of Hg(2+) in aqueous solution with a detection limit of 4.4 nm. Furthermore, it was successfully applied to detect Hg(2+) ions in natural water samples. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular dynamics simulations of triflic acid and triflate ion/water mixtures: a proton conducting electrolytic component in fuel cells.

    Science.gov (United States)

    Sunda, Anurag Prakash; Venkatnathan, Arun

    2011-11-30

    Triflic acid is a functional group of perflourosulfonated polymer electrolyte membranes where the sulfonate group is responsible for proton conduction. However, even at extremely low hydration, triflic acid exists as a triflate ion. In this work, we have developed a force-field for triflic acid and triflate ion by deriving force-field parameters using ab initio calculations and incorporated these parameters with the Optimized Potentials for Liquid Simulations - All Atom (OPLS-AA) force-field. We have employed classical molecular dynamics (MD) simulations with the developed force field to characterize structural and dynamical properties of triflic acid (270-450 K) and triflate ion/water mixtures (300 K). The radial distribution functions (RDFs) show the hydrophobic nature of CF(3) group and presence of strong hydrogen bonding in triflic acid and temperature has an insignificant effect. Results from our MD simulations show that the diffusion of triflic acid increases with temperature. The RDFs from triflate ion/water mixtures shows that increasing hydration causes water molecules to orient around the SO(3)(-) group of triflate ions, solvate the hydronium ions, and other water molecules. The diffusion of triflate ions, hydronium ion, and water molecules shows an increase with hydration. At λ = 1, the diffusion of triflate ion is 30 times lower than the diffusion of triflic acid due to the formation of stable triflate ion-hydronium ion complex. With increasing hydration, water molecules break the stability of triflate ion-hydronium ion complex leading to enhanced diffusion. The RDFs and diffusion coefficients of triflate ions, hydronium ions and water molecules resemble qualitatively the previous findings using per-fluorosulfonated membranes.

  5. Potentiometric Determination of Phytic Acid and Investigations of Phytate Interactions with Some Metal Ions.

    Science.gov (United States)

    Marolt, Gregor; Pihlar, Boris

    2015-01-01

    Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.

  6. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  7. Adsorption of Chromium Ions by Acid Activated Low Cost Carbon-Kinetic,Thermodynamic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    B. R. Venkatraman

    2009-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing metal ions. The process parameters studied include agitation time, initial metal ions concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plot were found to around 30 mg/g at an initial pH of 7.0. The temperature variation study showed that the metal ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the metal ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0 value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of metal ions on BBC involves chemisorption as well as physisorption mechanism.

  8. Aggregation and metal ion extraction properties of novel, silicon-substituted alkylenediphosphonic acids.

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, D. R.; Dietz, M. L.; Chiarizia, R.; Herlinger, A. W.

    2001-05-10

    In conjunction with efforts to develop novel actinide extractants exhibiting solubility in supercritical carbon dioxide, the effect of adding silicon-based functionalities to diphosphonic acids has been investigated. Specifically, a series of silyl-substituted diphosphonic acids has been prepared and characterized, and their aggregation and metal ion extraction properties compared with alkyl-substituted diphosphonic acids, reagents previously demonstrated to be effective extractants of actinides from acidic aqueous media into various organic solvents. In addition, the influence of the number of methylene groups bridging the phosphorus atoms of the diphosphonic acids on their extraction behavior has been investigated. Variations in the extraction behavior of the compounds arising from differences in the number of bridging methylene groups have been shown to be attributable to a combination of factors, in particular, the aggregation state of the ligand, the size of the chelate rings formed upon complexation, the basicity of the phosphoryl group and the relative acidities of the ligands.

  9. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    Science.gov (United States)

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  10. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High Performance Ion Exclusion Chromatography.

    Science.gov (United States)

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-06-01

    An ion exclusion chromatography (IELC) comparison between a conventional ion exchange column and an ultra-high performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H2SO4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer's desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 mM H2SO4 (pH 3.93) eluent at a flow rate of 1 mL min(-1) and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

  11. Analyses on Radiation Effects in Solid Amino Acids Induced by Low Energy Fe~+ Ion Beams

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Radiation effects in Solid samples of L(+)-cysteine and L(+)-cysteine hydroehloride monohydrate induced by 110 keV Fe~+ion implantation were characterized with FTIR, ESR,HPLC and ESI-FTMS.It was validated that solid samples of the irradiated amino acids were damaged to a certain extent,and some new groups or molecular products formed.

  12. Ion-Induced Fragmentation of Amino Acids : Effect of the Environment

    NARCIS (Netherlands)

    Maclot, Sylvain; Capron, Michael; Maisonny, Remi; Lawicki, Arkadiusz; Mery, Alain; Rangama, Jimmy; Chesnel, Jean-Yves; Bari, Sadia; Hoekstra, Ronnie; Schlatholter, Thomas; Manil, Bruno; Adoui, Lamri; Rousseau, Patrick; Huber, Bernd A.

    2011-01-01

    In general, radiation-induced fragmentation of small amino acids is governed by the cleavage of the C-C(alpha) bond. We present results obtained with 300 keV Xe(20+) ions that allow molecules (glycine and valine) to be ionised at large distances without appreciable energy transfer. Also in the prese

  13. A Comparative Study of Lithium Ion to Lead Acid Batteries for use in UPS Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    ion batteries are getting more and more attention for their use in the back-up power systems and UPSs, because of their superior characteristics, which include increased safety and higher gravimetric and volumetric energy densities. This fact allows them to be smaller in size and weight less than VRLA......Uninterruptible power supply (UPS) systems have incorporated in their structure an electrochemical battery which allows for smooth power supply when a power failure occurs. In general, UPS systems are based on lead acid batteries; mainly a valve regulated lead acid (VRLA) battery. Recently, lithium...... batteries, which are currently used in UPS applications. The main purpose of this paper is to analyze how Li-ion batteries can become a useful alternative to present VRLA. In this study, three different electrochemical battery technologies were investigated; two of the most appealing Li-ion chemistries...

  14. Removal Cu(II ions from water using sulphuric acid treated Lagenaria vulgaris Shell (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Ljupković, R.B.

    2011-09-01

    Full Text Available Removal of Cu(II ions from water solutions by sulphuric acid treated Lagenaria vulgaris shell (ccLVB was studied. Batch experiments were done by shaking a fixed mass of biosorbent (1.0 g with 250 cm3 of 50.0 mg dm–3 Cu(II solutions, at pH ranged from 2 up to 6. Metal concentration in the filtrates as well as in the initial solution was determined by flame atomic absorption spectrometry. Results show that efficiency of Cu(II ions uptake by sulphuric acid treated Lagenaria vulgaris shell is significantly greater than raw Lagenaria vulgaris biosorbent. In addition, there is no significant effect of initial pH of solution on Cu(II ions uptake by ccLVB and obtained biosorbent can be applied in a wide range of pH.

  15. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    Science.gov (United States)

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE.

  16. 18-Crown[6]ether functionalized reduced graphene oxide for membrane-free ion selective sensing

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    The focus of this work is on the synthesis of a 1-Aza-18-crown[6]ether functionalized reduced graphene oxide (RGO-crown[6]) with specific K+ binding sites on the RGO surface. Glassy carbon electrodes (GCE) functionalized with RGO-crown[6] weretested for selective potentiometric sensing of K...

  17. Identification of poultry meat-derived fatty acids functioning as quorum sensing signal inhibitors to autoinducer-2 (AI-2).

    Science.gov (United States)

    Widmer, K W; Soni, K A; Hume, M E; Beier, R C; Jesudhasan, P; Pillai, S D

    2007-11-01

    Autoinducer-2 (AI-2) is a compound that plays a key role in bacterial cell-to-cell communication (quorum sensing). Previous research has shown certain food matrices inhibit this signaling compound. Using the reporter strain, Vibrio harveyi BB170, quorum-sensing inhibitors contained in poultry meat wash (PMW) samples were characterized by molecular weight and hydrophobic properties using liquid chromatography systems. Most fractions that demonstrated AI-2 inhibition were 13.7 kDa or less, and had hydrophobic properties. Hexane was used to extract inhibitory compounds from a PMW preparation and the extract was further separated by gas chromatography (GC). Several fatty acids were identified and quantified. Linoleic acid, oleic acid, palmitic acid, and stearic acid were each tested for inhibition at 0.1, 1, and 10 mM concentrations. All samples expressed AI-2 inhibition (ranging from approximately 25% to 99%). Fatty acids, combined in concentrations equivalent to those determined by GC analysis, expressed inhibition at 59.5%, but higher combined concentrations (10- and 100-fold) had inhibition at 84.4% and 69.5%, respectively. The combined fatty acids (100-fold) did not demonstrate a substantial decrease in colony plate counts, despite presenting high AI-2 inhibition. These fatty acids, through modulating quorum sensing by inhibition, may offer a unique means to control foodborne pathogens and reduce microbial spoilage.

  18. PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhiquan; ZHANG Fuyao; ZHANG Yifeng

    1995-01-01

    Pervaporation separation of water-acetic acid mixtures through Poly (AN-co-AA)membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.

  19. New, enhanced phage-based bacterium detection/identification by COnductance-Noise-Sensing-of-Phage-Triggered-Ion-Cascades (CON-SEPTIC)

    CERN Document Server

    Kish, Laszlo B

    2010-01-01

    We point out the reasons for the problems with the reproducibility and sensitivity of the earlier page-based bacterium detection/identification method SEPTIC (Sensing-of-Phage-Triggered-Ion-Cascades). The main weaknesses originate from the DC field/current nature of the method. Then we propose a new principle and method, CON-SEPTIC (COnductance-Noise-Sensing-of-Phage-Triggered-Ion-Cascades), which, similarly to SEPTIC, also utilizes the ion release during phage infection. However CON-SEPTIC, instead of sensing the electrical field (voltage) during phage infection, uses the measurement of the AC conductivity and its fluctuations (conductance noise) to detect slow fluctuations of the ionic concentration due to infected bacteria. In this way, the effects of electrode material, corrosion, drift, ageing, surface imperfections, 1/f potential fluctuations and even thermal noise (with two-frequency or phase drive) are absent and the detection of a single bacterium maybe possible. Moreover, because no electrical poten...

  20. Regioisomers of octanoic acid-containing structured triacylglycerols analyzed by tandem mass spectrometry using ammonia negative ion chemical ionization

    DEFF Research Database (Denmark)

    Kurvinen, J.P.; Mu, Huiling; Kallio, H.

    2001-01-01

    Tandem mass spectrometry based on ammonia negative ion chemical ionization and sample introduction via direct exposure probe was applied to analysis of regioisomeric structures of octanoic acid containing structured triacylglycerols (TAG) of type MML, MLM, MLL, and LML (M, medium-chain fatty acid......; L, long-chain fatty acid). Collision-induced dissociation of deprotonated parent TAG with argon was used to produce daughter ion spectra with appropriate fragmentation patterns for structure determination. Fatty acids constituting the TAG molecule were identified according to [RCO2](-) ions...... in the daughter ion spectra. With the standard curve for ratios of [M - H - RCO2H - 100](-) ions corresponding to each [RCO2](-) ion, determined with known mixtures of sn-1/3 and sn-2 regioisomers of structured TAG, it was possible to determine the proportions of different regioisomers in unknown samples...

  1. Electrospinning of porphyrin/polyvinyl alcohol (PVA) nanofibers and their acid vapor sensing capability.

    Science.gov (United States)

    Jang, Kihun; Baek, Il Woong; Back, Sung Yul; Ahn, Heejoon

    2011-07-01

    Fluorescing 5,10,15,20-terakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP)-embedded and -coated polyvinyl alcohol (PVA) nanofibers were fabricated by using the electrospinning technique. To improve nonpolar solvent solubility of TMPyP/PVA nanofibers, tetraethyl orthosilicate (TEOS) was used as a cross-linking agent. UV-vis spectroscopy showed a strong Q band and two relatively weak Soret bands from the TMPyP/PVA nanofibers, and revealed that the TMPyP molecules were homogeneously loaded to the fibers. Scanning electron microscopy revealed that the electrospun nanofibers had ultrafine structures with an average diameter of ca. 250 nm. X-ray photoelectron spectroscopy confirmed the compositional structure of TMPyP/PVA/TEOS nanofibers and revealed the relative coverage of TMPyP molecules on the surface of TMPyP-embedded and TMPyP-coated PVA/TEOS fibers. For the comparison of the acid vapor sensitivity, TMPyP-embedded PVA/TEOS films, and TMPyP-embedded PVA/TEOS fibers, TMPyP-coated PVA/TEOS fibers were exposed to 1N nitric-acid vapor for 20-60 seconds. Fluorescence microscopy revealed that TMPyP-coated PVA/TEOS nanofibers exhibited better acid-sensing capability than TMPyP-embedded PVA/TEOS nanofibers and films.

  2. The reduction process of phytic acid silver ion system: A pulse radiolysis study

    Science.gov (United States)

    Joshi, Ravi; Mukherjee, Tulsi

    2007-05-01

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag +→Ag 0→Ag 2+→Ag 32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size ( Rav=100 nm).

  3. Heteroaromatic donors in donor-acceptor-donor based fluorophores facilitate zinc ion sensing and cell imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Divya, Kizhumuri P; Jayamurthy, Purushothaman; Mathew, Jomon; Anupama, V N; Philips, Divya Susan; Anees, Palappuravan; Ajayaghosh, Ayyappanpillai

    2012-11-01

    The excited state intra molecular charge transfer (ICT) property of fluorophores has been extensively used for the design of fluorescent chemosensors. Herein, we report the synthesis and properties of three donor–π-acceptor–π-donor (D–π-A–π-D) based molecular probes BP, BT and BA. Two heteroaromatic rings, pyrrole (BP), and thiophene (BT) and a non-heteroaromatic ring N-alkoxy aniline (BA) were selected as donor moieties which were linked to a bipyridine binding site through a vinylic linkage. The heteroaromatic systems BP and BT perform selective and ratiometric emission signalling for zinc ions whereas the non-heteroaromatic probe BA does not. The advantages of the D–π-A–π-D design strategy in the design of ICT based probes for the selective fluorescent ratiometric signalling of zinc ions in biological media is discussed. Further, the use of BP, BT and BA for imaging Zn(2+) ions from MCF-7 cell lines is demonstrated.

  4. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  5. Complexation of Nickel Ions by Boric Acid or (Poly)borates.

    Science.gov (United States)

    Graff, Anais; Barrez, Etienne; Baranek, Philippe; Bachet, Martin; Bénézeth, Pascale

    2017-01-01

    An experiment based on electrochemical reactions and pH monitoring was performed in which nickel ions were gradually formed by oxidation of a nickel metal electrode in a solution of boric acid. Based on the experimental results and aqueous speciation modeling, the evolution of pH showed the existence of significant nickel-boron complexation. A triborate nickel complex was postulated at high boric acid concentrations when polyborates are present, and the equilibrium constants were determined at 25, 50 and 70 °C. The calculated enthalpy and entropy at 25 °C for the formation of the complex from boric acid and Ni(2+) ions are respectively equal to (65.6 ± 3.1) kJ·mol(-1) and (0.5 ± 11.1) J·K(-1)·mol(-1). The results of this study suggest that complexation of nickel ions by borates can significantly enhance the solubility of nickel metal and nickel oxide depending on the concentration of boric acid and pH. First principles calculations were investigated and tend to show that the complex is thermodynamically stable and the nickel cation in solution should interact more strongly with the [Formula: see text] than with boric acid.

  6. Negative Ion Photoelectron Spectroscopy Reveals Thermodynamic Advantage of Organic Acids in Facilitating Formation of Bisulfate Ion Clusters: Atmospheric Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Lin, Wei; Deng, Shihu; Zhang, Jian; Zheng, Weijun; Paesani, Francesco; Wang, Xue B.

    2013-03-07

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. Such findings have stimulated theoretical studies with the aim of understanding interaction of organic acids with common aerosol nucleation precursors like bisulfate (HSO4-). In this Letter, we report a combined negative ion photoelectron spectroscopic and theoretical investigation of molecular clusters formed by HSO4- with succinic acid (SUA, HO2C(CH2)2CO2H), HSO4-(SUA)n (n = 0-2), along with HSO4-(H2O)n and HSO4-(H2SO4)n. It is found that one SUA molecule can stabilize HSO4- by ca. 39 kcal/mol, triple the corresponding value that one water molecule is capable of (ca. 13 kcal/mol). Molecular dynamics simulations and quantum chemical calculations reveal the most plausible structures of these clusters and attribute the stability of these clusters due to formation of strong hydrogen bonds. This work provides direct experimental evidence showing significant thermodynamic advantage by involving organic acid molecules to promote formation and growth in bisulfate clusters and aerosols.

  7. Fast removal of heavy metal ions and phytic acids from water using new modified chelating fiber

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Jin Nan Wang; Ying Meng; Ai Min Li

    2012-01-01

    The graft copolymerization of acrylic acid (AA) onto polyethylene glycol terephthalate (PET) fiber initiated by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET fiber (PET-AA) was done by changing the carboxyl group into acylamino group through the reaction with dimethylamine.The modified chelating fiber (NDWJN 1) was characterized using elementary analysis,SEM and FT-IR spectroscopy.Adsorption kinetic curves indicated that NDWJN1 could fast remove heavy metal ions and phytic acids from water effectively.Furthermore,batch kinetic studies indicated that heavy metal ions adsorbed to NDWJN1 could be fitted well by both pseudo-first-order and pseudo-second-order adsorption equations,but the intra-particle diffusion plaved a dominant role in the adsorption of phvtic acids.

  8. Visual sensing of fluoride ions by dipyrrolyl derivatives bearing electron-withdrawing groups

    Indian Academy of Sciences (India)

    Tamal Ghosh; Bhaskar G Maiya

    2004-01-01

    Two new, easy-to-prepare dipyrrolyl derivatives endowed with electron-withdrawing quinone or dicyano functionalities in their architecture permit the detection of fluoride ions under visual (naked-eye) as well as optical (absorption and fluorescence) and electrochemical conditions in organic solvents.

  9. A novel cyanide ion sensing approach based on Raman scattering for the detection of environmental cyanides.

    Science.gov (United States)

    Yan, Fei; Gopal Reddy, C V; Zhang, Yan; Vo-Dinh, Tuan

    2010-09-01

    This paper describes a direct optical approach based on Raman scattering for selective and sensitive detection of cyanide ions in aqueous environment without requiring time-consuming sample pretreatment and the formation of hydrogen cyanide. Due to the strong affinity between copper (I) and cyanide ion, evaporated copper (I) iodide (CuI) thin films are shown to be excellent substrates for selective recognition of free cyanide ions in aqueous matrices. The amount of cyanide ion retained by the copper (I) in the CuI thin films reflects its actual concentration in tested samples, and the subsequent Raman measurements of the substrate are shown to be capable of detecting toxic cyanide content at levels under international drinking water standard and environmental regulatory concentrations. Measurements obtained from the same batch of evaporated CuI thin films (approximately 100-nm thickness) show excellent linearity over a variety of cyanide concentrations ranging from 1.5 microM to 0.15 mM. This detection method offers the advantage of selectively detecting cyanides causing a health hazard while avoiding detection of other common interfering anions such as Cl-, Br-, PO4(3-), SO4(2-), NO2-, S2- and SCN-. Coupled with portable Raman systems that are commercially available, our detection approach will provide on-site monitoring capability with little sample preparation or instrument supervision, which will greatly expedite the assessment of potential environmental cyanide risks. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  11. In situ separation of lactic acid from fermentation broth using ion exchange resins.

    Science.gov (United States)

    Ataei, Seyed Ahmad; Vasheghani-Farahani, Ebrahim

    2008-11-01

    Lactic acid fermentation is an end product inhibited reaction. In situ separation of lactic acid from fermentation broth using ion exchange resins was investigated and compared with conventional fermentation system. Amberlite resin (IRA-400, Cl-) was used to separate lactic acid from fermentation broth and pH was controlled online with an automatic pH controller. The effect of process variables on lactic acid production by Lactobacillus casei in whey permeate was studied. The maximum productivity was obtained at pH=6.1, T=37 degrees C and impeller speed=200 rpm. The maximum concentration of lactic acid at optimum condition was found to be 37.4 g/L after 38 h of fermentation using in situ separation system. The productivity of in situ separation system was five times increased in comparison with conventional system.

  12. Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction

    Institute of Scientific and Technical Information of China (English)

    ZHONG Fu-jin; CHEN Xiao-qing; ZHANG Shu-chao; LI Yue-ping

    2007-01-01

    A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate,glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.

  13. The study on the methods of testing the sulphuric acid and the phosphoric acid in the air in workshops at the same time by chromatography of ions

    Institute of Scientific and Technical Information of China (English)

    Deng-Yan Long; Yan-Ling Huang; Ying-Ying Zhao

    2015-01-01

    Objective:To discuss the method and result of testing the sulphuric acid and the phosphoric acid in the air in workshops at the same time by chromatography of ions.Method:to measure the sulphuric acid and the phosphoric acid in the air in workshops by adopting chromatography of ions. During the experiment, collect the sulphuric acid and the phosphoric acid in the air by using porous glass plates and put them into ultrapure water, or by using microporous filtering film, adopting ultrasonic elution with ultrapure water, testing them with ion chromatograph after filtering through a 0.2 μm microporous filtering film. The operating conditions of chromatography of ions includes Type Ionpac AS19 separator column (4×250 mm), ASRS300 (4 mm) anion suppressor, Type Ionpac AG19 guard column, KOH eluent and conductivity detector.Result: The testing the sulphuric acid and the phosphoric acid at the same time through chromatography of ions turns out high resolution, good linearity with the correlation over 0.999. The accuracy can be controlled between 1.6%-5.5% under the testing; the percentage of accuracy can be guaranteed between 92%-107% with high sampling and analysis efficiency.Conclusion: The method can turn out ideal results by testing the sulphuric acid and the phosphoric acid at the same time. It is simple operations, Sensitive and accurate. It is worth being used widely.

  14. Influence of Acid Etching on Wettability of Ion-exchanged Aluminosilicate Float Glass

    Directory of Open Access Journals (Sweden)

    LI Xiaoyu

    2016-12-01

    Full Text Available The influence of acid etching time on wettability of ion-exchanged aluminosilicate float glass was investigated. The contact angle, roughness and surface composition were measured. The results show that the contact angle increases to a maximum value in the first 7 min and then decreases with the corrosion time. The main reason that cause the change of the contact angle is the change of surface roughness and the content of fluorine atom. The contact angle on the tin side is always larger than that on the air side which is caused by the tin ions on the tin side.

  15. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Petru, Filip [“C.D. Nenitescu” Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, Bucharest 71141 (Romania); Humelnicu, Ionel [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Mateescu, Marina [National R and D Institute for Chemistry and Petrochemistry, Splaiul Independenţei No. 202, Bucharest 060021 (Romania); Militaru, Ecaterina [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania)

    2014-10-15

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  16. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion.

    Science.gov (United States)

    Hou, Yuxin; Lu, Qiujun; Deng, Jianhui; Li, Haitao; Zhang, Youyu

    2015-03-25

    We propose a simple, economical, and one-pot method to synthesize water-soluble functionalized fluorescent carbon dots (C-Dots) through electrochemical carbonization of sodium citrate and urea. The as-prepared C-Dots have good photostability and exhibit a high quantum yield of 11.9%. The sizes of the C-Dots are mainly distributed in the range of 1.0-3.5 nm with an average size of 2.4 nm. It has been further used as a novel label-free sensing probe for selective detection of Hg(2+) ions with detection limit as low as 3.3 nM. The detection linear range is 0.01-10 μM. The as-prepared C-Dots are also successfully applied for the determination of Hg(2+) in real water samples.

  17. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    Science.gov (United States)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  18. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    Science.gov (United States)

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  19. Development of Nile red-functionalized magnetic silica nanoparticles for cobalt ion sensing and entrapping

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tao; Lv, Yanlin; Liu, Heng; Lv, Yi; Tian, Zhiyuan, E-mail: zytian@ucas.ac.cn [University of Chinese Academy of Sciences (UCAS), School of Chemistry and Chemical Engineering (China)

    2013-09-15

    A new type of hybrid nanoparticles (NPs) with combined magnetic and fluorescent properties in single particle was developed by incorporating magnetic silica NPs with highly fluorescent Nile red dyes. These NPs clearly exhibit Co{sup 2+} ion entrapping ability in aqueous milieu and Co{sup 2+}-induced fluorescence enhancement features with high selectivity owing to the Co{sup 2+}-triggered inhibition on the photoinduced electron transfer progress in the efficient fluorophore (Nile red derivative). Moreover, these dual-functional NPs display superparamagnetic features and the motion of these fluorescent NPs can be induced by the application of an external magnetic field, enabling a facile separation/removal of toxic Co{sup 2+} ion from the aqueous milieu and real-time monitoring via fluorescence measurements.

  20. Determination of haloacetic acids concentrations in hospital effluent after chlorination by ion chromatography

    Institute of Scientific and Technical Information of China (English)

    SUN Ying-xue; GU Ping

    2007-01-01

    The ion chromatography combined solid phase extraction (SPE) method was developed for the analysis of low concentration haloacetic acids(HAAs),a calss of disinfection by-products formed as a result of chlorination of hospital wastewater. The monitored HAAs included monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, dibromoacetic acid and trichloroacetic acid. The method employed a sodium hydroxide eluent at a flow rate of 0.8 ml/min, electrolytically generated gradients, and suppressed conductivity detection. To analyze the HAAs in real hospital wastewater samples, C18 pretreatment cartridge was utilized to reduce samples' turbidity. Preconcentration with SPE and matrix elimination with treatment cartridges were investigated and were found to be able to obtain acceptable detection limits. Linearity, repeatability and detection limits of the above method were evaluated. The detection limits of monobromoacetic acid and dibromoacetic acid were 2.61 μg/L and 1.30 μg/L respectively, and the other three are ranging from 0.48 to 0.82 μg/L under 25-fold preconcentration. When the above optimization procedure was applied to three hospital wastewater samples with different treatment processes in Tianjin, it was found that the dichloroacetic acid is the major compound, and the growth ratios of the HAAs after disinfection by sodium hypochlorite were 91.28%, 63.61% and 79.50%, respectively.

  1. Kinetics of Adsorption of Ferrous Ion onto Acid Activated Carbon from Zea Mays Dust

    Directory of Open Access Journals (Sweden)

    P. K. Baskaran

    2011-01-01

    Full Text Available The batch removal of ferrous ion from aqueous solution using low cost adsorbents such as zea mays dust carbon(ZDC under different experimental conditions were investigated in this study. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plot were found to 37.17, 38.31, 39.37 and 40.48 mg/g. The temperature variation study showed that the ferrous ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the ferrous ion solutions. The Langmuir and Freundlich adsorption isotherms obtained positive ΔH0 value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of ferrous ion on ZDC involves physisorption mechanism.

  2. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    Science.gov (United States)

    2015-01-22

    sourcing, or in some ion trap applications, RF resonant detection. The walls of the high aspect slots and undercuts used to establish electrode...voltage test of these prototypes under vacuum did not result in any trace of breakdown (i.e. no observation of sparks or resonance jumps) even after...holes are characteristically conical . This geometry provides two benefits: it minimizes any limitation to the numerical aperture of the optics, and it

  3. Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    Kazuaki ITO; Kazuhiko TANAKA; Jun SAKAMOTO; Kazuya NAGAOKA; Yohichi TAKAYAMA; Takashi KANAHORI; Hiroshi SUNAHARA; Tsuneo HAYASHI; Shinji SATO; Takeshi HIROKAWA

    2012-01-01

    The analysis of seven aliphatic carboxylic acids ( formic,acetic,propionic,iso-butyric,n-butyric,iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid,perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection.The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column ( TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column ( TSKgel Super IC-A/C ).Good separation was performed on the TSKgel SCX in shorter retention times.For the TSKgel Super IC-A/C,peak shape of the acids was sharp and symmetrical in spite of longer retention times.In addition,the mutual separation of the acids was good except for iso- and n-butyric acids.The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series),lower concentrations of PFBA and sulfuric acid as eluents,non-suppressed conductivity detection and UV detection at 210 nm.This analysis was applied to anaerobic digestion process waters.The chromatograms with conductivity detection were relatively simpler compared with those of UV detection.The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  4. Acid-sensing ionic-channel functional expression in the vestibular endorgans.

    Science.gov (United States)

    Vega, Rosario; Rodríguez, Uxmal; Soto, Enrique

    2009-10-09

    In the vestibular system, the electrical discharge of the afferent neurons has been found to be highly sensitive to external pH changes, and acid-sensing ionic-channels (ASIC) have been found to be functionally expressed in afferent neurons. No previous attempt to assay the ASIC function in vestibular afferent neurons has been done. In our work we studied the electrical discharge of the afferent neuron of the isolated inner ear of the axolotl (Ambystoma tigrinum) to determine the participation of proton-gated currents in the postransductional information processing in the vestibular system. Microperfusion of FMRF-amide significantly increased the resting activity of the afferent neurons of the semicircular canal indicating that ASIC currents are tonically active in the resting condition. The use of ASIC antagonists, amiloride and acetylsalicylic acid (ASA), significantly reduced the vestibular-nerve discharge, corroborating the idea that the afferent neurons of the vestibular system express ASICs that are sensitive to amiloride, ASA, and to FMRF-amide. The sensitivity of the vestibular afferent-resting discharge to the microperfusion of ASIC acting agents indicates the participation of these currents in the establishment of the afferent-resting discharge.

  5. Drosophila Pheromone-Sensing Neurons Expressing the ppk25 Ion Channel Subunit Stimulate Male Courtship and Female Receptivity

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W.

    2014-01-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  6. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  7. Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion

    Science.gov (United States)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2011-01-01

    Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.

  8. Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients.

    Science.gov (United States)

    Deng, Jingjing; Yu, Ping; Yang, Lifen; Mao, Lanqun

    2013-02-19

    Direct selective and sensitive sensing of pyrophosphate ion (PPi) in synovial fluid of arthritis patients is of great importance because of its crucial roles in the diagnosis and therapy of arthritic diseases. In this study, we demonstrate a sensitive and selective method for PPi sensing in synovial fluid of arthritis patients with gold nanoparticles (Au-NPs) as the signal readout based on the competitive coordination chemistry of Cu(2+) between cysteine and PPi. Initially, Au-NPs stabilized with cysteine are red in color and exhibit absorption at 519 nm in the UV-vis spectrum. The addition of an aqueous solution of Cu(2+) to the Au-NPs dispersion containing cysteine causes the aggregation of Au-NPs, resulting in the wine red-to-blue color change and the appearance of a new absorption at 650 nm in the UV-vis spectrum of the Au-NPs dispersion. The subsequent addition of PPi to the Au-NPs aggregation well solubilizes the aggregated Au-NPs with the changes in both the color and the UV-vis spectrum of the Au-NPs dispersion. These changes are ascribed to the higher coordination reactivity between Cu(2+) and PPi than that between Cu(2+) and cysteine. On the basis of this, the concentration of PPi can be visualized with the naked eyes through the blue-to-wine red color change of the Au-NPs dispersion and quantitatively determined by UV-vis spectroscopy. Under the optimized conditions, the ratio of the absorbance at 650 nm (A(650)) to that at 519 nm (A(519)) shows a linear relationship with PPi concentration within a concentration range from 130 nM to 1.3 mM. The method demonstrated here is highly sensitive, free from the interference from other species in the synovial fluid, and is thus particularly useful for fast and simple clinic diagnosis of arthritic diseases.

  9. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Lei, E-mail: lilei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.

  10. Fermentation and recovery of glutamic acid from palm waste hydrolysate by Ion-exchange resin column.

    Science.gov (United States)

    Das, K; Anis, M; Azemi, B M; Ismail, N

    1995-12-05

    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.

  11. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    Science.gov (United States)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  12. Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent.

    Science.gov (United States)

    Memon, Saima Q; Hasany, S M; Bhanger, M I; Khuhawar, M Y

    2005-11-01

    A simple and reliable method has been developed using polymeric material containing phthalic acid as a chelating agent to concentrate ultratrace amounts of lead ions in aqueous solutions. After characterization by CHN, IR, and thermal studies, the static and dynamic sorption behavior of Pb(II) ions onto new synthetic resin has been investigated. The sorption has been optimized with respect to pH, shaking speed, and contact time between the two phases. Maximum sorption is achieved from solution of pH 5-8 after 10 min agitation time. The lowest concentration for quantitative recovery is 5.8 ng cm(-3) with a preconcentration factor of approximately 850. The kinetics of sorption follows the first-order rate equation with the rate constant k=0.58+/-0.04 min(-1). The variation of the equilibrium constant K(c) with temperature between 10 and 50 degrees C yields values of DeltaH, 52.4+/-1.65 kJmol(-1), DeltaS, 186+/-5.21 Jmol(-1)K(-1), and DeltaG(303K), -4.15+/-0.002 kJmol(-1). The sorption data of Pb(II) ions in the concentration range from 2.41x10(-6) to 1.44x10(-4) molL(-1) follows the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms at all temperatures investigated. The sorption of Pb(II) ions onto synthesized resin in the presence of common anions and cations has also been measured. The possible sorption mechanism of Pb(II) ions onto phthalic acid modified XAD-16 is also discussed. The sorption procedure is utilized to preconcentrate Pb(II) ions prior to their determination in automobile exhaust particulates by atomic absorption spectrometry using direct and standard addition methods.

  13. Preparation of Iminodiacetic Acid-Polyethylene Glycol for Immobilized Metal Ion Affinity Partitioning

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The synthesis route was investigated and optimized for the preparation of iminodiacetic acid polyethylene glycol (IDA-PEG) for immobilized metal ion affinity partitioning in aqueous two-phaze systems. IDA PEG was synthesized from PEG in two steps by the reaction of iminodiacetic acid with a monosubetituted derivative of epichlorohydrin-activated PEG. The Cu2+ content combined with IDA-PEG was determined by atomic absorp tion spectrometry as 0.5 mol.mol-1 (PEG). Furthermore, the affinity partitioning behavior of lactate dehydrogenase in polyethylene glycol/hydroxypropyl starch aqueous two-phaze systems was studied to clarify the affinity effect of the Cu(Ⅱ)-IDA-PEG.

  14. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    Science.gov (United States)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  15. Determination of Precipitation Limit of Zn(II Ion with (2S-2-Aminobutanedioic Acid

    Directory of Open Access Journals (Sweden)

    Fatmir Faiku

    2009-01-01

    Full Text Available Problem statement: In this study we examined the precipitation of Zn(II ion in water solutions of ZnSO4.7H2O (1.10-2 and 5.10-3 mol L-1 with (2S-2-aminobutanedioic acid (1.10--1.10-3 mol L-1 in constant ionic strength of 0.6 mol L-1 NaCl. We have determined the concentration region where we have found the clear solution and solid phase. The solid phase is analyzed by IR spectroscopy. Approach: From precipitation diagrams of zinc with (2S-2-aminobutanedioic acid in ionic force 0.6 mol L-1 NaCl, we have found that during decreasing the concentration (2S-2-aminobutanedioic acid in case of constant concentration of Zn(II the limit of precipitation is shifted to lower values of pH. Results: Also from precipitation diagrams we can see that when the concentration of zinc increases, in case of constant concentration of (2S-2-aminobutanedioic acid the limit of precipitation will shift at lower values of pH. Conclusion: From the IR spectroscopic analysis we can conclude that Zn (II ion has reacted with (2S-2-aminobutanedioic acid.

  16. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  17. Molecular alteration and carbonization of aspartic acid upon N{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, F.Z. E-mail: biomater@mail.tsinghua.edu.cncuifz@sun.ihep.ac.cn; Sun, S.Q.; Zhang, D.M.; Ma, Z.L.; Chen, G.Q

    2000-06-02

    Structural changes of aspartic acid (Asp) irradiated by nitrogen ions of 30 keV were studied using Fourier transform infrared (FTIR) spectroscopy. Significant decreases of the intensities of COO{sup -}, NH{sub 3}{sup +}, COOH and CH{sub 2} vibrations in the FTIR spectra, compared with those of unirradiated Asp, were observed for the sample irradiated at the fluence of 1x10{sup 16} ions/cm{sup 2}. The decrease rates of the intensities of COO{sup -}, NH{sub 3}{sup +}, COOH and CH{sub 2} vibrations with respect to the increasing irradiation fluences up to 4x10{sup 16} ions/cm{sup 2} were different. The results were attributable to the nonstoichiometrical desorption of corresponding volatile species such as H{sub 2}, NH{sub 3}{sup +} and CO{sub 2}. The radiolysis residue of Asp after irradiation at a high fluence of 1x10{sup 17} ions/cm{sup 2} was analyzed and fatty acid was detected.

  18. Amino acids and metal ions protect endothelial cells from lethal injury

    Energy Technology Data Exchange (ETDEWEB)

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  19. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongtao [College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou (China); Laboratoire de Geochimie des Eaux, Universite Paris-Diderot - IPGP, Case 7052, Batiment Lamarck, 75205 Paris Cedex 13 (France); Becquer, Thierry [UMR 137 Biodiversite et Fonctionnement des Sols, IRD/Universites Paris VI and XII, SupAgro - Bat. 12, 2 Place Viala, 34060 Montpellier Cedex 2 (France); Dai Jun [College of Natural Resources and Environment, South China Agricultural University, 510642 Guangzhou (China); Quantin, Cecile [UMR 8148 IDES, Universite Paris Sud XI - CNRS, Bat. 504, 91405 Orsay Cedex (France); Benedetti, Marc F. [Laboratoire de Geochimie des Eaux, Universite Paris-Diderot - IPGP, Case 7052, Batiment Lamarck, 75205 Paris Cedex 13 (France)], E-mail: benedetti@ipgp.fr

    2009-04-15

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. - First evidence of the real free metal ion concentrations in acid mine drainage context in tropical systems.

  20. SODIUM ION-DEPENDENT AMINO-ACID-TRANSPORT IN MEMBRANE-VESICLES OF BACILLUS-STEAROTHERMOPHILUS

    NARCIS (Netherlands)

    HEYNE, RIR; DEVRIJ, W; CRIELAARD, W; KONINGS, WN

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (K(t) = 1.0 mM) and L-leucine (K(t) = 0.4 mM). In contrast, the Na+-H+-L-glutamate transport system has a high affinity for sodium io

  1. Novel additives for the separation of organic acids by ion-pair chromatography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper proposes the use of novel surfactant additives for the separation of organic acids by ion-pair chromatography and studies the influences of surfactants on the chromatographic separation behaviors.Researches have been carried out on both silica gel matrix and polymer supporters in order to compare the two ordinary kinds of stationary phases,and the phenomenon is similar. Separation is based on differences in the stabilities of analyte-additive complexes in solution.Retention times of analytes c...

  2. Influence of the Functionalization Degree of Acidic Ion-Exchange Resins on Ethyl Octyl Ether Formation

    OpenAIRE

    Guilera, J.; Hanková, L. (Libuše); Jeřábek, K.; E Ramírez; Tejero, J.

    2014-01-01

    Ethyl octyl ether (EOE) can be obtained by the ethylation of 1-octanol by means of ethanol or diethyl carbonate over acidic ion-exchange resins. However, EOE formation has to compete with the less steric demanding formation of diethyl ether, by-product obtained from ethanol dehydration or diethyl carbonate decomposition. In the present work, the influence of the resin functionalization degree on EOE formation has been evaluated. A series of partially sulfonated resins were prepared by the sul...

  3. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    Science.gov (United States)

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-02

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  4. Quinazolinone derivative: Model compound for determination of dipole moment, solvatochromism and metal ion sensing

    Science.gov (United States)

    Al-Sehemi, Abdullah G.; Pannipara, Mehboobali; Kalam, Abul

    2017-01-01

    A dihydroquinazolinone derivative 2-(2,4-Dimethoxy-phenyl)-2,3-dihydro-1H-quinazolin-4-one (1) was synthesized and characterized by 1H NMR, 13C NMR and FT-IR and its spectral, photophysical, intramolecular charge transfer characteristics were studied by absorption and emission spectroscopy. The compound exhibits significant changes in their photophysical properties depending on the solvent polarity. The observed bathochromic emission band and difference in Stokes shift on changing the polarity of the solvents clearly demonstrate the highly polar character of the excited state, which is also supported by the enhancement of dipole moment of the molecule upon photoexcitation. Solvatochromic shift methods based on Lippert-Mataga, Bakhshiev-Kawski and Reichardt's correlations were applied to calculate the ground, excited and change in dipole moments. The effect of solute-solvent interactions on compound 1 was studied using multi-parameter solvent polarity scales proposed by Kamlet-Taft and Catalan. The interactions of various metal ions on compound 1 were also studied using steady state fluorescence measurements. The emission profile reveals that it acts as on-off type fluorescent chemosensor for selective and sensitive detection of Hg2 + ions. Complexation stoichiometry and mechanism of quenching were determined from Benesi-Hildebrand and Stern-Volmer plot.

  5. Silica nanoparticles functionalized with polyamidoamine (PAMAM) dendrimers as platforms for photoluminescence (PL) sensing of copper and cyanide ions.

    Science.gov (United States)

    Gerrans, Kateryna; Luhrs, Alicia; Feider, Clara; Margerum, Lawrence D

    2016-05-15

    Functionalized nanoparticles for photoluminescence (PL) applications are a promising technology for biomedical imaging and as sensors for small molecules. This work presents a new method to modify silica nanoparticles (SNP) using the bifunctional linker 1,1'-carbonyldiimidazole (CDI) with a series of polyamidoamine (PAMAM) dendrimer molecules followed by grafting of fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate (RITC) to create platforms for photoluminescence (PL) sensors. A dendrimer size and charge-variable response to only copper(II) ions confirmed the prediction of a selective turn-off sensor via proximity quenching. Both dye density and Cu(2+) quenching efficiency peaked with SNP-dendrimer generation 4 (64 terminal amines). In addition, changing the terminal dendrimer arms to carboxylic acid end groups increased the copper quenching suggesting that more metal ion binding sites were created in close proximity to the dyes. Of the small anions tested for a turn-off sensor, only cyanide ion fully restored the PL when reaching a 2:1 CN(-):Cu(2+) ratio, while EDTA was not as effective at the same ratio. Therefore, dendrimer size and surface charge on the nanoparticles controlled the dye loading and copper quenching efficiency, while creating multiple binding sites for cyanide over other metal binding anions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    Science.gov (United States)

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems.

  7. Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs

    Directory of Open Access Journals (Sweden)

    Rosario Pignatello

    2014-05-01

    Full Text Available Amphiphilic ion-pairs of kanamycin (KAN were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12, at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC and powder X-ray diffractometry (PXRD studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers.

  8. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA

    CERN Document Server

    Wu, Yuan-Yan; Zhang, Jin-Si; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Cobalt Hexammine ion (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive.However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become internal binding into the deep major groove and consequently cannot form the evident ion-bridge between adjac...

  9. Multi-shell model of ion-induced nucleic acid condensation

    Science.gov (United States)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  10. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    Science.gov (United States)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2016-10-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  11. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    Science.gov (United States)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2017-01-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  12. Template copolymerization to control site structure around metal ions: Applications towards sensing and gas storage and release

    Science.gov (United States)

    Mitchell-Koch, Jeremy T.

    The development of functional materials for sensing and gas storage and release is useful in a number of chemical and biological applications. Investigating function of molecularly imprinted polymers (MIP), often used for these purposes, has relied on circumstantial evidence because direct examination of immobilized sites is not possible. Described in this dissertation is the design, synthesis, characterization and function studies of materials synthesized by template copolymerization methods. Metal ions exhibit unique spectroscopic properties and their utilization makes site examination more feasible. Ligand binding modulates these properties such that the event can be measured by spectroscopy. The metal ion's secondary coordination environment can also be tuned to increase or decrease function of the material. In Chapter Two the utilization of template copolymerization to immobilize a europium-containing compound for the detection of volatile organic compounds is described. Luminescence of the immobilized complex is quenched in the presence of volatile organic compounds (VOC). The quenching effect is dependent on concentration of VOC and the nature of polymeric host. Chapters Three and Four describe the development of materials for the photolytic release of nitric oxide (NO). In Chapter Three, a novel manipulation of the immobilized complex is employed to produce binding sites that contain ligands covalently embedded into the host in a position to bind the metal ion upon NO release in order to block rebinding. Incompatible binding affinities of the iron-containing templates made it impossible to study NO photo-release from this material. Second-row transition metals are more compatible with NO binding, and Chapter Four describes a ruthenium salen-containing polymer that releases NO in response to light. Additionally, transfer of NO to a metalloporphyrin and myoglobin has been achieved. This is the first report of photolytic heterogeneous NO transfer by a material

  13. Effects of acidity, temperature and surfactants on electrochemical behavior of V5+ ion in sulfuric acid solutions

    Institute of Scientific and Technical Information of China (English)

    易清风; 刘云清; 赵红钢; 周秀林; 刘小平; 宋和付

    2003-01-01

    The effects of sulfuric acid concentration,reaction temperature,potential-scanning rate and surfactants on electrochemical behavior of V5+ ion on platinum electrodes were investigated.In voltammetric curves of V5+ ion there are two reduction peaks corresponding to reductions of V5+ to V4+(R2)and V5+ to V3+(R1),which are irreversible and quasi-reversible processes respectively.Oxidation peak of V3+ to V5+ is intensively affected by pH values on the electrode surface and scanning-potential rates.Only stronger acidity on the electrode surface and faster scanning-potential rates can lead to appearance of this oxidation peak.The neutral surfactant(PCBE)and cationic surfactant(CTAB)retard the V5+ electroreduction.The anionic surfactant(SDS),even at a very low concentration,increases the currents of both the reduction peaks R1 and R2,and the oxidation peak involves with the oxidation of H2 to H+.

  14. Study on elution ability of salicylic acid on ion exchange resins in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Ping YUAN; Jianguo CAI; Junjie GONG; Xiu DENG

    2009-01-01

    The elution ability of salicylic acid on ion exchange resins in supercritical carbon dioxide has been studied. Some factors influencing elution recovery,including entrainer, temperature, pressure and the flow rate of supercritical fluid CO2 are discussed in this work.The addition of a small amount of entrainer, such as ethanol, triethanolamine and their mixture to supercritical CO2 can cause dramatic effects on the elution ability. The results show that the salicylic acid can be only slightly eluted from the resin with supercritical CO2 alone with temperatures ranging from 307.15 to 323.15K and pressures ranging from 10 to 30MPa. Meanwhile, with the same T, P conditions, 40.58% and 73.08% salicylic acid can be eluted from the ion exchange resin with ethanol and ethanol + triethanolamine as the entrainer, respec-tively. An improved PR equation of state with VDWl mixing rules is used to calculate the elution recovery of salicylic acid in supercritical CO2 and the results agree well with the experimental data.

  15. The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments.

    Science.gov (United States)

    Ates, Ayten; Hardacre, Christopher

    2012-04-15

    Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5M NH(4)NO(3)) and acid leaching using 1M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH(3)-TPD and TGA. Ion-exchange with NH(4)(+) of natural zeolites results in the exchange of the Na(+) and Ca(2+) cations and the partial exchange of the Fe(3+) and Mg(2+) cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation.

  16. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  17. Design and characterization of a novel sensor combined imaging and zinc ion sensing

    Science.gov (United States)

    Wang, Jian; Wang, Lili

    2012-05-01

    A novel fluorescent sensor for Zn(II) detection and imaging is developed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) and Rhodamine B (RB) in a sol-gel film on an end face of a gradient index (GRIN) lens rod which is tightly connected with an imaging fiber. This technique has high-quality imaging capabilities for observing remote sample while measuring Zn(II). The RB and PAN employed in combination as the indicator for zinc-sensing is much cheaper than that of the other zinc-sensitive fluorescent dyes. The sol is prepared by base catalyzed hydrolysis of tetraethylorthosilicate (TEOS) with the addition of 3-glycidyloxypropyltrimethoxysilane (GLYMO) and 3-aminopropyltriethoxysilane (APTES), which is more suitable for Zn(II) detection. The sensor has the linear range of Zn(II) from 0.1 to 1 mmol/L. Simultaneously, it has the capabilities of real-time imaging with the whole system's resolution of 18.73 line pairs/mm. This bi-functional sensor has potential applications in in situ biosensing and other remote measurements.

  18. Dynamic Covalent Chemistry-based Sensing: Pyrenyl Derivatives of Phenylboronic Acid for Saccharide and Formaldehyde

    Science.gov (United States)

    Chang, Xingmao; Fan, Jiayun; Wang, Min; Wang, Zhaolong; Peng, Haonan; He, Gang; Fang, Yu

    2016-01-01

    We synthesized two specially designed pyrenyl (Py) derivatives of phenylboronic acid, PSNB1 and PSNB2, of which PSNB2 self-assemble to form dynamic aggregate in methanol-water mixture (1:99, v/v) via intermolecular H-bonding and pi-pi stacking. Interestingly, the dynamic aggregate shows smart response to presence of fructose (F) as evidenced by fluorescence color change from green to blue. More interestingly, the fluorescence emission of the resulted PSNB2-F changes from blue to green with the addition of formaldehyde (FA). The reason behind is formation of a PSNB2-F dimer via FA cross-linking. Based upon the reactions as found, sensitive and fast sensing of F and FA in water was realized, of which the experimental DLs could be significantly lower than 10 μM for both analytes, and the response times are less than 1 min. It is believed that not only the materials as created may have the potential to find real-life applications but also the strategy as developed can be adopted to develop other dynamic materials. PMID:27498703

  19. Dynamic Covalent Chemistry-based Sensing: Pyrenyl Derivatives of Phenylboronic Acid for Saccharide and Formaldehyde

    Science.gov (United States)

    Chang, Xingmao; Fan, Jiayun; Wang, Min; Wang, Zhaolong; Peng, Haonan; He, Gang; Fang, Yu

    2016-08-01

    We synthesized two specially designed pyrenyl (Py) derivatives of phenylboronic acid, PSNB1 and PSNB2, of which PSNB2 self-assemble to form dynamic aggregate in methanol-water mixture (1:99, v/v) via intermolecular H-bonding and pi-pi stacking. Interestingly, the dynamic aggregate shows smart response to presence of fructose (F) as evidenced by fluorescence color change from green to blue. More interestingly, the fluorescence emission of the resulted PSNB2-F changes from blue to green with the addition of formaldehyde (FA). The reason behind is formation of a PSNB2-F dimer via FA cross-linking. Based upon the reactions as found, sensitive and fast sensing of F and FA in water was realized, of which the experimental DLs could be significantly lower than 10 μM for both analytes, and the response times are less than 1 min. It is believed that not only the materials as created may have the potential to find real-life applications but also the strategy as developed can be adopted to develop other dynamic materials.

  20. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Ciprian Radovan

    2008-06-01

    Full Text Available Cyclic voltammetry (CV and chronoamperometry (CA have been used to sense and determine simultaneously L-ascorbic acid (AA and acetaminophen (AC at a boron-doped diamond electrode (BDDE in a Britton-Robinson buffer solution. The calibration plots of anodic current peak versus concentration obtained from CV and CA data for both investigated compounds in single and di-component solutions over the concentration range 0.01 mM – 0.1 mM proved to be linear, with very good correlation parameters. Sensitivity values and RSD of 2-3% were obtained for various situations, involving both individual and simultaneous presence of AA and AC. The chronoamperometric technique associated with standard addition in sequential one step and/or two successive and continuous chronoamperograms at two characteristic potential levels represented a feasible option for the simultaneous determination of AA and AC in real sample systems such as pharmaceutical formulations. The average values indicated by the supplier were confirmed to a very close approximation from chronoamperomgrams by using several additions with the application of suitable current correction factors.

  1. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  2. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  3. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    Science.gov (United States)

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  4. Determination of uric acid in human urine by ion chromatography with conductivity detector

    Institute of Scientific and Technical Information of China (English)

    Fu Yong Zhao; Zong Hua Wang; Hui Wang; Rui Zhao; Ming Yu Ding

    2011-01-01

    A simple, fast, precise and eco-friendly analytical method for the determination of uric acid (UA) in human urine by ion chromatography (IC) was established. The sample pretreatment was not required, only needed centrifugation and filtration. The separation was carried out on a cation exchange column with 2.0 mmol/L nitric acid as mobile phase at the flow-rate 1.0 mL/min. A non-suppressed conductivity detector was used. The IC analysis time for one run was within 10 min under the optimized IC condition. The detection limits were 0.5 μg/L(S/N = 3) for uric acid. The recovery was 100.1 % while the relative standard deviation (RSD) was 1.8% from 10 measurements.

  5. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  6. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, Tulsi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2007-05-15

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag{sup +{yields}}Ag{sup 0{yields}}Ag{sub 2} {sup +{yields}}Ag{sub 3} {sup 2+}, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R {sub av}=100 nm)

  7. New Calix[4]arene dibenzocrown ethers for selective sensing of cesium ion in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seung; Kim, Jong Kuk [Konyang University, Nonsan (Korea, Republic of); Choi, Wang Kyu; Lee, Kune Woo; Oh, Won Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    1,3-dialkoxycalix[4]arene dibenzocrown ethers (6-9) were successfully synthesized in the fixed 1,3-alternate conformation with over 90% yields by the reaction of corresponding 1,3dialkoxycalix[4]arenes 2-5 with dibenzodimesylate 13 in acetonitrile as a solvent in the presence of cesium carbonate as a base. In view of cyclization yield, the use of dimesylate is found to be better than that of dibenzoditosylate. With an unusual AB pattern in {sup 1}H NMR spectrum for compound 9, it is suggested that conformational structure of 1,3-diallyloxycalix[4]arene dibenzocrown ether be less flexible than that of usual 1,3-alternate calixcrown ether, probably due to steric effects of two ally1 group. Complexation of the corresponding calix[4]arene 6-9 toward alkali metal ions using single flux method through bulk liquid membrane system was found to give a high cesium selectivity. 28 refs., 1 tab., 1 fig.

  8. Development of a Microelectrode Array Sensing Platform for Combination Electrochemical and Spectrochemical Aqueous Ion Testing.

    Science.gov (United States)

    Gardner, Robert D; Zhou, Anhong; Zufelt, Nephi A

    2009-02-02

    A microelectrode array sensor platform was designed and fabricated to increase diversity, flexibility, and versatility of testing capabilities over that of traditionally reported sensor platforms. These new sensor platforms consist of 18 individual addressable microelectrodes, photolithography fabricated, that employ a glass base substrate and a resist polymer layer that acts as an insulating agent to protect the circuitry and wiring of the sensor from undesired solution interactions. Individually addressable microelectrodes increase diversity by allowing isolated electrochemical testing between electrodes, global array testing, or some combination of electrodes to perform electrochemical methods. Furthermore, because of the optical transparency of the glass base substrate and the resist mask layer, along with the small size of the electrode array, spectrochemical analysis is possible within the sample area that acts as electrochemical cell and cuvette, while the microelectrode array passively resides within the optical path length during spectrochemical testing. This unique arrangement offers improved testing possibilities for various applications, including simultaneous electrochemical and spectrochemical analysis in environmental testing, identification or quantification of possible species for bioavailability in the biotechnology field, and process control in industrial applications. Electrochemical characteristics and spectrochemcial use of the sensor platform are proven with potassium ferricyanide, an electrochemical standard analyte, and electrochemical measurements are compared against a commercially available working electrode of similar size. Additionally, the electrochemical method of differential pulse anodic stripping voltammetry is performed with the sensor platform to detect copper and lead heavy metal ions in aqueous solution, demonstrating the potential for use with environmental samples.

  9. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    Institute of Scientific and Technical Information of China (English)

    FAN Yonghong; YANG Yingge; ZHENG Zhiming; LI Wen; WANG Peng; YAO Liming; YU Zengliang

    2008-01-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. Oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38~C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  10. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    Science.gov (United States)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  11. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    Science.gov (United States)

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  12. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions.

    Science.gov (United States)

    Gupta, Vinod Kumar; Agarwal, Shilpi; Singh, Prerna; Pathania, Deepak

    2013-10-15

    Acrylic acid grafted cellulosic Luffa cylindrical fiber was utilized for the removal of methylene blue and metal ions from the water system using batch process. The grafted sample used was found to demonstrate a maximum grafting efficiency of 90.8% under concentrations of 0.432×10(-3) mol/L, temperature of 35 °C, time of 60 min and pH of 7.0 respectively. The remarkable improvement in thermal properties of the grafted sample was observed. The formation of new bands in FTIR spectra of grafted sample confirmed the grafting of acrylic acid onto the cellulosic fiber. The maximum adsorption capacity of dye onto adsorbent was observed to be 62.15 mg g(-1) at 175 min. A maximum removal of 45.8% was observed for Mg(2+) as compared to other metal ions. High values of correlation coefficient for methylene blue (0.995) and metal ions such as Mg(2+) (0.996), Ni(2+) (0.995), Zn(2+) (0.996) confirmed the applicability of Langmuir isotherm that assumed a monolayer coverage and uniform activity distribution on the adsorbent surface.

  13. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    Energy Technology Data Exchange (ETDEWEB)

    Benamer, S., E-mail: benamers@yahoo.fr [Division of Nuclear Applications, Centre de Recherche Nucleaire d' Alger, BP-399 Alger-Gare (Algeria); Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M. [Division of Nuclear Applications, Centre de Recherche Nucleaire d' Alger, BP-399 Alger-Gare (Algeria); Lounici, H.; Mameri, N. [Ecole Nationale Polytechnique d' El-Harrach Alger (Algeria)

    2011-12-15

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: > Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. > Crosslinking process improves chemical stability of chitosan beads. > Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. > Increase in grafting degree enhances the adsorption capacity of the material. > Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  14. Reactions of enolisable ketones with dichloroisocyanuric acid in absence and presence of added chloride ions – a kinetic study

    Directory of Open Access Journals (Sweden)

    Y. L. Kumar

    2015-01-01

    Full Text Available Kinetics of reactions of enolisable ketones (S = acetone/2-butanone with dichloroisocyanuric acid (DCICA were studied in aqueous acetic acid and perchloric acid media in absence and presence of added chloride ions. The reactions were found to be pseudo zero order and pseudo first order on [DCICA] in absence and presence of chloride ions respectively. Both in presence and absence of chloride ions, first order and fractional order in substrate and perchloric acid were observed respectively. An increase in the rate of reaction was observed with an increase in chloride ion concentration as well as acetic acid composition. The results were interpreted in terms of probable mechanisms involving (i rate-determining enol formation from the conjugate acid of the ketone (SH+ in the absence of added chloride ions and (ii rate-determining interaction of SH+ with the most effective molecular chlorine species produced by the hydrolysis of DCICA (rather than a rate-determining interaction of enol with chlorine in the presence of added chloride ions, prior to the rapid steps of product formation. DOI: http://dx.doi.org/10.4314/bcse.v29i1.12

  15. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    Science.gov (United States)

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-07

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping.

  16. Ion-specific swelling of poly(styrene sulfonic acid) hydrogel.

    Science.gov (United States)

    Xu, Ling; Li, Xin; Zhai, Maolin; Huang, Ling; Peng, Jing; Li, Jiuqiang; Wei, Genshuan

    2007-04-05

    Poly(styrene sulfonic acid) (PSSA) hydrogel was prepared by radiation crosslinking using methyl N,N-bis-acrylamide as crosslinker. Effects of ion species and concentration on the swelling behavior of PSSA hydrogel were investigated in aqueous solution of selected anions (F-, Cl-, Br-, SCN-), cations (Li+, Na+, K+, Ca2+), and hydrophobic ions (tetramethylammonium cation TMA+, tetrabutylammonium cation TBA+, and dodecyltrimethylammonium cation TAB+). The deswelling extent of PSSA hydrogel follows anion Hofmeister series, i.e., SCN- < Br- < Cl- < F-, in solutions containing selected anions and K+ as counterion up to a concentration of 2 mol.L(-1). On the contrary, the deswelling extent of PSSA hydrogel in solutions containing selected cations and Cl- follows the sequence of Li+ < Na+ < K+ < Ca2+, which is the reverse of the Hofmeister series except Ca2+. We have discussed the effects of ions on the hydrogen bonding through SO3- and phenyl ring in salt solutions at low and high concentrations. Other interactions, such as the cation-pi and hydrophobic interactions, also contributed to the ion-specific swelling of PSSA hydrogel. The proposed mechanism was further elucidated by FTIR and NMR analysis. A very specific deswelling-reswelling phenomenon of PSSA hydrogel in KF solution has been observed and ascribed to the F- binding to phenyl ring through a specific interaction.

  17. Molecule modification andmass deposition induced bythe implantation of lowenergy Fe+ ion beamsinto amino acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fe+ ion beams with the energy of 110 keV were implanted into films of L(+)-cysteine (HSCH2CH(NH2)COOH). One of the single crystals grown in hydrochloric acid solution with the implanted samples through slow evaporation was structurally characterized by the X-ray crystallography. The crystal is monoclinic, space group C2, with a = 1.8534(4) nm, b = 0.5234(1) nm, c = 0.7212(1) nm, β= 103.72°, V = 0.67965(3) nm3, Z = 4, F(000) = 144.0, Dclac = 1.763 g@cm-3, μ(MoKα) = 1.06 mm-1, T = 293(2) K. R = 0.0379, wR = 0.0835 for 660 observed reflections (I > 2σ(I)). The structural formula of the crystal compound is (CH2CH(NH2)NO2)ClFe (Mr = 180.38 u). Products of heavy ion beam irradiation were purified and it was directly confirmed that the implanted Fe+ ions had been deposited in the novel molecules. The same doses of Fe+ ion beams of the same energy were implanted into films of L(+)-cysteine hydrochloride monohydrate. FTIR spectroscopy of the implanted samples proved that some of the original molecules were seriously damaged and significant modifications were induced.

  18. Multivalent ion-mediated nucleic acid helix-helix interactions: RNA versus DNA.

    Science.gov (United States)

    Wu, Yuan-Yan; Zhang, Zhong-Liang; Zhang, Jin-Si; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-07-13

    Ion-mediated interaction is critical to the structure and stability of nucleic acids. Recent experiments suggest that the multivalent ion-induced aggregation of double-stranded (ds) RNAs and DNAs may strongly depend on the topological nature of helices, while there is still lack of an understanding on the relevant ion-mediated interactions at atomistic level. In this work, we have directly calculated the potentials of mean force (PMF) between two dsRNAs and between two dsDNAs in Co(NH3)6 (3+) (Co-Hex) solutions by the atomistic molecular dynamics simulations. Our calculations show that at low [Co-Hex], the PMFs between B-DNAs and between A-RNAs are both (strongly) repulsive. However, at high [Co-Hex], the PMF between B-DNAs is strongly attractive, while those between A-RNAs and between A-DNAs are still (weakly) repulsive. The microscopic analyses show that for A-form helices, Co-Hex would become 'internal binding' into the deep major groove and consequently cannot form the evident ion-bridge between adjacent helices, while for B-form helices without deep grooves, Co-Hex would exhibit 'external binding' to strongly bridge adjacent helices. In addition, our further calculations show that, the PMF between A-RNAs could become strongly attractive either at very high [Co-Hex] or when the bottom of deep major groove is fixed with a layer of water.

  19. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid.

    Science.gov (United States)

    Tian, Kun; Siegel, Gene; Tiwari, Ashutosh

    2017-02-01

    The development of simple and cost-effective methods for the detection and treatment of Hg(2+) in the environment is an important area of research due to the serious health risk that Hg(2+) poses to humans. Colorimetric sensing based on the induced aggregation of nanoparticles is of great interest since it offers a low cost, simple, and relatively rapid procedure, making it perfect for on-site analysis. Herein we report the development of a simple colorimetric sensor for the selective detection and estimation of mercury ions in water, based on chitosan stabilized gold nanoparticles (AuNPs) and 2,6-pyridinedicarboxylic acid (PDA). In the presence of Hg(2+), PDA induces the aggregation of AuNPs, causing the solution to change colors varying from red to blue, depending on the concentration of Hg(2+). The formation of aggregated AuNPs in the presence of Hg(2+) was confirmed using transmission electron microscopy (TEM) and UV-Vis spectroscopy. The method exhibits linearity in the range of 300nM to 5μM and shows excellent selectivity towards Hg(2+) among seventeen different metal ions and was successfully applied for the detection of Hg(2+) in spiked river water samples. The developed technique is simple and superior to the existing techniques in that it allows detection of Hg(2+) using the naked eye and simple and rapid colorimetric analysis, which eliminates the need for sophisticated instruments and sample preparation methods.

  20. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  1. Ion pair formation as a possible mechanism for the enhancement effect of lauric acid on the transdermal permeation of ondansetron.

    Science.gov (United States)

    Dimas, Dimitrios A; Dallas, Paraskevas P; Rekkas, Dimitrios M

    2004-08-01

    Transdermal application can be an alternative drug delivery route for ondansetron, an antiemetic drug. Previous studies found that fatty acids, namely oleic and lauric, were the most effective penetration enhancers. The aim of this study was to investigate the formation of an ion pair between ondansetron and lauric acid as a possible mechanism of its enhancing action. Several techniques were used to reveal the formation of an ion pair complex. Partitioning experiments, where the n-octanol/water coefficient was measured, showed an increase in the distribution coefficient in the presence of the acid, possibly as a result of the formation of more lipophilic ion pairs between the charged molecules of ondansetron and lauric acid. Further evidence of complex formation between ondansetron and lauric acid, was gained from the 13C-nuclear magnetic resonance (13C-NMR) spectra of ondansetron, lauric acid, and their mixture (molar ratio 1:1). The NMR spectra revealed alterations to the magnetic environment of the carbon atoms adjacent to the ionized group, which are the carbonyl group of the acid and the nitrogen of the imidazole ring of ondansetron. This evidence substantiates the theory of ion pair formation. Finally, thermal analysis of the binary mixtures of ondansetron and lauric acid revealed the formation of an additional compound, with different melting point from pure ondansetron and lauric acid, which is thermodynamically favored.

  2. Study of coagulation processes of selected humic acids under copper ions influence*

    Science.gov (United States)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  3. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  4. EPR and optical absorption studies of Cr3+ ions in d-gluconic acid monohydrate.

    Science.gov (United States)

    Kripal, Ram; Singh, Pragya; Govind, Har

    2009-10-01

    EPR studies are carried out on Cr(3+) ions doped in d-gluconic acid monohydrate (C(6)H(12)O(7)*H(2)O) single crystals at 77 K. From the observed EPR spectra, the spin Hamiltonian parameters g, |D| and |E| are measured to be 1.9919, 349 (x 10(-4)) cm(-1) and 113 (x 10(-4)) cm(-1), respectively. The optical absorption of the crystal is also studied at room temperature. From the observed band positions, the cubic crystal field splitting parameter Dq (2052 cm(-1)) and the Racah interelectronic repulsion parameter B (653 cm(-1)) are evaluated. From the correlation of EPR and optical data the nature of bonding of Cr(3+) ion with its ligands is discussed.

  5. Adsorption of Pb(II Ions on Sulfuric Acid Treated Leucaena leucocephala Leaf Powder

    Directory of Open Access Journals (Sweden)

    Mansur Noor Fhadzilah

    2015-01-01

    Full Text Available Sulfuric acid treated Petai belalang (Leucaena leucocephala leaf powder (SLLP was used as an adsorbent for Pb(II ions removal. The experimental adsorption parameters investigated include pH, dosage and initial Pb(II concentration. Pb(II removal was more favored at a higher adsorbent dosage, pH and temperature. Adsorption kinetics conformed to the pseudo-second order model while Langmuir isotherm model recorded the value of maximum adsorption capacity (qmax of 222 mg/g. The major functional groups involved in the adsorption process were identified as hydroxyl, amino and ether as revealed by the FTIR analysis. The prepared adsorbent demonstrated a potential application for efficient removal of Pb(II ions from industrial wastewater.

  6. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  7. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yuxin; Lu, Qiujun; Deng, Jianhui; Li, Haitao; Zhang, Youyu, E-mail: zhangyy@hunnu.edu.cn

    2015-03-25

    Highlights: • One-pot electrochemical synthesis of functionalized carbon dots (C-Dots). • The C-Dots can serve as a fluorescent probe for sensitive detection of Hg{sup 2+}. • The detection limit for Hg{sup 2+} is 3.3 nM. • The sensor is successfully applied to Hg{sup 2+} determination in real samples. - Abstract: We propose a simple, economical, and one-pot method to synthesize water-soluble functionalized fluorescent carbon dots (C-Dots) through electrochemical carbonization of sodium citrate and urea. The as-prepared C-Dots have good photostability and exhibit a high quantum yield of 11.9%. The sizes of the C-Dots are mainly distributed in the range of 1.0–3.5 nm with an average size of 2.4 nm. It has been further used as a novel label-free sensing probe for selective detection of Hg{sup 2+} ions with detection limit as low as 3.3 nM. The detection linear range is 0.01–10 μM. The as-prepared C-Dots are also successfully applied for the determination of Hg{sup 2+} in real water samples.

  8. Comparative potency of inhaled acidic sulfates: speciation and the role of hydrogen ion.

    Science.gov (United States)

    Schlesinger, R B; Chen, L C; Finkelstein, I; Zelikoff, J T

    1990-08-01

    Inhaled acidic sulfate aerosols affect various aspects of lung function, presumably by delivery of hydrogen ion (H+) to target sites. Recent evidence suggests that the relationship between response and H+ content of the exposure atmosphere may depend upon the specific sulfate species with which the H+ is associated. This study examined comparatively the effects of exposure to the two main ambient acidic sulfates, sulfuric acid (H2SO4) and ammonium bisulfate (NH4HSO4), using the phagocytic activity of alveolar macrophages as the endpoint. Rabbits were exposed to 250-2000 micrograms/m3 H2SO4 (as SO4(-2)) and 500-4000 micrograms/m3 NH4HSO4 (as SO4(-2)) for 1 hr/day for 5 days; bronchopulmonary lavage was then performed for recovery of free lung cells. Phagocytosis, measured by uptake of opsonized latex spheres in vitro, was altered by exposure to H2SO4 at concentrations greater than or equal to 500 micrograms/m3 and to NH4HSO4 at greater than or equal to 2000 micrograms/m3. Assessment of results in terms of the calculated hydrogen ion concentration in the exposure atmosphere showed that identical levels of H+ produced different degrees of response depending upon whether exposure was to H2SO4 or NH4HSO4. On the other hand, macrophages incubated in acidic environments in vitro responded similarly regardless of whether H2SO4 or NH4HSO4 was used to adjust the pH. Possible reasons for the difference in response observed in vivo and in vitro are discussed. Speciation of ambient acidic sulfate aerosols may be needed in atmospheric monitoring so as to assess the presence of H+ posing the greatest biologic hazard following inhalation exposure.

  9. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  10. Vanadyl ion (VO sup 2+ ) as a spectroscopic probe of metal binding to nitrohumic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mangrich, A.S.; Vugman, N.V. (Universidad Federal do Parana, Parana (Brazil). Dept. de Quimica)

    1990-07-01

    A coal nitrohumic acid (CNHA) of high nitrogen content (compared with natural humic acid) was obtained by extraction from nitric acid oxidation products of a mineral coal. It was studied by e.s.r. and i.r. spectroscopies, using VO{sup 2+} as a probe of metal ion complexation sites. Spectroscopic data and a LCAO-MO ligand field calculation were used to evaluate the bond parameters of vanadyl-coal nitrohumic acid complex (VO-CNHA). In spite of the high nitrogen content of CNHA, plots of hyperfine coupling constants {lt}A{gt} versus isotropic {lt}g{gt} values indicate that nitrogen is not a donor atom in the complexation sites of these materials. The bond parameter values, {lt}A{gt} and {lt}g{gt}, and i.r. data suggest that VO{sup 2+} groups (in the CNHA molecules) are at sites with C{sub 4}{sub V}, symmetry having o-hydroxycarboxylic aromatic (salicylic) acids as equatorial ligands. 21 refs., 2 figs.

  11. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries

    Science.gov (United States)

    Li, Li; Lu, Jun; Ren, Yang; Zhang, Xiao Xiao; Chen, Ren Jie; Wu, Feng; Amine, Khalil

    2012-11-01

    Recycling of the major components from spent Li-ion batteries (LIBs) is considered desirable to prevent environmental pollution and recycle valuable metals. The present work investigates a novel process for recovering Co and Li from the cathode materials (containing LiCoO2 and Al) by a combination of ultrasonic washing, calcination, and organic acid leaching. Copper can also be recovered from the anode materials after they are manually separated from the cathode. Ascorbic acid is chosen as both leaching reagent and reducing agent to improve the Co recovery efficiency. Leaching efficiencies as high as 94.8% for Co and 98.5% for Li are achieved with a 1.25 mol L-1 ascorbic acid solution, leaching temperature of 70 °C, leaching time of 20 min, and solid-to-liquid ratio of 25 gL-1. The acid leaching reaction mechanism has been preliminarily studied based on the structure of ascorbic acid. This method is shown to offer an efficient way to recycle valuable materials from spent LIBs, and it can be scaled up for commercial application.

  12. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables.

  13. Multi-shell model of ion-induced nucleic acid condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA; Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501, USA; Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA; Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, USA; Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely charged duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.

  14. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.

    Science.gov (United States)

    Ozer, A

    2007-03-22

    Sulphuric acid-treated wheat bran (STWB) was used as an adsorbent to remove Pb(II) ions from aqueous solution. It was observed that the adsorption yield of Pb(II) ions was found to be pH dependent. The equilibrium time for the process was determined as 2h. STWB gave the highest adsorption yield at around pH 6.0. At this pH, adsorption percentage for an initial Pb(II) ions concentration of 100mg/L was found to be 82.8 at 25 degrees C for contact time of 2h. The equilibrium data obtained at different temperatures fitted to the non-linear form of Langmuir, Freundlich and Redlich-Peterson and linear form of Langmuir and Freundlich models. Isotherm constants were calculated and compared for the models used. The maximum adsorption capacity (q(max)) which was obtained linear form of Langmuir model increased from 55.56 to 79.37mg/g with increasing temperature from 25 to 60 degrees C. Similar trend was observed for other isotherm constants related to the adsorption capacity. Linear form of Langmuir isotherm data was evaluated to determine the thermodynamic parameters for the process. Thermodynamic parameters show that adsorption process of Pb(II) ions is an endothermic and more effective process at high temperatures. The pseudo nth order kinetic model was successfully applied to the kinetic data and the order (n) of adsorption reaction was calculated at the range from 1.711 to 1.929. The values of k(ad) were found to be 5.82x10(-4) and 21.81x10(-4)(min(-1))(mg/g)(1-n) at 25 and 60 degrees C, respectively. Activation energy was determined as 29.65kJ/mol for the process. This suggest that the adsorption Pb(II) ions by STWB is chemically controlled.

  15. Reverse phase ion pair high pressure liquid chromatographic determination of ethylenediaminetetraacetic acid in crabmeat and mayonnaise.

    Science.gov (United States)

    Perfetti, G A; Warner, C R

    1979-09-01

    A method is described for the determination of ethylenediaminetetraacetic acid (EDTA) in crabmeat and mayonnaise. EDTA is extracted from the food sample with water and converted to its copper chelate, which is then quantitated by reverse phase ion pair high pressure liquid chromatography with ultraviolet detection. Maximum sensitivity is obtained with detection at about 254 nm; higher wavelengths may be used for enhanced specificity. Cleanup procedures for crabmeat and mayonnaise were improved by using a radiotracer method. Analyses of crabmeat and mayonnaise samples spiked at 3 different levels showed greater than 90% recovery of EDTA.

  16. Mechanical and Thermal Properties of Compression Molded Poly (acrylic acid) Salts with Multivalent Metal Ions

    OpenAIRE

    Gotoh, Y.; Ohkoshi, Y; Nagura, M

    1999-01-01

    Films of zinc, calcium and aluminum salts of poly (acrylic acid) (PAA) were prepared from their powdery salts by compression molding at 190_??_200°C, 600MPa for 0.5hr and their mechanical and thermal properties were investigated. From the results of the dynamic mechanical thermal analysis the storage modulus of each PAA salts exhibited about 20GPa at room temperature because of highly intermolecular crosslinking of PAA by metal ions. Modulus of PAA calcium salt was 7GPa even at 400°C, while m...

  17. SYNTHESIS OF 2—HYDROXYETHYL ACRYLATE BY USING STRONG ACIDIC CATION ION EXCHANGE RESIN AS CATALYST

    Institute of Scientific and Technical Information of China (English)

    GAODabin

    1992-01-01

    2-Hydroxyethyl acrylate is synthesized from acrylic acid and ethylene glycol under a simple and mild condition by using strong acidic cation ion exchange resin as a catalyst,which could be recycled as long as 10 times with high activation.

  18. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  19. Ion Exchange Study of Some New Copolymer Resins Derived from 8-Hydroxyquinoline-5-sulphonic Acid, Biuret and Formaldehyde

    Directory of Open Access Journals (Sweden)

    P. A. Dhakite

    2011-01-01

    Full Text Available Copolymer resins (8-HQSABF were synthesized by the condensation of 8-hydroxyquinoline-5-sulphonic acid and biuret with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange copolymer resins for certain metals. Chelation ion exchange properties to these polymers were studied for Cu2+, Cd2+, Co2+ and Zn2+ ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ions strengths. The polymer showed a higher selectivity for Cu2+ ions than for Cd2+, Co2+ and Zn2+ ions. Hence on the basis of above studies these copolymer may be used as semiconductors, surface coating, ion-exchangers, materials for rechargeable battery cell in various electronic industries, plastic materials, elastomers and in boiler plants

  20. Control of Acetic Acid Fermentation by Quorum Sensing via N-Acylhomoserine Lactones in Gluconacetobacter intermedius▿ †

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-01-01

    A number of gram-negative bacteria regulate gene expression in a cell density-dependent manner by quorum sensing via N-acylhomoserine lactones (AHLs). Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, produces three different AHLs, N-decanoyl-l-homoserine lactone, N-dodecanoyl-l-homoserine lactone, and an N-dodecanoyl-l-homoserine lactone with a single unsaturated bond in its acyl chain, as determined by liquid chromatography-tandem mass spectrometry. Two genes encoding an AHL synthase and a cognate regulator were cloned from strain NCI1051 and designated ginI and ginR, respectively. Disruption of ginI or ginR abolished AHL production, indicating that NCI1051 contains a single set of quorum-sensing genes. Transcriptional analysis showed that ginI is activated by GinR, which is consistent with the finding that there is an inverted repeat whose nucleotide sequence is similar to the sequence bound by members of the LuxR family at position −45 with respect to the transcriptional start site of ginI. A single gene, designated ginA, located just downstream of ginI is transcribed by read-through from the GinR-inducible ginI promoter. A ginA mutant, as well as the ginI and ginR mutants, grew more rapidly in medium containing 2% (vol/vol) ethanol and accumulated acetic acid at a higher rate with a greater final yield than parental strain NCI1051. In addition, these mutants produced larger amounts of gluconic acid than the parental strain. These data demonstrate that the GinI/GinR quorum-sensing system in G. intermedius controls the expression of ginA, which in turn represses oxidative fermentation, including acetic acid and gluconic acid fermentation. PMID:18245283

  1. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    Science.gov (United States)

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  2. Computational probes into the conceptual basis of silver ion chromatography: I. Silver(I) ion complexes of unsaturated fatty acids and esters

    NARCIS (Netherlands)

    Damyanova, B.; Momtchilova, S.; Bakalova, S.; Zuilhof, H.; Christie, W.W.; Kaneti, J.

    2002-01-01

    Silver ion chromatography of unsaturated fatty acid derivatives can be described satisfactorily by the suggestion of Ag(I) complexation with more than a single bonding site of esters of the 18:1, 18:2, etc. series (that is, one, two, etc. methylene-interrupted double bonds in the C18 hydrocarbon cha

  3. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  4. Acid-base and ion balance in fishes with bimodal respiration.

    Science.gov (United States)

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates.

  5. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa.

    Science.gov (United States)

    Castillo-Juárez, Israel; García-Contreras, Rodolfo; Velázquez-Guadarrama, Norma; Soto-Hernández, Marcos; Martínez-Vázquez, Mariano

    2013-10-01

    Quorum sensing (QS) is a process of bacterial cell-cell communication that controls a large number of systems affecting pathogenicity. Interrupting this communication system can provide nonvirulent pathogenic bacteria. The aim of this study was to evaluate the anti-quorum sensing (anti-QS) potential of an anacardic acids mixture isolated from Amphipterygium adstringens, a medicinal plant known as "cuachalalate", to prevent the onset of bacterial infections as an alternate to antibiotics. Initially we investigated the anti-QS activity of A. adstringens hexane extract (HE) by the inhibition of violacein production in Chromobacterium violaceum. From the active HE, an anacardic acid mixture (AAM) was obtained. The anti-quorum sensing activity of AAM was investigated by the rhamnolipid and pyocyanin production constraint as well as decrease of elastase activity, all being quorum sensing-controlled virulence factors expressed in the pathogenic bacteria Pseudomonas aeruginosa. HE induced a 91.6% of inhibition of the violecin production at 55 μg/mL concentration, whereas AAM showed 94% of inhibition at 166 μg/mL. In both cases, inhibition of violacein production did not affect the viability of the bacterium. AAM inhibited pyocyanin (86% at 200 μg/mL) and rhamnolipid (91% at 500 μg/mL) production in a dose/response form and decrease the elastase (75% at 500 μg/mL) activity in P. aeruginosa without affecting its development. Because an anacardic acids mixture isolated from A. adstringens demonstrated anti-QS, it could be further exploited for novel molecules to treat the emerging infections of antibiotic-resistant bacterial pathogens. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  6. Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Jing Fan

    2012-01-01

    Full Text Available Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n=15, early gastric cancer inpatients in group B (n=7, and advanced gastric cancer inpatients in group C (n=16; in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n=5 to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC of receiver-operating characteristic (ROC curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P<0.05, but the levels of histidine and methionine decreased (P<0.05, and aspartate decreased significantly (P<0.01. The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P<0.05. A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by

  7. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.

    Science.gov (United States)

    Lin, Shu Min; Geng, Shuo; Li, Na; Li, Nian Bing; Luo, Hong Qun

    2016-05-01

    Mercury ion is one of the most hazardous metal pollutants that can cause deleterious effects on human health and the environment even at low concentrations. It is necessary to develop new mercury detection methods with high sensitivity, specificity and rapidity. In this study, a novel and green strategy for synthesizing D-penicillamine-capped copper nanoparticles (DPA-CuNPs) was successfully established by a chemical reduction method, in which D-penicillamine and ascorbic acid were used as stabilizing agent and reducing agent, respectively. The as-prepared DPA-CuNPs showed strong red fluorescence and had a large Stoke's shift (270nm). Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and ultraviolet-visible spectrophotometry were utilized to elucidate the possible fluorescence mechanism, which could be aggregation-induced emission effect. Based on the phenomenon that trace mercury ion can disperse the aggregated DPA-CuNPs, resulting in great fluorescence quench of the system, a sensitive and selective assay for mercury ion in aqueous solution with the DPA-CuNPs was developed. Under optimum conditions, this assay can be applied to the quantification of Hg(2+) in the 1.0-30μM concentration range and the detection limit (3σ/slope) is 32nM. The method was successfully applied to determine Hg(2+) in real water samples.

  8. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey); East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum (Turkey); Genişel, Mucip, E-mail: m.genisel@hotmail.com [Department of Crop and Animal Production, Vocational High School, Agri (Turkey); Erdal, Serkan, E-mail: serkanerdal25@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey)

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  9. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid.

    Directory of Open Access Journals (Sweden)

    Maiko Hayashi

    Full Text Available Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.

  10. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid.

    Science.gov (United States)

    Hayashi, Maiko; Fukuhara, Hideo; Inoue, Keiji; Shuin, Taro; Hagiya, Yuichiro; Nakajima, Motowo; Tanaka, Tohru; Ogura, Shun-ichiro

    2015-01-01

    Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.

  11. Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs.

    Science.gov (United States)

    Benedetto, A; Bodo, E; Gontrani, L; Ballone, P; Caminiti, R

    2014-03-06

    The combination of amino acids in their deprotonated and thus anionic form with a choline cation gives origin to a new and potentially important class of organic ionic compounds. A series of such neutral ion pairs has been investigated by first principle methods. The results reveal intriguing structural motives as well as regular patterns in the charge distribution and predict a number of vibrational and optical properties that could guide the experimental investigation of these compounds. The replacement of choline with its phosphocholine analogue causes the spontaneous reciprocal neutralization of cations and anions, taking place through the transfer of a proton between the two ions. Systems of this kind, therefore, provide a wide and easily accessible playground to probe the ionic/polar transition in organic systems, while the easy transfer of H(+) among neutral and ionic species points to their potential application as proton conductors. The analysis of the ab initio data highlights similarities as well as discrepancies from the rigid-ions force-field picture and suggests directions for the improvement of empirical models.

  12. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.

    Science.gov (United States)

    Li, Yong-Tao; Becquer, Thierry; Dai, Jun; Quantin, Cécile; Benedetti, Marc F

    2009-04-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.

  13. Complexation of mercury(II) ions with humic acids in tundra soils

    Science.gov (United States)

    Vasilevich, R. S.; Beznosikov, V. A.; Lodygin, E. D.; Kondratenok, B. M.

    2014-03-01

    The interaction mechanisms of mercury(II) ions with preparations of humic acids (HAs) isolated from organic horizons of surface-gleyed soils (Haplic Stagnosol (Gelic, Siltic)) of shrub tundra and hydromorphic peat gley soils (Histic Cryosol (Reductaquic, Siltic)) of moss-lichen tundra have been studied. The particular features of the interactions between the mercury(II) ions and the HAs are related to the molecular structure of the HAs, the mercury concentration range, and the environmental parameters. The fixation of mercury(II) ions into stable coordination compounds is most efficient in the pH range of 2.5-3.5. At the element concentrations below 0.50 μmol/dm3, the main complexing sites of HAs are their peripheral aminoacid functional groups. Pyrocatechol, salicylate, and phenolic groups from the nuclear moiety of molecules interact in the concentration range of 0.0005-0.50 mmol/dm3; the physical sorption of mercury hydroxo complexes by the surface of HAs is the main process occurring in the system.

  14. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Science.gov (United States)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  15. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Directory of Open Access Journals (Sweden)

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  16. Determination of enantiomeric composition by negative-ion electrospray ionization-mass spectrometry using deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors.

    Science.gov (United States)

    Brewer, Bobby N; Zu, Chengli; Koscho, Michael E

    2005-10-01

    The ability to use mixtures of deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors for the determination of enantiomeric composition by electrospray ionization-mass spectrometry is demonstrated. For each experiment, two N-(3,5-dinitrobenzoyl)amino acids were chosen such that each would have opposite selectivity for the enantiomers of the analyte. Electrospray ionization-mass spectrometry, monitored in the negative ion mode, of solutions containing the two N-(3,5-dinitrobenzoyl)amino acids, sodium hydroxide, and the analyte, in a one-to-one mixture of methanol and water, afford peaks in the mass spectrum that correspond to the deprotonated 1:1 analyte-selector complexes. The ratio of the intensities of the complexes in the mass spectrum can be related to the enantiomeric composition of the analyte. Additionally, the sense and extent of chiral recognition is consistent with chromatographic observations, using chiral stationary phases derived from N-(3,5-dinitrobenzoyl)amino acids. Each analysis of enantiomeric composition requires less than 10 s to complete, indicating that this method has great potential for the development of fast-/high-throughput chiral analyses.

  17. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  18. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

    Science.gov (United States)

    Laus, Rogério; Geremias, Reginaldo; Vasconcelos, Helder L; Laranjeira, Mauro C M; Fávere, Valfredo T

    2007-10-22

    Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated.

  19. Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence.

    Science.gov (United States)

    Watschinger, Katrin; Keller, Markus A; Hermetter, Albin; Golderer, Georg; Werner-Felmayer, Gabriele; Werner, Ernst R

    2009-01-01

    Glyceryl ether monooxygenase is a tetrahydrobiopterin-dependent membrane-bound enzyme which catalyses the cleavage of lipid ethers into glycerol and the corresponding aldehyde. Despite many different characterisation and purification attempts, so far no gene and primary sequence have been assigned to this enzyme. The seven other tetrahydrobiopterin-dependent enzymes can be divided in the family of aromatic amino acid hydroxylases - comprising phenylalanine hydroxylase, tyrosine hydroxylase and the two tryptophan hydroxylases - and into the three nitric oxide synthases. We tested the influences of different metal ions and metal ion chelators on glyceryl ether monooxygenase, phenylalanine hydroxylase and nitric oxide synthase activity to elucidate the relationship of glyceryl ether monooxygenase to these two families. 1,10-Phenanthroline, an inhibitor of non-heme iron-dependent enzymes, was able to potently block glyceryl ether monooxygenase as well as phenylalanine hydroxylase, but had no effect on inducible nitric oxide synthase. Two tetrahydrobiopterin analogues, N(5)-methyltetrahydrobiopterin and 4-aminotetrahydrobiopterin, had a similar impact on glyceryl ether monooxygenase activity, as has already been shown for phenylalanine hydroxylase. These observations point to a close analogy of the role of tetrahydrobiopterin in glyceryl ether monooxygenase and in aromatic amino acid hydroxylases and suggest that glyceryl ether monooxygenase may require a non-heme iron for catalysis.

  20. Construction of new zinc(II) coordination polymers by 1-(triazol-1-yl)-2,4,6-benzenetricarboxylate ligand for sensitizing lanthanide(III) ions and sensing small molecules

    Science.gov (United States)

    Jia, Jia; Wang, Pengcheng; Chai, Juan; Ma, Bing; Sun, Jing; Chen, Xiaobo; Fan, Yong; Wang, Li; Xu, Jianing

    2017-09-01

    Two zinc(II) coordination polymers (CPs), namely, {[Zn2(μ5-tzbt)(μ-trz)]·3.5H2O}n (trz = 1,2,4-triazolate) (1) and {[Zn2(μ5-tzbt)(μ-OH)(phen)]·4H2O}n (phen = 1,10-phenanthroline) (2) have been constructed from 1-(triazol-1-yl)-2,4,6-benzene tricarboxylic acid (H3tzbt) under hydrothermal conditions. Single crystal X-ray diffraction analysis reveals that 1 displays 3D framework containing left - handed and right - handed helical chains, whilst 2 is a 2D layered structure. These new CPs both exhibit intensive fluorescence emission at room temperature. Notably, they perform as host for the encapsulation of Ln(III) ions and serve as an antenna to sensitize Tb(III) ions. By encapsulating different Ln(III) ions, both Eu0.2Tb0.8@1 and Eu3+@2 present white-light emission. In addition, 2 exhibits highly luminescent sensing properties for acetone.

  1. Aqueous Synthesis of Protein-Encapsulated ZnSe Quantum Dots and Physical Significance of Semiconductor-Induced Cu(II) Ion Sensing.

    Science.gov (United States)

    Kundu, Somashree; Maiti, Susmita; Ghosh, Debasmita; Roy, Chandra Nath; Saha, Abhijit

    2017-09-20

    In view of their promising bio-applicability, we have synthesized water-soluble bovine serum albumin (BSA)-encapsulated ZnSe quantum dots (QDs) with visible emission with longer average luminescence lifetimes of approximately 125 ns at ambient conditions. BSA-ZnSe QDs are shown to be efficient selective copper ion probes in the presence of physiologically important metal ions through luminescence quenching with a high Stern-Volmer constant (3.3×10(5)  m(-1) ). The mechanism of sensing has been explained in terms of electron transfer processes and the apparent rate of electron transfer (Ket ) from ZnSe QDs to Cu(2+) has been calculated to be 2.8×10(8)  s(-1) . It is demonstrated that the negative conduction band potential plays a major role in the feasibility of the electron transfer process, which is reflected in the higher efficacy of ZnSe QDs in sensing copper(II) ions over other group II-VI quantum dots, namely, CdSe, ZnS, or CdS. The results observed with cysteine-capped QDs are almost identical to those with BSA-encapsulated QDs and this presumably negates the possible reason of Cu(II) ion induced quenching ascribed to its binding with surface groups or replacement of metal sites as proposed by several groups previously. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Specific chiral sensing of amino acids using induced circularly polarized luminescence of bis(diimine)dicarboxylic acid europium(III) complexes.

    Science.gov (United States)

    Okutani, Kazuhiro; Nozaki, Koichi; Iwamura, Munetaka

    2014-06-02

    The circularly polarized luminescence (CPL) from [Eu(pda)2](-) (pda = 1,10-phenanthroline-2,9-dicarboxylic acid) and [Eu(bda)2](-) (bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) in aqueous solutions containing various amino acids was investigated. The europium(III) complexes exhibited bright-red luminescence assignable to the f-f transition of the Eu(III) ion when irradiated with UV light. Although the luminescence was not circularly polarized in the solid state or in aqueous solutions, in accordance with the achiral crystal structure, the complexes exhibited detectable induced CPL (iCPL) in aqueous solutions containing chiral amino acids. In the presence of L-pyrrolidonecarboxylic acid, both [Eu(pda)2](-) and [Eu(bda)2](-) showed similar iCPL intensity (glum ∼ 0.03 for the (5)D0 → (7)F1 transition at 1 mol·dm(-3) of the amino acid). On the other hand, in the presence of L-histidine or L-arginine, [Eu(pda)2](-) exhibited intense CPL (glum ∼ 0.08 for the (5)D0 → (7)F1 transition at 0.10 mol·dm(-3) of the amino acid), whereas quite weak CPL was observed for [Eu(bda)2](-) under the same conditions (glum amino acids, [Eu(pda)2](-) was found to be a good chiral CPL probe with high sensitivity (about 10(-2) mol·dm(-3)) and high selectivity for L-histidine at pH 3 and for L-arginine at pH 7. The mechanism of iCPL was evaluated by analysis of the fine structures in the luminescence spectra and the amino acid concentration dependence of glum. For the [Eu(pda)2](-)-histidine/arginine systems, the europium(III) complexes possess coordination structures similar to that in the crystal with slight distortion to form a chiral structure due to specific interaction with two zwitterionic amino acids. This mechanism was in stark contrast to that of the europium(III) complex-pyrrolidonecarboxylic acid system in which one amino acid coordinates to the Eu(III) ion to yield an achiral coordination structure.

  3. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  4. Design, synthesis, characterization and cation sensing behavior of amino-naphthoquinone receptor: Selective colorimetric sensing of Cu(II) ion in nearly aqueous solution with mimicking logic gate operation

    Science.gov (United States)

    Parthiban, C.; Elango, Kuppanagounder P.

    2017-03-01

    An amino-naphthoquione receptor (R1) has been rationally designed, synthesized and characterized using 1H and 13C NMR, LCMS and single crystal X-ray diffraction studies. The receptor exhibits an instantaneous colour change from yellow to blue selectively with Cu(II) ions in water-DMF (98:2% v/v) medium. The results of UV-Vis and fluorescence spectral studies indicates that the mechanism of sensing involves formation of a 1:1 complex between R1 and Cu(II) ion. The proposed mechanism has been confirmed through product analysis using FT-IR, UV-Vis, EPR and HRMS studies in addition to magnetic moment and elemental analysis measurements. The formed [Cu(R1)Cl2] possess a square planar geometry. The binding constant for the interaction of Cu(II) ion with the present unsubstituted quinone is found to be relatively higher than that with quinones containing electron withdrawing chlorine atom and electron releasing methyl group reported in literature. The detection limit of Cu(II) ion in aqueous solution by R1 is observed to be 8.7 nM. The detection of Cu(II) ion by R1 in aqueous solution produces remarkable changes in the electronic and fluorescence spectra, which is applied to construct logic gate at molecular level.

  5. Elution of nickel ions from alginate beads in an acid media; Elucion de iones de niquel desde esferas de alginato en un medio acido

    Energy Technology Data Exchange (ETDEWEB)

    Aracena, A.; Carcamo, F.; Jerez, O.; Constanzo, R.

    2016-05-01

    Elution of nickel ions from alginate beads was studied in a temperature range of 2 to 80 degree centigrade and a sulfuric acid concentration between 0.005 to 2.5 g L{sup -}1. The elution mechanism was established by ion exchange between nickel and ions protons, obtaining a value of 93% elution at a temperature of 80 degree centigrade and a H{sub 2}SO{sub 4} concentration of 0.25 g L{sup -}1. The influence of other acids on nickel elution was also studied. The nickel elution rate was significantly influenced by temperature and concentration of H{sub 2}SO{sub 4}. Elution kinetics of nickel ions was studied, and the 1-(1-α){sup 1}/3=k{sub a}ppt model properly described the kinetics of this reaction. The dependence of nickel elution on the sulfuric acid concentration was of the order of 0.33. Moreover, the intrinsic rate constants were determined and an activation energy value of 54.5 kJ mol{sup -}1 was obtained for the temperature range studied. The results indicated that the nickel elution is a process controlled by chemical reactions. (Author)

  6. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  7. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  8. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  9. Binary and ternary complexes of some inner transition metal ions with amino acids and acetyl acetone

    Science.gov (United States)

    Abu-Eittah, R. H.; Abdou, M. M.; Salem, M. B.

    1998-05-01

    The stability constants of the 1:1 and 1:2 (whenever possible) complexes formed between La3+, Ce3+, Th4+ and the amino acid anions L-alaninate, L-phenylalaninate and L-histidinate were determined by potentiometric titration in aqueous solution (25± 1 ^circC, I = 0.1 M KCl) and compared together with the constants previously determined. The various formation degree of the resulting M(L) and M(L)2 were determined. In order to relate the formation degree of M(L) and M(L)2 with the basicity of the amino acid anion (L^-), the acidity constants of the protonated amino acids, H2L^+, were also measured. The main results of this work prove that Th4+ ion forms the strongest complex with the studied amino acids. It is the only ion which forms a 1:2 complex. The heterocyclic ring of histidine plays a significant role in complexing with the studied metal ions as is clearly seen from the distribution of the degree of formation of the different complexes. The stability constants of the 1:1:1, 1:2:1 and 1:1:2 complexes formed between La3+, Ce3+, Th4+ and the anions L-alaninate, L-phenylalaninate and L-histidinate together with the acetyl acetonate ion were also determined following the same experimental set up used in the study of the simple complexes. The mixed-ligand complexes turned out to be very much stronger than the simple ligand complexes. Formation of a mixed ligand complex can be considered as a type of senergism. Les constantes de stabilité des complexes 1:1 et 2:2 (lorsque cela est possible) formés entre La3+, Ce3+, Th4+ et les anions aminoacides L-alaninate, L-phénylalaninate et L-histidinate ont été déterminées par dosage potentiométrique en solution aqueuse (25± 1 ^circC, I = 0,1 M KCl), et comparées à celles de la littérature. Les différents degrés de formation de M(L) et M(L)2 ont été quantifiés. Pour mettre en évidence la relation entre le degré de formation de M(L) et M(L)2 et la basicité des anions aminoacides (L^-), les constantes d

  10. Preparation and characterization of 5-sulphosalicylic acid doped tetraethoxysilane composite ion-exchange material by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Suhail-ul; Islam, Nasarul; Ahad, Sozia; Fatima, Syed Zeeshan; Pandith, Altaf Hussain, E-mail: altafpandit23@gmail.com

    2013-09-15

    Highlights: • Sulphosalicylic acid doped tetraethoxysilane composite is prepared by sol–gel method. •Its X-ray diffraction studies suggest that it is crystalline in nature. • This material shows selectivity for Mg(II) and Ni(II) ions in aqueous solutions. • Separation of Ni(II) from binary mixtures was successfully achieved on this material. -- Abstract: In this manuscript, we report the preparation and characterization of sulphosalicylic doped tetraethoxysilane (SATEOS), composite material by sol–gel method as a new ion exchanger for the removal of Ni(II) from aqueous solution. The fine granular material was prepared by acid catalyzed condensation polymerization through sol–gel mechanism in the presence of cationic surfactant. The material has an ion exchange capacity of 0.64 mequiv./g(dry) for sodium ions, 0.60 mequiv./g(dry) for potassium ions, 1.84 mequiv./g(dry) for magnesium ions, 1.08 mequiv./g(dry) for calcium ions and 1.36 mequiv./g(dry) for strontium ions. Its X-ray diffraction studies suggest that it is crystalline in nature. The material has been characterized by SEM, IR, TGA and DTG so as to identify the various functional groups and ion exchange sites present in this material. Quantum chemical computations at DFT/B3LYP/6-311G (d,p) level on model systems were performed to substantiate the structural conclusions based ion instrumental techniques. Investigations into the elution behaviour, ion exchange reversibility and distribution capacities of this material towards certain environmentally hazardous metal ions are also performed. The material shows good chemical stability towards acidic conditions and exhibits fast elution of exchangeable H{sup +} ions under neutral conditions. This material shows remarkable selectivity for Ni(II) and on the basis of its K{sub d} value (4 × 10{sup 2} in 0.01 M HClO{sub 4}) some binary separations of Ni(II) from other metal ions are performed.

  11. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography I. Matrix elimination by ion-exclusion chromatography.

    Science.gov (United States)

    Vermeiren, Koen

    2005-08-26

    Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.

  12. Electrochemical synthesis of FeS{sub 2} thin film: An effective material for peroxide sensing and terephthalic acid degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Mondal, Palash; Tripathi, Subhankar [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India); Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 WB (India); Chakraborty, Biswajit, E-mail: biswajitmailbag@gmail.com [Department of Chemistry, Vivekananda Mahavidyalaya, Burdwan, 713103 WB (India)

    2015-10-15

    Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrates at room temperature (25 °C). UV–Vis, X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) were used for the characterization of nanostructure FeS{sub 2} thin films. Two probe I–V measurements convey that the material is p type and a p-n junction (diode) was found to be developed between FeS{sub 2} and ITO layer. Cyclic voltametry study shows that FeS{sub 2}/ITO electrode facilitates the reduction of hydrogen peroxide and exhibits excellent electro-catalytic activity towards its sensing. Photocatalytic study reveals that the synthesized thin films are also efficient to degrade terephthalic acid (TA). - Graphical abstract: Electrochemically FeS{sub 2} thin films have been synthesized on ITO substrate. The synthesized material is effective for the reduction of H{sub 2}O{sub 2} and the sensitivity of the material is strongly dependent on pH and temperature. Photocatalytic study reveals that the material is quite effective towards decomposition of terephthalic acid. These results indicate that the material can play a dual role as pollutant cleanup for environmental interest. - Highlights: • Electrochemically FeS{sub 2} thin films are synthesized. • The material is effective to sense the H{sub 2}O{sub 2} and degrade terephthalic acid. • It plays a dual role as pollutant cleanup for environmental interest.

  13. Molecular Modeling of Acidic Treated PSTM-3T Polymer for Removal of Heavy Metal Ions by Experimental and Computational Studies

    Directory of Open Access Journals (Sweden)

    Natsagdorj Narantsogt

    2014-01-01

    Full Text Available The synthesized poly[N,N′-bis(3-silsesquioxanilpropyl-thiocarbamide] (PSTM-3T was used and the surface morphology and microstructure of it were analyzed by scanning electron microscopy with energy dispersive spectrometer (SEM/EDS. The molecular structure change of the PSTM-3T polymer of the PSTM-3T after treatment by acidic solution with different pHs was revealed using FT-IR experiments and ab initio calculations with density functional theory method. The sorption efficiency of the heavy metal ions depends on the molecular structure change of PSTM-3T after treatment of different pH aqueous solutions. After the treatment of acidic solution (pH = 2 of PSTM-3T, the polymer formed the tautomer state to increase the sorption efficiency for chromate ion. For the increment of pH value for acidic solution, the PSTM-3T polymer was dissociated to increase the sorption efficiency for copper ion.

  14. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents

    Science.gov (United States)

    Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.

    2017-04-01

    Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).

  15. "Clickable" LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Jørgensen, Anna S; Gupta, Pankaj; Wengel, Jesper

    2013-01-01

    Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies.......Herein we describe fluorescent oligonucleotides prepared by click chemistry between novel alkyne-modified locked nucleic acid (LNA) strands and a series of fluorescent azides for homogeneous (all-in-solution) detection of nucleic acids and autoimmune antibodies....

  16. Equilibrium studies of ternary systems containing some selected transition metal ions, triazoles and aromatic carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed Magdy; Radalla, Abd-Elatty; Qasem, Fatma; Khaled, Rehab [Beni-Suef University, Beni-Suef (Egypt)

    2014-01-15

    Solution equilibria of the binary and ternary complex systems of the divalent transition metal ions Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+} with 1,2,4-triazole (TRZ), 3-mercapto-1,2,4-triazole (TRZSH), and 3-amino-1,2,4-triazole (TRZAM) and aromatic carboxylic acids (phthalic, anthranilic, salicylic, and 5-sulfosalicylic acid) have been studied pH-metrically at (25.0±0.1) .deg. C, and a constant ionic strength I=1x10{sup -1} mol L{sup -1} NaNO{sub 3} in an aqueous medium. The potentiometric titration curves show that binary and ternary complexes of these ligands are formed in solution. The stability constants of the different binary and ternary complexes formed were calculated on the basis of computer analysis of the titration data. The relative stability of the different ternary complex species is expressed in terms of Δ log K values, log X and R. S.% parameters. The effect of temperature of the medium on both the proton-ligand equilibria for TRZAM and phthalic acid and their metal-ligand equilibria with Cu{sup 2+}, Ni{sup 2+}, and Co{sup 2+} has been studied along with the corresponding thermodynamic parameters. The complexation behavior of ternary complexes is ascertained using conductivity measurements. In addition, the formation of ternary complexes in solution has been confirmed by using UV-visible spectrophotometry.

  17. Study on radiation-induced oxide-reduction of actinoid ions in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, Kenkichi; Katsumura, Yosuke; Hiroishi, Daisuke [Tokyo Univ. (Japan). Faculty of Engineering] [and others

    1996-01-01

    Many studies have been made on the application of actinoid ion, especially UO{sub 2}{sup 2+} to change atomic valance but the mechanism of photoreduction has not yet been solved. In this study, the mechanism of photoreduction of UO{sub 2}{sup 2+} in acid solution was investigated. As functions of alcohol and acid concentrations, {phi}(U{sup IV}) was determined and photoreduction of UO{sub 2}{sup 2+} was investigated as well as NpO{sub 2}{sup 2+}. As an increase of alcohol content (EtOH, MtOH, iso-PrOH), {phi}(U{sup IV}) increased to reach a plateau ({approx}0.6). In addition, {phi}(U{sup IV}) increased linearly with an increase of acid content and the value became smaller in the order, H{sub 3}PO{sub 4}, H{sub 2}SO{sub 4}, HClO{sub 4} solution. Comparing with these results of UO{sub 2}{sup 2+}, photoreduction of NpO{sub 2}{sup 2+} was investigated. Only NpO{sub 2}{sup +} was produced as the final products, but not Np{sup IV} and NP{sup III}. Alcohol dependency of NpO{sub 2}{sup 2+} photoreduction was similar to that of UO{sub 2}{sup 2+} system but the plateau level of {phi} (NpO{sub 2}{sup 2+}) was lower ({approx}0.15) than the latter. (M.N.)

  18. Simultaneous determination of three chloroacetic acids, three herbicides, and 12 anions in water by ion chromatography.

    Science.gov (United States)

    Luo, Ximing; Chen, Liang; Zhao, Yanqing

    2015-09-01

    An ion chromatography method was developed for the simultaneous detection of three soluble herbicides (glyphosate, bentazone and picloram), three chlorine disinfection byproducts (monochloroacetic acid, dichloroacetic acid and trichloroacetic acid) and 12 anions in water (Cl(-), Br(-), SO4(2-), CO3(2-), ClO3(-), ClO4(-), BrO3(-), PO4(3-), NO2(-), NO3(-), CH3COO(-) and COO(-)). High linearity (r(2) > 0.996) was observed for all target analytes for each respective concentration range. The limit of detection and limit of quantitation were between 0.21-0.85 and 0.06-25.46 μg/L, respectively. However, the interference effect of Cl(-), NO3(-) , SO4 (2-) and CO3(2-) on some target analytes must be considered during the analysis. Sample pre-treatment by a hydrogen column (H-column) required to reduce the negative effect of CO3(2-). Additionally, sample pre-treatment by a sliver-hydrogen column (Ag-H-column) is required when Cl(-) > 100 mg/L and SO4(2-) 100 mg/L and SO4(2-) > 50 mg/L. When Cl(-) > 100 mg/L, SO4(2-) > 50 mg/L and CO3(2-) > 20 mg/L, the sample pre-treatment by either an Ag-H-Ba-column or an Ag-H-column and Ba-column is required to minimize interference.

  19. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    Science.gov (United States)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  20. Orally administered fatty acids enhance anorectic potential but do not activate central fatty acid sensing in Senegalese sole post-larvae.

    Science.gov (United States)

    Velasco, Cristina; Bonacic, Kruno; Soengas, José L; Morais, Sofia

    2017-02-15

    Studies in fish have reported the presence and function of fatty acid (FA)-sensing systems comparable in many aspects to those known in mammals. Such studies were carried out in juvenile and adult fish, but the presence of FA-sensing systems and control of food intake have never been evaluated in early life stages, despite the importance of establishing when appetite regulation becomes functional in larval fish. In this study, we aimed to elucidate the possible effects of different specific FAs on neural FA-sensing systems and neuropeptides involved in the control of food intake in Senegalese sole post-larvae. To achieve this, we orally administered post-larvae with different solutions containing pure FA - oleate (OA), linoleate (LA), α-linolenate (ALA) or eicosapentaenoate (EPA) - and evaluated changes in mRNA abundance of neuropeptides involved in the control of food intake and of transcripts related to putative FA-sensing systems, 3 and 6 h post-administration. The changes in neuropeptide gene expression were relatively consistent with the activation of anorectic pathways (enhanced cart4 and pomcb) and a decrease in orexigenic factors (npy) following intake of FA. Even though there were a few differences depending on the nature of the FA, the observed changes appear to suggest the existence of a putative anorectic response in post-larvae fish to the ingestion of all four tested FAs. However, changes in neuropeptides cannot be explained by the integration of metabolic information regarding FAs in circulation through FA-sensing mechanisms in the brain. Only the reduction in mRNA levels of the FA metabolism gene acc in OA-treated (6 h), ALA-treated (3 h) and EPA-treated (3 and 6 h) post-larvae could be indicative of the presence of a FA-sensing system, but most genes either were not significantly regulated (fat/cd36-lmp2, acly, kir6.x, srebp1c) or were affected in a way that was inconsistent with FA-sensing mechanisms (fat/cd36-pg4l, fas, cpt1.1, cpt1

  1. Spatial regulation of the mTORC1 system in amino acids sensing pathway

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Suzuki; Ken Inoki

    2011-01-01

    The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase that regulates numerous cellular processes including cell growth,proliferation,cell cycle,and autophagy,mTOR forms two different multi-protein complexes referred to as mTOR complex 1 (mTORC1) and mTORC2,and each complex exerts distinct functions exclusively,mTORC1 activity is sensitive to the selective inhibitor rapamycin,whereas mTORC2 is resistant,mTORC1 is regulated by many intra- and extra-cellular cues such as growth factors, nutrients, and energy-sensing signals,while mTORC2 senses ribosome maturation and growth factor signaling.This review focuses on current understandings by which mTORC1 pathway senses cellular nutrient availability for its activation.

  2. Synthesis and Characteristic Study on Complexes of Europium(Ⅲ) and Maleic Acid Doped with Non-Fluorescent Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Complex of europium (Ⅲ) with maleic acid, and binuclear complexes of europium(Ⅲ)with maleic acid doped with non-fluorescent ions gadolinium, lanthanum and yttrium, were synthesized. The compositions and structures of complexes were characterized with elemental analysis, single crystal X-ray diffraction, IR and DSC-TG. Fluorescent properties were studied with fluorescence spectrum. The results indicated that the strongest fluorescent complexes were obtained when the ratio of europium and non-fluorescent ion was 8: 2. The order of Eu3+ fluorescence strengthened by three doped rare earths was Gd3+>La3+>Y3+.

  3. Separation and Detection of Lanthanide Ions with Nitrilotri (methylenephosphonic) Acid as Complexing Agent and Eluent by IPC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A mixture containing eleven lanthanide ions was separated and detected on an anion-exchange co-lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10-2mol/L nitrilotri(methylenephosphonic) acid and 2.5×10-3mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.

  4. Calcium-sensing receptor (CaSR)-mediated anti-inflammatory effects of L-amino acids in intestinal epithelial cells.

    Science.gov (United States)

    Mine, Yoshinori; Zhang, Hua

    2015-11-18

    Calcium-sensing receptor (CaSR) plays an essential role in sensing nutrients and monitoring ion balance in the human gut. However, no discovery of CaSR-mediated anti-inflammatory effect of l-amino acids (l-AAs) on the gut system has been reported. The aim of this study is to screen and identify the anti-inflammatory activity of various l-AAs in intestinal epithelial cells (IECs) and stepwise illustrate a possible molecular mechanism for anti-inflammation. We used Caco-2 and HT-29 cell lines to evaluate the anti-inflammatory activity of l-AAs and revealed that l-tryptophan (l-Trp) and l-valine (l-Val) have strong anti-inflammatory activity consistent in both cell lines. l-Trp treatment (5 mM) reduced TNF-α-induced IL-8 secretion from HT-29 or Caco-2 cells to about 50 or 40%, respectively. l-Trp also significantly inhibited the expression of phosphorylation of JNK or IκBα to around 50% in HT-29 cells. However, the above inhibitory effects of l-Trp on inflammatory responses in TNF-α-induced HT-29 cells were abrogated by NPS-2143. The result of CaSR antagonist NPS-2143 pretreatment study suggests l-Trp exerts anti-inflammatory effects on IECs through CaSR activation. The involvement of β-arrestin2 was then found to block tumor necrosis factor (TNF)-α-induced signaling pathways after CaSR activated by l-Trp. These results validate a novel mechanism underlying CaSR agonistic l-AAs exerting anti-inflammatory effects on human intestinal epithelia.

  5. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity.

    Science.gov (United States)

    Nagata, Yasuyuki; Ishizaki, Itsuko; Waki, Michihiko; Ide, Yoshimi; Hossen, Md Amir; Ohnishi, Kazunori; Miyayama, Takuya; Setou, Mitsutoshi

    2015-06-01

    Recent studies indicate that lipid metabolic changes affect the survival of multiple myeloma (MM) cells. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), an imaging mass spectrometry technique, is used to visualize the subcellular distribution of biomolecules including lipids. We therefore applied this method to human clinical specimens to analyze the membrane fatty acid composition and determine candidate molecules for MM therapies. We isolated MM cells and normal plasma cells (PCs) from bone marrow aspirates of MM patients and healthy volunteers, respectively, and these separated cells were analyzed by TOF-SIMS. Multiple ions including fatty acids were detected and their ion counts were estimated. In MM cells, the mean intensity of palmitic acid was significantly lower than the mean intensity in PCs. In a cell death assay, palmitic acid reduced U266 cell viability dose-dependently at doses between 50 and 1000 μM. The percentage of apoptotic cells increased from 24h after palmitic acid administration. In contrast, palmitic acid had no effect on the viability of normal peripheral blood mononuclear cells (PBMCs). The results of this study indicated that palmitic acid is a potential candidate for novel therapeutic agents that specifically attack MM cells.

  6. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  7. The role of G-protein-coupled receptor 120 in fatty acids sensing in chicken oral tissues.

    Science.gov (United States)

    Sawamura, Ryo; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-03-01

    Clarification of the mechanism of chickens' taste sense will provide meaningful information for creating and improving new feedstuff for chickens, because the character of taste receptors in oral tissues affects feeding behavior in animals. Although fatty acids are partly recognized via G-protein coupled receptor 120 (GPR120) for fat taste in mammalian oral tissues, the fat taste receptor of chickens has not been elucidated. Here we cloned chicken GPR120 (cGPR120) from the chicken palate, which contains taste buds. By using Ca(2+) imaging methods, we identified oleic acid and linoleic acid as cGPR120 agonists. Interestingly, in a behavioral study the chickens preferred corn oil-rich feed over mineral oil (control oil)-rich feed. Because corn oil contains high amounts of oleic acid and linoleic acid, this result was thought to be reasonable. Taken together, the present results suggest that cGPR120 is one of the functional fat taste receptors in chickens.

  8. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine.

    Science.gov (United States)

    Yang, Chunlei; Wang, Xiu; Shen, Lei; Deng, Wenping; Liu, Haiyun; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2016-06-15

    A highly sensitive and selective turn on fluorescent probe P-acid-aldehyde (P-CHO) is developed for the determination of cysteine (Cys) and homocysteine (Hcy). The probe is designed and synthesized by incorporating the specific functional group aldehyde group for thiols into a stable π-conjugated material 4,4'-(2,5-dimethoxy-1,4-phenylene) bis(ethyne-2,1-diyl) dibenzoic acid (P-acid). The probe fluorescence is quenched through donor photoinduced electron transfer (d-PET) between the fluorophore (P-acid) and the recognition group (aldehyde group). In the presence of thiols, Cys and Hcy can selectively react with aldehyde group of the probe because the inhibition of d-PET between fluorophore and recognition group. Therefore, a turn-on fluorescent sensor was established for the fluorescence recovery. Under the optimized conditions, the fluorescence response of probe is directly proportional to the concentration of Cys in the range of 4-95 NM L(-1), with a detection limit 3.0 nM. In addition, the sensing system exhibits good selectively toward Cys and Hcy in the presence of other amino acids. It has been successfully applied for bioimaging of Cys and Hcy in living cells with low cell toxicity.

  9. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid.

    Science.gov (United States)

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings.

  10. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    Science.gov (United States)

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  11. SYNTHESIS OF MACROPOROUS HUMIC ACID RESINS AND THEIR CHELATING PROPERTIES FOR HEAVY METAL IONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiyong; MAO Xueqin; ZHU Dongwei; ZHENG Ping

    1984-01-01

    Macroporous HA resins (HAR) can be prepared in pearl form by grafting HA onto crosslinkec PS through azo or through ester and / or ether linkages. At pH 13 and the HA / PSNH2 weight ratio 0.7-1.0, PSN2+Cl-couples with HA and results in the formation of azo-type HA resin (HAR-A), which shows good adsorbility towards heavy metal ions. The Cu2+ sorption capacity of ester / ether type humic acid resin (HAR-E) is increased by lengthening the reaction time of HA and PSCH2Cl. The structure of HAR is discussed on the basis of the IR spectra. The sorption capacity of HAR-A is 1.01 mmol / g for Cd2+and 0.6-0.53 mmol/g for Ni2+,Mn2+,Cu2+,Co3+ and Zn2+, respectively. The calculated distribution coefficients of heavy metal ions on HAR-A can be arranged in the following order: CuV+(8.7 × 103)>Cd2+(3.8 × 102)>Zn2+(2.4 × 102)>Ni2+(1. 8 × 102)>Mn2+(4.9 × 10). At pH 6.5, Cu2+, Cd2+, Ni2+, Mn2+ can be quantitatively adsorbed by HAR-A and completely eluted with 1N HNO3. HAR-A can be regenerated and reused Trace quantities of the above-mentioned heavy metal ions in four samples of the natural occurring water and one sample of the tap water were analyzed by using HAR-A.

  12. Strong ion and weak acid analysis in severe preeclampsia: potential clinical significance.

    Science.gov (United States)

    Ortner, C M; Combrinck, B; Allie, S; Story, D; Landau, R; Cain, K; Dyer, R A

    2015-08-01

    The influence of common disturbances seen in preeclampsia, such as changes in strong ions and weak acids (particularly albumin) on acid-base status, has not been fully elucidated. The aims of this study were to provide a comprehensive acid-base analysis in severe preeclampsia and to identify potential new biological predictors of disease severity. Fifty women with severe preeclampsia, 25 healthy non-pregnant- and 46 healthy pregnant controls (26-40 weeks' gestation), were enrolled in this prospective case-control study. Acid-base analysis was performed by applying the physicochemical approach of Stewart and Gilfix. Mean [sd] base excess was similar in preeclamptic- and healthy pregnant women (-3.3 [2.3], and -2.8 [1.5] mEq/L respectively). In preeclampsia, there were greater offsetting contributions to the base excess, in the form of hyperchloraemia (BE(Cl) -2 [2.3] vs -0.4 [2.3] mEq/L, Palkalosis was associated with a non-reassuring/abnormal fetal heart tracing (Prespiratory and hypoalbuminaemic alkalosis that was metabolically offset by acidosis, secondary to unmeasured anions and dilution. While the overall base excess in severe preeclampsia is similar to that in healthy pregnancy, preeclampsia is associated with a greater imbalance offsetting hypoalbuminaemic alkalosis and hyperchloraemic acidosis. Rather than the absolute value of base excess, the magnitude of these opposing contributors may be a better indicator of the severity of this disease. Hypoalbuminaemic alkalosis may also be a predictor of fetal compromise. clinicaltrials.gov: NCT 02164370. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Formation of Hydrogen-Ion in Isomolar Solution of Hydrochloric and Hydrobromic Acids and Their Salts

    Directory of Open Access Journals (Sweden)

    M.A. Kovaleva

    2016-09-01

    Full Text Available Despite the presence of a large amount of factual material on thermodynamic parameters of complexation of agents in different solvents, including mixed ones, obtained knowledge is specific in nature. In order to identify more general patterns, studies are relevant that would allow to interpret the obtained data taking into account the interaction between chemical forms in solutions. This paper presents a general approach to studying weak ionic interactions in solutions that allows to simultaneously determine the constants of these interactions and the parameters characterizing the influence of changes in the ionic environment on these constants by the example of chlorides and bromides of alkali metals. The obtained constants for hydrosulfate-ion formation and the imperfection parameters can be a reference material for more accurate calculation of the concentration of hydrogen ions in sulfuric acid solutions. The developed approach and patterns identified in the work can be used to study the balanced states for formation of low and medium stable complexes.

  14. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function

    Science.gov (United States)

    Antollini, Silvia S.; Barrantes, Francisco J.

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action. PMID:27965583

  15. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  16. Radiolytic stability of some recently developed ion exchange and extraction chromatographic resins containing diphosphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Horwitz, E.P.

    2000-01-01

    The effect of {sup 60}Co irradiation on the Diphonix{trademark}, Diphosil and Diphonix-CS chelating ion exchange resins, and on two Dipex{trademark} extraction chromatographic resins containing the P,P{prime}-di(2-ethylhexyl) methanediphosphonic acid (H{sub 2}DEH[MDP]) impregnated in the pores of a polymeric support (Dipex-1) and of silica (Dipex-2), respectively, has been investigated. The resins have been irradiated while in contact with HNO{sub 3} (Diphonix, Diphosil and Dipex resins) or NaOH (Diphonix-DS resin) up to an absorbed dose of about 200 Mrad. As a probe of the resin radiolytic degradation, metal uptake (both equilibrium and kinetics) and capacity measurements have been performed. Results show that the Diphonix-CS resin properties are practically unaffected by irradiation under the experimental conditions used in this work. The Diphonix, Diphosil, and especially the Dipex resins suffer substantial capacity losses, but their affinity for actinide ions is not seriously compromised. On the other hand, the kinetics of metal uptake by the silica based Diphosil and Dipex-2 resins becomes substantially slower indicating that, from a radiolytic degradation standpoint, polymeric materials perform better than silica as supports for H{sub 2}DEH[MDP] containing extraction chromatographic resins.

  17. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function.

    Science.gov (United States)

    Antollini, Silvia S; Barrantes, Francisco J

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.

  18. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

  19. Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling

    OpenAIRE

    Alguacil,Francisco José; Alonso Gámez, Manuel; Lozano, Kuis Javier

    2004-01-01

    The use of ion exchange technology was studied to remove chromium (III) from acidic waste solution by Amberlite IR-120 resin. Batch and column experimental tests were conducted to provide data for theoretical models and verify the system performance of the adsorption process. Results of batch equilibrium tests indicated that Langmuir isotherm describes well the adsorption process, whereas experimental data also provide evidence that, under the present experimental conditions, chro...

  20. Comparative NH 3-sensing characteristic studies of PANI/TiO II nanocomposite thin films doped with different acids

    Science.gov (United States)

    Tai, Huiling; Jiang, Yadong; Xie, Guangzhong; Yu, Junsheng; Ying, Zhihua; Chen, Xuan

    2008-02-01

    Polyaniline/titanium dioxide (PANI/TiO II) nanocomposite thin films were synthesized by in-situ self-assembly method, which were doped with p-toluene sulphonic acid (p-TSA) and hydrochloric acid (HCl), respectively. The thin films were characterized by using UV-Vis absorption spectroscopy and scanning electron microscope (SEM), and the NH 3 gas sensitive properties of the thin films were investigated at room temperature. The results showed that the PANI/TiO II thin film doped with HCl was superior to that doped with p-TSA in terms of response-recovery characteristics. The surface morphology characterization of the thin films were performed to explain the different gas-sensing properties.

  1. A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe.

    Science.gov (United States)

    Fong, Jessica Fung Yee; Chin, Suk Fun; Ng, Sing Muk

    2016-11-15

    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.

  2. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    Science.gov (United States)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Ibañez, Irene L.; Behar, Moni; Grasselli, Mariano; Bermúdez, Gerardo García

    2015-12-01

    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2-22.1 MeV cm2 mg-1 and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  3. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R. [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); UNQ – IMBICE – CCT – CONICET – LA PLATA (Argentina); Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Ibañez, Irene L. [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Grasselli, Mariano [UNQ – IMBICE – CCT – CONICET – LA PLATA (Argentina); Bermúdez, Gerardo García [Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina)

    2015-12-15

    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2–22.1 MeV cm{sup 2} mg{sup −1} and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  4. Interaction of charged amino-acid side chains with ions: an optimization strategy for classical force fields.

    Science.gov (United States)

    Kahlen, Jens; Salimi, Leila; Sulpizi, Marialore; Peter, Christine; Donadio, Davide

    2014-04-10

    Many well-established classical biomolecular force fields, fitted on the solvation properties of single ions, do not necessarily describe all the details of ion pairing accurately, especially for complex polyatomic ions. Depending on the target application, it might not be sufficient to reproduce the thermodynamics of ion pairing, but it may also be necessary to correctly capture structural details, such as the coordination mode. In this work, we analyzed how classical force fields can be optimized to yield a realistic description of these different aspects of ion pairing. Given the prominent role of the interactions of negatively charged amino-acid side chains and divalent cations in many biomolecular systems, we chose calcium acetate as a benchmark system to devise a general optimization strategy that we applied to two popular force fields, namely, GROMOS and OPLS-AA. Using experimental association constants and first-principles molecular dynamics simulations as a reference, we found that small modifications of the van der Waals ion-ion interaction parameters allow a systematic improvement of the essential thermodynamic and structural properties of ion pairing.

  5. Utilization of a spiropyran derivative in a polymeric film optode for selective fluorescent sensing of zinc ion

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ying; SHAO; Na; YANG; Ronghua; LI; Ke'an; LIU; Feng; CHAN; Winghong; MO; Tian

    2006-01-01

    A new spiropyran derivative was synthesized and first utilized in a polymeric film-based optical sensor for zinc ion. Spiropyrans, combining the characteristics of metal binding and signal transduction, show potential function in the design of optical chemical sensors (optodes) toward metal ions. When embedded in a plasticized poly (vinyl chloride) (PVC) membrane, the newly synthesized spiropyran derivative 1 exhibits obvious fluorescence enhancement at 630 nm in the presence of zinc ion in aqueous solution. With the optimum condition described, the optode membrane responds to also exhibits high selectivity toward zinc ion over transition metal ions including Hg2+, Cd2+, Pb2+, Cu2+,Fe3+and common cationic ions presented in the physiological fluids.

  6. Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Richter, Katrin; Nygren, Håkan; Malmberg, Per; Hagenhoff, Birgit

    2007-07-01

    Localization of fatty acids in biological tissues was made by using TOF-SIMS (time-of-flight secondary ion mass spectrometry). Two cell-types with a specific fatty acid distribution are shown. In rat cerebellum, different distribution patterns of stearic acid (C18:0), palmitic acid (C16:0), and oleic acid (C18:1) were found. Stearic acid signals were observed accumulated in Purkinje cells with high intensities inside the cell, but not in the nucleus region. The signals colocalized with high intensity signals of the phosphocholine head group, indicating origin from phosphatidylcholine or sphingomyelin. In mouse intestine, high palmitic acid signals were found in the secretory crypt cells together with high levels of phosphorylinositol colocalized in the crypt region. Palmitic acid was also seen in the intestinal lumen that contains high amounts of mucine, which is known to be produced in the crypt cells. Linoleic acid signals (C18:2) were low in the crypt region and high in the villus region. Oleic acid signals were seen in the villi and stearic acid signals were ubiquitous with no specific localization in the intestine. We conclude that the results obtained by using imaging TOF-SIMS are consistent with known brain and intestine biochemistry and that the localization of fatty acids is specific in differentiated cells.

  7. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  8. Let-7 coordinately suppresses components of the amino acid sensing pathway to repress mTORC1 and induce autophagy.

    Science.gov (United States)

    Dubinsky, Amy N; Dastidar, Somasish Ghosh; Hsu, Cynthia L; Zahra, Rabaab; Djakovic, Stevan N; Duarte, Sonia; Esau, Christine C; Spencer, Brian; Ashe, Travis D; Fischer, Kimberlee M; MacKenna, Deidre A; Sopher, Bryce L; Masliah, Eliezer; Gaasterland, Terry; Chau, B Nelson; Pereira de Almeida, Luis; Morrison, Bradley E; La Spada, Albert R

    2014-10-07

    Macroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent. Based upon transcriptome analysis of neurons subjected to nutrient deprivation, we identified let-7 microRNA as capable of promoting neuronal autophagy. We found that let-7 activates autophagy by coordinately downregulating the amino acid sensing pathway to prevent mTORC1 activation. Let-7 induced autophagy in the brain to eliminate protein aggregates, establishing its physiological relevance for in vivo autophagy modulation. Moreover, peripheral delivery of let-7 anti-miR repressed autophagy in muscle and white fat, suggesting that let-7 autophagy regulation extends beyond CNS. Hence, let-7 plays a central role in nutrient homeostasis and proteostasis regulation in higher organisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    Science.gov (United States)

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation.

  10. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes

    Science.gov (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre

    2010-08-01

    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  12. Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry.

    Science.gov (United States)

    Headley, John V; Peru, Kerry M; McMartin, Dena W; Winkler, Marcus

    2002-01-01

    Naphthenic acids (NAs) have been implicated as some of the most toxic substances in oil sands leachates and identified as priority substances impacting on aquatic environments. As a group of compounds, NAs are not well characterized and comprise a large group of saturated aliphatic and alicyclic carboxylic acids found in hydrocarbon deposits (petroleum, oil sands bitumen, and crude oils). Described is an analytical method using negative-ion electrospray ionization mass spectrometry (ES/MS) of extracts. Preconcentration was achieved by using a solid-phase extraction procedure utilizing a crosslinked polystyrene-based polymer with acetonitrile elution. Recovery of the Fluka Chemicals NA mixture was highly pH-dependent, with 100% recovery at pH 3.0, but only 66 and 51% recoveries at pHs 7 and 9, respectively. The dissolved phase of the NA was very dependent on sample pH. It is thus critical to measure the pH and determine the appropriate mass profiles to identify NAs in natural waters. The ES/MS analytical procedure proved to be a fast and sensitive method for the recovery and detection of NAs in natural waters, with a detection limit of 0.01 mg/L.

  13. Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction

    Directory of Open Access Journals (Sweden)

    James L. Gole

    2013-01-01

    Full Text Available Nanostructure-decorated n-type semiconductor interfaces are studied in order to develop chemical sensing with nanostructured materials. We couple the tenets of acid/base chemistry with the majority charge carriers of an extrinsic semiconductor. Nanostructured islands are deposited in a process that does not require self-assembly in order to direct a dominant electron-transduction process that forms the basis for reversible chemical sensing in the absence of chemical-bond formation. Gaseous analyte interactions on a metal-oxide-decorated n-type porous silicon interface show a dynamic electron transduction to and from the interface depending upon the relative strength of the gas and metal oxides. The dynamic interaction of NO with TiO2, SnO2, NiO, CuxO, and AuxO (x >> 1, in order of decreasing acidity, demonstrates this effect. Interactions with the metal-oxide-decorated interface can be modified by the in situ nitridation of the oxide nanoparticles, enhancing the basicity of the decorated interface. This process changes the interaction of the interface with the analyte. The observed change to the more basic oxinitrides does not represent a simple increase in surface basicity but appears to involve a change in molecular electronic structure, which is well explained by using the recently developed IHSAB model. The optical pumping of a TiO2 and TiO2−xNx decorated interface demonstrates a significant enhancement in the ability to sense NH3 and NO2. Comparisons to traditional metal-oxide sensors are also discussed.

  14. Nanostructure-directed chemical sensing: The IHSAB principle and the dynamics of acid/base-interface interaction.

    Science.gov (United States)

    Gole, James L; Laminack, William

    2013-01-01

    Nanostructure-decorated n-type semiconductor interfaces are studied in order to develop chemical sensing with nanostructured materials. We couple the tenets of acid/base chemistry with the majority charge carriers of an extrinsic semiconductor. Nanostructured islands are deposited in a process that does not require self-assembly in order to direct a dominant electron-transduction process that forms the basis for reversible chemical sensing in the absence of chemical-bond formation. Gaseous analyte interactions on a metal-oxide-decorated n-type porous silicon interface show a dynamic electron transduction to and from the interface depending upon the relative strength of the gas and metal oxides. The dynamic interaction of NO with TiO(2), SnO(2), NiO, Cu(x)O, and Au(x)O (x > 1), in order of decreasing acidity, demonstrates this effect. Interactions with the metal-oxide-decorated interface can be modified by the in situ nitridation of the oxide nanoparticles, enhancing the basicity of the decorated interface. This process changes the interaction of the interface with the analyte. The observed change to the more basic oxinitrides does not represent a simple increase in surface basicity but appears to involve a change in molecular electronic structure, which is well explained by using the recently developed IHSAB model. The optical pumping of a TiO(2) and TiO(2-) (x)N(x) decorated interface demonstrates a significant enhancement in the ability to sense NH(3) and NO(2). Comparisons to traditional metal-oxide sensors are also discussed.

  15. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions.

    Science.gov (United States)

    Ng, Sing Muk; Wong, Derrick Sing Nguong; Phung, Jane Hui Chiun; Chin, Suk Fun; Chua, Hong Siang

    2013-11-15

    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance.

  16. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  17. Adsorption of Chromium Ion by Acid Activated Low Cost Carbon-Kinetic, Mechanistic, Thermodynamic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    S. Arivoli

    2008-01-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing chromium ion. The parameters studied include agitation time, initial chromium ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 27.40, 26.06, 26.06 and 26.17 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60°C. The temperature variation study showed that the chromium ion adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the chromium ion solutions. Almost 70% removal of chromium ion was observed at 60°C. The Langmuir and Freundlich isotherms obtained, positive ∆H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of chromium ion on PDC involves physisorption mechanism.

  18. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  19. Investigation of Gas-Sensing Property of Acid-Deposited Polyaniline Thin-Film Sensors for Detecting H2S and SO2

    Directory of Open Access Journals (Sweden)

    Xingchen Dong

    2016-11-01

    Full Text Available Latent insulation defects introduced in manufacturing process of gas-insulated switchgears can lead to partial discharge during long-time operation, even to insulation fault if partial discharge develops further. Monitoring of decomposed components of SF6, insulating medium of gas-insulated switchgear, is a feasible method of early-warning to avoid the occurrence of sudden fault. Polyaniline thin-film with protonic acid deposited possesses wide application prospects in the gas-sensing field. Polyaniline thin-film sensors with only sulfosalicylic acid deposited and with both hydrochloric acid and sulfosalicylic acid deposited were prepared by chemical oxidative polymerization method. Gas-sensing experiment was carried out to test properties of new sensors when exposed to H2S and SO2, two decomposed products of SF6 under discharge. The gas-sensing properties of these two sensors were compared with that of a hydrochloric acid deposited sensor. Results show that the hydrochloric acid and sulfosalicylic acid deposited polyaniline thin-film sensor shows the most outstanding sensitivity and selectivity to H2S and SO2 when concentration of gases range from 10 to 100 μL/L, with sensitivity changing linearly with concentration of gases. The sensor also possesses excellent long-time and thermal stability. This research lays the foundation for preparing practical gas-sensing devices to detect H2S and SO2 in gas-insulated switchgears at room temperature.

  20. Carbon monoxide gas sensing properties of Ga-doped ZnO film grown by ion plating with DC arc discharge

    OpenAIRE

    Kishimoto, S; Akamatsu, S; Song, H.; Nomoto, J; Makino, H.; Yamamoto, T

    2014-01-01

    The carbon monoxide (CO) gas sensing properties of low-resistance heavily Ga-doped ZnO thin films were evaluated. The ZnO films with a thickness of 50 nm were deposited at 200 °C by ion plating. The electrical properties of the ZnO films were controlled by varying the oxygen assist gas flow rate during deposition. The CO gas sensitivity of ZnO films with Au electrodes was investigated in nitrogen gas at a temperature of 230 to 330 °C. CO gas concentration was varied in the r...

  1. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.

    Science.gov (United States)

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hasunuma, Tomohisa; Zhao, Xin-Qing; Kondo, Akihiko

    2014-12-01

    Lignocellulosic biomass is a potential substrate for ethanol production. However, pretreatment of lignocellulosic materials produces inhibitory compounds such as acetic acid, which negatively affect ethanol production by Saccharomyces cerevisiae. Supplementation of the medium with three metal ions (Zn(2+) , Mg(2+) , and Ca(2+) ) increased the tolerance of S. cerevisiae toward acetic acid compared to the absence of the ions. Ethanol production from xylose was most improved (by 34%) when the medium was supplemented with 2 mM Ca(2+) , followed by supplementation with 3.5 mM Mg(2+) (29% improvement), and 180 μM Zn(2+) (26% improvement). Higher ethanol production was linked to high cell viability in the presence of metal ions. Comparative transcriptomics between the supplemented cultures and the control suggested that improved cell viability resulted from the induction of genes controlling the cell wall and membrane. Only one gene, FIT2, was found to be up-regulated in common between the three metal ions. Also up-regulation of HXT1 and TKL1 might enhance xylose consumption in the presence of acetic acid. Thus, the addition of ionic nutrients is a simple and cost-effective method to improve the acetic acid tolerance of S. cerevisiae.

  2. DETERMINATION OF ION EXCHANGE EQUILIBRIUM CONSTANTS FOR THE WEAK ACID CATION AND THE WEAK BASE ANION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    TAOZuyi; WANGChangshou

    1992-01-01

    The general procedure based on the potentiometric titration has developed.According to the procedure,the rational equilibrium constants of the ion exchange reactions RH/Na,RH/Ca,RH/Sr,RH/Ba for the weak acid cation exchange resin D725 and ROH/Cl for the weak base anion exchange resin D705 have been determined.

  3. Novel pre-fractionation method of trans fatty acids by gas chromatography with silver-ion cartridge column.

    Science.gov (United States)

    Goto, Hirofumi; Shionoya, Noriko; Sugie, Megumi; Tominaga, Makoto; Shimelis, Olga; Taniguchi, Makoto; Igarashi, Tomoji; Hirata, Yoshiaki

    2012-01-01

    We developed a novel pre-separation method of trans fatty acids (TFAs) using a silver-ion cartridge column and GC. As a preliminary study, a mixture of fatty acid methyl esters consisting of saturated, cis-unsaturated, and trans-unsaturated fatty acids was dissolved in dichloromethane and loaded onto a Bond Elut SCX ion-exchange cartridge column that was converted to the silver-ion form. The column was then eluted with dichloromethane to obtain the saturated fatty acids, dichloromethane/ethyl acetate (90/10) for the trans mono-ene, dichloromethane/ethyl acetate (65/35) for the cis mono-ene, dichloromethane/acetone (60/40) for the trans di-ene, and acetone/acetonitrile (80/20) for the others. Satisfactory separation of the cis/trans isomers was confirmed by GC analysis. To generalize this technique, the elution conditions of the ready-to-use Discovery Ag-ION SPE cartridge column were also optimized. Both cartridge columns had good separation, recovery, and repeatability. Peer laboratory verification was carried out between two laboratories using different production lots of the ready-to-use cartridge column, and the robustness of the product and reproducibility of the method were found to be satisfactory. This technique is therefore a powerful tool not only for routine analyses of TFAs in oils, fats, and foods but also for detailed analyses of TFAs in various research fields.

  4. SYNTHESIS OF METHYL TERT-BUTYL ETHER CATALYZED BY ACIDIC ION-EXCHANGE RESINS - INFLUENCE OF THE PROTON ACTIVITY

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307 h

  5. Chemical Speciation Analysis of Sports Drinks by Acid-Base Titrimetry and Ion Chromatography: A Challenging Beverage Formulation Project

    Science.gov (United States)

    Drossman, Howard

    2007-01-01

    Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…

  6. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Pedersen, Jeanette; Røy, Hans

    2014-01-01

    Volatile fatty acids (VFAs) are key intermediates in the microbial food web. However, the analysis of low concentrations of VFAs in marine porewater is hampered by interference from high concentrations of inorganic ions. Published methods often use sample pretreatment, including distillation or d...

  7. Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries

    Science.gov (United States)

    Zhao, Pin-Yi; Zhang, Jie; Li, Qi; Wang, Cheng-Yang

    2016-12-01

    The electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers (PF-CNFs) as anodes for sodium-ion batteries is reported. PF-CNFs were prepared, stabilization in air at 280 °C and then carbonized in N2 at 800, 1000, 1300 or 1500 °C. The PF-CNFs prepared at 1300 °C had abundant oxygen functional groups, large interlayer spaces and stable morphologies and when used as anodes in sodium-ion batteries, a reversible sodium intercalation capacity of 248 mAh g-1 was obtained with capacity retention ratio of 91% after 100 cycles at a current density of 100 mA g-1. This large capacity combined with the superior cycling performance indicates that fulvic acid-based carbon nanofibers are promising electrode materials for use in rechargeable sodium-ion batteries.

  8. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  9. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.

    Science.gov (United States)

    Venäläinen, Salla H; Hartikainen, Helinä

    2017-12-01

    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO4(2-) ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO4(2-) concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO4(2-). The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO4(2-) electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study

    Directory of Open Access Journals (Sweden)

    Amrit P. Toor

    2011-05-01

    Full Text Available The kinetic behavior of esterification of lactic acid with isopropanol over an acidic cation exchange resin, Amberlyst 15, was studied under isothermal condition. Isopropyl lactate synthesized in this reaction is an important pharmaceutical intermediate. The experiments were carried out in a stirred batch reactor in the temperature range of 323.15 to 353.15 K. The effect of various parameters such as temperature, molar ratio and catalyst loading was studied. Variation in parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Kinetic modeling was performed using Eley-Rideal model which acceptably fits the experimental data. The activation energy was found to be 22.007 kJ/mol and frequency factor was 0.036809 l2 g-1 mol-1 min-1 for forward reaction. The value of entropy for the forward reaction was found to be 182.317 J K-1 mol-1 . © 2011 BCREC UNDIP. All rights reserved(Received: 19th January 2011, Revised: 16th March 2011; Accepted: 16th March 2011[How to Cite: A.P. Toor, M. Sharma, S. Thakur, and R. K. Wanchoo. (2011. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 39-45. doi:10.9767/bcrec.6.1.791.39-45][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.791.39-45 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/791 ] | View in  

  11. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    Science.gov (United States)

    Cheng, Lan; Sanguinetti, Michael C

    2009-05-01

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  12. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B

    Directory of Open Access Journals (Sweden)

    Thomas Olivier P

    2011-01-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG neurons obtained from Wistar rats. Results Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase, and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ Conclusions To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.

  13. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  14. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  15. Molecular basis for amino acid sensing by family C G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2009-01-01

    -alpha;-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABA(B1......-2) and T1R2-3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity...

  16. THERMODYNAMICS ADSORPTION OF MANGANESE ION ON 1-(2-PYRIDYLAZO)-2-NAPHTHOL-6-SULPHONIC ACID IMPREGNATED RESIN

    Institute of Scientific and Technical Information of China (English)

    TANG Shuhe; WANG Jingping; CHEN Jian

    2008-01-01

    An ion-exchange resin of type 201×7 was impregnated with the reagent 1-(2-Pyridylazo)-2-naphthol-6-sulphonic Acid (PAN-S).The adsorption characteristics of PANS resin for manganese ion were studied on the static equilibrium adsorption.Within temperature range of 288K~313K and the concentration range investigated, equilibrium data for the adsorption of manganese ions from aqueous solutions by PANS resin were obtained and correlated with Freundlich and Langmuir equation.The results showed that the process of the adsorption of manganese ions from aqueous solution by PAN-S was an exothermic process.Estimations of the isothermic enthalpy change of adsorption, free energy change and entropy of adsorption are reported, and the adsorption behaviors are reasonably interpreted.

  17. THERMODYNAMICS ADSORPTION OF MANGANESE ION ON 1-(2-PYRIDYLAZO)-2-NAPHTHOL-6-SULPHONIC ACID IMPREGNATED RESIN

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An ion-exchange resin of type 201×7 was impregnated with the reagent 1-(2-Pyridylazo)-2-naphthol-6-sulphonic Acid (PAN-S). The adsorption characteristics of PAN-S resin for manganese ion were studied on the static equilibrium adsorption. Within temperature range of 288K~313K and the concentration range investigated, equilibrium data for the adsorption of manganese ions from aqueous solutions by PAN-S resin were obtained and correlated with Freundlich and Langmuir equation. The results showed that the process of the adsorption of manganese ions from aqueous solution by PAN-S was an exothermic process. Estimations of the isothermic enthalpy change of adsorption,free energy change and entropy of adsorption are reported,and the adsorption behaviors are reasonably interpreted.

  18. Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element.

    Science.gov (United States)

    Cao, Qian; Zhao, Hong; He, Yujian; Ding, Nan; Wang, Jian

    2010-08-18

    A new electrochemical sensor for melamine with 3,4-dihydroxyphenylacetic acid as the recognition element is established. The results of Fourier Transform Infrared (FT-IR) spectra demonstrate that melamine may interact with 3,4-dihydroxyphenylacetic acid to form a complex mainly through the hydrogen-bonding interaction. The electrochemical behavior of 3,4-dihydroxyphenylacetic acid in the presence of melamine was studied. The anodic peak currents of 3,4-dihydroxyphenylacetic acid obtained by differential pulse voltammetry are linear with the logarithm of melamine concentrations in the range from 1.0 x 10(-8) to 5.0 x 10(-6) M with a linear coefficiency of 0.997. The detection limit is 3.0 x 10(-9) M. The proposed method displayed an excellent sensitivity and was successfully applied to the determination of melamine in milk products. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Optical Sensing Properties of Pyrene-Schiff Bases toward Different Acids.

    Science.gov (United States)

    Babgi, Bandar A; Alzahrani, Asma

    2016-07-01

    A set of (4-substituted-phenyl)-pyren-1-ylmethylene-amine (PMA) was prepared by the reaction of pyrene-1-carboxaldehyde and the corresponding 4-substituted aniline. The structure of the PMA compounds were confirmed by spectroscopic data (IR, (1)HNMR, (13)CNMR, ISI-MS and elemental analysis. The structure of (4-bromo-phenyl)-pyren-1-ylmethylene-amine (BrPMA) was further confirmed by the single X-ray crystallography. The absorption and emission spectroscopic behaviors were investigated in variant acids. The compounds showed dramatic spectroscopic changes upon acidifying with strong acids and negligible effects when weak acids are used in the acidifications. Hence, the PMA compounds can be used as sensors to distinguish between weak and strong acids.

  20. Spectrophotometric determination and removal of unchelated europium ions from solutions containing Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates.

    Science.gov (United States)

    Elshan, N G R Dayan; Patek, Renata; Vagner, Josef; Mash, Eugene A

    2014-11-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.

  1. [Simultaneous determination of 16 organic acids in feed additives by on-line enrichment and ion chromatography-mass spectrometry].

    Science.gov (United States)

    Xiong, Zhiyu; Dong, Ying; Zhou, Hongbin; Yu, Yang; Li, Jing; Sun, Li

    2014-02-01

    A novel analytical method for simultaneous determination of sixteen organic acids by on-line enrichment and ion chromatography-mass spectrometry (IC-MS) was developed. Online enrichment and separation of the organic acids were performed by ion chromatography on a homemade enrichment column and a homemade separation column. The qualitative and quantitative analyses of the organic acids were performed by mass spectrometry in selected ion monitoring (SIM) mode on the basis of atmospheric pressure chemical ionization (APCI) source in negative mode. The sample of 200 microL was injected for the analysis, and the on-line enrichment time was 3 min. The sodium hydroxide solution was used as a gradient elution system. The two columns made it possible to have a low limit of detection due to the good enrichment and separation capability. The sixteen organic acids were separated completely within 30 min. All curves showed good linearity within the test concentration ranges. The limits of detection (LODs) were between 0.01 and 0.22 mg/L, and the average recoveries were between 70.6% and 110.8%. The relative standard deviations (RSDs) were less than 6.3%. The results indicate that this method is simple, rapid, sensitive and accurate for the determination of the organic acids in feed additives.

  2. One-step synthesis of boronic acid functionalized gold nanoclusters for photoluminescence sensing of dopamine

    Science.gov (United States)

    Chen, Huide; Liu, Chunxiu; Xia, Yunsheng

    2017-03-01

    This study is the first to report one-step synthesis of boronic acid functionalized gold nanoclusters (AuNCs) using mixed ligands of 4-mercaptophenylboronic acid (MPBA) and glutathione. Furthermore, the emission color of the products can be fancily tuned from green to near-infrared by simply changing the proportion of the two stabilizers. In basic media, dopamine (DA) molecules themselves polymerize each other and form polydopamine with large amounts of cis-diol groups, which then react with boronic acid groups on the AuNC’s surface based on the formation of boronate esters. As a result, the photoluminescence of the AuNCs is well quenched by the electron transfer effect. Accordingly, DA molecules are assayed from 0.5 to 9 μM, and the detection limit is as low as 0.1 μM. The as-prepared AuNCs exhibit high selectivity; the existing biomolecules including various amino acids, ascorbic acid, uric acid, glucose, etc, do not interfere with the assay. The proposed method is successfully applied to the assay of DA in human serum, indicating its practical potential.

  3. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  4. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    Science.gov (United States)

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  5. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling

    Science.gov (United States)

    Duncan, Kyle D.; Volmer, Dietrich A.; Gill, Chris G.; Krogh, Erik T.

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H]-) ions with limited selective fragmentation. However, carboxylates cationized with Ba2+ have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba]+ precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH]+ and [BaOH]+). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  6. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing.

    Science.gov (United States)

    Di Carlo, Gabriella; Curulli, Antonella; Toro, Roberta G; Bianchini, Chiara; De Caro, Tilde; Padeletti, Giuseppina; Zane, Daniela; Ingo, Gabriel M

    2012-03-27

    In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.

  7. Near-Infrared Fluorescent Probes with Large Stokes Shifts for Sensing Zn(II) Ions in Living Cells.

    Science.gov (United States)

    Zhang, Shuwei; Adhikari, Rashmi; Fang, Mingxi; Dorh, Nethaniah; Li, Cong; Jaishi, Meghnath; Zhang, Jingtuo; Tiwari, Ashutosh; Pati, Ranjit; Luo, Fen-Tair; Liu, Haiying

    2016-12-23

    We report two new near-infrared fluorescent probes based on Rhodol counterpart fluorophore platforms functionalized with dipicolylamine Zn(II)-binding groups. The combinations of the pendant amines and fluorophores provide the probes with an effective three-nitrogen-atom and one-oxygen-atom binding motif. The fluorescent probes with large Stokes shifts offer sensitive and selective florescent responses to Zn(II) ions over other metal ions, allowing a reversible monitoring of Zn(II) concentration changes in living cells, and detecting intracellular Zn(II) ions released from intracellular metalloproteins.

  8. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  9. Enhanced sensing of dopamine in the present of ascorbic acid based on graphene/poly(p-aminobenzoic acid) composite film.

    Science.gov (United States)

    Huang, Ke-Jing; Jing, Qiang-Shan; Wu, Zhi-Wei; Wang, Lan; Wei, Cai-Yun

    2011-11-01

    Graphene/p-aminobenzoic acid composite film modified glassy carbon electrode (Gr/p-ABA/GCE) was first employed for the sensitive determination of dopamine (DA). The electrochemical behavior of DA at the modified electrode was investigated by cyclic voltametry (CV), differential pulse voltametry (DPV) and amperometric curve. The oxidation peak currents of DA increased dramatically at Gr/p-ABA/GCE. The modified electrode was used to electrochemically detect dopamine (DA) in the presence of ascorbic acid (AA). The Gr/p-ABA composite film showed excellent electrocatalytic activity for the oxidation of DA in phosphate buffer solution (pH 6.5). The peak separation between DA and AA was large up to 220 mV. Using DPV technique, the calibration curve for DA determination was obtained in the range of 0.05-10 μM. The detection limit for DA was 20 nM. AA did not interfere with the determination of DA because of the very distinct attractive interaction between DA cations and the negatively Gr/p-ABA composite film. The proposed method exhibited good stability and reproducibility.

  10. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  11. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    Science.gov (United States)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  12. Review on aggregation of acid extractants in solvent extraction of metal ions: remark on the general model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The aggregation behavior of various acid extractants in the solvent extraction systems of metal ions is re-examined and explained according to knowledge obtained in recent work. The conclusions are as follows. (1) Complexes formed by the extractants and metal ions can form reversed micelles in organic diluents, depending on the microstructures of the complexes. The dimers of the acid extractant cannot percolate to the metal-extractant aggregates, and the acid-salt complexes are always formed in the aggregates. The reversed micelles or the W/O microemulsions formed by different species cannot be associated with each other to form a unified aggregate. (2) In solvent extraction systems, hydration of the extractants and metal ions can be considered as the driving force of forming reversed micelles. (3) Information of the first approach to the insight of the bicontinuous microemulsion of NaDEHP shows that various components in the aqueous phase behave confined and very similar to the typical AOT/n-heptane W/O microemulsions. (4) In the extraction of lanthanide ions by the W/O microemulsion of sodium naphthenate, the saponification is a process of forming reversed micelle or W/O microemulsion, while the extraction step is a process of destroying reversed micelles or W/O microemulsion droplets.

  13. Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869.

    Science.gov (United States)

    Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan

    2016-07-28

    Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

  14. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine.

    Science.gov (United States)

    Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng

    2017-02-01

    An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results.

  15. 9-Benzylidene-9H-fluorene Derivatives Linked to Monoaza- 15-crown-5: Synthesis and Metal Ion Sensing

    Institute of Scientific and Technical Information of China (English)

    曹靖; 李阳; 冯俊香

    2012-01-01

    Two kinds of novel styryl chemosensory 2-FMNC and 3-FMNC, were designed and synthesized by an apporiate introduction of 9-benzylidene-9H-fluorene group as fluorophore with the aim at avoiding photoisomerisation. These 9-benzylidene-9H-fluorene derivatives showed the similar selectivity and sensitivity upon addition of metal ions. The sensitivity of FMNC to alkaline earth metal ions was Ba2+〉 Sr2+〉Ca2+≈Mg2+.

  16. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation

    Institute of Scientific and Technical Information of China (English)

    Ping Wang; Shiying Yang; Liang Shan; Rui Niu; Xueting Shao

    2011-01-01

    The effects of chloride anion (C1-) (up to 1.0 mol/L) on the decolorization of a model compound,azo dye Acid Orange 7 (AO7),by sulfate radical (SO4-*) based-peroxydisulfate (PS) or peroxymonosulfate (PMS) oxidation under various activated conditions (UV254 nm/PS,Thermal (70℃/PS,UV254 nm/PMS,Co2+/PMS) were investigated.Methanol and NH4+ were used as quenching reagents to determine the contributions of active chlorine species (dichloride radical (Cl2-*) and hypochlorous acid (HClO)).The results indicated that the effects of Cl- on the reaction mechanism were different under various activated conditions.For UV/PS and Thermal/PS,the inhibition tendency became more clear as the Cl-concentration increased,probably due to the reaction between Cl- and SO4-* and the generation of Cl2-* or HClO.For UV/PMS,Cl- did not exhibit inhibition when the concentration was below 0.1 mol/L.As Cl-concentration reached to 1.0 mol/L,the decolorization rate of AO7 was,however,accelerated,possibly because PMS directly reacts with C1- to form HC1O.For Co2+/PMS,Cl- exhibited a significant inhibiting effect even at low concentration (≤ 0.01 mol/L).When Cl- concentration exceeded 0.1 mol/L,the activation of PMS by Co2+ was almost completely inhibited.Under this condition,HClO maybe played a major role in decolorization of AO7.The results implicated that chloride ion is an important factor in SO4-*-based degradation of organic contamination in chloride-containing water.

  17. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Peng Cheng; Yafang Cheng; Keding Lu; Hang Su; Qiang Yang; Yikan Zou; Yanran Zhao

    2013-01-01

    A new instrument for measuring atmospheric nitrous acid (HONO) was developed,consisting of a double-wail glass stripping coil sampler coupled with ion chromatography (SC-IC).SC-IC is featured by small size (50 × 35 × 25 cm) and modular construction,including three independent parts:the sampling unit,the transfer and supporting unit,and the detection unit.High collection efficiency (> 99%) was achieved with 25 μmol/L Na2CO3 as absorption solution even in the presence of highly acidic compounds.This instrument has a detection limit of 8 pptv at 15 min time resolution,with a measurement uncertainty of 7%.Potentiai interferences from NOx,NO2+SO2,NO2+VOCs,HONO+O3,HNO3,peroxyacetyl nitrite (PAN) and particle nitrite were quantified in laboratory studies and were found to be insignificant under typical atmospheric conditions.Within the framework of the 3C-STAR project,inter-comparison between the SC-IC and LOPAP (long path liquid absorption photometer) was conducted at a rurai site in the Pearl River Delta.Good agreement was achieved between the two instruments over three weeks.Both instruments determined a clear diurnai profile of ambient HONO concentrations from 0.1 to 2.5 ppbv.However,deviations were found for low ambient HONO concentrations (i.e.<0.3 ppbv),which cannot be explained by previous investigated interference species.To accurately determine the HONO budget under illuminated conditions,more intercomparison of HONO measurement techniques is still needed in future studies,especiaily at low HONO concentrations.

  18. Metal-organic frameworks with 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylate ligands for selectively sensing Fe(iii) ions and ketone molecules.

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhao, Yue; Zhang, Xiu-Du; Kang, Yan-Shang; Lu, Qing-Yi; Azam, Mohammad; Al-Resayes, Saud I; Sun, Wei-Yin

    2017-10-03

    Four new metal-organic frameworks (MOFs) [Zn(L)(bpdc)]·1.6H2O (1), [Co(L)(bpdc)]·H2O (2), [Ni3(L)2(bptc)2(H2O)10]·2H2O (3) and [Cd2(L)(Hbptc)2] (4) were achieved by reactions of the corresponding metal salt with mixed organic ligands of 1,4-di(1H-imidazol-4-yl)benzene (L) and 4,4'-benzophenonedicarboxylic acid (H2bpdc) or biphenyl-2,4',5-tricarboxylic acid (H3bptc). They exhibit varied structures: MOFs 1 and 4 are porous three-dimensional (3D) frameworks, while 2 is an infinite one-dimensional (1D) chain and 3 is a two-dimensional (2D) network. Remarkably, 1 and 4 can act as potential fluorescent materials for sensing Fe(iii) ions and different ketone molecules with high selectivity and sensitivity. In addition, MOF 1 shows selective adsorption of CO2 over N2.

  19. Novel (Phenylethynyl)pyrene-LNA Constructs for Fluorescence SNP Sensing in Polymorphic Nucleic Acid Targets

    DEFF Research Database (Denmark)

    Astakhova, Irina Kira; Samokhina, Evgeniya; Babu, B Ravindra;

    2012-01-01

    We describe fluorescent oligonucleotide probes labeled with novel (phenylethynyl)pyrene dyes attached to locked nucleic acids. Furthermore, we prove the utility of these probes for the effective detection of single-nucleotide polymorphisms in natural nucleic acids. High-affinity hybridization...... of the probes and excellent fluorescence responses to single-base mismatches in DNA/RNA targets are demonstrated in model dual-probe and doubly labeled probe formats. This stimulated us to develop two diagnostic systems for the homogeneous detection of a drug-resistance-causing mutation in HIV-1 protease c...

  20. Transition Metal Ion Implantation into Diamond-Like Carbon Coatings: Development of a Base Material for Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Andreas Markwitz

    2015-01-01

    Full Text Available Micrometre thick diamond-like carbon (DLC coatings produced by direct ion deposition were implanted with 30 keV Ar+ and transition metal ions in the lower percentage (<10 at.% range. Theoretical calculations showed that the ions are implanted just beneath the surface, which was confirmed with RBS measurements. Atomic force microscope scans revealed that the surface roughness increases when implanted with Ar+ and Cu+ ions, whereas a smoothing of the surface from 5.2 to 2.7 nm and a grain size reduction from 175 to 93 nm are measured for Ag+ implanted coatings with a fluence of 1.24×1016 at. cm−2. Calculated hydrogen and carbon depth profiles showed surprisingly significant changes in concentrations in the near-surface region of the DLC coatings, particularly when implanted with Ag+ ions. Hydrogen accumulates up to 32 at.% and the minimum of the carbon distribution is shifted towards the surface which may be the cause of the surface smoothing effect. The ion implantations caused an increase in electrical conductivity of the DLC coatings, which is important for the development of solid-state gas sensors based on DLC coatings.

  1. Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid.

    Science.gov (United States)

    Kormányos, Balázs; Nagypál, István; Peintler, Gábor; Horváth, Attila K

    2008-09-01

    The effect of chloride ion on the chlorine dioxide formation in the ClO 2 (-)-HOCl reaction was studied by following .ClO 2 concentration spectrophotometrically at pH 5-6 in 0.5 M sodium acetate. On the basis of the earlier experimental data collected without initially added chloride and on new experiments, the earlier kinetic model was modified and extended to interpret the two series of experiments together. It was found that the chloride ion significantly increases the initial rate of .ClO 2 formation. At the same time, the .ClO 2 yield is increased in HOCl but decreased in ClO 2 (-) excess by the increase of the chloride ion concentration. The two-step hydrolysis of dissolved chlorine through Cl 2 + H 2O left harpoon over right harpoon Cl 2OH (-) + H (+) and Cl 2OH (-) left harpoon over right harpoon HOCl + Cl (-) and the increased reactivity of Cl 2OH (-) compared to HOCl are proposed to explain these phenomena. It is reinforced that the hydrolysis of the transient Cl 2O 2 takes place through a HOCl-catalyzed step instead of the spontaneous hydrolysis. A seven-step kinetic model with six rate parameters (constants and/or ratio of constants) is proposed on the basis of the rigorous least-squares fitting of the parameters simultaneously to 129 absorbance versus time curves measured up to approximately 90% conversion. The advantage of this method of evaluation is briefly outlined.

  2. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption.

    Science.gov (United States)

    da Silva, Clovis Sacardo; Cuel, Maressa Fabiano; Barreto, Verônica Orlandin; Kwong, Wu Hong; Hokka, Carlos O; Barboza, M

    2012-02-15

    The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.

  3. Adsorption properties of silica surface-grafted with a salicylhydroxamic acid-functionalized polymer toward lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Xie, Meina; Wang, Hongjing; Shi, Xiaohui; Lei, Caiping [North University of China, Taiyuan (China)

    2016-03-15

    Salicylhydroxamic acid (SHA), functionalized composite chelating adsorbing material SHA-PHEMA/SiO{sub 2}, was prepared through the nucleophilic substitution reaction of 5-chloromethyl-salicylhydroxamic acid with poly (2- hydroethyl methacrylate) (PHEMA) modified silica gel particles PHEMA/SiO{sub 2}. The SHA-PHEMA/SiO{sub 2} composites were characterized by FT-IR, scanning electron microscopy, X-ray photoelectron spectroscopy and nitrogen absorption. The adsorption behavior, adsorption thermodynamic, and adsorption mechanism of SHA-PHEMA/SiO{sub 2} for Pb2+ ions were studied, and the pH value of the medium on the adsorption property and chelating adsorption ability of SHA-PHEMA/SiO{sub 2} for Pb2{sup +} ions was also investigated. The experimental results show that SHA-PHEMA/SiO{sub 2} possesses strong chelating adsorption ability for Pb2{sup +} ions, and the adsorption capacity for Pb2{sup +} ions at 308K reached 57 mg/g. The adsorption process is a chemical adsorption process driven by entropy, and the adsorption capacity increases with rising temperature. In pH range that can inhibit the hydrolysis of heavy metal ions, increasing the pH value of the medium strengthens the adsorption ability of SHA-PHEMA/SiO{sub 2} toward Pb2{sup +} ions. The adsorption behavior is monomolecular and follows Langmuir isotherm. The adsorption capacity is almost the same after ten consecutive adsorption- desorption experiments of SHA-PHEMA/SiO{sub 2} for Pb2{sup +} ions, indicating that SHA-PHEMA/SiO{sub 2} has excellent elution property and reusability.

  4. Maximising metal ions flux across a microdialysis membrane by incorporating poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline and ethylenediaminetetraacetic acid in the perfusion liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mogopodi, Dikabo [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana); Torto, Nelson [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana)]. E-mail: torton@mopipi.ub.bw

    2005-04-08

    This paper presents a study of quiescent microdialysis sampling of Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+} and Pb{sup 2+} involving the incorporation of poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline (8-HQ) and ethylenediaminetetraacetic acid (EDTA), in the perfusion liquid as an approach to maximise metal analyte flux across the microdialysis membrane. These chelating agents were individually optimised with respect to microdialysis recovery and subsequently combined in the perfusion liquid. A combination of 20% (w/v) poly-L-histidine, 0.032% (w/v) poly-L-aspartic acid and 1 mM 8-HQ achieved microdialysis recovery up to 90%. Since 1 mM EDTA achieved recoveries greater than 80% for all metals understudy, EDTA was not combined with any of the chelating agents. Under the optimal conditions of maximum metal ion flux across the microdialysis membrane, metal ions from natural and wastewater were sampled and analysed with an electrothermal atomic absorption spectrometer equipped with a Zeeman background corrector. Results showed higher concentrations of detected metal ions after microdialysis sampling compared to direct detection without sample clean-up. Incorporation of chelating agents in the microdialysis perfusion liquid enhanced metal ions recovery in real samples and achieved enrichment factors of up to 42. The study demonstrated that combining chelating agents is a good approach towards maximising metal flux across the dialysis membrane. Given that recoveries between 80 and 90% were achieved under quiescent microdialysis sampling conditions, these findings are an important development for in vivo diagnostic sampling of metal ions.

  5. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2015-12-01

    Full Text Available By using the hydrothermal method, carbon microspheres (CMS were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ. The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  6. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Science.gov (United States)

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which