WorldWideScience

Sample records for acid process effluent

  1. On-line Determination of Hydrochloric Acid in Process Effluent ...

    African Journals Online (AJOL)

    Prof Van Staden

    The sample is sandwiched between two titrants in a holding coil, with the volume of the first base being twice to that of the second one and channeled by flow reversal through a reaction coil to the potentiometric sensor. A linear relationship between peak width and logarithm of the hydrochloric acid concentration was.

  2. Acid-curing and ferric-trickle leaching effluent used in closed circuit uranium extractive process

    International Nuclear Information System (INIS)

    Jin Suoqing; Xiang Qinfang; Guo Jianzheng; Lu Guizhu; Su Yanru

    1998-01-01

    The new uranium ore process consists of crushing ore, mixing crushed ore with strong acid in rotating drums and curing the mixture in piles, trickle-leaching the ore beds with ferric solution, extracting uranium from pregnant solution with tertiary amine, precipitating product and disposing residue tailings. All the process effluent is used in closed circuit. There will be no process water to be discharged in the flowsheet except the tailings carrying off 15% water because during leaching moisture content of the ore rises to 15%. Tailings produced by the process are moist and friable, and can be disposed of on a pile or returned to the mine. Main technical parameters of the process: (a) water consumption is 0.2∼0.3 m 3 /t ore, electric power consumption is 20∼30 kW·h/t ore; (b) ore crushing up to -5∼-7 mm, leaching period is 12∼45 d, U content of residue is 0.01%∼0.02%, producing pregnant solution is 0.3∼0.5 m 3 /t ore, which is 1/5∼1/8 that of conventional agitation leaching process; (c) organic agent consumption is 1/5∼1/8 that of the conventional agitation process. All the research results above are tested by the pilot-plant test and industrial test. The new process has been applied to recovery of uranium in the mine located at northeast of China

  3. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  4. Process for the reduction of nitrogen oxides in an effluent

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-07-04

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises introducing a treatment agent which comprises a composition selected from the group consisting of NH/sub 4/-lignosulfonate, calcium lignosulfonate, 2-furoic acid, 1,3 dioxolane, tetrahydrofuran, furfurylamine, furfurylalcohol, gluconic acid, citric acid, n-butyl acetate, 1,3 butylene glycol, methylal, tetrahydrofuryl alcohol, furan, fish oil, coumalic acid, furfuryl acetate, tetrahydrofuran 2,3,4,5-tetracarboxylic acid, tetrahydrofurylamine, furylacrylic acid, tetrahydropyran, 2,5-furandimethanol, mannitol, hexamethylenediamine, barbituric acid, acetic anhydride, oxalic acid, mucic acid and d-galactose.

  5. Liquid effluent processing group. Activity details 1963

    International Nuclear Information System (INIS)

    1964-08-01

    This report first gives a quantitative overview of volumes of effluents of high activity, medium activity and low activity which passed through the department for effluent processing. It also makes the distinction between the shape or type of container of these effluents. A table indicates their origin and another indicates their destination. The β and α decontamination rates are determined, and the assessment of stored aqueous and organic effluents on the 31 December 1963 is given. The next part proposes an assessment of laboratory activities: control operations (input controls, control of processed effluent before discarding), controls related to processing (processing types, radiochemical and chemical dosing performed on effluent mixes before processing). Tables indicate the characteristics of medium activity effluents collected in 1963, the results of high activity liquid analysis, and Beryllium dosing results. A summary of ALEA processing, a table of the characteristics of stored oils and solvents are given. The third part reports data related to transport activities, and various works performed in the Saclay plant to improve exploitation conditions and results

  6. Voltametric study of formic and dihydroxy malonic acids on platinum for the definition of a process for the electrolytic destruction of carboxylic acids in radioactive aqueous effluents; Etude voltamperometrique des acides formiques et dihydroxymalonique sur platine en vue de la definition d`un procede de destruction electrolytique d`acides carboxyliques d`effluents aqueux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, C.

    1994-05-01

    To limit the amount of nuclear glasses generated by the treatment of the degraded solvent from the PUREX process for reprocessing of nuclear fuels, by solutions of sodium carbonate and caustic soda, it is planned to exploit the complexing power of certain carboxylic acids to return the metallic cations to the aqueous phase. The concept of this new treatment of the solvent by `substitution` reagents demands a process for the decomposition of these reagents, especially to CO{sub 2}. The investigation of the electrochemical behaviour, on platinum, of a substance selected as a model for understanding the interfacial mechanisms (HCOOH), and of dihydroxy malonic acid, revealed two distinct electro-poisoning processes: one is due to the adsorption of CO on the surface sites of platinum, and the second to the formation of a passivating layer of P{dagger}O. The application of 20 kHz ultrasonic flux in the neighbourhood of the platinum / aqueous formic acid solution interface also appears to cause a change in the superficial structure of the electrode used, in a direction that favours the decomposition of this compound. To overcome problems of poisoning of the platinum surface, aqueous solutions of formic, dihydroxy malonic and oxalic acids were electrolysed, in a cell without diaphragm, by applying voltage and current ranges, at levels adapted to each of the species. It is necessary to bring the working electrode to a higher potential than the oxidation potential for formic acid, and to a lower potential for dihydroxy malonic and oxalic acids. The frequent modifications of the electrode potentials helped to achieve quantitative destruction of these species, to CO{sub 2} (and to water) with an electrochemical efficiency approaching 100 %. This wet oxidation process also offers the advantage of not raising the energy potential of the effluents to be treated, because it takes place in mild conditions (ambient temperature and pressure). (author). 131 refs., 90 figs., 48 tabs.

  7. TECHNOLOGICAL PROCESS OF EFFLUENTS DEPHENOLYSATION

    Directory of Open Access Journals (Sweden)

    В. Трачевський

    2011-02-01

    Full Text Available The one of the important physical factors impacting on the environmental safety of industrial wastewater generated in the production of paints and varnishes is considered. Identification wastewater formation sources, composition, its amount in a particular type of resin is an essential point for developing methods of cleaning industrial wastewater treatment design and industrial plants. Deep cleaning of wastewater from phenol is a major challenge. Studies that mostly focused on the known methods of disposal of waste waters from phenol have been analyzed. It was shown that the shortcomings of many methods of sewage treatment of phenols by condensation at atmospheric pressure are the long duration of the process, significant cost of heat, and large residual phenol concentration in water, respectively. The most effective method of reducing the concentration of phenol in waste water is its oxidation in MnO2 suspension. The interaction of manganese oxides with sulfuric acid produces oxygen, which can oxidise phenol contained in the waste water. As a result of wastewater treatment of phenolic resins by manganese oxides in acidic sulfate medium phenol concentration  was decreased by 98.6 - 99.6%.

  8. The Effect of Pretreatments on Surfactin Production From Potato Process Effluent by Bacillus Subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    2000-05-01

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  9. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  10. Using solvent extraction to process nitrate anion exchange column effluents

    International Nuclear Information System (INIS)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses

  11. Using solvent extraction to process nitrate anion exchange column effluents

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  12. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process.

    Science.gov (United States)

    Mahiroglu, Ayse; Tarlan-Yel, Esra; Sevimli, Mehmet Faik

    2009-07-30

    The treatability of a copper mine wastewater, including heavy metals, AMD, as well as flotation chemicals, with Fenton process was investigated. Fenton process seems advantageous for this treatment, because of Fe(2+) content and low pH of AMD. First, optimum Fe(2+) condition under constant H(2)O(2) was determined, and initial Fe(2+) content of AMD was found sufficient (120 mg/L for removal of chemical oxygen demand (COD) of 6125 mg/L). In the second step, without any additional Fe(2+), optimum H(2)O(2) dosage was determined as 40 mg/L. Fe(2+)/H(2)O(2) molar ratio of 1.8 was enough to achieve the best treatment performance. In all trials, initial pH of AMD was 4.8 and pH adjustment was not performed. Utilization of existing pH and Fe(2+), low H(2)O(2) requirements, and up to 98% treatment performances in COD, turbidity, color, Cu(2+), Zn(2+) made the proposed treatment system promising. Since the reaction occurs stepwise, a two-step kinetic model was applied and calculated theoretical maximum removal rate was consistent to experimental one, which validates the applied model. For the optimum molar ratio (1.8), 140 mL/L sludge of high density (1.094 g/mL), high settling velocity (0.16 cm/s) with low specific resistance (3.15 x 10(8)m/kg) was obtained. High reaction rates and easily dewaterable sludge characteristics also made the proposed method advantageous.

  13. Advanced oxidative process with ozone of effluents contaminated by MN and other heavy metals originated in the acid drainage in uranium mine

    International Nuclear Information System (INIS)

    Silva, Mirna Marienne Suzin e

    2016-01-01

    During a mine exploration the environment can be affected by different ways being one of them the mine acid drainage(DAM), that is formed by the exposition of sulphated minerals to the atmospheric air, water and iron-oxidation microorganisms. This exposition results in oxidation reactions and formation of sulphuric acid that dissolves all kind of metals present at the mineral that will result in the contamination of the ground and waters. The object of this research work is to test a technological solution of the mine acid drainage problem applying ozone advanced oxidation of the heavy metals present at the mine drainage of a uranium mine with special focus in the manganese removal. This study is applied to the material from the uranium mine of the Brazilian Nuclear Industry - INB, at Caldas- MG. The INB Industry has serious DAM contamination being the main contaminants of the superficial waters the elements, aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe), sulfates(SO 4 +2 ), fluorides(F-), rare earth metals besides uranium (U) and thorium (Th). The Caldas unity is being used as research and testing field for the treatment of areas with environment degradation formed by the mining activity. The ozone testing showed a high efficiency for the removal of iron(Fe), manganese(Mn) and cerium (Ce) up to 99%. The manganese total concentration was reduced to values bellow the ones determined by CONAMA resolution. Elements as neodymium (Nd), zinc (Zn) and lanthanium (La) are also oxidated in presence of ozone but with lower efficiency. The aluminium remained unaffected by the ozone while Thorium and Uranium show an initial decay but at the end present only a concentration slight lower than the initial. The solid material formed after the ozone treatment consists mainly of manganese oxide (85%). In order to dispose, after the ozonization, the liquid effluent to the environment is necessary a pH correction in order to be within the CONAMA legislation, being used less

  14. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  15. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  16. Inorganic ion exchangers. Application to liquid effluent processing

    International Nuclear Information System (INIS)

    Dozol, M.

    1983-10-01

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked [fr

  17. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    Science.gov (United States)

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  18. Assessment of peracetic acid disinfected effluents by microbiotests.

    Science.gov (United States)

    Antonelli, M; Mezzanotte, V; Panouillères, M

    2009-09-01

    Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.

  19. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  20. Processes influencing cooling of reactor effluents

    International Nuclear Information System (INIS)

    Magoulas, V.E.; Murphy, C.E. Jr.

    1982-01-01

    Discharge of heated reactor cooling water from SRP reactors to the Savannah River is through sections of stream channels into the Savannah River Swamp and from the swamp into the river. Significant cooling of the reactor effluents takes place in both the streams and swamp. The majority of the cooling is through processes taking place at the surface of the water. The major means of heat dissipation are convective transfer of heat to the air, latent heat transfer through evaporation and radiative transfer of infrared radiation. A model was developed which incorporates the effects of these processes on stream and swamp cooling of reactor effluents. The model was used to simulate the effect of modifications in the stream environment on the temperature of water flowing into the river. Environmental effects simulated were the effect of changing radiant heat load, the effect of changes in tree canopy density in the swamp, the effect of total removal of trees from the swamp, and the effect of diverting the heated water from L reactor from Steel Creek to Pen Branch. 6 references, 7 figures

  1. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); Lorenzo-Martin, Cinta [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-16

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  2. Potential for reuse of effluent from fish-processing industries

    Directory of Open Access Journals (Sweden)

    Luana Morena Rodrigues Vitor Dias Ferraciolli

    2017-09-01

    Full Text Available The most common problems in the fish processing industry relate to high water consumption and the generation of effluents with concentrated organic loads. Given that reuse can represent an alternative for sustainable development, this study sought to assess the potential for recycling effluents produced in a fish-processing plant. In order to do so, the final industrial effluent was analyzed using the American Public Health Association (APHA standard effluent-analysis method (2005. In addition, the study assessed treatments which produce effluents meeting the requirements prescribed by different countries' regulations for reuse and recycling. The results found that effluents with smaller organic loads, such as those from health barriers and monoblock washing, can be treated in order to remove nutrients and solids so that they can be subsequently reused. For effluents produced by the washing and gutting cylinders, it is recommended that large fragments of solid waste be removed beforehand. Effluents can in this way attain a quality compatible with industrial reuse. This study further highlights the possibility of treating effluents so as comply with drinking water standards. This would potentially allow them to be used within the actual fish-processing procedure; in such a case, a revision of standards and measures for controlling use should be considered to prevent microbiological damage to products and risks to handlers and final consumers.

  3. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  4. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  5. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  6. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    Mahar, M.T.; Khuhawar, M.Y.

    2014-01-01

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  7. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  8. Rework of process effluents from the fabrication of HTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lasberg, Ingo; Braehler, Georg [NUKEM Technologies GmbH (Germany); Boyes, David [Pebble Bed Modular Reactor (Pty) Ltd., Centurion (South Africa)

    2008-07-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m{sup 3}/a), isopropanol IPA/water mixtures (130 m{sup 3}/a); Non-Process Water NPW (300 m{sup 3}/a); methanol (7m{sup 3}/a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  9. Rework of process effluents from the fabrication of HTR fuel

    International Nuclear Information System (INIS)

    Lasberg, Ingo; Braehler, Georg; Boyes, David

    2008-01-01

    HTR fuel facilities require the application of several liquid chemicals and accordingly they produce significant amounts of Uranium contaminated/potentially contaminated effluents. The main effluents are (amounts for a 3 t Uranium/a plant): aqueous solutions including tetrahydrofurfuryl alcohol THFA, ammonium hydroxide NH4OH, and ammonium nitrate NH4NO3 (180 m 3 /a), isopropanol IPA/water mixtures (130 m 3 /a); Non-Process Water NPW (300 m 3 /a); methanol (7m 3 /a); additionally off-gas streams, containing ammonia (9 t/a) have to be treated. In an industrial scale facility all such effluents/gases need to be processed for recycling, decontamination prior to release to the environment (as waste or as valuable material). Thermal decomposition is applied to dispose of burnable residues.

  10. Effect of Cassava Processing Effluent on Soil Properties, Growth and ...

    African Journals Online (AJOL)

    A study, comprising a survey, greenhouse and field experiments was conducted to examine the effect of Cassava Processing Effluent (CPE) on soil chemical properties, maize growth performances and grain yield. In the survey, soil samples were taken (0-15 and 15 – 30cm) of CPE contaminated and non contaminated ...

  11. Packaging of radioactive sludges at the Saclay effluent processing plant

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile; Bourdrez, Jean; Leconnetable, Jean

    1964-10-01

    The authors describe technical and technological aspects of the packaging workshop for radioactive sludges produced by processes of co-precipitation of Saclay effluents. This facility is an achievement of studies which aimed at improving working conditions for the plant staff. This workshop implements a process of solidification of filtered sludge by mixing with a hydraulic binding agent. After some generalities on the decontamination process applied to effluents produced by the Saclay research centre, the authors present and describe the adopted process, propose a physical description of the facility: building, chemical engineering equipment (filtration, packaging, and handling). They describe facility operation: introduction of a block into the cell, block filling, output of a packaged container. They briefly discuss the first results of facility exploitation [fr

  12. Alternative process for treating radioactive effluents

    International Nuclear Information System (INIS)

    Puget, Flavia P.; Massarani, Giulio

    2002-01-01

    In this work an alternative process for treating a wastewater containing dissolved uranium is considered. In order to develop this work, a continuous separation unit, characterized by the solvent extraction, carried out inward the ejector is used. Alamina 336 (a mixture of tri-octyl and tri-decyl amines) is used as extractant in this process. The splitting of the amine-water emulsion formed is carried out in a gravitational separation tank. The result showed that it is possible to reach an efficiency of about 95% for the uranium extraction, for metal concentration in the feed of 10 ppm and a Q fa /Q fo ratio around 500. Furthermore, an efficiency of about 50% is reached for metal concentration in the feed of 1 ppm and for aQ fa /Q fo ratio around 1000, when the liquid flow rate is equal 1200 L/h. (author)

  13. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  14. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  15. Potential risks of effluent from acid mine drainage treatment plants at abandoned coal mines.

    Science.gov (United States)

    Seo, Jaehwan; Kang, Sung-Wook; Ji, Wonhyun; Jo, Hun-Je; Jung, Jinho

    2012-06-01

    The lethal and sublethal toxicity of effluent from three acid mine drainage treatment plants were monitored from August 2009 to April 2010 using Daphnia magna (reference species) and Moina macrocopa (indigenous species). Acute lethal toxicity was observed in Samma effluent due to incomplete neutralization of acid mine drainages by the successive alkalinity producing system (SAPS). Additionally, there was no significant difference in toxicity values (TU) between D. magna and M. macrocopa (p water bodies.

  16. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    Science.gov (United States)

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  17. Processing of miscellaneous radioactive effluents by continous flocculation decantation

    International Nuclear Information System (INIS)

    Lundy, D.; Matton, P.; Petteau, J.L.; Roofthooft, R.

    1985-01-01

    In the nuclear power plant of Chooz an installation for flocculation and chemical precipitation has been built to treat miscellaneous radioactive effluents continuously. It is an industrial prototype of 5 m 3 /h resulting of several years of research, first on lab scale in a discontinous system and finally in a continuous pilot plant of small size (500 l/h). The process is based on the adsorption of radioactivity on a floc of copper-ferrocyanide precipitated by ferric chloride. The water is then filtered. After a series of preliminary tests and modifications, it has been possible to develop a technique which satisfies the specified decontamination conditions and to reduce the discharges of radioactivity to the Meuse to only 5 - 10% of the authorized limits. The process aims principally at the treatment of laundry waste, but other effluents such as drains from the rocks, pool water and used decontamination solutions (of the primary pumps) have been treated. A technico-economic evaluation of the process in comparison with evaporation is clearly in favour of the flocculation. 31 figs, 40 tables, 12 refs

  18. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  19. Disinfection of stabilization pond effluent by peracetic acid and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Negar Rezania

    2013-01-01

    Conclusions: The study demonstrated that application of combined PAA and NaOCl in disinfecting the effluent of the stabilization pond will promote the efficiency of disinfection process in inactivating the coliform group bacteria and fecal streptococci.

  20. Process for processing and conditioning radioactive effluents of low and medium activity

    International Nuclear Information System (INIS)

    Taponier, Jean; Pierlas, Rene.

    1979-01-01

    Preferably continuous process for processing radioactive effluents of low and medium activity, comprising an effluent pre-treatment: precipitation of radioactive compounds to form a stable suspension that can be concentrated. Then a mix is made of 0.6 to 2 parts of cement by weight for one part by weight of suspension, from 0.5 to 5% by weight, in relation to the cement, of asbestos fibre and, if necessary, added water for the cement to set, this suspension containing from 15 to 75% by weight of dry extract and a suspension agent. The homogeneous mix achieved is poured into a container [fr

  1. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  2. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  3. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    International Nuclear Information System (INIS)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  4. Impact of treated effluents released from processing of radioactive mineral on the aquatic environment of Periyar river

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Haridasan, P.P.; Radhakrishna Pillai, K.; Pillai, P.M.B.; Khan, A.H.

    2005-01-01

    The chemical processing of monazite/ thorium concentrate for the separation of thorium, uranium and rare earths results in the generation of effluents, both acidic and alkaline. Indian Rare Earths Ltd (IREL), Udyogamandal was carrying out processing of monazite for nearly 50 years. Presently (since 2004) Indian Rare Earths Ltd, Udyogamandal is processing earlier stocked thorium hydroxide concentrate retrieved from Silos to produce Thorium Oxalate (along with a small percentage of Rare Earth elements), Nuclear Grade Ammonium Di-Uranate (NGADU), and small quantities of Nuclear Grade Thorium Oxide ('THRUST' Project). The treated effluents after monitoring are discharged to river Periyar. River Periyar is the recipient water body for treated effluents from IREL as well as a host of other chemical industries. Indian Rare Earths Ltd, Udyogamandal had been carrying out chemical processing of monazite for the past 50 years. Recently, from 2004, the plant has shifted from monazite processing to processing of thorium concentrate (THRUST Project). The present paper discusses the characteristics of the effluents generated as per this project, their treatment, monitoring methodology, discharge and impact on the aquatic environment of river Periyar. It has been noted that the impact on the aquatic environment by way of enhancing the natural background radioactivity in the river had been insignificant. (author)

  5. Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents.

    Science.gov (United States)

    Stampi, S; De Luca, G; Zanetti, F

    2001-11-01

    Evaluation of the efficiency of peracetic acid in the disinfection of wastewater in a large treatment plant. Over a period of 18 months 30 sample collections were made, each consisting of three samples taken from: raw incoming sewage, secondary effluent (after 10-12 h) and secondary effluent disinfected with 1.5-2 mg l(-1) of peracetic acid (contact time: 20 min). Total coliforms and Escherichia coli declined from 10(7) MPN 100 ml(-1) in the raw sewage to 10(2) in the disinfected effluent and the enterococci fell from 10(6) MPN 100 ml(-1) to 702 MPN 100 ml(-1). The reduction of bacteria increased with the rise in temperature and decreased with the rise in BOD5. Disinfection with peracetic acid reduced levels of faecal contamination by 97%, thus attaining the limit recommended by current Italian law (Escherichia coli disinfection with peracetic acid is easier to manage than other more common methods and the tests performed confirm that from the bacteriological point of view good results can be obtained for urban effluents.

  6. ELEX process for tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Bruggeman, A.; Doyen, W.; Leysen, R.; Meynendonckx, L.; Monsecour, M.; Goossens, W.R.A.

    1980-01-01

    Within the framework of the European Communities' indirect action program on management and storage of radioactive waste the Belgian Nuclear Research Centre, S.C.K./C.E.N., is developing the ELEX process for tritium separation from aqueous reprocessing effluents. This process is a combination of water electrolysis and tritium exchange between hydrogen and water, the exchange being promoted by a hydrophobic catalyst. For classical electrolysis under normal working conditions with elementary tritium separation factor of 11.6 with a standard deviation of 6% was obtained. As to the exchange step an appropriate hydrophobic catalyst has been developed, and overall tritium exchange rates were measured in a countercurrent packed-bed reactor. Extrapolation of these results to the 3 m 3 per day scale of a reprocessing plant leads to an electrolyser capacity of about 1 MW and to an exchange volume of about 1 m 3 for an ELEX installation that concentrates 90% of the original tritium in 1% of the original volume. At the moment the construction of a small integrated detritiation unit is nearly finished. A larger pilot installation will be built later on

  7. physico-chemical characteristics of effluents from garri processing

    African Journals Online (AJOL)

    DR. AMIN

    0.62ppm all in contrast to World Health Organization maximum admissible limit of 0.07ppm. A two- ... indiscriminate discharge of industrial effluents [Salami and Egwin, 1997]. ..... Wastewater Engineering, Treatment and Refuse,. 4th edition ...

  8. Early Evolution of the Toxicity Identification Evaluation Process: Contributions from the USEPA Effluent Testing Program

    Science.gov (United States)

    As part of its whole effluent testing program, the USEPA developed an effects-directed analysis (EDA) approach to identifying the cause of toxicity in toxic effluents or ambient waters, an EDA process termed a “Toxicity Identification Evaluation” (TIE), which is the focus of this...

  9. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  10. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    International Nuclear Information System (INIS)

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-01-01

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  11. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Choi, Yoon-E, E-mail: yechoi@korea.ac.kr [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Department of Bioprocess Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of)

    2016-08-05

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  12. Removal of Cu(Ⅱ) from acidic electroplating effluent by biochars generated from crop straws

    Institute of Scientific and Technical Information of China (English)

    Xuejiao Tong; Renkou Xu

    2013-01-01

    The removal efficiency of copper (Cu(Ⅱ)) from an actual acidic electroplating effluent by biochars generated from canola,rice,soybean and peanut straws was investigated.The biochars simultaneously removed Cu(Ⅱ) from the effluent,mainly through the mechanisms of adsorption and precipitation,and neutralized its acidity.The removal efficiency of Cu(Ⅱ) by the biochars followed the order:peanut straw char > soybean straw char > canola straw char > rice straw char >> a commercial activated carbonaceous material,which is consistent with the alkalinity of the biochars.The pH of the effluent was a key factor determining the removal efficiency of Cu(Ⅱ)by biochars.Raising the initial pH of the effluent enhanced the removal of Cu(Ⅱ) from it.The optimum pyrolysis temperature was 400℃ for producing biochar from crop straws for acidic wastewater treatment,and the optimum reaction time was 8 hr.

  13. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  15. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    DAVIS, W.E.

    2000-01-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years

  16. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; García, M. C.; Karakashev, Dimitar Borisov

    2009-01-01

    oxidation) diluted with synthetic wastewater. High ammonium removal was achieved, up to 92.1 +/- 4.9% for diluted UASB-post-digested effluent (95 mg COD L-1) and up to 98.5 +/- 0.8% for diluted partially oxidized effluent (121 mg COD L-1). Mass balance clearly showed that an increase in organic loading......The anammox process, under different organic loading rates (COD), was evaluated using a semi-continous UASB reactor at 37 degrees C. Three different substrates were used: initially, synthetic wastewater, and later, two different pig manure effluents (after UASB-post-digestion and after partial...... improved ammonium removal at high organic matter concentration. Up to threshold organic load concentration of 142 mg COD L-1 of UASB-post-digested effluent and 242 mg COD L-1 of partially oxidized effluent, no effect of organic loading on ammonia removal was registered (ammonium removal was above 80...

  17. Process and device for conditioning low and medium activity radioactive effluents with hydraulic binders

    International Nuclear Information System (INIS)

    Jaouen, C.; Magnin, G.; Renault, G.

    1986-01-01

    Chemical processing of borated radioactive effluents is claimed. Tetrahydrated calcium borate crystals are prepared by lime additions, the volume is reduced by evaporation under reduced pressure and the product obtained is mixed with hydraulic binders [fr

  18. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  19. Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Hébert, N; Gagné, F; Cejka, P; Bouchard, B; Hausler, R; Cyr, D G; Blaise, C; Fournier, M

    2008-08-01

    Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.

  20. Heterocatalytic Fenton oxidation process for the treatment of tannery effluent: kinetic and thermodynamic studies.

    Science.gov (United States)

    Karthikeyan, S; Ezhil Priya, M; Boopathy, R; Velan, M; Mandal, A B; Sekaran, G

    2012-06-01

    BACKGROUND, AIM, SCOPE: Treatment of wastewater has become significant with the declining water resources. The presence of recalcitrant organics is the major issue in meeting the pollution control board norms in India. The theme of the present investigation was on partial or complete removal of pollutants or their transformation into less toxic and more biodegradable products by heterogeneous Fenton oxidation process using mesoporous activated carbon (MAC) as the catalyst. Ferrous sulfate (FeSO(4)·7H(2)O), sulfuric acid (36 N, specific gravity 1.81, 98% purity), hydrogen peroxide (50% v/v) and all other chemicals used in this study were of analytical grade (Merck). Two reactors, each of height 50 cm and diameter 6 cm, were fabricated with PVC while one reactor was packed with MAC of mass 150 g and other without MAC served as control. The oxidation process was presented with kinetic and thermodynamic constants for the removal of COD, BOD, and TOC from the wastewater. The activation energy (Ea) for homogeneous and heterogeneous Fenton oxidation processes were 44.79 and 25.89 kJ/mol, respectively. The thermodynamic parameters ΔG, ΔH, and ΔS were calculated for the oxidation processes using Van't Hoff equation. Furthermore, the degradation of organics was confirmed through FTIR and UV-visible spectroscopy, and cyclic voltammetry. The heterocatalytic Fenton oxidation process efficiently increased the biodegradability index (BOD/COD) of the tannery effluent. The optimized conditions for the heterocatalytic Fenton oxidation of organics in tannery effluent were pH 3.5, reaction time-4 h, and H(2)O(2)/FeSO(4)·7H(2)O in the molar ratio of 2:1.

  1. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    International Nuclear Information System (INIS)

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  2. Determination of nitrous acid in air using wet effluent diffusion denuder–FIA technique

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Motyka, Kamil; Večeřa, Zbyněk

    2008-01-01

    Roč. 77, č. 2 (2008), s. 635-641 ISSN 0039-9140. [International Conference on Flow Injection Analysis and Related Techniques. Berlin, 02.09.2007-07.09.2007] R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z40310501 Keywords : nitrous acid * wet effluent diffusion denuder * FIA Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.206, year: 2008

  3. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  4. Anaerobic bio-digestion of concentrate obtained in the process of ultra filtration of effluents from tilapia processing unit

    Directory of Open Access Journals (Sweden)

    Milena Alves de Souza

    2012-02-01

    Full Text Available The objective of the present study was to evaluate the efficiency of the process of biodigestion of the protein concentrate resulting from the ultrafiltration of the effluent from a slaughterhouse freezer of Nile tilapia. Bench digesters were used with excrements and water (control in comparison with a mixture of cattle manure and effluent from the stages of filleting and bleeding of tilapias. The effluent obtained in the continuous process (bleeding + filleting was the one with highest accumulated population from the 37th day, as well as greatest daily production. Gases composition did not differ between the protein concentrates, but the gas obtained with the use of the effluent from the filleting stage presented highest methane gas average (78.05% in comparison with those obtained in the bleeding stage (69.95% and in the continuous process (70.02% or by the control method (68.59%.

  5. Method and device for processing aqueous effluents containing tritiated water, electrode used in that device and its fabrication process

    International Nuclear Information System (INIS)

    Bellanger, G.; Giroux, P.

    1983-01-01

    In this process an electrolyte, such as sodium hydroxide, is added to the effluent and the solution is electrolysed to obtain gaseous tritium. The electrolytic cell includes a cathode made with a metal facilitating tritium diffusion, e.g. Pd-Ag alloy. The cathode constitutes a separation wall between the electrolysed solution and a compartment where tritium is recovered after diffusion through the cathode. Application is made for tritium recovery in effluents coming from spent fuel reprocessing [fr

  6. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  7. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    Science.gov (United States)

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater

    DEFF Research Database (Denmark)

    Tang, Kai; Escola Casas, Monica; Ooi, Gordon Tze Hoong

    2017-01-01

    in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were......The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated...

  9. The treatment of liquid effluents of reprocessing plants by a chemical process: French experience

    International Nuclear Information System (INIS)

    Fernandez, N.; Taillard, D.

    1977-01-01

    The goal of radioactive effluent processing is to obtain a liquid with a residual activity level allowing disposal and a minimum amount of slurries. Insolubilization methods used in France are described to eliminate fission products in reprocessing plants effluents i.e. strontium, cesium, ruthenium and antimony; others radioelements are generally carried away with others precipitates. Evolution of the process is expressed in terms of reprocessing needs and improvements. Decontamination factors better than 100 are now possible with concentration factors between 30 and 50 [fr

  10. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  11. Controlled decomposition and oxidation: A treatment method for gaseous process effluents

    Science.gov (United States)

    Mckinley, Roger J. B., Sr.

    1990-01-01

    The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.

  12. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    Science.gov (United States)

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    International Nuclear Information System (INIS)

    Azbar, N.; Tuba, F.; Dokgoz, C.

    2009-01-01

    In this study, H 2 was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31 o C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121 o C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H 2 / g COD fed ). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H 2 / g COD fed ). It was found that, undiluted raw cheese whey wastewater effluent from dark hydrogen

  15. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater

  16. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2008-09-01

    Full Text Available In this paper, a comparative study of the treatment of raw and biotreated (upflow anaerobic sludge blanket, UASB textile dye bath effluent using advanced oxidation processes (AOPs is presented. The AOPs applied on raw and biotreated textile dye bath effluent, after characterization in terms of COD, colour, BOD and pH, were ozone, UV, UV/H2O2 and photo-Fenton. The decolorization of raw dye bath effluent was 58% in the case of ozonation. However it was 98% in the case of biotreated dye bath effluent when exposed to UV/H2O2. It is, therefore, suggested that a combination of biotreatment and AOPs be adopted to decolorize dye bath effluent in order to make the process more viable and effective. Biodegradability was also improved by applying AOPs after biotreatment of dye bath effluent.

  17. Integrated process for the removal of emulsified oils from effluents in the steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  18. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  19. The determination of cyanide in hydrometallurgical process solutions and effluents by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1984-01-01

    Three methods are described for the determination of cyanide species in hydrometallurgical process solutions and in effluents. The determination of excess cyanide in the presence of weak metal cyanide complexes was achieved by the use of a flow-injection system with 0,05mM sodium chloride as the carrier stream. The procedure was found to be fast, precise (S(sub r)0,0142), and reasonably accurate. Free cyanide and cyanide derived from weak metal cyanide complexes were determined by ion chromatography. This method is free from interferences and precise (s(sub r)0,0112), and has a limit of determination of 10μg0l. The 'total' cyanide content of solutions was determined by ion chromatography after the strong metal cyanide complexes had been dissociated in hypophosphorous acid by ultraviolet irradiation. The procedure (of 10 minutes duration) is faster than conventional distillation methods, and is accurate and precise (S(sub r)0,027)

  20. Reuse of effluent from dyeing process of polyamide fibers modified by double barrier discharge (DBD) plasma

    OpenAIRE

    Oliveira, Fernando Ribeiro; Steffens, F.; Souto, A. Pedro; Zille, Andrea

    2016-01-01

    Published online: 27 Feb 2015 Low-temperature plasma technology becomes more and more attractive compared with traditional wet processes in textile preparation and finishing due to its high efficiency and low environmental impact. The objective of this study was to investigate the influence of dielectric barrier discharge plasma treatment on the trichromic dyeing process of polyamide 6.6 (PA66) and the reuse of the generated effluents for new dyeing processes. Chemical and physical charact...

  1. Use of Polymeric and Natural Materials for the Removal of Irradiated Direct and acid Dyes from Effluents

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.; Gad, Y.H.

    2000-01-01

    Wastewater effluents from textile plants typically contain appreciable quantities of organic dyes that are resistant to degrade by ordinary treatment processes and constitute a highly visible form of pollution in the receiving waters. Carbon absorption as well as ionizing radiation are used as treatment processes. However, each method alone did not achieve the complete removal of these pollutants. A combined treatment is more effective. The two direct dyes(Direct orange S, Isma fast yellow Rl) were degraded by radiation 76% and 70% ,respectively. Also, the acid dye Sandolane Rubanole E-3 GSL (Acid red 37) was degraded almost to the same extent. Addition of O 2 or H 2 O-2 resulted in a remarkable enhancement in the degradation process. The effect of ph, gamma-dose and dye concentration was studied. Polymeric ion exchangers proved to be more effective in the removal process than clays. However, granular activated carbon (GAC) was the best adsorbent for the direct dyes. Clays proved to be very good adsorbents for two basic dyes than their weak adsorption behavior of the direct ones

  2. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  3. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Processing and monitoring liquid, radioactive effluents from the Wiederaufarbeitungsanlage Karlsruhe

    International Nuclear Information System (INIS)

    Hoehlein, G.; Huppert, K.L.; Winter, M.

    1977-01-01

    The Wiederaufarbeitungsanlage Karlsruhe (WAK) serves as a demonstration plant for the processing of highly-irradiated uranous oxide. The high active waste concentrates find interim storage at the WAK until they are solidified at a later stage. In contrast to this, the slightly- and the medium-active liquid wastes are transported to the decontamination facility of the Nuclear Research Centre Karlsruhe, where they are immediately processed. These liquid wastes contain about 1 per thousand of the activity inventary of the fuel elements processed. Monitoring of the radioactive waste water of the WAK is carried out by the Nuclear Research Centre's department radiation protection and safety. (orig.) [de

  5. Synthesis of zero effluent multipurpose batch processes using effective scheduling

    CSIR Research Space (South Africa)

    Gouws, JF

    2008-06-01

    Full Text Available as follows. Given, i) required production over a given time horizon, ii) product recipe and production times, iii) maximum number of processing vessels and storage vessels, and iv) maximum and minimum capacity of processing vessels and storage vessels... the cleaning operation, due to the three different products mixed. Each type of wastewater has the possibility of being stored in a distinct storage vessel. The minimum and maximum capacity of each storage vessel is 500kg and 1500kg, respectively...

  6. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  8. Human norovirus in untreated sewage and effluents from primary, secondary and tertiary treatment processes.

    Science.gov (United States)

    Campos, Carlos J A; Avant, Justin; Lowther, James; Till, Dale; Lees, David N

    2016-10-15

    Wastewater treatments are considered important means to control the environmental transmission of human norovirus (NoV). Information about NoV concentrations in untreated and treated effluents, their seasonality and typical removal rates achieved by different treatment processes is required to assess the effectiveness of sewage treatment processes in reducing human exposure to NoV. This paper reports on a characterisation of concentrations of NoV (genogroups I and II) in untreated sewage (screened influent) and treated effluents from five full scale wastewater treatment works (WwTW) in England. Results are shown for effluent samples characteristic of primary- (primary settlement, storm tank overflows), secondary- (activated sludge, trickling filters, humus tanks) and tertiary (UV disinfection) treatments. NoV occurrence in untreated sewage varied between years. This variation was consistent with the annual variation of the virus in the community as indicated by outbreak laboratory reports. Significant differences were found between mean NoV concentrations in effluents subject to different levels of treatment. Primary settlement achieved approximately 1 log10 removal for both genogroups. Concentrations of NoV and Escherichia coli in untreated sewage were of the same order of magnitude of those in storm tank overflows. Of the secondary treatments studied, activated sludge was the most effective in removing NoV with mean log10 removals of 3.11 and 2.34 for GI and GII, respectively. The results of this study provide evidence that monitoring of NoV in raw sewage or treated effluents could provide early warning of an elevated risk for NoV and potentially help prevent outbreaks through environmental exposure. They also provide evidence that elimination of stormwater discharges and improvement of the efficiency of activated sludge for NoV removal would be effective for reducing the risk of environmental transmission. Crown Copyright © 2016. Published by Elsevier Ltd. All

  9. Processing of Unsaturated Organic Acid Aerosols by Ozone

    Science.gov (United States)

    Aloisio, S.; Donaldson, D. J.; Eliason, T. L.; Cziczo, D.; Vaida, V.

    2002-05-01

    We present results of in-situ studies of the oxidative "processing" of organic aerosols composed of unsaturated organic compounds. Aerosol samples of 2-octenoic acid and undecylenic acid were exposed to approx. 10 mbar ozone in a room temperature, atmospheric pressure flow tube reactor. In-situ spectroscopic probing of the reaction mixture, as well as GC-MS analysis of the flow tube effluent, shows evidence of efficient oxidation of double bonds in the organic species, with production of gas-phase and aerosol phase ozonolysis products.

  10. A process to remove ammonia from PUREX plant effluents

    International Nuclear Information System (INIS)

    Moore, J.D.

    1990-01-01

    Zirconium-clad nuclear fuel from the Hanford N-Reactor is reprocessed in the PUREX (Plutonium Uranium Extraction) Plant operated by the Westinghouse Hanford Comapny. Before dissolution, cladding is chemically removed from the fuel elements with a solution of ammonium fluoride-ammonium nitrate (AFAN). a solution batch with an ammonia equivalent of about 1,100 kg is added to each fuel batch of 10 metric tons. This paper reports on this decladding process, know as the 'Zirflex' process which produces waste streams containing ammonia and ammonium slats. Waste stream treatment, includes ammonia scrubbing, scrub solution evaporation, residual solids dissolution, and chemical neutralization. These processes produce secondary liquid and gaseous waste streams containing varying concentrations of ammonia and low-level concentrations of radionuclides. Until legislative restrictions were imposed in 1987, these secondary streams were released to the soil in a liquid disposal 'crib' and to the atmosphere

  11. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    International Nuclear Information System (INIS)

    Duran, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Silva, Joao P. S. Da; Souza, Gabriel I. H. De; Rodrigues, Flavio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  12. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Nelson, E-mail: duran@iqm.unicamp.br; Marcato, Priscyla D. [Universidade Estadual de Campinas, Biological Chemistry Laboratory, Instituto de Quimica (Brazil); Alves, Oswaldo L. [Universidade Estadual de Campinas, Solid State Chemistry Laboratory, Instituto de Quimica (Brazil); Silva, Joao P. S. Da; Souza, Gabriel I. H. De [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil); Rodrigues, Flavio A. [Universidade de Mogi das Cruzes, Material Chemistry Laboratory, Biochemical Research Center (Brazil); Esposito, Elisa [Universidade de Mogi das Cruzes, Biological Chemistry and Biotechnology Laboratory, Environmental Sciences Center (Brazil)

    2010-01-15

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  13. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    Awadalla, F.T.; Kumar, A.

    1994-01-01

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  14. Industrial water and effluent management in the milk processing industry

    CSIR Research Space (South Africa)

    Funke, JW

    1970-01-01

    Full Text Available One of the most important commodities used in any food-processing industry is water which must be of the right quality. Water which comes into direct contact with milk or milk products must meet standards which are even stricter than those for a...

  15. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  16. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  17. Advanced oxidative process with ozone of effluents contaminated by MN and other heavy metals originated in the acid drainage in uranium mine; Processo oxidativo avançado com ozônio de efluentes contaminados por MN e outros metais pesados originados na drenagem ácida em mina de urânio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mirna Marienne Suzin e

    2016-07-01

    During a mine exploration the environment can be affected by different ways being one of them the mine acid drainage(DAM), that is formed by the exposition of sulphated minerals to the atmospheric air, water and iron-oxidation microorganisms. This exposition results in oxidation reactions and formation of sulphuric acid that dissolves all kind of metals present at the mineral that will result in the contamination of the ground and waters. The object of this research work is to test a technological solution of the mine acid drainage problem applying ozone advanced oxidation of the heavy metals present at the mine drainage of a uranium mine with special focus in the manganese removal. This study is applied to the material from the uranium mine of the Brazilian Nuclear Industry - INB, at Caldas- MG. The INB Industry has serious DAM contamination being the main contaminants of the superficial waters the elements, aluminium (Al), manganese (Mn), zinc (Zn), iron (Fe), sulfates(SO{sub 4}{sup +2}), fluorides(F-), rare earth metals besides uranium (U) and thorium (Th). The Caldas unity is being used as research and testing field for the treatment of areas with environment degradation formed by the mining activity. The ozone testing showed a high efficiency for the removal of iron(Fe), manganese(Mn) and cerium (Ce) up to 99%. The manganese total concentration was reduced to values bellow the ones determined by CONAMA resolution. Elements as neodymium (Nd), zinc (Zn) and lanthanium (La) are also oxidated in presence of ozone but with lower efficiency. The aluminium remained unaffected by the ozone while Thorium and Uranium show an initial decay but at the end present only a concentration slight lower than the initial. The solid material formed after the ozone treatment consists mainly of manganese oxide (85%). In order to dispose, after the ozonization, the liquid effluent to the environment is necessary a pH correction in order to be within the CONAMA legislation, being used

  18. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6.

    Science.gov (United States)

    Gouider, Mbarka; Feki, Mongi; Sayadi, Sami

    2009-10-30

    Fluoride content and flow-rate of fertilizer plant wastewater from phosphoric acid and/or triple superphosphate (TSP) production lead to the discharge of several thousand tons of fluoride (F(-)) per year and even more for phosphate (PO4(3-)). Since sustainability is an important environmental concern, the removal methods should allow phosphorus and fluoride to be recycled as a sustainable products for use as raw materials either in agricultural or industrial applications. In the present work, separative recovery with lime of these two target species was investigated. A preliminary speciation study, carried out on the crude effluent, showed that two forms of fluoride: HF and H2SiF6 are present in a highly acidic medium (pH approximately 2). Evidence that fluoride is present under both free (HF) and combined (H2SiF6) forms, in the phosphate-containing effluent, was provided by comparing potentiometric titration curves of a crude wastewater sample and synthetic acid mixtures containing H3PO4, HF and H2SiF6. In a second step synthetic effluent containing mixtures of the following acids: HF, H2SiF6 and H3PO4, were treated with lime. The behaviour of these compounds under lime treatment was analysed. The data showed that fluoride has a beneficial effect on phosphate removal. Moreover, by acting on the precipitation pH, a "selective" recovery of fluoride and phosphate ions was possible either from phosphoric acid/hydrofluoric acid or phosphoric acid/hexafluorosilicic acid mixtures. Indeed, the first stage of the separative recovery, led to a fluoride removal efficiency of 97-98% from phosphoric acid/hydrofluoric acid mixture. It was of 93-95% from phosphoric acid/hexafluorosilicic acid mixture. During the second stage, the phosphate precipitation reached 99.8% from both acidic mixtures whereas it did not exceed 82% from a solution containing H3PO4 alone. The XRD and IR analyses showed that during lime treatment, a H2SiF6 hydrolysis occurred, instead of CaSiF6 solid

  19. Methodology for Determining Increases in Radionuclide Inventories for the Effluent Treatment Facility Process

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    A study is currently underway to determine if the Effluent Treatment Facility can be downgraded from a Hazard Category 3 facility to a Radiological Facility per DOE STD-1027-92. This technical report provides a methodology to determine and monitor increases in the radionuclide inventories of the ETF process columns. It also provides guidelines to ensure that other potential increases to the ETF radionuclide inventory are evaluated as required to ensure that the ETF remains a Radiological Facility

  20. Radioactive liquid effluent management - state of art and the role of membrane processes

    International Nuclear Information System (INIS)

    Panicker, S.T.; Prabhakar, S.; Misra, B.M.; Ramani, M.P.S.

    1990-01-01

    This report reviews the conventional methods involving filtration, chemical precipitation, evaporation and ion exchange, employed for the treatment of low level radioactive effluents. The role of membrane processes, particularly reverse osmosis and ultrafiltration has been assessed with a view to increase the effectiveness of the existing methods. After overviewing the practices followed in major countries, a possible scheme has been proposed. (author). 66 refs., 4 tabs., figs

  1. Treatment of uranium-containing effluent in the process of metallic uranium parts

    International Nuclear Information System (INIS)

    Yuan Guoqi

    1993-01-01

    The anion exchange method used in treatment of uranium-containing effluent in the process of metallic parts is the subject of the paper. The results of the experiments shows that the uranium concentration in created water remains is less than 10 μg/l when the waste water flowed through 10000 column volume. A small facility with column volume 150 litre was installed and 1500 m 3 of waste water can be cleaned per year. (1 tab.)

  2. Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques.

    Science.gov (United States)

    Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene

    2018-05-16

    Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.

  3. The Use of Electrocoagulation Process for Removal of Turbidity, COD, Detergent and Phosphorus from Carwash Effluent

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2011-10-01

    Full Text Available This study evaluated the efficiency of Electrical coagulation process in removal of COD, turbidity, detergent and phosphate from carwash effluent. An experimental study in laboratory scale was carried out and a glass tank with volume of 3 liters (effective volume of 2 liters containing 4 electrode-page iron and aluminum (AL-AL, AL-Fe, Fe-Fe were used. Electrodes were connected to a power supply with using bipolar method to convert alternative electricity to direct current. Daily samples were collected from different carwash effluents. Initial pH of samples were reported between 7 to 9.At first different tests were performed on primary samples. Percentage of removal was calculated in range pH and electrical potential of 11, 7, 3 and 30, 20, 10 volts respectively. Reaction times were set 90, 60, 30 minutes with middle intervals of 2 cm. The results showed the efficiency of COD removal in the optimum range of  pH=3, voltage of 30 and retention time of 90 minutes removal efficiency in pH of 7 after 90 minutes retention time, voltage of 30, with aluminum electrode reached more than 99%. According to the results obtained electrical energy consumption in aluminum electrodes was less than others. However aluminum is more expensive than iron and the difference in energy consumption between iron and aluminum can be ingnored. Apart from that COD and detergent removal efficiency of iron electrodes is higher than aluminum electrodes therefore, using iron as the electrode is more economical and recommended. Altogether it was found that this method can be use as a safe and convenient method for treating carwash effluent and according to the high removal efficiency of process, effluent can be discharged safely into the environment.

  4. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Television Picture... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent...

  5. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  6. Treatment of textile dyehouse effluent using ceramic membrane based process in combination with chemical pretreatment.

    Science.gov (United States)

    Bhattacharya, Priyankari; Ghosh, Sourja; Majumdar, Swachchha; Bandyopadhyay, Sibdas

    2013-10-01

    Treatment of highly concentrated dyebath effluent and comparatively dilute composite effluent having mixture of various reactive dyes collected from a cotton fabric dyeing unit was undertaken in the present study. Ceramic microfiltration membrane prepared from a cost effective composition of alumina and clay was used. Prior to microfiltration, a chemical pretreatment was carried out with aluminium sulphate in combination with a polymeric retention aid. An optimum dose of 100 mg/L of aluminium sulphate and 1 ml/L of a commercial flocculant Afilan RAMF was found effective for dye removal (> 98%) from the synthetic solutions of reactive dyes with initial concentration of 150 mg/L in both the single component and two component systems. In the microfiltration study, effect of operating pressure in the permeate flux was observed for both the pretreated and untreated effluents and permeate samples were analyzed for dye concentration, COD, turbidity, TSS, etc. during constant pressure filtration. About 98-99% removal of dyes was obtained in the combined process with COD reduction of 54-64%.

  7. Removal of Zn-65, Mo-99 and I-125 from effluent by coagulation-flocculation process

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad

    1996-01-01

    The aim of this study is to investigate the efficiency treatment in removing Zn-65, Mo-99 and I-1 25 from an aqueous radioactive effluent. The wastes are currently being produced from hospitals, research institutes, clinics and universities. Effluent was spiked separately with each type of the radioisotope and was treated by the coagulation-flocculation process. By varying the chemical dosages (i.e., alum, soda ash, ferric chloride and coagulant aid) in the treatment, different decontamination factor values were obtained. Optimum dosages and types of chemical used to remove a particular radioisotope was determined. Results indicated that optimum pH value for removing Zn-65 in an effluent was pH 8. The highest decontamination factor value was 61. In removal of 1-125 radioisotope, ferric chloride was suitable as a coagulant that gives the highest decontamination factor value of 5.0. Treatment to remove Mo-99 radioisotopes was conducted in the laboratory and treatment plant scale. For Mo-99 radioisotope treatment by laboratory and Plant scale, the highest decontamination factor obtained was between pH values of 4.0 to 4.5. By extrapolation of both scales, the plant scale treatment does not vary significantly from laboratory scale. This indicated treatment dosages of chemicals for the Low Level Treatment Plant scale be deduced from the laboratory scale

  8. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Treatment and processing of the effluents and wastes (other than fuel) produced by a 900 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Giraud

    1983-01-01

    Effluents produced by a 900 MWe power plant, are of three sorts: gaseous, liquid and solid. According to their nature, effluents are either released or stored for decaying before being released to the atmosphere. The non-contaminated reactor coolant effluents are purified (filtration, gas stripping) and treated by evaporation for reuse. Depending upon their radioactive level, liquid waste is either treated by evaporation or discharged after filtration. Solid waste issuing from previous treatments (concentrates, resins, filters) is processed in concrete drums using an encapsulation process. The concrete drum provides biological self-protection consistent with the national and international regulations pertaining to the transport of radioactive substance. Finally, the various low-level radioactive solid waste collected throughout the plant, is compacted into metal drums. Annual estimates of the quantity of effluents (gaseous, liquid) released in the environment and the number of drums (concrete, metal) produced by the plant figure in the conclusion

  10. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    Science.gov (United States)

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  11. Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart. and Panicum maximum (Jacq.

    Directory of Open Access Journals (Sweden)

    N.A. Noukeu

    2016-12-01

    Full Text Available In this study, effluents from 11 food processing industries from various sectors were characterized through analysis of physical and chemical parameters. In general, effluents pHs are between 4.07 and 7.63. Lead (Pb2+ and cadmium (Cd+ concentrations range from 0.083 to 1.025 mg/l and 0.052–0.158 mg/l respectively. The biodegradability of the effluent is very low. The principal component analysis (PCA grouped industries according to their organic matter levels; thus, stillage, livestock, molasses and sugar refinery effluents show some similarities, as well as confectionery, oil mill, dairy and brewery effluents. Forms of nitrogen measured show low levels of nitrites (NO2−, high levels of nitrates (NO3−, ammonium (NH4+ and Kjeldahl nitrogen (TKN. Among these effluents, a treatment trial with Eichhornia crassipes and Panicum maximum was applied to stillage effluent from Fermencam distillery. The results show that Panicum maximum and Eichhornia crassipes reduce pollutant loads of Fermencam's wastewater.

  12. Chemical processing of liquid effluents in reprocessing plants: experience gained in France

    International Nuclear Information System (INIS)

    Fernandez, N.; Pottier, P.; Taillard, D.

    1977-01-01

    The radionuclides present in radioactive liquid effluents are precipitated for two purposes, viz: 1) to reduce the radioactivity to a level at which the liquids may be discharged; 2) to concentrate the radioactive compounds in the smallest possible volume for storage. The scientific principles of the radionuclide precipitation process are reviewed in the first part, which covers the solubility product, adsorption onto the surface of the precipitates, co-precipitation by isomorphism, ion-exchange on precipitates, etc. The paper goes on to discuss flocculation techniques, flocculation monitoring (zeta potential etc.) and methods of separating the solid and liquid phases. The specific methods for precipitating the main radionuclides are then described, with special reference to Sr, Cs, Ru, Co and Sb. The synergism of certain methods of precipitation is also discussed. The main part of the paper concerns the application of chemical processes for purifying low and medium active effluents in the Marcoule and La Hague centres. Particular emphasis is placed on the development of the processes used and the improvement of performance. Lastly, the paper discusses the possibilities offered in final treatment in such a way as to determine the limits to the effectiveness of the chemical processes. (orig.) [de

  13. Management and Handling of Rejected Fuel of MTR Type and Process Effluents Contained Uranium at FEPI

    International Nuclear Information System (INIS)

    Ghaib Widodo; Bambang Herutomo

    2007-01-01

    Research Reactor Fuel Element Production Installation (FEPI) - Serpong has performed management and handling of all kinds of rejected fuel material during production (solids, liquids, and gases) and process effluents contained uranium. The methods that has been implemented are precipitation, absorption, evaporation, electrolysis, and electrodialysis. By these methods will finally be obtained forms of product which can be used directly as fuel material feed and solid/liquid radioactive waste that fulfil the requirements (uranium contents < 50 ppm) to be send to Radioactive Waste Management Installation. (author)

  14. Hydrotalcites: a highly efficient ecomaterial for effluent treatment originated from carbon nanotubes chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Alves, O L; Stefani, D; Parizotto, N V; Filho, A G Souza, E-mail: oalves@iqm.unicamp.br [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas-SP (Brazil)

    2011-07-06

    It has been reported that a mixture of carboxylated carbonaceous fragments (CCFs), so called oxidation debris, are generated during carbon nanotubes chemical processing using oxidant agents such as HNO{sub 3}. The elimination of these fragments from carbon nanotubes surface has been point out to be a crucial step for an effective functionalization of the nanotubes as well as for improving the material. However, this process can introduce a potential environmental problem related water contamination because these CCFs can be viewed as a mixture of carbonaceous polyaromatic systems similar to humic substances and dissolved organic matter (DOM). The negative aspects of humic substances and DOM to water quality and wastewater treatment are well known. Since carbon nanotubes industry expands at high rates it is expected that effluent containing oxidation debris will increase since HNO{sub 3} chemical processing is the most applied method for purification and functionalization of carbon nanotubes. In this work, we have demonstrated that Hydrotalcites (HT) are highly efficient to remove oxidation debris from effluent solution originated from HNO{sub 3}-treated multiwalled carbon nanotubes. The strategy presented here is a contribution towards green chemistry practices and life cycle studies in carbon nanotubes field.

  15. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2016-06-01

    Full Text Available The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates. Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range.

  16. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  17. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    Science.gov (United States)

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  18. Biodegradation of CuTETA, an effluent by-product in mineral processing.

    Science.gov (United States)

    Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A

    2018-04-13

    Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

  19. Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent.

    Science.gov (United States)

    Orta De Velásquez, M T; Yáñez-Noguez, I; Jiménez-Cisneros, B; Luna Pabello, V M

    2008-11-01

    This paper evaluates the efficacy of hydrogen peroxide (HP) and peracetic acid (PAA) in the disinfection of an Advanced Primary Treatment (APT) effluent, and how said disinfection capacities can be enhanced by combining the oxidants with copper (Cu2+) and silver (Ag). The treatment sequence consisted of APT (adding chemicals to water to remove suspended solids by coagulation and flocculation), followed by disinfection with various doses of HP, HP+Cu2+, HP+Ag, PAA and PAA+Ag. Microbiological quality was determined by monitoring concentrations of fecal coliforms (FC), pathogenic bacteria (PB) and helminth eggs (HE) throughout the sequence. The results revealed that APT effluent still contains very high levels of bacteria as the treatment only removes 1-2 log of FC and PB, but the reduction in the number of viable helminth eggs was 83%. Subsequent disinfection stages demonstrated that both HP+Cu2+ and HP+Ag have a marked disinfection capacity for bacteria (3.9 and 3.4 log-inactivation, respectively). Peracetic acid on its own was already extremely efficient at disinfecting for bacteria, and the effect was enhanced when combining PAA with silver (PAA+Ag). The best result for HE removal was achieved by combining PAA with silver (PAA+Ag) at doses of 20 + 2.0 mg l(-1), respectively. The study concluded that the PAA+Ag and HP+Ag combinations were good alternatives for APT effluent disinfection, because the disinfected effluents met the standards in NOM-001-SEMARNAT-1996, Mexico's regulation governing the microbiological quality required in treated wastewater destined for unrestricted reuse in agricultural irrigation (disinfection treatments with a primary method such as APT, therefore, offers an effective and practical way of reducing the health risks normally associated with the reuse of wastewaters.

  20. Toxicity evaluation of the effluent of the ammonium diuranate process proceeding from the Uranium Reconversion Cycle (IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Osti, Silvio Cesar de

    2001-01-01

    This project was developed with the objective to evaluate the acute and chronic toxicity of the ammonium diuranate proceeding from the process used to obtain uranium hexafluoride (UF 6 ), substance which is necessary to produce fuel used by the IEA-R1-IPEN reactor. Five acute toxicity tests were done with Daphnia similis in which concentration values of EC(I)50;48h, between 0,39% and 0,57% of the effluent were determined, and other five with Danio rerio in which concentration values of EC(I)50;48h, between 0,06% and 0,07% of the effluent were determined. Three chronic toxicity tests with Selenastrum capricornutum were done, having found NOEC values for concentrations below 0,12% of the effluents. To determine the ion fluoride toxicity in the Daphnia similis, five acute toxicity tests were done in which values of EC(I)50;48h, between 263.90 mgL -1 and 292.82 mgL -1 were found. The acute toxicity tests done with D. similis demonstrated that the effluent toxicity persisted during its storage period. The acute toxicity test with D.rerio and chronic ones with S. capricornutum using the effluents after the ionic-replace treatment, which objective is to recover uranium for reuse, demonstrated the effluent toxicity persistency. (author)

  1. Treatment of Effluent from a Factory of Paints Using Solar Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Alam Gustavo Trovó

    2013-01-01

    Full Text Available We evaluated the use of Fenton reactions induced by solar radiation in the treatment of effluent from a factory of paints for buildings, after prior removal of the suspended solids. The increase of H2O2 concentration from 100 to 2500 mg L−1 for a [Fe2+] = 105 mg L−1 contributed to the reduction of DOC, COD, and toxicity. Our best results were achieved using 1600 mg L−1 H2O2, with 90% of DOC and COD removal and a complete removal of the toxicity with respect to Artemia salina. Additionally, through increasing Fe2+ concentration from 15 to 45 mg L−1, the DOC removal rate increased 11 times, remaining almost constant in the range above 45 until 105 mg L−1. Under our best experimental conditions, 80% of DOC removal was achieved after an accumulated dose of 130 kJ m−2 of UVA radiation (82±17 min of solar irradiation under an average UVA irradiance of 34.1±7.3 W m−2, while 40% of DOC removal was reached after 150 min under only thermal Fenton reactions. The results suggest the effectiveness of implementation of solar photo-Fenton process in the decontamination and detoxification of effluents from factories of paints for buildings.

  2. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    Science.gov (United States)

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  3. Relationships between sources of acid mine drainage and the hydrochemistry of acid effluents during rainy season in the Iberian Pyrite Belt.

    Science.gov (United States)

    Pérez-Ostalé, E; Grande, J A; Valente, T; de la Torre, M L; Santisteban, M; Fernández, P; Diaz-Curiel, J

    2016-01-01

    In the Iberian Pyrite Belt (IPB), southwest Spain, a prolonged and intense mining activity of more than 4,500 years has resulted in almost a hundred mines scattered through the region. After years of inactivity, these mines are still causing high levels of hydrochemical degradation in the fluvial network. This situation represents a unique scenario in the world, taking into consideration its magnitude and intensity of the contamination processes. In order to obtain a benchmark regarding the degree of acid mine drainage (AMD) pollution in the aquatic environment, the relationship between the areas occupied by the sulfide mines and the characteristics of the respective effluents after rainfall was analysed. The methodology developed, which includes the design of a sampling network, analytical treatment and cluster analysis, is a useful tool for diagnosing the contamination level by AMD in an entire metallogenic province, at the scale of each mining group. The results presented the relationship between sulfate, total dissolved solids and electrical conductivity, as well as other parameters that are typically associated with AMD and the major elements that compose the polymetallic sulfides of IPB. This analysis also indicates the low level of proximity between the affectation area and the other variables.

  4. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  5. UV/H2O2 process performance improvement by ultrafiltration and physicochemical clarification systems for industrial effluent pretreatment

    Directory of Open Access Journals (Sweden)

    Ivanildo Hespanhol

    2012-12-01

    Full Text Available The present study evaluated the removal of TOC from an effluent with high organic load resulted from the treatment of oil-water emulsion by thermal process. Hollow Fiber Ultrafiltration membrane (HF-UF and physicochemical clarification process were used as pretreatment options to assess the influence of feed effluent quality on the UV/H2O2 oxidation process. Results for TOC removals showed HF-UF and physicochemical clarification processes can significantly improve the efficiency of UV/H2O2 oxidation process, when compared with the direct effluent oxidation. Reaction time for obtaining a TOC removal higher than 90% was reduced to approximately half of the time needed when no pretreatment was applied. Considering both pretreatment processes it was not possible to notice any significant difference on the UV/H2O2 oxidation process performance. However, the complexity of physicochemical process due to the use of three different chemicals and sludge production made the HF-UF process the best pretreatment alternative, without increasing the Total Dissolved Solids of the effluent, a very important issue when water reuse is considered.

  6. ADSORPTION OF MANGANESE FROM ACID MINE DRAINAGE EFFLUENTS USING BONE CHAR: CONTINUOUS FIXED BED COLUMN AND BATCH DESORPTION STUDIES

    Directory of Open Access Journals (Sweden)

    D. C. Sicupira

    2015-06-01

    Full Text Available AbstractIn the present study, continuous fixed bed column runs were carried out in an attempt to evaluate the feasibility of using bone char for the removal of manganese from acid mine drainage (AMD. Tests using a laboratory solution of pure manganese at typical concentration levels were also performed for comparison purposes. The following operating variables were evaluated: column height, flow rate, and initial pH. Significant variations in resistance to the mass transfer of manganese into the bone char were identified using the Thomas model. A significant effect of the bed height could only be observed in tests using the laboratory solution. No significant change in the breakthrough volume could be observed with different flow rates. By increasing the initial pH from 2.96 to 5.50, the breakthrough volume was also increased. The maximum manganese loading capacity in continuous tests using bone char for AMD effluents was 6.03 mg g-1, as compared to 26.74 mg g-1 when using the laboratory solution. The present study also performed desorption tests, using solutions of HCl, H2SO4, and water, aimed at the reuse of the adsorbent; however, no promising results were obtained due to low desorption levels associated with a relatively high mass loss. Despite the desorption results, the removal of manganese from AMD effluents using bone char as an adsorbent is technically feasible and attends to environmental legislation. It is interesting to note that the use of bone char for manganese removal may avoid the need for pH corrections of effluents after treatment. Moreover, bone char can also serve to remove fluoride ions and other metals, thus representing an interesting alternative material for the treatment of AMD effluents.

  7. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  8. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe"2"+/H_2O_2) and UV/H_2O_2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H_2O_2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H_2O_2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe"2"+/H_2O_2 had a molar ratio of 0.1 and a H_2O_2 concentration of 0.01 mol L"−"1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H_2O_2 process, when the pH was 3.5 with a H_2O_2 concentration of 0.01 mol L"−"1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H_2O_2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe"2"+/H_2O_2 molar ratios, H_2O_2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H_2O_2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H_2O_2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  9. A study conducted on the impact of effluent waste from machining process on the environment by water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kovoor, Punnose P.; Idris, Mohd Razif [Kuala Lumpur Univ. (Malaysia). Inst. of Product Design and Manufacturing, IPROM; Hassan, Masjuki Haji [Univ. of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering; Tengku Yahya, Tengku Fazli [Kuala Lumpur Univ., Melaka (Malaysia). Malaysian Inst. of Chemical and Bio Engineering Technology, MICET

    2012-11-01

    Ferrous block metals are used frequently in large quantities in various sectors of industry for making automotive, furniture, electrical and mechanical items, body parts for consumables, and so forth. During the manufacturing stage, the block metals are subjected to some form of material removal process either through turning, grinding, milling, or drilling operations to obtain the final product. Wastes are generated from the machining process in the form of effluent waste, solid waste, atmospheric emission, and energy emission. These wastes, if not recycled or treated properly before disposal, will have a detrimental impact on the environment through air, water, and soil pollution. The purpose of this paper is to determine the impact of the effluent waste from the machining process on the environment through water analysis. A twofold study is carried out to determine the impact of the effluent waste on the water stream. The preliminary study consists of a scenario analysis where five scenarios are drawn out using substances such as spent coolant, tramp oil, solvent, powdered chips, and sludge, which are commonly found in the effluent waste. The wastes are prepared according to the scenarios and are disposed through the Institute of Product Design and Manufacturing (IPROM) storm water drain. Samples of effluent waste are collected at specific locations according to the APHA method and are tested for parameters such as pH, ammoniacal nitrogen, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, and total suspended solids. A subsequent study is done by collecting 30 samples of the effluent waste from the machining operations from two small- and medium-scale enterprise locations and the IPROM workshop to test the quality of water. The results obtained from the tests showed high values of chemical oxygen demand, ammoniacal nitrogen, and total suspended solids when compared with the Standard B specification for inland water bodies as specified by the

  10. Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives.

    Science.gov (United States)

    Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz

    2017-08-01

    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  12. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  13. Treated effluent disposal system process control computer software requirements and specification

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1994-01-01

    The software requirements for the monitor and control system that will be associated with the effluent collection pipeline system known as the 200 Area Treated Effluent Disposal System is covered. The control logic for the two pump stations and specific requirements for the graphic displays are detailed

  14. Disinfection of an advanced primary effluent with peracetic acid and ultraviolet combined treatment: a continuous-flow pilot plant study.

    Science.gov (United States)

    González, Abelardo; Gehr, Ronald; Vaca, Mabel; López, Raymundo

    2012-03-01

    Disinfection of an advanced primary effluent using a continuous-flow combined peracetic acid/ultraviolet (PAA/UV) radiation system was evaluated. The purpose was to determine whether the maximum microbial content, established under Mexican standards for treated wastewaters meant for reuse--less than 240 most probable number fecal coliforms (FC)/100 mL--could be feasibly accomplished using either disinfectant individually, or the combined PAA/UV system. This meant achieving reduction of up to 5 logs, considering initial concentrations of 6.4 x 10(+6) to 5.8 x 10(+7) colony forming units/100 mL. During the tests performed under these experiments, total coliforms (TC) were counted because FC, at the most, will be equal to TC. Peracetic acid disinfection achieved less than 1.5 logs TC reduction when the C(t) x t product was less than 2.26 mg x minimum (min)/L; 3.8 logs for C(t) x t 4.40 mg x min/L; and 5.9 logs for C(t) x t 24.2 mg x min/L. In continuous-flow UV irradiation tests, at a low-operating flow (21 L/min; conditions which produced an average UV fluence of 13.0 mJ/cm2), the highest TC reduction was close to 2.5 logs. The only condition that produced a disinfection efficiency of approximately 5 logs, when both disinfection agents were used together, was the combined process dosing 30 mg PAA/L at a pilot plant flow of 21 L/min and contact time of 10 minutes to attain an average C(t) x t product of 24.2 mg x min/L and an average UV fluence of 13 mJ/cm2. There was no conclusive evidence of a synergistic effect when both disinfectants were employed in combination as compared to the individual effects achieved when used separately, but this does not take into account the nonlinearity (tailing-off) of the dose-response curve.

  15. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  16. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  17. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    Science.gov (United States)

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  18. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    Science.gov (United States)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  19. Effect of alkaline and acidic fractions of industrial effluents on some lymphoid cells of the fish Rasbora daniconius

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth, T K; Balasubramanian, N K; John, P A

    1981-01-01

    The percentage frequency of the different types of lymphoid cell found in the head-kidney of Rasbora daniconius exposed for 24 h to lc/sub 50/ levels of the ammonia (alkali), phosphoric and sulphuric acid fractions of the effluent from a fertiliser factory was determined by the imprint method. 'T' tests showed that both the alkaline and the acidic fractions could significantly affect the composition of the lymphoid cell population. Different types of lymphoid cell reacted differently to the different fractions; some cell types increased in number while others decreased. Some cell types were not affected. This indicated some sort of specificity in the action of the fractions on the lymphoid cells.

  20. Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess.

    Science.gov (United States)

    Bove, Patricia; Claveau-Mallet, Dominique; Boutet, Étienne; Lida, Félix; Comeau, Yves

    2018-02-01

    The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO 2 -enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO 2 -enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO 2 , sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO 2 transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO 2 -enriched air lab and field tests, providing satisfactory validation results over a wide range of CO 2 concentrations. The flow mode had a major impact on CO 2 transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO 2 concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO 2 concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO 2 in the enriched air reduced calcite precipitation

  1. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    Le, E.Q.

    1998-01-01

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  2. Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes.

    Science.gov (United States)

    do Vale-Júnior, Edilson; da Silva, Djalma R; Fajardo, Ana S; Martínez-Huitle, Carlos A

    2018-04-05

    Peroxi-coagulation (PC) is an interesting new process that has not been widely studied in the literature. This work presents the application of this technology to treat an azo dye synthetic effluent, studying the effect of different parameters including initial pH, current density (j), initial dye concentration and supporting electrolyte. The two former variables significantly affected the colour removal of the wastewater, followed by the initial dye concentration and the kind of electrolyte, in a lesser extent. The optimum operating conditions achieved were initial pH of 3.0, j = 33.3 mA cm -2 , 100 mg L -1 of methyl orange (MO) and Na 2 SO 4 as supporting electrolyte. The performance of PC was also compared to other electrochemical advanced processes, under similar experimental conditions. Results indicate that the kinetic decay of the MO increases in the following order: electrocoagulation (EC) oxidation (EO) with electrogenerated H 2 O 2 oxidant character of the homogenous OH radicals generated by EF and PC approaches. The EO process with production of H 2 O 2 (EO-H 2 O 2 ) is limited by mass transport and the EC, as a separation method, takes longer times to achieve similar removal results. Energy requirements about 0.06 kWh g COD -1 , 0.09 kWh g COD -1 , 0.7 kWh g COD -1 and 0.1 kWh g COD -1 were achieved for PC, EF, EO-H 2 O 2 and EC, respectively. Degradation intermediates were monitored and carboxylic acids were detected for PC and EF processes, being rapidly removed by the former technology. PC emerges as a promising and competitive alternative for wastewaters depollution, among other oxidative approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Chloroacetic acids in environmental processes

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Schröder, P.

    2003-01-01

    Roč. 1, - (2003), s. 127-130 ISSN 1610-3653 R&D Projects: GA ČR GA522/02/0874 Institutional research plan: CEZ:AV0Z5038910 Keywords : Dichloroacetic acid * Trichloroacetic acid * Microbial degradation Subject RIV: GK - Forestry

  4. Using Combined Processes of Filtration and Ultraviolet Irradiation for Effluent Disinfection of Isfahan North Wastewater Treatment Plant in Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2011-07-01

    Full Text Available This study was carried out to evaluate the secondary effluent disinfection of the Isfahannorth municipal wastewater treatment plant using filtration and UV technology in current operational condition. The combined system was used in series in pilot scale including: Pressure Sand Filter + Low Pressure (LP + Medium Pressure (MP UV Lamps. The UV dose varied according to the initial intensity of lamp, flow rate and influent transmittance. Total coliform (TC, fecal coliform (FC and fecal streptococcus (FS were analyzed as microbiological parameters in all effluent samples. TSS, BOD5, COD, VSS, pH and transmittance (UVT percentage were tested as physicochemical parameters, before and after the units. Results showed that the filtration with loading of 1050 lit/m2.hr, followed by MP lamp with dose of 230 mW.s/cm2 is an effective alternative to reduce the TC/FC and FS in the secondary effluent. The combined disinfection processes that were used in this study, could be met the standards of 1000 TC, and 400FC/100ml for effluent discharge to receiving waters or restricted reuses in the agriculture. This process can also inactivate the FS down to 6-log.Using low-pressure lamps due to low dose radiation for disinfection is not cost-effective. In this study, parasite egg counts due to lack of access to accurate identification techniques for alive cyst detection was not examined.

  5. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping

    2016-05-01

    To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.

  6. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    Science.gov (United States)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  7. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  8. Membrane Fouling Potential of Secondary Effluent Organic Matter (EfOM) from Conventional Activated Sludge Process

    KAUST Repository

    Wei, Chunhai; Amy, Gary L.

    2012-01-01

    Secondary effluent organic matter (EfOM) from a conventional activated sludge process was filtered through constant-pressure dead-end filtration tests with a sequential ultrafiltration (UF, molecular weight cut-off (MWCO) of 10k Dalton) and nanofiltration (NF, MWCO of 200 Dalton) array to investigate its membrane fouling potential. Advanced analytical methods including liquid chromatography with online carbon detection (LC-OCD) and fluorescent excitation-emission matrix (F-EEM) were employed for EfOM characterization. EfOM consisted of humic substances and building blocks, low molecular weight (LMW) neutrals, biopolymers (mainly proteins) and hydrophobic organics according to the sequence of their organic carbon fractions. The UF rejected only biopolymers and the NF rejected most humics and building blocks and a significant part of LMW neutrals. Simultaneous occurrence of cake layer and standard blocking during the filtration process of both UF and NF was identified according to constant-pressure filtration equations, which was possibly caused by the heterogeneous nature of EfOM with a wide MW distribution (several ten to several million Dalton). Thus the corresponding two fouling indices (kc for cake layer and ks for standard blocking) from UF and NF could characterize the fouling potential of macromolecular biopolymers and low to intermediate MW organics (including humics, building blocks, LMW neutrals), respectively. Compared with macromolecular biopolymers, low to intermediate MW organics exhibited a much higher fouling potential due to their lower molecular weight and higher concentration.

  9. Obtention of uranium tetrafluoride from effluents generated in the hexafluoride conversion process

    International Nuclear Information System (INIS)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Durazzo, M.; Riella, H.G.

    2009-01-01

    Full text: The uranium silicide (U3Si2) fuel is produced from uranium hexafluoride (UF6) as the primary raw material. The uranium tetrafluoride (UF4) and metallic uranium are the two subsequent steps. There are two conventional routes for UF4 production: the first one reduces the uranium from the UF6 hydrolysis solution by adding stannous chloride (SnCl2). The second one is based on the hydrofluorination of solid uranium dioxide (UO2) produced from the ammonium uranyl carbonate (AUC). This work introduces a third route, a dry way route which utilizes the recovering of uranium from liquid effluents generated in the uranium hexafluoride reconversion process adopted at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recovery of ammonium fluoride by NH4HF2 precipitation. The crystallized bifluoride is added to the solid UO2 to get UF4, which returns to the metallic uranium production process and, finally, to the U3Si2 powder production. The UF4 produced by this new route was chemically and physically characterized and will be able to be used as raw material for metallic uranium production by magnesiothermic reduction. (author)

  10. Biotoxicity assessment and toxicity mechanism on coal gasification wastewater (CGW): A comparative analysis of effluent from different treatment processes.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Zhu, Hao; Li, Kun; Zheng, Mengqi

    2018-05-04

    Even though coal gasification wastewater (CGW) treated by various biochemical treatment processes generally met the national discharge standard, its potential biotoxicity was still unknown. Therefore, in this study, bioassay with Tetrahymena thermophila (T. thermophila) was conducted to comprehensively evaluate the variation of biotoxicity in raw CGW and the treated effluent from lab-scale micro-electrolysis integrated with biological reactor (MEBR), single iron-carbon micro-electrolysis (ICME) and conventional activated sludge (CAS) processes. The results illustrated that raw CGW presented intensive acute toxicity with 24 h EC 50 value of 8.401% and toxic unit (TU) value of 11.90. Moreover, it performed significant cell membrane destruction and DNA damage even at 10% dilution concentration. The toxicant identification results revealed that multiple toxic polar compounds such as phenolic, heterocyclic and polycyclic aromatic compounds were the main contributors for biotoxicity. Furthermore, these compounds could accelerate oxidative stress, thereby inducing oxidative damage of cell membrane and DNA. As for treated effluent, TU value was decreased by 90.58% in MEBR process. An effective biotoxicity reduction was achieved in MEBR process owing to high removal efficiency in polar organic toxicants. In contrast, effluent from ICME and CAS processes presented relatively high acute toxicity and genotoxicity, because various heterocyclic and polycyclic aromatic compounds were difficult to be degraded in these processes. Therefore, it was suggested that MEBR was a potential and feasible process for improving CGW treatment and minimizing ecological risk. Copyright © 2018. Published by Elsevier B.V.

  11. Comparative Inactivation of Murine Norovirus and MS2 Bacteriophage by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    Science.gov (United States)

    Dunkin, Nathan; Weng, ShihChi; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2017-03-07

    Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log 10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log 10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.

  12. Disinfection of an advanced primary effluent using peracetic acid or ultraviolet radiation for its reuse in public services.

    Science.gov (United States)

    Julio, Flores R; Hilario, Terres-Peña; Mabel, Vaca M; Raymundo, López C; Arturo, Lizardi-Ramos; Ma Neftalí, Rojas-Valencia

    2015-03-01

    The disinfection of a continuous flow of an effluent from an advanced primary treatment (coagulation-flocculation-sedimentation) with or without posterior filtration, using either peracetic acid (PAA) or ultraviolet (UV) radiation was studied. We aimed to obtain bacteriological quality to comply with the microbiological standard established in the Mexican regulations for treated wastewater reuse (NOM-003-SEMARNAT-1997), i.e., less than 240 MPN (most probable number) FC/100 mL. The concentrations of PAA were 10, 15, and 20 mg/L, with contact times of 10, and 15 min. Fecal coliforms (FC) inactivation ranged from 0.93 up to 6.4 log units, and in all cases it reached the limits set by the mentioned regulation. Water quality influenced the PAA disinfection effectiveness. An efficiency of 91% was achieved for the unfiltered effluent, as compared to 99% when wastewater was filtered. UV radiation was applied to wastewater flows of 21, 30 and 39 L/min, with dosages from 1 to 6 mJ/cm². This treatment did not achieve the bacteriological quality required for treated wastewater reuse, since the best inactivation of FC was 1.62 log units, for a flow of 21 L/min of filtered wastewater and a UV dosage of 5.6 mJ/cm².

  13. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  14. Analytical study of fatty acids in bioreactor of an anaerobic treatment of distillery effluent

    International Nuclear Information System (INIS)

    Shah, F.A.; Pathan, M.I.

    2005-01-01

    An anaerobic digestion in bioreactors, offers a two-fold benefit: pollution potential reduction and biogas production. In this study, fatty acids in an anaerobic reactor are studied. The reactor exhibits a notable variation at different corks (1-6). The concentrations for both acetic acid and propionic acid are at maximum range at cork 2 and 5. For isobutyric acid; it is maximum at 1 and 2 corks. Butyric acid is maximum at 5; isovaleric acid is maximum at cork-2. This shows that cork-2 location has its maximum activity for fatty acids. Being nearest to the agitator this location has maximum agitation and resulted more formation of the fatty acids. This acidic effect will ultimately affect the reactor output for Biogas generation. (author)

  15. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    Science.gov (United States)

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. British strong-acid leach process targeted at refractory uranium ores

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The UKAEA-patented strong-acid leach process for refractory U ores is briefly outlined with emphasis on its variations from the conventional dilute-acid process and the projected economics for a processing plant using this process. The process uses 6N H 2 SO 4 with a sharply reduced leaching time over conventional processes. The solubilized U is removed by percolation and the use of only about 10 percent liquid produces less effluent. Conventional processing plant equipment can be used except at the feed preparation, acid mixing, curing, and washing stages. Ore can be processed at larger grain sizes and the milling is done in a dry rod mill. Alternatives to the percolation removal of U are listed. Other work being done by UKAEA on U recovery from ores is briefly indicated. (U.S.)

  17. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  18. Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis.

    Science.gov (United States)

    Ibarra-Taquez, Harold N; GilPavas, Edison; Blatchley, Ernest R; Gómez-García, Miguel-Ángel; Dobrosz-Gómez, Izabela

    2017-09-15

    Soluble coffee production generates wastewater containing complex mixtures of organic macromolecules. In this work, a sequential Electrocoagulation-Electrooxidation (EC-EO) process, using aluminum and graphite electrodes, was proposed as an alternative way for the treatment of soluble coffee effluent. Process operational parameters were optimized, achieving total decolorization, as well as 74% and 63.5% of COD and TOC removal, respectively. The integrated EC-EO process yielded a highly oxidized (AOS = 1.629) and biocompatible (BOD 5 /COD ≈ 0.6) effluent. The Molecular Weight Distribution (MWD) analysis showed that during the EC-EO process, EC effectively decomposed contaminants with molecular weight in the range of 10-30 kDa. In contrast, EO was quite efficient in mineralization of contaminants with molecular weight higher than 30 kDa. A kinetic analysis allowed determination of the time required to meet Colombian permissible discharge limits. Finally, a comprehensive operational cost analysis was performed. The integrated EC-EO process was demonstrated as an efficient alternative for the treatment of industrial effluents resulting from soluble coffee production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Namango, Saul S; Geißen, Sven-Uwe

    2016-03-01

    Anaerobic digestion is used to treat effluents with a lot of organics, such as molasses distillery wastewater (MDW) which is the effluent of bioethanol production from molasses. The raw MDW requires a lot of dilution water before biodigestion, while the digested MDW has high level of recalcitrants which are problematic for its discharge. This study investigated ferric coagulation, Fenton, Fenton-like (with ferric ions as catalyst) processes and their combinations on the biodegradability of digested MDW. The Fenton and Fenton-like processes after coagulation increased the MDW biodegradability defined by (BOD5/COD) from 0.07 to (0.4-0.6) and saved 50% of H2O2 consumed in the classic Fenton process. The effluent from coagulation coupled to a Fenton-like process was used as dilution water for the raw MDW before the anaerobic digestion. The process was stable with volumetric loading of approx. 2.7 g COD/L/d. It resulted in increased overall biogas recovery and significantly decreased the demand for the dilution water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Investigation of TC and TSS Removal Efficiencies at Ahvaz West WTP Effluent Using the Land‒plant Treatment Process

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2015-12-01

    Full Text Available Although the conventional (primary and secondary treatment processes are known to remove up to 95–99% of some micro-organisms, they do not provide adequate treatment to make the effluent suitable for direct reuse, mainly due to the presence of high concentrations of pathogenic microorganisms. Obtaining reusable effluents, therefore, requires the use of processes that can be justified both technical and economic grounds. One such indigenous, low cost option is the land-plant process that can be used for advanced wastewater treatment. It is the objective of the present study to determine the efficiency of the local soil in Ahvaz and that of the vetiver plant in reducing the microbial load in the effluent from municipal wastewater treatment plants. A pilot study was thus carried out including three Lysimeters installed in West Ahvaz Wastewater Treatment Plant. Local soil was used in one Lysimeter, local soil with vetiver plant in the second one, and an artificial assortment of soil comprising local soil, silica sand (0.5-1mm, and sand (15-30mm in the third. In addition, the effluent from the secondary settling outlet at the WTP was transferred by pumping at the three filtration rates of 0.2, 0.6, and 1 ml/min into the system with three replications for each rate and samples were collected from both inlet and outlet flows. The average removal efficiencies of Total Suspended Solids (TSS and Total Coliform (TC in the effluent from the three Lysimeters with local soil with vetiver, local soil without vetiver, and artificial soil assortment for the filtration rate of 0.2 ml/min were: 67.75% and 99.7%, 58.33% and 99.6%, and 56.25% and 99.5%, respectively. For a filtration rate of 0.6 ml/min, these values were: 53.33% and 98.93%, 48.8 and 98.77%, and 47.68% and 98.64%. Finally, the values obtained for a filtration rate of 0.6 ml/min were: 50% and 93.96%, 46.42 and 91.34%, and 44/04% and 88/81%, respectively. The results from the study showed that the

  1. Study of radiation processes for purifying liquid effluent and the design of pilot plants

    International Nuclear Information System (INIS)

    Kon'kov, N.G.; Buslaeva, S.P.; Osipov, V.B.; Panin, Yu.A.; Solodikhina, L.D.; Upadyshev, L.B.; Karpukhin, V.F.; Fajngol'd, Z.L.

    1975-01-01

    The possibilities of purifying liquid effluent containing dyestuffs and various organic and biological pollutants with an accelerated electron beam of energy up to 0.7 MeV are examined. A laboratory plant has been erected for the stationary, continuous irradiation - with bubbling of air - of artificial and natural industrial effluent containing organic pollutants in concentrations of up to 2g/litre and the 5 SKh dye in concentrations of up to 220 mg/litre. The results are discussed of the experimental irradiation of artificial mixtures consisting of distilled water, organic pollutants and dyestuffs, and also of natural industrial effluents from an enterprise where antibiotics are produced and from textile mills. The results of the studies indicate that the physicochemical characteristics of effluents are improved. On the basis of these studies pilot plants with electron accelerators are being designed for a daily throughput of 15 000 m 3 of effluent from the production of antibiotics. The electron accelerators are of the transformer type (EhLV-1) with an energy of up to 0.7 MeV and a power of up to 40 kW. In addition, units with a daily throughput of 200 m 3 are being designed for the breakdown of cyanides in effluent by 60 Co. Such a unit consists of three reactors with centro-axial irradiators and solid cast-iron biological shielding. The dose-rate can be measured over a wide range, thanks to the use of spherical source holders. The sources have a total activity of 62 kCi. Calculations of the cost of the radiation treatment of effluent demonstrate the economic feasibility of the method

  2. Research on deeply purifying effluent from uranium mining and metallurgy to remove uranium by ion exchange. Pt.2: Elution uranium from lower loaded uranium resin by the intense fractionation process

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqiang; Qi Jing

    2002-01-01

    Developing macroporous resin for purifying uranium effluent from uranium mining and metallurgy is presented. The Intense Fractionation Process is employed to elute uranium from lower loaded uranium resin by the eluent of sulfuric acid and ammonium sulfate. The result is indicated that the uranium concentration in the rich elutriant is greatly increased, and the rich liquor is only one bed column volume, uranium concentration in the elutriant is increased two times which concentration is 10.1 g/L. The eluent is saved about 50% compared with the conventional fixed bed elution operation. And also the acidity in the rich elutriant is of benefit to the later precipitation process in uranium recovery

  3. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  4. Process for recovery of uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Wiewiorowski, T.K.; Thornsberry, W.L. Jr.

    1978-01-01

    Process is claimed for the recovery of uranium from wet process phosphoric acid solution in which an organic extractant, containing uranium values and dissolved iron impurities and comprising a dialkylphosphoric acid and a trialkylphosphine oxide dissolved in a water immiscible organic solvent, is contacted with a substantially iron-free dilute aqueous phosphoric acid to remove said iron impurities. The removed impurities are bled from the system by feeding the resulting iron-loaded phosphoric acid to a secondary countercurrent uranium extraction operation from which they leave as part of the uranium-depleted acid raffinate. Also, process for recovering uranium in which the extractant, after it has been stripped of uranium values by aqueous ammonium carbonate, is contacted with a dilute aqueous acid selected from the group consisting of H 2 SO 4 , HCl, HNO 3 and iron-free H 3 PO 4 to improve the extraction efficiency of the organic extractant

  5. Treatment of effluents in uranium industry

    International Nuclear Information System (INIS)

    Ghosh, S.K.

    2009-01-01

    Uranium processing technology in India has matured in the last 50 years and is able to meet the country's requirement. Right from mining of the ore to milling and refining, effluents are generated and are being processed for their safe disposal. While the available technology is able to meet the regulatory limits of the effluents, the same may not be enough to meet the increased demand of uranium in the future. The increased population, urbanization and climate change are not only going to decrease the supply of process water but will also place increased restrictions on disposal to environment. This demands technologies that will generate less effluent for disposal and enable reuse and recycle concept to the extent possible. Presently used conventional physical-chemical methods, to contain the contaminants would, therefore, require further refinements. Contaminants like sulfates, chlorides etc in the effluent of uranium mill based on acid leach process are the concerns for the future plants. Hence, there is an urgent need for development of suitable methods for maximum recycle of the process effluents, which will also enable in minimizing the consumption of process water. A suitable membrane based process can be an option leaving a concentrated brine for reuse or for further treatment and disposal

  6. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    Science.gov (United States)

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  8. Decontamination of irradiated fuel processing waste using lead paraperiodate; Decontamination des effluents de traitement des combustibles irradies par le paraperiodate de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-07-01

    The process is designed to eliminate ruthenium. It consists in an oxidation using para-periodic acid whose excess, acting then as a carrying-over agent, is precipitated in the form of a lead salt at a pH of 5 or 6. This process makes it possible to precipitate 80 to 98 per cent of the ruthenium which is not removed by the conventional precipitation techniques which follow it. If the waste is a reducing agent, it is pre-oxidized using ozone or potassium permanganate. The process was developed at Marcoule in 1963 and has since 1965 been applied industrially; its cost price is of the same order of magnitude as conventional processes and its results are satisfactory. (author) [French] Le procede est destine a l'elimination du ruthenium. Il consiste en une oxydation par l'acide par paraperiodique dont l'exces, jouant alors le role d'entraineur, est precipite sous forme de sel de plomb a pH 5 ou 6. Ce traitement permet de precipiter 80 a 98 pour cent du ruthenium rebelle aux traitements de precipitation classique, qui doivent le suivre. Si l'effluent est reducteur il est preoxyde a l'ozone ou au permanganate de potassium. Mis au point a Marcoule en 1963, il est depuis 1965 exploite industriellement, son prix de revient est du meme ordre de grandeur que celui des traitements habituels et les resultats ont donne satisfaction. (auteur)

  9. Process for recovering uranium from wet process phosphoric acid (III)

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.; Carrington, O.F.

    1983-01-01

    Uranium is conventionally recovered from wet-process phosphoric acid by two liquid ion exchange steps using a mixture of mono- and disubstituted phenyl esters of orthophosphoric acid (OPPA). Efficiency of the process drops as the mono-OPPA is lost preferentially to the aqueous phase. This invention provides a process for the removal of the uranium process organics (OPPA and organic solvents) from the raffinate of the first liquid ion exchange step and their return to the circuit. The process organics are removed by a combination flotation and absorption step, which results in the recovery of the organics on beads of a hydrophobic styrene polymer

  10. Structural modeling and analysis of an effluent treatment process for electroplating--a graph theoretic approach.

    Science.gov (United States)

    Kumar, Abhishek; Clement, Shibu; Agrawal, V P

    2010-07-15

    An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.

  11. MICROFILTRATION AS ADVANCED TREATMENT PROCESS FOR AN EFFLUENT OF BEEF CATTLE

    OpenAIRE

    Tiago Osório da Silva; André William Soares Rocha; Francisco Javier Cuba Teran

    2011-01-01

    This work aimed to clarify an effluent of a cattle slaughter industry by means of polmeric membranes ofmicrofiltration (porosity of 0.4 μm) with the purpose of removing its turbidity, COD, total suspended solids,volatile solids, inorganic phosphorus and ammonia nitrogen. And also the characteristics of the flow behaviorand transmembrane pressure, and permeate temperature for this wastewater. It was noted that the efficiencyregarding the removal of physical-chemical parameters was 98%, for Tur...

  12. Biological processes for environmental control of effluent streams in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Hancher, C.W.; Strandberg, G.W.; Scott, C.D.

    1978-01-01

    Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N 2 gas and for decreasing dissolved metal concentration to less than 1 g/m 3 . Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied

  13. Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales.

    Science.gov (United States)

    Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E

    2018-02-26

    This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn  = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.

  14. Process for winning uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    A process is described for winning uranium from wet process phosphoric acid by means of liquid-liquid extraction with organic phosphoric acid esters. The process is optimised by keeping the sulphate percentage in the phosphoric acid below 2% by weight, and preferably below 0.6% by weight, as compared to P 2 O 5 in the phosphoric acid. This is achieved by adding an excess of Ba and/or Ca carbonate or sulfide solution and filtering off the formed calcium and/or barium sulphate precipitates. Solid KClO 3 is then added to the filtrate to oxidise U 4+ to U 6+ . The normal extraction procedure using organic phosphoric esters as extraction liquid, can then be applied. (Th.P.)

  15. In-line monitoring of effluents from HTGR fuel particle preparation processes using a time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Lee, D.A.; Costanzo, D.A.; Stinton, D.P.; Carpenter, J.A.; Rainey, W.T. Jr.; Canada, D.C.; Carter, J.A.

    1976-08-01

    The carbonization, conversion, and coating processes in the manufacture of HTGR fuel particles have been studied with the use of a time-of-flight mass spectrometer. Non-condensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes which have been monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO 2 to UC 2 , buffer and low temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures

  16. Treatment of the effluent generated in conversion process of auc by precipitation

    International Nuclear Information System (INIS)

    Carvalho, E.F.U. de; Santos, L.R. dos; Riella, H.G.

    1988-01-01

    The purpose of this study is to provide a description for the treatment of generating effluent from Ammonium Uranyl Carbonate-AUC IPEN/CNEN-SP. This procedure describes the uranium recovery (200 mlU/1) by means of its precipitation with hidrogen peroxide at 50 0 C, pH 8,5 where results a yellow powder thought to be UO 4 2NH 3 2HF and a NH 4 F solution with an uranium concentration of 6-7mgU/1. The powder resulted was characterized by chemical analysis and X- Ray difraction techniques. (author) [pt

  17. Process of recovering uranium from wet process acid

    International Nuclear Information System (INIS)

    York, W.R.

    1983-01-01

    Entrainment of contaminated water in the organic phase and poor phase disengagement is prevented in the second cycle scrubber, in a two cycle uranium recovery process, by washing the organic solvent stream containing entrained H 3 PO 4 from the second cycle extractor, with a dilute aqueous sulfuric or nitric acid solution in an acid scrubber, prior to passing the solvent stream into the second cycle stripper. (author)

  18. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.

    Science.gov (United States)

    Van Tran, A

    2008-07-01

    The effectiveness of the bottom ashes from biomass and coal-fired boilers in removing chemical oxygen demand (COD) and colorloads in effluents of a kraft pulp bleachery plant is investigated. The effluents tested are those of the sulfuric acid treatment (A stage) of a hardwood kraft pulp, and of the first acidic (chlorine or chlorine dioxide) and second alkaline (extraction) stages in the chlorine and elemental chlorine-free (ECF) bleaching lines of hardwood and softwood kraft pulps. The coal-fired boiler's bottom ashes are unable to remove either COD or color load in the bleached kraft pulp effluents. However, the bottom ashes of the biomass boiler are effective in removing COD and color loads of the acidic and alkaline effluents irrespective of the bleaching process or wood species. In particular, these ashes increase the pH of all the effluents examined.

  19. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  20. Wetland-based passive treatment systems for gold ore processing effluents containing residual cyanide, metals and nitrogen species.

    Science.gov (United States)

    Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L

    2013-10-01

    Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.

  1. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  2. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    International Nuclear Information System (INIS)

    Jimenez-Rodriguez, A.M.; Duran-Barrantes, M.M.; Borja, R.; Sanchez, E.; Colmenarejo, M.F.; Raposo, F.

    2009-01-01

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  4. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta)

    International Nuclear Information System (INIS)

    Figueroa, Félix L.; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G.; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A.; Gómez-Pinchetti, Juan L.

    2012-01-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed.

  5. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta).

    Science.gov (United States)

    Figueroa, Félix L; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A; Gómez-Pinchetti, Juan L

    2012-02-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Process for the preparation of lactic acid and glyceric acid

    Science.gov (United States)

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  8. Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent.

    Science.gov (United States)

    Weng, ShihChi; Dunkin, Nathan; Schwab, Kellogg J; McQuarrie, James; Bell, Kati; Jacangelo, Joseph G

    2018-09-01

    Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm 2 , provided linear log inactivation (-log (N/N 0 )) with a regression slope (cm 2 mJ -1 ) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of

  9. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    In the field of metallurgy, specifically processes for recovering uranium from wet process phosphoric acid solution derived from the acidulation of uraniferous phosphate ores, problems of imbalance of ion exchange agents, contamination of recycled phosphoric acid with process organics and oxidizing agents, and loss and contamination of uranium product, are solved by removing organics from the raffinate after ion exchange conversion of uranium to uranous form and recovery thereof by ion exchange, and returning organics to the circuit to balance mono and disubstituted ester ion exchange agents; then oxidatively stripping uranium from the agent using hydrogen peroxide; then after ion exchange recovery of uranyl and scrubbing, stripping with sodium carbonate and acidifying the strip solution and using some of it for the scrubbing; regenerating the sodium loaded agent and recycling it to the uranous recovery step. Economic recovery of uranium as a by-product of phosphate fertilizer production is effected. (author)

  10. BIODEGRADATION OF EFFLUENT CONTAMINATED WITH DIESEL OIL AND GASOLINE USING CHITOSAN AS A NATURAL COAGULANT IN A CONTINUOUS PROCESS

    Directory of Open Access Journals (Sweden)

    T. V. de Oliveira

    Full Text Available Abstract This study evaluated the effects of aeration (constant aeration, intermittent aeration and a lack of aeration and hydraulic retention time (HRT (2, 3 and 4 days on a continuous process with cell recycling, using chitosan as a natural coagulant for the sedimentation of a C1 mixed culture. This culture was used for the biodegradation of hydrocarbons present in the effluent contaminated with diesel oil and gasoline. The responses monitored included the turbidity removal (TR, total petroleum hydrocarbon (TPH removal and volatile suspended solids (VSS. Constant aeration and an HRT of 4 days produced the best results for the continuous process, resulting in the highest TPH removals (94% and 75% reductions in the supernatant and reaction tank, respectively and TR (95%.

  11. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  12. Engineering strategies for the enhanced photo-H{sub 2} production using effluents of dark fermentation processes as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Yeh, Kuei-Ling; Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Wang, Hui-Min [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung (China)

    2010-12-15

    The major obstacle of combining dark and photo fermentation for high-yield biohydrogen production is substrate inhibition while using dark fermentation effluent as the sole substrate. To solve this problem, the dark fermentation broth was diluted with different dilution ratio to improve photo-H{sub 2} production performance of an indigenous purple nonsulfur bacterium Rhodopseudomonas palustris WP3-5. The best photo-H{sub 2} production performance occurred at a dilution ratio of 1:2, giving a highest overall H{sub 2} production rate of 10.72 ml/l/h and a higher overall H{sub 2} yield of 6.14 mol H{sub 2}/mol sucrose. The maximum H{sub 2} content was about 88.1% during the dilution ratio of 1:2. The photo-H{sub 2} production performance was further improved by supplying yeast extract and glutamic acid as the nutrient. The results indicate that the overall H{sub 2} production rate and H{sub 2} yield increased to 17.02 ml/l/h and 10.25 mol H{sub 2}/mol sucrose, respectively. Using a novel solar-energy-excited optical fiber photobioreactor (SEEOFP) with supplementing tungsten filament lamp (TL) irradiation, the overall H{sub 2} production rate was improved to 17.86 ml/l/h. Meanwhile, the power consumption by combining SEEOFP and TL was about 37.1% lower than using TL alone. This study demonstrates that using optimal light sources and proper dilution of dark fermentation effluent, the performance of photo-H{sub 2} production can be markedly enhanced along with a reduction of power consumption. (author)

  13. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  14. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  15. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqing; Qi Jing

    2002-01-01

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO 2 ) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO 4 2- , etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn 2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO 4 2- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH) 2 . The manganese hydroxide is easily to oxide to form MnO(OH) 2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  16. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-01-01

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  17. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.

    Science.gov (United States)

    Maletz, Sibylle; Floehr, Tilman; Beier, Silvio; Klümper, Claudia; Brouwer, Abraham; Behnisch, Peter; Higley, Eric; Giesy, John P; Hecker, Markus; Gebhardt, Wilhelm; Linnemann, Volker; Pinnekamp, Johannes; Hollert, Henner

    2013-03-15

    Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects

  18. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  19. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    International Nuclear Information System (INIS)

    Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J.

    2011-01-01

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m 3 depending on the operating conditions. Under optimal operating condition such as 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m 3 . The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  20. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, R., E-mail: sridhar36k@yahoo.co.in [Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Sivakumar, V., E-mail: drvsivakumar@yahoo.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Prince Immanuel, V., E-mail: princeimmanuel79@yahoo.com [Department of Chemical Engineering, Erode Sengunthar Engineering College, Thudupathi, Erode 638057, TN (India); Prakash Maran, J., E-mail: prakashmaran@gmail.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India)

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m{sup 3} depending on the operating conditions. Under optimal operating condition such as 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m{sup 3}. The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  1. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  2. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  3. Comprehensive evaluation of the effluents eluted from different processes of the textile industry and its immobilization to trim down the environmental pollution

    International Nuclear Information System (INIS)

    Husaini, S.N.; Zaidi, J.H.; Matiullah; Akram, M.

    2011-01-01

    Due to the significance of industrial waste water pollution, which creates severe health hazards in humans, this study concentrates over the reduction and determination of the amounts of toxic metals/pollution parameters in the effluents leached from different processes of the textile industry. The concentrations of metal ions were measured by using neutron activation analysis (NAA) technique. The values of toxic metals such as As (49.1 ± 1.8 mg/L), Cu (42.7 ± 1.5 mg/L), Ni (41.1 ± 3.3 mg/L), Mn (51.1 ± 0.7 mg/L), Sb (1.89 ± 0.04 mg/L), Se (0.41 ± 0.01 mg/L), Co (7.5 ± 0.3 mg/L), Cr (8.5 ± 0.5 mg/L) and Cd (1.21 ± 0.08 mg/L) were found very high in crude textile's effluents as compared to their standard recommended limits. The immense variation observed among the injurious pollutants of the effluents i.e. pH, temperature, electrical conductivity, turbidity, biological oxygen demands, chemical oxygen demands, total suspended solids, total dissolved solids, total solids etc. The toxic metals and injurious pollutants in the unprocessed effluents have been reduced in the post filtration effluents up to 98% and 96% respectively with the help of an ultra-filtration membrane therapy unit. (author)

  4. Effluent trading in river systems through stochastic decision-making process: a case study.

    Science.gov (United States)

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  5. Effluent Guidelines

    Science.gov (United States)

    Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.

  6. Lignor process for acidic rock drainage treatment.

    Science.gov (United States)

    Zhuang, J M; Walsh, T

    2004-09-01

    The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.

  7. 40 CFR 407.67 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Fruits Subcategory § 407.67 Effluent limitations guidelines...

  8. 40 CFR 407.77 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Vegetables Subcategory § 407.77 Effluent limitations guidelines...

  9. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    Rapaumbya Akaye, Guy-Roland

    1994-01-01

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author) [fr

  10. Ion exchange for treatment of industrial effluents

    International Nuclear Information System (INIS)

    Moreno Daudinot, Aurora Maria; Ge Leyva, Midalis

    2016-01-01

    The acid leaching and ammoniacal carbonate technologies of laterite respectively, are responsible for the low quality of life of the local population, the big deforested areas due to the mining tilling, the elevated contents of solids in the air and waters, as well as the chemical contamination by metals presence, the acidity or basicity of the effluents of both industries, that arrive through the river and the bay to aquifer's mantle. The ion exchange resins allow ions separation contained in low concentrations in the solutions, where the separation of these elements for solvents, extraction or another chemical methods would be costly. Technological variants are proposed in order to reduce the impact produced on the flora and the fauna, by the liquid effluents of nickel industry, by means of ion exchange resins introduction as well as the recuperation of metals and their re incorporation to the productive process. (Author)

  11. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.

    Science.gov (United States)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong; Tian, Qinghua; Sun, Hongyu

    2017-08-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na 2 CO 3 and Na 3 PO 4 as precipitants, lithium is recovered as raw Li 2 CO 3 and pure Li 3 PO 4 , respectively. Under the best reaction condition (both the amounts of Na 2 CO 3 and Li 3 PO 4 vs. the theoretical ones are about 1.1), the corresponding recovery rates of lithium (calculated based on the concentration of the previous stage) are 74.72% and 92.21%, respectively. The raw Li 2 CO 3 containing the impurity of Na 2 CO 3 is used to prepare LiMn 2 O 4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na 2 CO 3 in raw Li 2 CO 3 is controlled less than 10%, the Mn corrosion percentage of LiMn 2 O 4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g -1 . The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li 2 CO 3 in the field of lithium ion sieve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modelling de-novo formation of dioxins in the effluent gas cleaning tract of a zinc recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Nordsieck, H.; Peche, R.

    2002-07-01

    Dioxins as well as other chloroaromatics are an unwanted by-product of most metallurgical processes, both in primary metal production and in recycling, such as at the re-use of high-zinc steel dust, as obtained in the second steel melting process using in electric arc furnaces, by extracting the included zinc. for achieving this purpose, the steel dust is treated in a rotary kiln. This resulting zinc oxide is offered to metal working companies in form of fine powder where it is used for galvanizing of components, for example, or for converting the powder pure metal. In the framework of the MINIDIP-project (Minimization of Dioxins in Thermal Industrial Processes: Mechanisms, Monitoring, Abatement) the formation of dioxins was studied as a function of temperature, time, oxygen, and inhibitor addition. The resulting kinetic data are introduced into a computational fluid dynamics (CFD) model, featuring geometric representations of the effluent gas cleaning tract components and the temperature and gas flow field as well as the trajectories and destination of particles different sizes calculated. This CFD model is used to estimate the de-novo formation of dioxins from the moment the gas leaves the rotary kiln until its cleaning, in order to define the role of this part of the plant in the formation of dioxins, as well as the identification and extent of possibilities for minimizing dioxin emissions. (Author)

  13. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling

    DEFF Research Database (Denmark)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong

    2017-01-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na2CO3 and Na3PO4 as precipitants, lithium is recovered as raw Li2CO3 and pure Li3PO4...... of Na2CO3 is used to prepare LiMn2O4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na2CO3 in raw Li2CO3 is controlled less than 10%, the Mn corrosion percentage of LiMn2......O4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g-1. The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li2CO3 in the field of lithium ion sieve....

  14. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    International Nuclear Information System (INIS)

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  15. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  16. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  17. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2001-01-01

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF

  18. Process for recovering uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, S.; Carrington, F.

    1982-01-01

    A process for recovering uranium from phosphoric acid solutions uses an acidified alkali metal carbonate solution for the second-stage strip of uranyl uranium from the ion-exchange solution. The stripped solution is then recycled to the ion-exchange circuit. In the first stripping stage the ion-exchange solution containing the recovered uranyl uranium and an inert organic diluent is stripped with ammonium carbonate, producing a slurry of ammonium uranyl tricarbonate. The second strip, with a solution of 50-200 grams per litre of sodium carbonate eliminates the problems of inadequate removal of phosphorus, iron and vanadium impurities, solids accumulation, and phase separation in the strip circuit

  19. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  20. Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeongdong [University of Alberta, Alberta (Canada); Jung, Sokhee [Samsung SDS, Seoul (Korea, Republic of); Ahn, Young-Ho [Yeungnam University, Gyungsan (Korea, Republic of)

    2013-06-15

    The optimal balance of ammonium and nitrite is essential for successful operation of the subsequent anammox process. We conducted a partial nitritation experiment using an upflow air-lift reactor to provide operational parameters for achieving the optimal ratio of ammonium to nitrite, by feeding supernatant of anaerobic digester effluent, high-nitrogen containing rejection water. Semi-continuous operation results show that HRT should be set between 15 and 17 hours to achieve the optimum ration of 1.3 of NO{sub 2}-N/NH{sub 4}-N. In the UAR, nitritation was the dominant reaction due to high concentration of ammonia and low biodegradable organics. The influent contained low concentrations of hydroxylamine and hydrazine. However, hydrazine increased during partial nitritation by ⁓60-130% although there was no potential anammox activity in the reactor. The partial nitritation process successfully provided the ratio of nitrogen species for the anammox reaction, and relived the nitrite restraint on the anammox activity by increasing hydrazine concentration.

  1. Process Stability Identification Through Dynamic Study of Single-bed Ammonia Reactor with Feed-Effluent Heat Exchanger (FEHE

    Directory of Open Access Journals (Sweden)

    Adhi Tri Partono

    2018-01-01

    Full Text Available In ammonia reactor system, a feed-effluent heat exchanger (FEHE is typically installed to utilize reaction-generated heat to heat the reactor’s feed. Utilizing energy from exothermic reaction to the incoming feed stream is often called “autothermic operation”. Despite the advantage of FEHE, there is a risk of utilizing FEHE in a reactor system such as instability of process temperature or known as hysteresis. Hysteresis phenomena in chemical process could cause operational problems, for example it could damage the integrity of the equipment’s material. This paper aims to evaluate the dynamic behavior of a single-bed ammonia reactor with FEHE, particularly to propose a way to prevent instability within the system. The dynamic simulation of the single-bed ammonia reactor with FEHE was performed with Aspen HYSYS v8.8. The result of the simulation result shows that hysteresis phenomenon in the ammonia reactor system occurs when the feed’s temperature is below a certain value. If the feed temperature reaches that value, the temperature of the reactor’s outlet oscillates. One of the solution to keep the feed temperature above that critical value is by installing a trim heater within the system. Based on the simulation, trim heater installation within the system is able to prevent hysteresis in the system evaluated.

  2. Kinetics of pulp mill effluent treatment by ozone-based processes

    International Nuclear Information System (INIS)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  3. Identification of fuel effluents in waste water. Its influence in depuration process by active sludges. Identificacion de vertidos combustibles en agua residual. Su influencia en el proceso de depuracion por fongos activos

    Energy Technology Data Exchange (ETDEWEB)

    Parody, F.; Rebollo, M.C.; Azcarate, J.; Sammillan, I.; Beltran, V.M. (Ayuntamiento de Madrid (Spain))

    1994-01-01

    Frequently, fuel effluents are found in treatment water plants. This effluents are nocives for the biologic process. In this work the authors present an easy method for characterizing the fuel wastes in waste water and its chromatografic characterization in the water treatment plant in Madrid (Spain).

  4. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    International Nuclear Information System (INIS)

    Weterings, C.A.M.; Janssen, J.A.

    1985-01-01

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone

  5. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, C.A.M.; Janssen, J.A.

    1985-04-30

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone.

  6. Recovery of calcium from the effluent of direct oxide reduction process

    International Nuclear Information System (INIS)

    Ferro, P.; Mishra, B.; Olson, D.L.; Moore, J.J.; Averill, W.A.

    1992-01-01

    This paper reports that the production of plutonium by Direct Oxide Reduction [DOR] process using calcium generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated slat mix [CaCl 2 + 15 wt. pct. CaO] is being carried out to election calcium, which can be recycled to the DOR rector along with the calcium chloride salt or may be used in-situ in an combined DOR and electrowinning process. The technology will resolve a major contaminated waste disposal problem, besides improving the cost and process efficiency in radioactive metal production. The process is being optimized in terms of the calcium solubility, cell temperature, current density and cell design to maximize the current efficiency. Scattered information is available regarding the solubility of calcium in calcium chloride salt in the present of calcium oxide. The solubility has also been found to depend on the use of graphite as the anode material. A porous ceramic sheath is being used around the anode to prevent the dissolution of electrowon calcium as oxide or carbonate and to prevent the contamination of salt by the anodic carbon. The electrode reactions are affected by the electrolyte composition and its viscosity which varies with time in this process and, therefore, electrochemical impedance is being measured to understand this time-dependent mechanisms

  7. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    Science.gov (United States)

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    Science.gov (United States)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  9. Establishment and assessment of an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of GarriI processing effluents [waste water] on the cyanide ...

    African Journals Online (AJOL)

    Numerous studies have described environmental exposure of humans to cyanide in African populations. Little is known about exposure to cyanide toxins from processed or unprocessed root tubers commonly consumed in Africa; and data on the food concentration of cyanide which is a potential poison and systemic toxicant ...

  11. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    Science.gov (United States)

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.

  12. Characterization of substances in products, effluents, and wastes from coal conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.

    1978-01-01

    Researchers at Pacific Northwest Laboratory (PNL) are investigating materials from synthetic fossil fuel processes. During the past year, samples have been collected from the Solvent Refining Coal Pilot Plant (SRC-I mode), Lignite Gasification Pilot Plant, Eyring Research Institute Gasifier, and Hanna III In Situ Coal Gasification Experiment. Inorganic and organic analyses have been performed, and comparisons of the data show some important differences in the potential emissions

  13. Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.

    Science.gov (United States)

    Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei

    2018-07-01

    Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  15. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate; Decontamination des effluents de traitement des combustibles irradies par le bioxyde de manganese hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Gaudier, J F [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn{sup 2+} in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [French] Le procede au ''bioxyde de manganese'' est destine a remplacer le traitement ''carbonate de calcium'' dans les effluents de moyenne activite. L'objectif poursuivi lors de la recherche d'un procede nouveau etait de diminuer le volume des boues sans diminuer le facteur de decontamination des effluents. Le nouveau traitement consiste a effectuer en cascade sur les effluents rendus basiques et oxydants une double precipitation de 100 ppm de Mn{sup 2+} avec separation intermediaire du precipite. Il presente en outre l'avantage d'ameliorer la decontamination en strontium. Le traitement est utilisable dans la chaine des deux decanteurs et a donne satisfaction lors de son exploitation industrielle. Le volume des boues seches a ete reduit d'un facteur 3 a 4 par rapport au traitement carbonate. (auteur)

  16. Application of functionalized calixarenes to the processing of radioactive effluents by supported liquid membranes

    International Nuclear Information System (INIS)

    Hill, Clement

    1994-01-01

    In a first part, this research thesis presents the general context of nuclear waste processing (nature of wastes to be processed, characteristics of the used method and products), and proposes an overview of results obtained during previous campaigns which were based on the use of the technique of supported liquid membranes, but with other types of extracting components. The second part focuses on the tracking of complexing and extractive properties of all functionalized calixarenes which had been synthesised by different research teams. Several experiments have been performed to determine the extraction efficiency and selectivity of these organic compounds with respect to the studied radio-elements. The third part reports the detailed study of a specific family of functionalized calixarenes for which two thermodynamic models of membrane transport described in the literature have been applied. Validity limits are discussed with respect to operation conditions. Some results are finally given on the caesium and actinide (neptunium, plutonium) decontamination of synthetic concentrates which simulate actual radioactive wastes [fr

  17. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Directory of Open Access Journals (Sweden)

    Maria Ángeles Fernández de Dios

    2014-01-01

    Full Text Available The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.

  18. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Science.gov (United States)

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  19. Acid decomposition processing system for radioactive wastes

    International Nuclear Information System (INIS)

    Oomine, Toshimitsu.

    1984-01-01

    Purpose: To perform plutonium recovery at a low energy consumption irrespective of the plutonium density within the wastes. Method: In a decomposing and volume-reducing device for combustible or less combustible wastes containing transuranic elements using an acid, the wastes are in contact with nitric acid before feeding to a reactor. Then, the transuranic elements are transferred into the nitric acid, which is then in contact with ion exchange resins. After adsorbing the transuranic elements to the ion exchange resins, the nitric acid removed with the transuranic elements is caused to flow into a reaction vessel or heating vessel and used as a decomposing and oxidizing agent. (Seki, T.)

  20. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  1. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.R.; Pozo, M.J.; Jarpa, M.; Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R.

    2009-01-01

    The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 o C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L -1 d -1 due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L -1 d -1 . By working at a dissolved oxygen concentration of 0.5 mg L -1 in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L -1 . The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6 mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.

  2. Analysis of copper losses throughout weak acid effluent flows generated during off-gas treatment in the New Copper Smelter RTB Bor

    Directory of Open Access Journals (Sweden)

    Dragana Ivšić-Bajčeta

    2013-09-01

    Full Text Available The previous inadequate treatment of off-gas in RTB Bor in Serbia has resulted in serious pollution of the environment and the possibly high losses of copper through the effluent flows. The project of New Copper Smelter RTB Bor, besides the new flash smelting furnace (FSF and the reconstruction of Pierce-Smith converter (PSC, includes more effective effluent treatment. Paper presents an analysis of the new FSF and PSC off-gas treatment, determination of copper losses throughout generated wastewaters and discussion of its possible valorization. Assumptions about the solubility of metals phases present in the FSF and PSC off-gas, obtained by the treatment process simulation, were compared with the leaching results of flue dusts. Determined wastewaters characteristics indicate that the PSC flow is significantly richer in copper, mostly present in insoluble metallic/sulfide form, while the FSF flow has low concentration of copper in the form of completely soluble oxide/sulfate. The possible scenario for the copper valorization, considering arsenic and lead as limiting factors, is the separation of the FSF and PSC flows, return of the metallic/sulfide solid phase to the smelting process and recovery from the sulfate/oxide liquid phase.

  3. Treatment of acid and sulphate-rich effluents in an integrated biological/chemical process

    CSIR Research Space (South Africa)

    Maree, JP

    2004-04-01

    Full Text Available .4 g SO4/(l.d). The rate of biological sulphate removal was found to be directly related to the square root of sulphate, COD and VSS concentrations respectively, and inversely proportional to sulphide concentration. The practical value of simultaneous...

  4. Simultaneous C and N removal from saline salmon effluents in filter reactors comprising anoxic-anaerobic-aerobic processes: effect of recycle ratio.

    Science.gov (United States)

    Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D

    2014-01-01

    Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.

  5. Investigation of disposal of nitrate-bearing effluent from in-situ leaching process by natural evaporation in Yining uranium mine

    International Nuclear Information System (INIS)

    Huang Chongyuan; Li Weicai; Zhang Yutai; Gao Xizhen

    2000-01-01

    Experiments indicated, after lime neutralization and precipitation of nitrate-bearing effluent from in-situ leaching process, uranium concentration increase with the increasing of nitrate concentration. Only when nitrate concentration is <0.5 mg/L, uranium concentration can drop from 1.5-2.0 mg/L to about 1.0 mg/L. The permeability coefficient of soil is about 1.0-1.1 m/d in the place which is scheduled for building natural evaporation pool. After lime neutralization of nitrate-bearing effluent, it can drop to 0.03-0.01 m/d. Setting up water-proof layer in natural evaporation pool can reduce pollution of underground water by uranium, nitrate and ammonium

  6. Study of the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 for processing radioactive aqueous effluents in dynamic mode

    International Nuclear Information System (INIS)

    Duchateau, Maxime

    2014-01-01

    Public and military nuclear industry generates a significant amount of radioactive liquid waste which must be treated before being released into the environment. Decontamination methods alternative to the industrial techniques (evaporation, chemical treatment) are being developed, such as column treatments or coupled filtration/sorption processes. Current researches mainly focus on the development and shaping of specific sorbents. In this context, the objectives of this thesis were first to study the synthesis of TiO 2 layers on macroporous ceramic supports in supercritical (SC) CO 2 and then to evaluate their potential for radionuclide extraction in these alternative processes. A robust synthesis method has been developed, based on the thermal decomposition of titanium isopropoxide in SC CO 2 in the temperature range between 150 C and 350 C. Nano-structured TiO 2 films were formed on the macroporous supports (ceramic foams, tubular α-alumina supports) with good adhesion, already at 150 C. The effect of the synthesis temperature on sorbents physico-chemical characteristics and sorption properties has been studied with TiO 2 powders prepared under the same conditions as the supported films. The best sorption performance were observed for the powder prepared at 150 C, owing to its higher density of surface sites in comparison with powders prepared at either 250 C or 350 C. Consequently, this synthesis temperature (150 C) was selected for a detailed study of the composite sorbents (TiO 2 /support), in order to assess their sorption performance in continuous treatment processes. The sorption experiments have shown that a column of alumina macroporous foam (Φpore = 400μm) coated with TiO 2 was suitable for processing effluents in dynamic mode with high throughputs. Both macro-pore sizes and column height were revealed as important parameters to be controlled. For the coupled filtration/sorption treatment, TiO 2 membranes exhibit good mechanical strength and are able

  7. Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes.

    Science.gov (United States)

    Alaton, Idil Arslan; Balcioglu, Isil Akmehmet; Bahnemann, Detlef W

    2002-03-01

    In the present study the treatment efficiency of different AOPs (O3/OH- H2O2/UV-C and TiO2/UV-A) were compared for the oxidation of simulated reactive dyebath effluent containing a mixture of monochlorotriazine type reactive dyes and various dye auxiliary chemicals at typical concentrations encountered in exhausted reactive dyebath liquors. A525 (color), UV280 (aromaticity) and TOC removal rates were assessed to screen the most appropriate oxidative process in terms of reactive dyebath effluent treatment. Special emphasis was laid on the effect of reaction pH and applied oxidant (O3, H2O2) dose on the observed reaction kinetics. It was established that the investigated AOPs were negatively affected by the Na2CO3 content (= 867 mg/L) which is always present at high concentrations in dychouse effluents since it is applied as a pH buffer and dye fixation agent during the reactive dyeing process. The ozonation reaction exhibited almost instantaneous decolorization kinetics and a reasonable TOC reduction rate. It appeared to be stable under the investigated advanced oxidation conditions and outranked the other studied AOPs based on the above mentioned criteria. Besides, the electrical energy requirements based on the EE/O parameter (the electrical energy required per order of pollutant removal in 1 m3 wastewater) was calculated for the homogenous AOPs in terms of decolorization kinetics. In view of the electrical energy efficiency, ozonation and H2O2/UV-C oxidation at the selected treatment conditions appear to be promising candidates for full-scale dyehouse effluent decolorization.

  8. A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse.

    Science.gov (United States)

    Zucker, I; Mamane, H; Cikurel, H; Jekel, M; Hübner, U; Avisar, D

    2015-11-01

    The Shafdan reclamation project facility (Tel Aviv, Israel) practices soil aquifer treatment (SAT) of secondary effluent with hydraulic retention times (HRTs) of a few months to a year for unrestricted agricultural irrigation. During the SAT, the high oxygen demand (>40 mg L(-1)) of the infiltrated effluent causes anoxic conditions and mobilization of dissolved manganese from the soil. An additional emerging problem is the occurrence of persistent trace organic compounds (TrOCs) in reclaimed water that should be removed prior to reuse. An innovative hybrid process based on biofiltration, ozonation and short SAT with ∼22 d HRT is proposed for treatment of the Shafdan secondary effluent to overcome limitations of the existing system and to reduce the SAT's physical footprint. Besides efficient removal of particulate matter to minimize clogging, coagulation/flocculation and filtration (5-6 m h(-1)) operated with the addition of hydrogen peroxide as an oxygen source efficiently removed dissolved organic carbon (DOC, to 17-22%), ammonium and nitrite. This resulted in reduced effluent oxygen demand during infiltration and oxidant (ozone) demand during ozonation by 23 mg L(-1) and 1.5 mg L(-1), respectively. Ozonation (1.0-1.2 mg O3 mg DOC(-1)) efficiently reduced concentrations of persistent TrOCs and supplied sufficient dissolved oxygen (>30 mg L(-1)) for fully oxic operation of the short SAT with negligible Mn(2+) mobilization (<50 μg L(-1)). Overall, the examined hybrid process provided DOC reduction of 88% to a value of 1.2 mg L(-1), similar to conventional SAT, while improving the removal of TrOCs and efficiently preventing manganese dissolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Enhanced WWTP effluent organic matter removal in hybrid ozonation-coagulation (HOC) process catalyzed by Al-based coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Jin, Pengkang, E-mail: pkjin@hotmail.com [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Hou, Rui [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China); Yang, Lei [Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800 (Australia); Wang, Xiaochang C., E-mail: xcwang@xauat.edu.cn [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi Province, 710055 (China)

    2017-04-05

    Highlights: • A novel HOC process was firstly put forward to apply in wastewater reclamation. • Interactions between ozone and Al-based coagulants was found in the HOC process. • Ozonation can be catalyzed and enhanced by Al-based coagulants in the HOC process. • HOC process showed better organics removal than pre-ozonation-coagulation process. - Abstract: A novel hybrid ozonation-coagulation (HOC) process was developed for application in wastewater reclamation. In this process, ozonation and coagulation occurred simultaneously within a single unit. Compared with the conventional pre-ozonation-coagulation process, the HOC process exhibited much better performance in removing dissolved organic matters. In particular, the maximal organic matters removal efficiency was obtained at the ozone dosage of 1 mgO{sub 3}/mg DOC at each pH value (pH 5, 7 and 9). In order to interpret the mechanism of the HOC process, ozone decomposition was monitored. The results indicated that ozone decomposed much faster in the HOC process. Moreover, by using the reagent of O{sub 3}-resistant hydroxyl radical (·OH) probe compound, para-chlorobenzoic acid (pCBA), and electron paramagnetic resonance (EPR) analysis, it was observed that the HOC process generated higher content of ·OH compared with pre-ozonation process. This indicates that the ·OH oxidation reaction as the key step can be catalyzed and enhanced by Al-based coagulants and their hydrolyzed products in this developed process. Thus, based on the catalytic effects of Al-based coagulants on ozonation, the HOC process provides a promising alternative to the conventional technology for wastewater reclamation in terms of higher efficiency.

  10. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  11. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The treatment of effluents

    International Nuclear Information System (INIS)

    Wormser, G.; Rodier, J.; Robien, E. de; Fernandez, N.

    1964-01-01

    resins are used in the sodium form; the regeneration is carried out using a sodium salt solution which, after decontamination by coprecipitation is used again. With this process it is possible to use a smaller volume of sludge. 2 - The use of a natural evaporator. This process uses atmospheric air which is not saturated with water vapour and which is at a normal temperature, in order to extract water from the aqueous effluents. (authors) [fr

  13. Reduction of Human Norovirus GI, GII, and Surrogates by Peracetic Acid and Monochloramine in Municipal Secondary Wastewater Effluent.

    Science.gov (United States)

    Dunkin, Nathan; Weng, ShihChi; Coulter, Caroline G; Jacangelo, Joseph G; Schwab, Kellogg J

    2017-10-17

    The objective of this study was to characterize human norovirus (hNoV) GI and GII reductions during disinfection by peracetic acid (PAA) and monochloramine in secondary wastewater (WW) and phosphate buffer (PB) as assessed by reverse transcription-qPCR (RT-qPCR). Infectivity and RT-qPCR reductions are also presented for surrogate viruses murine norovirus (MNV) and bacteriophage MS2 under identical experimental conditions to aid in interpretation of hNoV molecular data. In WW, RT-qPCR reductions were less than 0.5 log 10 for all viruses at concentration-time (CT) values up to 450 mg-min/L except for hNoV GI, where 1 log 10 reduction was observed at CT values of less than 50 mg-min/L for monochloramine and 200 mg-min/L for PAA. In PB, hNoV GI and MNV exhibited comparable resistance to PAA and monochloramine with CT values for 2 log 10 RT-qPCR reduction between 300 and 360 mg-min/L. Less than 1 log 10 reduction was observed for MS2 and hNoV GII in PB at CT values for both disinfectants up to 450 mg-min/L. Our results indicate that hNoVs exhibit genogroup dependent resistance and that disinfection practices targeting hNoV GII will result in equivalent or greater reductions for hNoV GI. These data provide valuable comparisons between hNoV and surrogate molecular signals that can begin the process of informing regulators and engineers on WW treatment plant design and operational practices necessary to inactivate hNoVs.

  14. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  15. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    1996-10-01

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  16. Processes to remove acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  17. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  18. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  19. Sulphate removal from industrial effluents through barium sulphate precipitation

    CSIR Research Space (South Africa)

    Swanepoel, H

    2011-11-01

    Full Text Available The pollution of South Africa’s water resources puts a strain on an already stressed natural resource. One of the main pollution sources is industrial effluents such as acid mine drainage (AMD) and other mining effluents. These effluents usually...

  20. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  1. BATCH PROCESS INTEGRATION OF APPLYING TECHNOLOGY OF ACID CARMINIC PINCH

    OpenAIRE

    Erazo E., Raymundo; Cárdenas R., Jorge L.; Woolcott H., Juan C.

    2014-01-01

    This work was developed in order to implement the PINCH technology integration batch process for carminic acid. The method used consisted of the application of the concepts of bottle necks total process (OPB) together with part-time models (TAM) and time fractionated! (TSM). The drying operation is identified as the rate limiting step of the process identifying it as an OPB plant capacity. The extraction yield was 95% w / p carminic acid with an energy savings of approximately 60% of the...

  2. Control of instability in nitric acid evaporators for plutonium processing

    International Nuclear Information System (INIS)

    1998-03-01

    Improved control of the nitric acid process evaporators requires the detection of spontaneously unstable operating conditions. This process reduces the volume of contaminated liquid by evaporating nitric acid and concentrating salt residues. If a instability is identified quickly, prompt response can avert distillate contamination. An algorithm applied to the runtime data was evaluated to detect this situation. A snapshot of data from a histogram in the old process control software was captured during the unstable conditions and modeled

  3. Removal of active species from liquid effluent

    International Nuclear Information System (INIS)

    Blake, N.J.; Ritchie, S.

    1992-01-01

    Experimental and theoretical assessments were made of recirculating liquid membrane technology applied to the removal of active species from liquid effluent. Caesium and strontium were extracted from neutral, aqueous liquor by di-(2-ethylhexyl) phosphate in odourless kerosine and subsequently stripped by nitric acid. Flowrates to the membrane modules influenced the extraction and stripping mass transfer coefficients (MTC) for caesium, but not strontium. The acid strength of the strip solution affected the stripping MTC. When both ions were co-processed, caesium transfer was retarded. Potassium cobalt ferrocyanide and polyantimonic acid were used as adsorbers for caesium and strontium respectively in the strip loop. Caesium was more quickly adsorbed than strontium. A scale-up assessment of a recirculating liquid membrane was performed and compared to SIXEP at Sellafield. (author)

  4. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain

    NARCIS (Netherlands)

    Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; de Voogt, P.

    2012-01-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration,

  5. Membrane processes for the treatment of exhausted effluents from leather industry; Processi a membrana per il trattamento degli effluenti esausti dell'industria conciaria

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, A.; Molinari, R.; Drioli, E. [Arcavata di Rende Univ. della Calabria, Arcavata di Rende, CS (Italy). Istituto di Ricerca su Membrane e Modellistica di Reattori Chimici

    2001-03-01

    This paper considers the potentiality of some membrane processes such as ultrafiltration (UF), nano filtration (NF) and reverse osmosis (RO), in the treatment of exhausted effluents produced by the tanning cycle, based on the experimental results of the Research Group. [Italian] In questo studio vengono analizzate le potenzialita' applicative di alcuni processi a membrana, quali ultrafiltrazione (UF), nanofiltrazione (NF) e osmosi inversa (Ol), nel trattamento degli effluenti esausti del ciclo conciario, sulla base di risultati sperimentali del gruppo di ricerca del Cnr-Irmerc.

  6. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    Science.gov (United States)

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  7. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  8. Utilization of palm oil processing effluents as substrates for microbial protein production by the fungus Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Worgan, J.T.

    1981-01-01

    The filamentous fungus Aspergillus oryzae grew well on the effluents produced during the extraction of palm oil. Biomass yields of approximately 50 g/100 g organic matter were obtained which contained 40% crude protein and had BOD reductions of 85% and COD reductions of 75-80% in batch culture following optimization of growth conditions. Supplementation with an inorganic N source was necessary. The more resistant substrate constituents to biodegradation were water-soluble carbohydrate and nitrogenous material, possibly Maillard reaction products, and polyphenols.

  9. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  10. Computer Aided Synthesis of Innovative Processes: Renewable Adipic Acid Production

    DEFF Research Database (Denmark)

    Rosengarta, Alessandro; Bertran, Maria-Ona; Manenti, Flavio

    2017-01-01

    A promising biotechnological route for the production of adipic acid from renewables has been evaluated, applying a systematic methodology for process network synthesis and optimization. The method allows organizing in a structured database the available knowledge from different sources (prelimin...

  11. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  12. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  13. Hepatic retinoid levels in seven fish species (teleosts) from a tropical coastal lagoon receiving effluents from iron-ore mining and processing.

    Science.gov (United States)

    Pereira, Adriana A; van Hattum, Bert; Brouwer, Abraham

    2012-02-01

    The present study was undertaken to investigate the possible effects of Fe and trace element exposure on hepatic levels of retinoids in seven fish species. Concentrations of retinoids were measured in fish collected from a coastal lagoon in Brazil that receives effluents from an iron-ore mining and processing plant. Fish from nearby coastal lagoons were also included to assess possible differences related to chemical exposure. Results indicated considerable differences in hepatic retinoid composition among the various species investigated. The most striking differences were in retinol and derivative-specific profiles and in didehydro retinol and derivative-specific profiles. The Perciformes species Geophagus brasiliensis, Tilapia rendalli, Mugil liza, and Cichla ocellaris and the Characiforme Hoplias malabaricus were characterized as retinol and derivative-specific, while the Siluriformes species Hoplosternum littorale and Rhamdia quelen were didehydro retinol and derivative-specific fish species. A negative association was observed between Al, Pb, As, and Cd and hepatic didehydro retinoid levels. Fish with higher levels of hepatic Fe, Cu, and Zn showed unexpectedly significant positive correlations with increased hepatic retinol levels. This finding, associated with the positive relationships between retinol and retinyl palmitate with lipid peroxidation, may suggest that vitamin A is mobilized from other tissues to increase hepatic antioxidant levels for protection against oxidative damage. These data show significant but dissimilar associations between trace element exposure and hepatic retinoid levels in fish species exposed to iron-ore mining and processing effluents, without apparent major impacts on fish health and condition. Copyright © 2011 SETAC.

  14. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  15. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  16. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  17. Development of acidic processes for decontaminating LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E F [Rockwell International, Atomics International Division, Canoga Park (United States); Colburn, R P; Lutton, J M; Maffei, H P [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components.

  18. Development of acidic processes for decontaminating LMFBR components

    International Nuclear Information System (INIS)

    Hill, E.F.; Colburn, R.P.; Lutton, J.M.; Maffei, H.P.

    1978-01-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components

  19. Fatty Acid Profiles of In Vitro Digested Processed Milk

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2017-11-01

    Full Text Available Digestion of milkfat releases some long-chain (18-carbon fatty acids (FAs that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on the digestibility of these FAs. This study provides FA profiles for raw and combinations of homogenized and/or heat-treated (high and ultra-high temperature pasteurization milk, before and after in vitro digestion, in order to determine the effects of processing on the digestibility of these healthy fatty acids. Use of a highly sensitive separation column resulted in improved FA profiles that showed that, when milk was subjected to both pasteurization and homogenization, the release of the 18-carbon FAs, oleic acid, linoleic acid (an omega-6 FA, rumenic acid (a conjugated linoleic acid, CLA, and linolenic acid (an omega-3 FA tended to be higher than with either pasteurization or homogenization, or with no treatment. Milk is noted for containing the omega-3 FAs and CLAs, which are associated with positive health benefits. Determining how processing factors may impact the components in milk will aid in understanding the release of healthy FAs when milk and dairy foods are consumed.

  20. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  1. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D M; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  3. Energy recovery from effluents of sugar processing industries in the UASB reactors seeded with granular sludge developed under low and high concentrations of calcium ion

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, D.M.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Dept. of Botany, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The digestion of wastewater from sugar processing industries in a single phase UASB reactor was evaluated by a step wise increase in organic loading rate. This study was conducted to compare the treatability of effluents from sugar processing industries in a single phase UASB reactors inoculated with granular sludge developed under low and high concentrations of calcium ions. At OLR of 11.34 g COD/l/day and HRT of 16 hours, UASB reactor R2 attained a COD removal efficiency of 90% with a maximum methane production rate of 3 l/l/day. From the results, the digestion of the wastewater from sugar industries in the UASB reactor inoculated with granular sludge developed under high calcium ion concentration seem feasible with regard to COD removal efficiency and methane production rate. (au) 24 refs.

  4. Simulation of adsorption process of benzene present in effluent of the petrochemical industry; Simulacao do processo de adsorcao do benzeno presente em efluentes da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Adriana D. da; Mello, Josiane M.M. de; Souza, Antonio Augusto Ulson de; Souza, Selene M.A. Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Adriano da [Universidade Comunitaria Regional de Chapeco (UNOCHAPECO), SC (Brazil)

    2008-07-01

    The adsorption processes have shown quite efficient in the removal of pollutant in liquid effluents, especially hydrocarbons of difficult removal, such as benzene. This work presents a phenomenological model that describes the process of benzene removal through the adsorption in a fixed bed column, being used coal activated as adsorbent. The model considers the internal and external resistances of mass transfer to the adsorbent particle. The method of Finite Volumes is used in the discretization of the equations. The numerical results obtained through the simulation presented good correlation when compared with experimental data found in the literature, demonstrating that the developed computational code, together with the mathematical modeling, represents an important tool for the project of adsorption columns. (author)

  5. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing

    1994-01-01

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  6. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  7. A process for uranium recovery in phosphoric acid

    International Nuclear Information System (INIS)

    Duarte Neto, J.

    1984-01-01

    Results are presented about studies carried out envisaging the development of a process for uranium recovery from phosphoric acid, produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). This process uses a mixture of DEPA-TOPO as extractant and the extraction cycle involves the following stages: acid pre-treatment; adjustment of the oxidation potential so to ensure that all uranium is hexavalent; extraction of uranium from the acid; screening of the solvent to remove undesirable impurities; uranium re-extraction and precipitation; solvent recovery. A micro-pilot plant for continuous processing was built up. Data collected showed that uranium can be recovered with an yield greater than 99%, thus proving the feasibility of the process and encouraging the construction of a bigger scale plant. (Author) [pt

  8. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    Science.gov (United States)

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  9. Uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate. Progress report

    International Nuclear Information System (INIS)

    Arnold, W.D.; McKamey, D.R.; Baes, C.F.

    1980-01-01

    Studies were continued of a process for recovering uranium from wet-process phosphoric acid with octylphenyl acid phosphate (OPAP), a mixture of mono- and dioctylphenyl phosphoric acids. The mixture contained at least nine impurities, the principal one being octyl phenol, and also material that readily hydrolyzed to octyl phenol and orthophosphoric acid. The combination of mono- and dioctylphenyl phosphoric acids was the principal uranium extractant, but some of the impurities also extracted uranium. Hydrolysis of the extractant had little effect on uranium extraction, as did the presence of moderate concentrations of octyl phenol and trioctylphenyl phosphate. Diluent choice among refined kerosenes, naphthenic mixtures, and paraffinic hydrocarbons also had little effect on uranium extraction, but extraction was much lower when an aromatic diluent was used. Purified OPAP fractions were sparingly soluble in aliphatic hydrocarbon diluents. The solubility was increased by the presence of impurities such as octyl phenol, and by the addition of water or an acidic solution to the extractant-diluent mixture. In continuous stability tests, extractant loss by distribution to the aqueous phase was much less to wet-process phosphoric acid than to reagent grade acid. Uranium recovery from wet-process acid decreased steadily because of the combined effects of extractant poisoning and precipitation of the extractant as a complex with ferric iron. Unaccountable losses of organic phase volume occurred in the continuous tests. While attempts to recover the lost organic phase were unsuccessful, the test results indicate it was not lost by entrainment or dissolution in the phosphoric acid solutions. 21 figures, 8 tables

  10. Downstream process development in biotechnological itaconic acid manufacturing.

    Science.gov (United States)

    Magalhães, Antonio Irineudo; de Carvalho, Júlio Cesar; Medina, Jesus David Coral; Soccol, Carlos Ricardo

    2017-01-01

    Itaconic acid is a promising chemical that has a wide range of applications and can be obtained in large scale using fermentation processes. One of the most important uses of this biomonomer is the environmentally sustainable production of biopolymers. Separation of itaconic acid from the fermented broth has a considerable impact in the total production cost. Therefore, optimization and high efficiency downstream processes are technological challenges to make biorefineries sustainable and economically viable. This review describes the current state of the art in recovery and purification for itaconic acid production via bioprocesses. Previous studies on the separation of itaconic acid relying on operations such as crystallization, precipitation, extraction, electrodialysis, diafiltration, pertraction, and adsorption. Although crystallization is a typical method of itaconic acid separation from fermented broth, other methods such as membrane separation and reactive extraction are promising as a recovery steps coupled to the fermentation, potentially enhancing the overall process yield. Another approach is adsorption in fixed bed columns, which efficiently separates itaconic acid. Despite recent advances in separation and recovery methods, there is still space for improvement in IA recovery and purification.

  11. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  12. Removal of Acid Red 14 from Contaminated Water Using UV/S2O82- Advanced Oxidation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Rasoulifard

    2012-10-01

    Full Text Available The present study investigates the degradation of Acid Red 14 (AR14, commonly used as a textile dye in aqueous medium through the oxidation process by UV /S2O82- under a set of variables concentration of S2O82-, Ag+, AR14 and temperature. Commonly Ag+, heat and UV light can excite S2O82− to sulfate radical form (SO4−•, a stronger oxidant (E0 = 2.60 V than S2O82−, to enhance significantly the oxidation of contaminants. Also the changes in the absorption spectra of AR14 solutions during the photoxidation process showed that decrease of absorption peak of the dye at λmax = 514 nm indicates a rapid degradation of the azo dye. The results of this study suggest that the oxidative treatment of AR14 by peroxydisulfate with UV is a viable option for removal of the textile dyes from effluents.

  13. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  14. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  15. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  16. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  17. Pretreatment of phosphoric acid for uranium recovery by the wet phosphoric acid process

    International Nuclear Information System (INIS)

    Chern, S.L.P.; Chen, Y.C.L.; Chang, S.S.H.; Kuo, T.S.; Ting, G.C.M.

    1980-01-01

    The proposal deals with reprocessing of phosphoric acid arising from uranium separation according to the wet phosphoric acid process and being intended for recycling. In detail, the sludge will be removed by means of an inclined separating device containing corrugated plates, then the organic impurities are washed out with kerosene in suitable facilities, and the crude phase remaining in the settling tank will be separated from the kerosene in a separating centrifuge. The method has only got low cost of installation. (UWI) [de

  18. Mobil pilot unit of the advanced oxidation process for waste water treatment and reuse of the hydrics effluents; Unidade piloto movel de processo oxidativo avancado aplicado a tratamento e reuso de efluentes hidricos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Lucia Maria Limoeiro; Pereira Junior, Oswaldo de Aquino; Henriques, Sheyla de Oliveira Carvalho; Jacinto Junior, Agenor [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The chemical oxidation processes which generate free hydroxyl radicals are called Advanced Oxidation Process (AOP). These processes have been studied, in the last decades, as a new alternative for pollutants degradation. In the (AOP)'s there are in situ formation of hydroxyl radicals (OH{center_dot}), which are highly oxidant. Its high oxidation strength becomes it indicated in the treatment of effluent with highly refractory contaminants. It can be used as a partial treatment (taking the effluent to more degradable compounds), as a final treatment (taking the effluent to complete mineralization) or as a complementary treatment to other processes, allowing, for example, its reuse. The applicability of this technology in oily water effluents in all segments of the oil industry, has taken to the development, in the LARA (Laboratory of Treatment and Reuse of Waters - CENPES), of the Advanced Oxidation Process Mobile Pilot Unit (AOP's- MU) with capacity up to 1 m3/h. The (AOP's- MU) are able to produce hydroxyl radical from Fenton's reaction, titanium dioxide heterogeneous photo catalysis and hydrogen peroxide, photo-radiated or not. It is equipped with ultraviolet reactors of different wave lengths and power. (author)

  19. Effect of iron and magnesium addition for ethanol production from the conversion of palm oil mill effluent by anaerobic processes

    Science.gov (United States)

    Handajani, M.; Gumilar, A.; Syafila, M.

    2018-01-01

    Nowadays, crisis of the energy is the main problem in the world. Currently, most the energy resource derived from the fossil material that cannot be refurbished. Ethanol is an alternative fuel that content as a fossil fuels. Wastewater with the high concentration of the organic can be used for the ethanol production to replace foodstuff as a raw material. In this study, palm oil mill effluent (POME) with the concentration of COD is 24,500 mg/L has been used as a substrate. The purpose of this study was to determine the effect of the metal addition in the substrate metabolic pathways. Circulating batch reactor (CBR) is used with the flushing N2 1L/min for 24 hours and continued operates for 72 hours by internal biogas. The additional variation concentration of Fe(II) ion are 0.5; 1.0 and 2.5 mg/L, and Mg(II) are 0.5 and 1.5 mg/L were added by combination. The results showed that the combination of Fe (II) 2.5 mg/L and Mg(II) 1.5 mg/L produced the highest ethanol concentration is 715.8 mg/L and degree of acidification (DA) 0.284-0.357. Another combination of Fe(II) and Mg(II) provide results for the ethanol production 463.7-689.7 mg/L with the rate of ethanol production is 1.09-26.5 mg/L/hour.

  20. Fatty acid profiles of in vitro digested processed milk

    Science.gov (United States)

    Digestion of milkfat releases some of the long-chain (18-carbon) fatty acids (FA) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on ...

  1. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  2. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  3. Implementation of ozonation process in degradation of the phenols present in petrochemistry effluents; Aplicacao do processo de ozonizacao na degradacao de fenois presentes em efluentes petroquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fernanda Batista de; Souza, Antonio Augusto Ulson de; Souza, Selene Maria Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2008-07-01

    The water contamination by the petrochemical pollutants with high toxicity, such as phenols, is a subject of interest of several researchers. The ozone is an alternative for the effluents treatment, being effective in environmental decontamination, reducing the COD and degrading the phenols. The ozone stability depends on the water pH, the type and content of organic matter. This study aimed to investigate in the phenol ozonation, evaluating the phenol and COD removal at different pHs. Ozone as injected in 5 L of phenol solution of 50 mg L-1 at pH = 2, 7 and 10, from 1 to 25 minutes, and then was measured the quantity of COD and phenol. It was found that in acid pH the ozone has increased the stability, because 82.19% of the ozone that enters in the column remains in solution. The phenol degradation was faster in alkaline solution (pH=10), where in 15 minutes of treatment, 99.7% of phenol was consumed. The COD removal increased from 7.3% in 6 minutes to 87.8% in 30 minutes, but the COD removal increases more slowly than that of phenol which was 53, 8% in 6 min, increasing to 99.2% at 25 min for pH=7. (author)

  4. The treatment of low level effluents by flocculation and settling at the Chooz nuclear power plant

    International Nuclear Information System (INIS)

    Petteau, J.L.; Roofthooft, R.

    1989-01-01

    At the Chooz plant, radioactive effluents were formerly treated by evaporation, but because throughput was low, another method was studied. After laboratory tests, a 500 L/h flocculation and settling pilot plant was constructed, followed later by a 5 m 3 /h installation. The main isotopes eliminated are caesium-134 and caesium-137. Flocculation with copper ferrocyanide reduces the total activity to less than 500 Bq/L. The installation described in the paper was commissioned in 1984 and has been in industrial operation since 1985, processing all types of effluent. The evaporator can be set aside for boric acid recovery. (author). 3 figs, 1 tab

  5. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  6. Intensification of zinc dissolution process in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Stanojević D.

    2005-01-01

    Full Text Available Many high purity salts are produced by dissolving pure metal in non-oxidizing mineral acids. If hydrogen overpotential on the given metal is high, then the rate of overall process is defined by reaction of hydrogen ion reduction. This study investigated the possibility of accelerated dissolving of metal zinc in sulphuric acid by introducing copper cathode on which evolving hydrogen is much easier than on zinc. It was found out that the acceleration of zinc dissolving is possible and, at constant surface of copper cathode depends on the quality of electrical contact between copper electrode and zinc.

  7. Major hydrogeochemical processes in an Acid Mine Drainage affected estuary

    International Nuclear Information System (INIS)

    Asta, Maria P.; Calleja, Maria Ll.; Pérez-López, Rafael; Auqué, Luis F.

    2015-01-01

    Highlights: • Mixing of acid riverine water with alkaline seawater was studied in an estuary. • Combination of data and geochemical tools allowed modeling the water mixing. • The main geochemical processes were identified and for the first time quantified. • Water chemistry is the result of mixing, dissolution-precipitation and sorption. • Main reactions: gypsum and calcite dissolution and Al and Fe solids precipitation. - Abstract: This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion–ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH) 3 ); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn)

  8. System and process for capture of acid gasses at elevated pressure from gaseous process streams

    Science.gov (United States)

    Heldebrant, David J.; Koech, Phillip K.; Linehan, John C.; Rainbolt, James E.; Bearden, Mark D.; Zheng, Feng

    2016-09-06

    A system, method, and material that enables the pressure-activated reversible chemical capture of acid gasses such as CO.sub.2 from gas volumes such as streams, flows or any other volume. Once the acid gas is chemically captured, the resulting product typically a zwitterionic salt, can be subjected to a reduced pressure whereupon the resulting product will release the captures acid gas and the capture material will be regenerated. The invention includes this process as well as the materials and systems for carrying out and enabling this process.

  9. Fully Automated Concentration Control of the Acidic Texturisation Process

    OpenAIRE

    Dannenberg, T.; Zimmer, M.; Rentsch, J.

    2012-01-01

    To enable a concentration control in the acidic texturing process we have closed the feedback loop from analytical data to the dosing mechanism of the used process tool. In order to analyze the process bath we used near-infrared spectroscopy in an online setup as well as ion chromatography as an inline method in a second approach. Using the developed dosing algorithm allows a concentration optimization of HF and HNO3 in dependence of the Si concentrations. This allows a further optimization o...

  10. Alternative processes for uranium recovery from phosphoric acid

    International Nuclear Information System (INIS)

    Duarte Neto, J.; Santos Benedetto, J. dos; Aquino, J.A. de

    1987-01-01

    Two processes of solvent extraction using D 2 EHPATOPO synergistic mixture, in order to recover uranium from phosphoric acid proceeding from physical and chemical treatments of the phosphorus-uraniferous ore of Itataia-CE, Brazil, are studied. The steps of each process were studied in laboratory and pilot scales. The flow charts for both processes with detailed description of each step, the operational conditions, the mass balances, the results obtained and the description of pilot units, are presented. (M.C.K.) [pt

  11. Effect of acid rain on soil microbial processes

    International Nuclear Information System (INIS)

    Myrold, D.D.; Nason, G.E.

    1992-01-01

    Acid rain is real; the pH of precipitation in many areas of the world is below its normal equilibrium value, and concentrations of inorganic N and S are elevated above background. The impact of acid rain on soil microbial processes is less clear. This is largely because of the chemical buffering of the soil ecosystem and the inherent resiliency and redundancy of soil microorganisms. Microorganisms have an amazing capacity to adapt to new situations, which is enhanced by their ability to evolve under selection pressure. Their resilience is a function of both the large number of microorganisms present in a given volume of soil and their high growth rate relative to macroorganisms. This suggests that microorganisms are likely to be able to adapt more quickly to acidification than plants or animals, which may be one reason why symbiotic associations, such as ectomycorrhizae, are more susceptible to acid inputs than their saprophytic counterparts

  12. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    Science.gov (United States)

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new process in treatment of acid impaired waters that were

  13. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    Science.gov (United States)

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new process in treatment of acid impaired waters that were previously not amenable to low cost limestone treatment.

  14. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Processing radioactive effluents with ion-exchanging resins: study of result extrapolation; Traitement des effluents radioactifs par resines echangeuses d'ions: etude de l'extrapolation des resultats

    Energy Technology Data Exchange (ETDEWEB)

    Wormser, G.

    1960-05-03

    As a previous study showed the ion-exchanging resins could be used in Saclay for the treatment of radioactive effluents, the author reports a study which aimed at investigating to which extent thus obtained results could be extrapolated to the case of higher industrial columns. The author reports experiments which aimed at determining extrapolation modes which could be used for columns of organic resin used for radioactive effluent decontamination. He notably studied whether the Hiester and Vermeulen extrapolation law could be applied. Experiments are performed at constant percolation flow rate, at varying flow rate, and at constant flow rate [French] Plusieurs etudes ont ete faites dans le but d'examiner les possibilites d'emploi des resines echangeuses d'ions pour le traitement des effluents radioactifs. Dans un rapport preliminaire, nous avons montre dans quelles limites un tel procede pouvait etre utilise au Centre d'Etudes Nucleaires de Saclay. Les essais ont ete effectues sur des petites colonnes de resine au laboratoire; il est apparu ensuite necessaire de prevoir dans quelle mesure les resultats ainsi obtenus peuvent etre extrapoles a des colonnes industrielles, de plus grande hauteur. Les experiences dont les resultats sont exposes dans ce rapport, ont pour but de determiner les modes d'extrapolation qui pourraient etre employes pour des colonnes de resine organique utilisees pour la decontamination d'effluents radioactifs. Nous avons en particulier recherche si la loi d'extrapolation de Hiester et Vermeulen qui donne de bons resultats dans le cas de fixation d'ions radioactifs en presence d'un ion macrocomposant sur des terres, pouvait etre appliquee. Les experiences, en nombre limite, ont montre que la loi d'extrapolation de Hiester et Vermeulen pouvait s'appliquer dans le cas de l'effluent considere quand les debits de percolation sont tres faibles; quand ils sont plus forts, les volumes de liquide percoles, a fixation egale, sont proportionnels aux

  16. Treatment of effluents from the nuclear fuel cycle reconversion stage

    International Nuclear Information System (INIS)

    Ladeira, Ana C.Q.; Morais, Carlos A.; Goncalves, Joao S.; Souza, Pedro de

    2007-01-01

    The conversion of uranium hexafluoride (UF 6 ) into uranium dioxide (UO 2 ) takes place in Resende (RJ) at the Nuclear Fuel Factory - FCN. The process generates liquid effluents with significant concentrations of uranium which might be treated before being discharged into the environment. This work is aimed at the recovery of uranium from two distinct liquid effluents; one with high carbonate content and the other with elevated fluoride concentration. It is also presented a study about carbonate removal from an effluent that consists of water - methanol solution generated during the filtration step of the ammonium uranyl tricarbonate (AUT). The results showed that (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U since carbonate has been removed as CO 2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is by precipitation as (NH 4 ) 2 UO 4 F 2 - ammonium fluorouranate peroxide (APOFU), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride or it can be removed through the addition of sulfuric acid. The product formed by adding sulfuric acid is ammonium sulfate and might be used as fertilizer. (author)

  17. Management of regenerant effluent waste at reprocessing plant, Tarapur- a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Munish; Bajpai, D D; Mudaiya, Avinash; Varadarajan, N [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    Power Reactor Fuel Reprocessing (PREFRE) Plant, Tarapur has been processing zircaloy clad spent fuel arising from PHWR namely RAPS and MAPS. The plant has been provided with a water pool to receive and store the irradiated fuel assemblies from the reactor site for an interim period before they are taken up for chop-leach and further reprocessing by PUREX process. This paper highlights the important and innovative modifications like introduction of a cation exchanger for water polishing and using nitric acid as regenerant. The regenerant effluent (nitric acid) is recycled to the main process cells where it is mixed and further treated along with process waste stream. This is a step towards minimising effluent generation. The paper describes the advantages of modified system like operational simplification, manpower, man-rem saving and minimising release of activity to environment. 3 figs., 4 tabs.

  18. Microbial communities, processes and functions in acid mine drainage ecosystems.

    Science.gov (United States)

    Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng

    2016-04-01

    Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integrative device and process of oxidization, degassing, acidity adjustment of 1BP from APOR process

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Zheng, Weifang, E-mail: wfazh@ciae.ac.cn; Yan, Taihong; He, Hui; Li, Gaoliang; Chang, Shangwen; Li, Chuanbo; Yuan, Zhongwei

    2016-02-15

    Graphical abstract: Previous (left) and present (right) device of oxidation, degassing, acidity adjustment of 1BP. - Highlights: • We designed an integrative device and process. • The utilization efficiency of N{sub 2}O{sub 4} is increased significantly. • Our work results in considerable simplification of the device. • Process parameters are determined by experiments. - Abstract: Device and process of oxidization, degassing, acidity adjustment of 1BP (The Pu production feed from U/Pu separation section) from APOR process (Advanced Purex Process based on Organic Reductants) were improved through rational design and experiments. The device was simplified and the process parameters, such as feed position and flow ratio, were determined by experiments. Based on this new device and process, the reductants N,N-dimethylhydroxylamine (DMHAN) and methylhydrazine (MMH) in 1BP solution could be oxidized with much less N{sub 2}O{sub 4} consumption.

  20. 40 CFR Appendix A to Part 419 - Processes Included in the Determination of BAT Effluent Limitations for Total Chromium...

    Science.gov (United States)

    2010-07-01

    ..., and Phenolic Compounds (4AAP) Crude Processes 1. Atmospheric Crude Distillation 2. Crude Desalting 3. Vacuum Crude Distillation Cracking and Coking Processes 4. Visbreaking 5. Thermal Cracking 6. Fluid... Oil Manufacture 23. Propane Dewaxing, Propane Deasphalting, Propane Fractioning, Propane Deresining 24...

  1. The conceptual flowsheet of effluent treatment during total gelation of uranium process for preparing ceramic UO2 particles of high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Quan Ying; Chen Xiaotong; Wang Yang; Liu Bing; Tang Yaping; Tang Chunhe

    2014-01-01

    Today, more and more people pay attention to the environmental protection and ecological environment. Along with the development of nuclear industry, many radioactive effluents may be discharged into environment, which can lead to the pollutions of water, atmosphere and soil. So radioactive effluents including low-activity and medium-level wastes solution treatments have been becoming one of significant subjects. High temperature gas-cooled reactor (HTR) is one of advanced nuclear reactors owing to its reliability, security and broad application in which the fabrication of spherical fuel element is a key technology. During the production of spherical fuel elements, the radioactive effluent treatment is necessary. Referring to the current treatment technologies and methods, the conceptual flowsheet of low-level radioactive effluent treatment during preparing spherical fuel elements was summarized which met the 'Zero Emission' demand. (authors)

  2. Anti-reflection coatings applied by acid leaching process

    Science.gov (United States)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  3. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  4. Clean technologies: methods for minimizing the releases and choice of the effluents valorization processes. Application to metal workshops; Technologies propres: methodes de minimisation des rejets et de choix des procedes de valorisation des effluents. Application aux ateliers de traitement de surface

    Energy Technology Data Exchange (ETDEWEB)

    Laforest, V.

    1999-12-10

    Currently, the essential part of the money invested by the industrialist is for the water treatment. In France, most of the 20 billions francs per year devoted to the water treatment is used for the industrial activity. The global management of effluents favour the integration of clean technologies (optimization, change and modification of the production process) in order to reduce the pollution problem at its source. Our study aims at the introduction of clean technologies in the metal workshops (consumer and generator of water and chemicals) by the development of two data management methods, which lead to two decision support systems. The aim of the first one is to minimize both the water consumption and the wastewater disposal by optimizing the production process (optimum yield and efficiency of the rinsing baths). The second one concerns the choice of valorization techniques considering the valorization objectives, the effluents characteristics and the parameters limiting the use of the techniques. Our approach fits into a global management method for the metal finishing industry wastewater. Its aim is to limit the quantity of wastewater generated, to valorize effluents and by this way to develop the clean technologies.

  5. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ge-Fu; Wu, Peng; Wei, Qun-Shan; Lin, Jian-yi; Liu, Hai-Ning [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Gao, Yan-Li [China University of Geosciences, Wuhan 430074 (China)

    2010-08-15

    Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H{sub 2}) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m{sup 3} d, hydraulic retention time (HRT) of 6 h and temperature of (35 {+-} 1) C, when the pH value, alkalinity and oxidation-reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO{sub 3}/L, and -220 to -250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H{sub 2} volume content was estimated to be 48-53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H{sub 2} production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H{sub 2} production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H{sub 2} production from high-strength chemical wastewater. (author)

  6. Radiotracer investigation of phosphoric acid and phosphatic fertilizers production process

    International Nuclear Information System (INIS)

    Ben Abdelouahed, H.; Reguigui, N.

    2011-01-01

    In the phosphoric acid production process, the time a particle spends inside the chemical reactor (residence time) is of paramount importance to process engineers. Residence time distribution (RTD) gives information on the efficiency of the chemical reactor, on the efficiency of the process, and also the availabilities of the reactive volume for the reaction (active volume vs. dead volume). Traditionally, chemical engineers used chemical tracer to determine the RTD. However, first disadvantage is that the chemical tracer could not allow an online diagnosis: the samples containing chemical tracer have to go to a lab for analysis, second disadvantage is that the chemical tracer is less sensitive than radioactive ones because of its adsorption onto strata or its retention in rocks. Consequently, chemical tracer results are not always precise and cannot convincingly explain the multiple flow-path model. Radioactive tracers are the only tracers capable of measuring the active RTD with high degree of precision and give information on the internal recirculation rate. In this work, we will describe the application of radiotracer method for RTD measurement in the phosphoric acid production process and give results and discussion of each case encountered. (author)

  7. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    Science.gov (United States)

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of growth, biochemical and bioaccumulation parameters in Pelophylax perezi tadpoles, following an in-situ acute exposure to three different effluent ponds from a uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Sérgio M., E-mail: s.reis.marques@gmail.com [Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Chaves, Sandra [Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Campus da FCUL Campo Grande, Lisboa (Portugal); Gonçalves, Fernando [Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal)

    2013-02-15

    Mining activities invariably produce metal contaminated effluents. Depending on factors such as pH and metal concentration the toxicity of the effluent may vary. To assess the effects of three characteristically different effluent ponds from a deactivated uranium mine, with toxicologically relevant data, an in situ exposure with Pelophylax perezi tadpoles, was conducted. Tadpoles were exposed to the three effluent ponds, ranked by increasing order of metals concentrations (REF, M1, M2). Survival, growth, metal accumulation, antioxidant enzymes (catalase, glutathione peroxidase and glutathione reductase) and lipid peroxidation (LPO) were determined in tadpoles. As well, physical and chemical variables of the effluents were measured. Death percentage in the effluents was 3.17 (REF), 9.84 (M1) and 42.86% (M2) and was not coincident with metal accumulation which was highest in tadpoles exposed to M1, while metal contents in M2 tadpoles were quite similar to those recorded in REF tadpoles. However, high mortality in M2 was attributed to the extremely low pH (≈ 3.77). From the three effluents M2 tadpoles had the lowest growth and the antioxidant enzymatic activity was only affected in the case glutathione peroxidase (GPx) with significantly higher activity in M1, being in accordance with the highest accumulation of metals. LPO, usually associated with metal accumulation, had the following pattern M1 > REF > M2. Overall, effluent toxicity in tadpoles exposed to M2 effluent seems to be primarily an effect of pH while in M1 toxicity is mainly owed to high metal concentrations. The effluent acidity seems to reduce metal accumulation probably due to damage in the integument, affecting ion uptake. The results obtained bring a better understanding of the toxicological processes that local P. perezi population is subjected to, mainly in the early life stages. Furthermore this study highlights the influence of pH in the toxicity of metal rich effluents. - Highlights:

  9. Evaluation of growth, biochemical and bioaccumulation parameters in Pelophylax perezi tadpoles, following an in-situ acute exposure to three different effluent ponds from a uranium mine

    International Nuclear Information System (INIS)

    Marques, Sérgio M.; Chaves, Sandra; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Mining activities invariably produce metal contaminated effluents. Depending on factors such as pH and metal concentration the toxicity of the effluent may vary. To assess the effects of three characteristically different effluent ponds from a deactivated uranium mine, with toxicologically relevant data, an in situ exposure with Pelophylax perezi tadpoles, was conducted. Tadpoles were exposed to the three effluent ponds, ranked by increasing order of metals concentrations (REF, M1, M2). Survival, growth, metal accumulation, antioxidant enzymes (catalase, glutathione peroxidase and glutathione reductase) and lipid peroxidation (LPO) were determined in tadpoles. As well, physical and chemical variables of the effluents were measured. Death percentage in the effluents was 3.17 (REF), 9.84 (M1) and 42.86% (M2) and was not coincident with metal accumulation which was highest in tadpoles exposed to M1, while metal contents in M2 tadpoles were quite similar to those recorded in REF tadpoles. However, high mortality in M2 was attributed to the extremely low pH (≈ 3.77). From the three effluents M2 tadpoles had the lowest growth and the antioxidant enzymatic activity was only affected in the case glutathione peroxidase (GPx) with significantly higher activity in M1, being in accordance with the highest accumulation of metals. LPO, usually associated with metal accumulation, had the following pattern M1 > REF > M2. Overall, effluent toxicity in tadpoles exposed to M2 effluent seems to be primarily an effect of pH while in M1 toxicity is mainly owed to high metal concentrations. The effluent acidity seems to reduce metal accumulation probably due to damage in the integument, affecting ion uptake. The results obtained bring a better understanding of the toxicological processes that local P. perezi population is subjected to, mainly in the early life stages. Furthermore this study highlights the influence of pH in the toxicity of metal rich effluents. - Highlights:

  10. Fission product determination in irradiated fuel processing waste (electrophoresis); Dosage des produits de fission dans les effluents de traitement des combustibles irradies (electrophorese)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Tret, J [Commissariat a l' Energie Atomique, Centre de Marcoule, 30 - Bagnols-sur-Ceze (France). Centre de Production de Plutonium de Marcoule. Services d' Extraction du Plutonium

    1966-07-01

    This dosage method concerns fission products present in the waste produced from the processing of cooled irradiated fuels. - Sr, Cs, Ce, Y, Ru by quantitative analysis; - Zr, Nb by qualitative analysis. It includes electrophoresis on paper strips one meter long which is then analysed between two window-less Geiger counters. For an activity of 10{sup -2} {mu}Ci of any cation in a 10 {mu}l spot, the standard error {sigma} if 3 to 4 per cent. complete analysis lasts about 5 hours. (authors) [French] Cette methode de dosage concerne les produits de fission presents dans les effluents de traitement des combustibles irradies refroidis: - Sr, Cs, Ce, Y, Ru en analyse quantitative; - Zr, Nb en analyse qualitative. Elle comporte une electrophorese sur bande de papier de un metre de longueur suivie d'un depouillement entre deux compteurs Geiger sans fenetre. Pour une activite de 10{sup -2} {mu}Ci d'un cation quelconque dans une tache de 10 {mu}l l'erreur standard {sigma} est de 3 a 4 pour cent. L'analyse complete demande environ 5 heures. (auteurs)

  11. Optimization of lime treatment processes

    International Nuclear Information System (INIS)

    Zinck, J. M.; Aube, B. C.

    2000-01-01

    Lime neutralization technology used in the treatment of acid mine drainage and other acidic effluents is discussed. Theoretical studies and laboratory experiments designed to optimize the technology of lime neutralization processes and to improve the cost efficiency of the treatment process are described. Effluent quality, slaking temperature, aeration, solid-liquid separation, sludge production and geochemical stability have been studied experimentally and on site. Results show that through minor modification of the treatment process, costs, sludge volume generated, and metal released to the environment can be significantly reduced. 17 refs., 4 figs

  12. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    Science.gov (United States)

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  13. 40 CFR 415.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.112 Effluent limitations guidelines... available (BPT): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  14. 40 CFR 415.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... CATEGORY Potassium Metal Production Subcategory § 415.113 Effluent limitations guidelines representing the...): There shall be no discharge of process wastewater pollutants to navigable waters. ...

  15. Clofibric acid degradation in UV254/H2O2 process: effect of temperature.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2010-04-15

    The degradation of clofibric acid (CA) in UV(254)/H(2)O(2) process under three temperature ranges, i.e. T1 (9.0-11.5 degrees C), T2 (19.0-21.0 degrees C) and T3 (29.0-30.0 degrees C) was investigated. The effects of solution constituents including NO(3)(-) and HCO(3)(-) anions, and humic acid (HA) on CA degradation were evaluated in Milli-Q waters. CA degradation behaviors were simulated with the pseudo-first-order kinetic model and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated. The results showed that higher temperature would favor CA degradation, and CA degradation was taken place mostly by indirect oxidation through the formation of OH radicals in UV(254)/H(2)O(2) process. In addition, the effects of both NO(3)(-) and HCO(3)(-) anions at two selected concentrations (1.0x10(-3) and 0.1 mol L(-1)) and HA (20 mg L(-1)) on CA degradation were investigated. The results showed that HA had negative effect on CA degradation, and this effect was much more apparent under low temperature condition. On the other hand, the inhibitive effect on CA degradation at both lower and higher concentrations of bicarbonate was observed, and this inhibitive effect was much more apparent at higher bicarbonate concentration and lower temperature condition. While, at higher nitrate concentration the inhibitive effect on CA degradation under three temperature ranges was observed, and with the temperature increase this negative effect was apparently weakened. However, at lower nitrate concentration a slightly positive effect on CA degradation was found under T2 and T3 conditions. Moreover, when using a real wastewater treatment plant (WWTP) effluent spiked with CA over 99% of CA removal could be achieved under 30 degrees C within only 15 min compared with 40 and 80 min under 20 and 10 degrees C respectively, suggesting a significant promotion in CA degradation under higher temperature condition. Therefore, it can be concluded that temperature plays an

  16. Dynamics of the anaerobic process: Effects of volatile fatty acids

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected...... and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems....

  17. The optimisation study of tbp synthesis process by phosphoric acid

    International Nuclear Information System (INIS)

    Amedjkouh, A.; Attou, M.; Azzouz, A.; Zaoui, B.

    1995-07-01

    The present work deals with the optimisation study of TBP synthesis process by phosphoric acid. This way of synthesis is more advantageous than POCL3 or P2O5 as phosphatant agents. these latters are toxic and dangerous for the environnement. The optimisation study is based on a series of 16 experiences taking into account the range of variation of the following parameters : temperature, pressure, reagents mole ratio, promoter content. the yield calculation is based on the randomisation of an equation including all parameters. the resolution of this equation gave a 30% TBP molar ratio. this value is in agreement with that of experimental data

  18. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  19. Citric acid application for denitrification process support in biofilm reactor.

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L -1  h -1 and 17.81 mgN L -1  h -1 , respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L -1  h -1 and 24.38 mgN L -1  h -1 ). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCOD re -1 (0.22 ± 0.09 mgTSS mgN re -1 ). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Recent studies of uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate

    International Nuclear Information System (INIS)

    Arnold, W.D.

    1978-01-01

    Commercial OPAP is a complex mixture that contains at least 11 components. Octyl phenol is the principal impurity. Commercial OPAP contains readily-hydrolyzable material. The concentrations of octyl phenol and an unidentified impurity increase in the hydrolyzed product. Uranium extraction power is decreased slightly by hydrolysis of the reagent. Four major problems were encountered in continuous stability tests: (1) Microemulsion or micelle formation--loss of organic phase into phosphoric acid. We do not have a solution to this problem at this time. It could involve alteration of the organic, e.g., adding a modifier, changing the reagent structure, or changing the diluent. (2) Reagent poisoning--reduction of uranium extraction and interference with organic titrations by material extracted from the acid. Additional work is needed to identify the poisoning material or materials. It can then be removed if it originates in the phosphate rock, or avoided if it originates in chemicals added during processing. (3) Crystallization with iron--loss of both major components of the reagent as a complex with ferric iron. We believe this problem can be controlled by controlling the ferric iron concentration in the phosphoric acid. (4) MOPPA distribution loss--a selective loss to the aqueous phase. We believe this can be minimized by controlling the iron concentration of the phosphoric acid. The iron concentration will need to be kept low enough to avoid reagent crystallization and high enough to avoid MOPPA distribution loss. 15 figs

  1. modelling effluent assimila modelling effluent assimilat modelling

    African Journals Online (AJOL)

    eobe

    G EFFLUENT ASSIMILATIVE CAPACITY OF IKPOBA RIVE. BENIN CITY, NIGERIA ... l purposes to communities rse such as ... treat in order for it to meet the aforeme of the communities. It is therefore i ..... Substituting and integrating yields the following equations ..... Purification Potentials of Small Tropical Urban. Stream: A ...

  2. A new planetary structure fabrication process using phosphoric acid

    Science.gov (United States)

    Buchner, Christoph; Pawelke, Roland H.; Schlauf, Thomas; Reissner, Alexander; Makaya, Advenit

    2018-02-01

    Minimising the launch mass is an important aspect of exploration mission planning. In-situ resource utilisation (ISRU) can improve this by reducing the amount of terrestrial materials needed for planetary exploration activities. We report on a recently concluded investigation into the requirements and available technologies for creating hardware on extra-terrestrial bodies, using the limited resources available on site. A trade-off of ISRU technologies for hardware manufacturing was conducted. A new additive manufacturing process suitable for fabricating structures on the Moon or Mars was developed. The process uses planetary regolith as the base material and concentrated phosphoric acid as the liquid binder. Mixing the reagents creates a sticky construction paste that slowly solidifies into a hard, rock-like material. Prior to solidification, the paste is extruded in layers, creating the desired structures in a 3D printing process. We used Martian regolith simulant JSC-Mars-1A, but the process is not selective towards regolith composition. Samples were exposed to thermal cycles and were mechanically characterised. Reduced-scale demonstrator structures were printed to demonstrate structure fabrication using the developed process.

  3. Hard and soft acids and bases: structure and process.

    Science.gov (United States)

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  4. 40 CFR 458.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... this paragraph, which may be discharged from the carbon black lamp process by a point source subject to... Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of effluent... achievable: There shall be no discharge of process waste water pollutants to navigable waters. ...

  5. INEEL Liquid Effluent Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  6. Fate of aliphatic compounds in nitric acid processing solutions

    International Nuclear Information System (INIS)

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  7. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Passarella Gerola, Adriana; Nozaki, Jorge; Hioka, Noboru

    2008-01-01

    Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30 min of EC/Fe 0 , 153 A m -2 and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO 2 was employed and the favourable operational conditions found were 0.25 g L -1 of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50 mmol L -1 ) highly increased the photo-process performance. By employing the UV/TiO 2 /H 2 O 2 system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10 min by the addition of 5.0 g L -1 of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6 h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina

  8. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Passarella Gerola, Adriana; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil)], E-mail: nhioka@uem.br

    2008-12-15

    Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30 min of EC/Fe{sup 0}, 153 A m{sup -2} and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO{sub 2} was employed and the favourable operational conditions found were 0.25 g L{sup -1} of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50 mmol L{sup -1}) highly increased the photo-process performance. By employing the UV/TiO{sub 2}/H{sub 2}O{sub 2} system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10 min by the addition of 5.0 g L{sup -1} of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6 h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina.

  9. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  10. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  11. Nuclear reactor effluent monitoring

    International Nuclear Information System (INIS)

    Minns, J.L.; Essig, T.H.

    1993-01-01

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC's program results

  12. Denitrification of acid wastes from uranium purification processes

    International Nuclear Information System (INIS)

    Clark, F.E.; Francis, C.W.; Francke, H.C.; Strohecker, J.W.

    1975-11-01

    Laboratory and pilot-plant investigations have shown the technical feasibility of removing nitrates from neutralized acid wastes from uranium purification processes by biological denitrification, a dissimilatory process in which the nitrate ion is reduced to nitrogen gas by specific bacteria. The process requires anaerobic conditions and an organic carbon source, as well as other life-sustaining constituents. These denitrification studies produced process design information on a columnar denitrification plant and on continuous-flow, stirred-bed reactors. Denitrification, using packed columns, was found to be desirable for soluble salts, such as those of sodium and ammonium; denitrification, using stirred reactors, was found to be desirable for mixtures containing insoluble salts, such as those of calcium and aluminum. Packed columns were found to have denitrification rates ranging up to 122 grams of nitrate per day per cubic decimeter of column volume; stirred-bed reactors have been shown to have reaction rates near 10 grams of nitrate per day per cubic decimeter of reactor volume. The continuous-flow, stirred-bed reactors were selected for scaleup studies because of the solids-removal problems associated with packed columns when operating on feeds containing high concentrations of insoluble salts or ions which form insoluble salts with the products of the denitrification reaction

  13. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1994-01-01

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  14. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280... HUMAN CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.280 Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from...

  15. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  16. Treatment of liquid effluent from uranium mines and mills. Report of a co-ordinated research project 1996-2000

    International Nuclear Information System (INIS)

    2004-10-01

    Treatment and control of liquid effluents produced during uranium mining and milling operations is an integral part of environmental project management. Research has continued to add to the large body of science that has been built up around the treatment of radioactive and non-radioactive effluents to minimize their long-term environmental impact. The objective of the meetings on which this publication is based was to exchange information on active effluent treatment technologies that have application during operations and passive treatment techniques such as constructed wetlands and use of micro-organisms that are applicable during project reclamation and long-term care and maintenance. Papers describe effluent treatment case histories from active uranium mining and processing operations as well as effluent treatment research on both active and passive systems that have potential application under a wide range of operating and post-operational conditions including new information on high-density sludge from effluent neutralization (Australia), aerated manganese hydroxide for removal of radium (China), nanofiltration and macropore resins to treat mine water (Australia and China), in situ microbial treatment and permeable reactive walls for treatment of contaminated groundwater (Germany), construction of wetlands to treat mine water runoff (Australia and Germany), biogenic granules to remove 226 Ra from mill effluent (India), self-remediation of acidic in situ leach aquifers (Kazakhstan) and sorption characteristics of soil for self-remediation of contaminated groundwater (Hungary). These and other topics presented in this publication will be of interest to technical personnel who deal with day-to-day practical aspects of liquid effluent control and treatment at uranium production facilities worldwide

  17. Processes for working-up an aqueous fluosilicic acid solution

    Directory of Open Access Journals (Sweden)

    Alpha O. Toure

    2012-11-01

    Full Text Available Aqueous fluosilicic acid solutions were once considered to be only adverse by-products of phosphoric acid production, which required treatment to prevent ecosystem destruction when discharged into the sea. However, a range of chemicals can be generated by the transformation of this industrial waste product. Through experiments undertaken in the laboratory, we have shown the possibility of caustic soda production. Volumetric analysis showed caustic soda to be present as a 6%– 7%solution with yields of about 70% – 80%by weight. Two processes were investigated for the caustification of sodium fluoride, using different precipitates: sodium chloride and ethanol and are described by modelling caustification curves. The activation energies of precipitation determined by semi-empirical correlations showed that precipitation by ethanol (EA = 933.536 J/mol was more successful than precipitation by sodium chloride (EA = 7452.405 J/mol. Analyses performed on the precipitates highlighted compositions that are essential and useful constituents in the cement industry.

  18. Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus

    Directory of Open Access Journals (Sweden)

    Gabriela Arroyo-Figueroa

    2011-01-01

    Full Text Available Trametes versicolor (Tv fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1 of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3. High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04 for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU compared with the final treatment (47.73 TU in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  19. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    Science.gov (United States)

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-05-05

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  20. Improvement of thermal exchange between feedstock and effluent in a hydrocarbon processing unit under hydrogen atmosphere by partial recycling of the product

    Energy Technology Data Exchange (ETDEWEB)

    Orieux, A.

    1990-01-19

    Heat exchange is improved in light naphta hydroisomerization and catalytic reforming by recirculation of a part of the product in the thermal exchange zone at a temperature higher than the dew point of the effluent under hydrogen atmosphere and preferentially as a temperature lower than the temperature of the recycled product.

  1. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity

    NARCIS (Netherlands)

    Beek, van T.A.; Kuster, B.; Claassen, F.W.; Tienvieri, T.; Bertaud, F.; Lennon, G.; Petit-Concil, M.; Sierra-Alvarez, R.

    2007-01-01

    Lipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential

  2. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process.

    Science.gov (United States)

    Murugan, K; Saravanababu, S; Arunachalam, M

    2007-03-01

    Industrially important tannase producing fungi were isolated from tannery effluent using simple agar plate method. The isolates were screened by submerged fermentation using auto-controlled bioreactor. The colony diameter on the solid surface media shows high correlation with quantitative production of tannase. The isolate Aspergillus niger shows maximum production of both extracellular and intracellular enzyme.

  3. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  4. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  5. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  6. TECHNOLOGICAL PROCESS OF EFFLUENTS DEPHENOLYSATION

    OpenAIRE

    В. Трачевський; О. Никитюк

    2011-01-01

    The one of the important physical factors impacting on the environmental safety of industrial wastewater generated in the production of paints and varnishes is considered. Identification wastewater formation sources, composition, its amount in a particular type of resin is an essential point for developing methods of cleaning industrial wastewater treatment design and industrial plants. Deep cleaning of wastewater from phenol is a major challenge. Studies that mostly focused on the known meth...

  7. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  8. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil

    Directory of Open Access Journals (Sweden)

    VERIDIANA P. CAMPANER

    2014-06-01

    Full Text Available Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil. Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8, and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  9. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    Science.gov (United States)

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  10. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents.

    Science.gov (United States)

    Denslow, Nancy D; Kocerha, Jannet; Sepúlveda, Maria S; Gross, Timothy; Holm, Stewart E

    2004-08-18

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations.

  11. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    Science.gov (United States)

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.

  12. Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

    Science.gov (United States)

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke

    2014-01-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  13. Naturally occurring and process-induced trans fatty acids and ...

    African Journals Online (AJOL)

    CHOKRI

    2013-05-22

    May 22, 2013 ... Key words: Trans-fatty acids, conjugated linoleic acid, butter oil. INTRODUCTION ... important role in determining risk of coronary heart diseases (CHD) than ... performance liquid chromatography (HPLC) grade, supplied by.

  14. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  15. CY-1981 effluent monitoring report

    International Nuclear Information System (INIS)

    Honkus, R.J.

    1982-05-01

    The effluent monitoring programs at ICPP for calendar year 1981 are summarized. During the year, five significant occurrences or unplanned releases occurred. These are briefly described and tabulated. In none of the instances were the applicable Radiation Concentration Guides (RCG's) exceeded. A graphic summary of the total airborne, liquid and solid releases during CY-1981 is presented. Liquid waste activity was higher than anticipated due to various processing factors throughout the year. Solid waste jumped dramatically in December due to shipment of end-prices from the EBR-II fuel which was processed during the Electrolytic campaign

  16. Process for conversion of levulinic acid to ketones

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Vanessa M.; Dagle, Robert A.

    2017-05-30

    A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.

  17. Effect of acid orange 7 on nitrification process

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongjie (ManTech Environmental Tech., Inc., Dayton, OH (United States)); Bishop, P.L. (Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering)

    The effect of Acid Orange 7 (AO7), an azo dye commonly used in textile, pharmaceutical, food, and cosmetic industries, on the nitrification process is studied using completely stirred tank reactors (CSTR) and batch treatment systems. Azo dyes are of concern because many of the dyes or their metabolic intermediates are carcinogenic. AO7 biodegradation is found to be essentially complete when solids retention times (SRT) are maintained above 7.5 days, but systems with lower SRTs are unstable. It is shown that AO7 inhibits all stages of the nitrification process. Nitrite oxidizers are found to be more sensitive to AO7 than ammonium oxidizers. The results of kinetic studies indicate that the inhibition of ammonium oxidation is typified by noncompetitive inhibition; the presence of AO7 decreases the maximum substrate utilization rate and very slightly increases K[sub s], the half-saturation constant. AO7 is found to be less toxic to nitrification than some metal and phenolic compounds, but more toxic than some common organic compounds such as formalin, methanol, or acetone.

  18. Processing gaseous acid mixtures - sulphur recovery by the Claus process. Tratamiento de mezalas gaseosas acidas

    Energy Technology Data Exchange (ETDEWEB)

    Pulgar, A; Orlay, R [Escuela Mineria Oviedo (Spain). Dep. Energia

    1989-04-01

    This is the most common method for processing both natural and manufactured acidic gases. It is also used for 'sweetening' refinery gases. The process cannot be applied directly to gases from a coal gasifier, as it requires an H{sub 2}S concentration of at least 15% by volume. This requirement is explained by the fact that the Claus process is a process of partial combustion and that a low concentration of this combustible gas would, therefore, not give adequate thermal output. This is because of the considerable loss of heat within the diluter gas and because in a coal conversion plant, this gas is CO{sub 2}. For these reasons, the prime objective is to achieve a H{sub 2}S/CO{sub 2} balance of 15% or greater. 6 refs., 3 figs., 3 tabs.

  19. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    Science.gov (United States)

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  20. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  1. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  2. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  3. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  4. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  5. Facility effluent monitoring plan for the B plant

    International Nuclear Information System (INIS)

    Lesser, J.E.

    1994-09-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plant assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated every three years

  6. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  8. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  9. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  10. 200 Area Effluent Treatment Facility: Delisting petition

    International Nuclear Information System (INIS)

    1993-08-01

    Waste water has been generated for over 40 years as a result of operations conducted on the Hanford Site. This waste water previously was discharged to cribs, ponds, or ditches. An example of such waste water includes process condensate that might have been in contact with dangerous waste or mixed waste (containing both radioactive and dangerous components). This petition presents the treatment technologies that are designed into the 200 Area Effluent Treatment Facility to eliminate the dangerous characteristics of the waste and to delist the effluent in accordance with the requirements found in 40 Code of Federal Regulations 260.20 and 260.22. The purpose of this petition is to demonstrate that the 242-A Evaporator process condensate will be treated adequately so that the effluent from the 200 Area Effluent Treatment Facility will no longer require management as a regulated dangerous waste. This demonstration was performed by use of a surrogate (synthetic) waste, designed by the US Department of Energy, Richland Operations Office to include species that represent all organic and inorganic constituents (but not radionuclide species) expected to be found on the Hanford Site. Thus, the surrogate will encompass not only the expected 242-A Evaporator process condensate characteristics, but those of other potential 200 Area Effluent Treatment Facility waste streams and additional 40 CFR Appendix VIII constituents

  11. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids.

    Science.gov (United States)

    Krishnamoorthy, G; Sadulla, S; Sehgal, P K; Mandal, Asit Baran

    2012-05-15

    In the present study, green and sustainable method or eco-friendly approaches to tanning process based on unnatural D-amino acids (D-AA)-aldehyde (Ald) as a substitute for chrome-free tanning has been attempted. The distribution of optically active D-AA in tanned leather, the hydrothermal stability, the mechanical properties and resistance to collagenolytic activity of tanned leather, the evaluation of eco-friendly characteristics were investigated. Scanning electron microscopic (SEM) and Atomic force microscopic (AFM) analyses indicate the surface morphology and roughness, respectively, of the tanned leather collagen matrix. Shrinkage and Differential scanning calorimetric (DSC) analyses shows that the shrinkage temperature (T(s)) and denaturation temperature (T(d)) of tanned leather are related to the content of D-AA+Ald present in the leather matrix. It has been found that the T(s) of D-AA tanned leather is more than that of Ald tanned leather and also more or less equal to chrome tanned leather. Environmental impact assessment (EIA) shows that the developed process results in significant reduction in total solids content (TSC) and improves better biodegradability of organic compound present in the effluent compared to chrome tanning. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    International Nuclear Information System (INIS)

    DUNCAN JB

    2004-01-01

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 (micro)m CUNO) required daily change out to maintain process throughput

  13. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  14. Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-03-28

    Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV 254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.

  15. A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis.

    Science.gov (United States)

    Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J

    2013-07-01

    Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development of improved radioactive effluent treatment to remove Zn-65, Mo-99 and I-125 by the coagulation-flocculation process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S H [Malaysian Inst. for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    1997-02-01

    Coagulation-flocculation treatment using aluminum sulphate, sodium carbonate, ferric chloride and coagulant aid was able to remove {sup 65}Zn, {sup 99}Mo and {sup 125}I from an aqueous effluent. Chemicals` dosages into the samples were varied which contributed different decontamination factors. For {sup 65}Zn removal, optimum pH value was 8 that provided the decontamination factor of 35. For {sup 125}I, optimum pH value was 7 with the decontamination factor of 4.8. Treatment of the effluent containing {sup 99}Mo at a laboratory scale was proved to be valid for the extrapolation to a plant scale. The pH range for optimum treatment was between 4.0 to 4.5. (author). 6 refs, 6 figs.

  17. Development of improved radioactive effluent treatment to remove Zn-65, Mo-99 and I-125 by the coagulation-flocculation process

    International Nuclear Information System (INIS)

    Sakuma, S.H.

    1997-01-01

    Coagulation-flocculation treatment using aluminum sulphate, sodium carbonate, ferric chloride and coagulant aid was able to remove 65 Zn, 99 Mo and 125 I from an aqueous effluent. Chemicals' dosages into the samples were varied which contributed different decontamination factors. For 65 Zn removal, optimum pH value was 8 that provided the decontamination factor of 35. For 125 I, optimum pH value was 7 with the decontamination factor of 4.8. Treatment of the effluent containing 99 Mo at a laboratory scale was proved to be valid for the extrapolation to a plant scale. The pH range for optimum treatment was between 4.0 to 4.5. (author). 6 refs, 6 figs

  18. A sequential and fast method for low level of 226Ra , 228Ra, 210Pb e 210Po in mine effluents and uranium processing plant

    International Nuclear Information System (INIS)

    Taddei, M.H.T.; Taddei, J.F.A.C.

    2005-01-01

    Due to biological risk and long half lives, the radionuclides 228 Ra, 226 Ra, 210 Pb and 210 Po should be frequently monitored to check for any environmental contamination around mines and uranium plants. Currently, the methods used for the determination of these radionuclides take about thirty days to reach the radioactive equilibrium of the 210 Pb and 226 Ra daughter's. The evaluation of effluent discharges and leakage of deposits to water bodies in monitoring programs, require quick answers to implement corrective measures. Thereby fast determination methods must be implemented. This work presents a fast and sequential method to, in three days, determine accurately and sensitively, 226 Ra, 228 Ra, 210 Pb, 210 Po, in water and effluent samples

  19. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes.

    Science.gov (United States)

    Ben, Weiwei; Wang, Jian; Cao, Rukun; Yang, Min; Zhang, Yu; Qiang, Zhimin

    2017-04-01

    Municipal wastewater treatment plant (WWTP) effluents represent an important contamination source of antibiotic resistance, threatening the ecological safety of receiving environments. In this study, the release of antibiotic resistance to sulfonamides and tetracyclines in the effluents of ten WWTPs in China was investigated. Results indicate that the concentrations of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) ranged from 1.1 × 10 1 to 8.9 × 10 3  CFU mL -1 and 3.6 × 10 1 (tetW) to 5.4 × 10 6 (tetX) copies mL -1 , respectively. There were insignificant correlations of the concentrations of ARB and ARGs with those of corresponding antibiotics. Strong correlations were observed between the total concentrations of tetracycline resistance genes and sulfonamide resistance genes, and both of which were significantly correlated with intI1 concentrations. Statistical analysis of the effluent ARG concentrations in different WWTPs revealed an important role of disinfection in eliminating antibiotic resistance. The release rates of ARB and ARGs through the effluents of ten WWTPs ranged from 5.9 × 10 12 to 4.8 × 10 15  CFU d -1 and 6.4 × 10 12 (tetW) to 1.7 × 10 18 (sul1) copies d -1 , respectively. This study helps the effective assessment and scientific management of ecological risks induced by antibiotic resistance discharged from WWTPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of Acetic Acid Removal Technology for the UREX+Process

    International Nuclear Information System (INIS)

    Counce, Robert M.; Watson, Jack S.

    2009-01-01

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstream steps can be avoided. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid

  1. Development of Acetic Acid Removal Technology for the UREX+Process

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Counce; Jack S. Watson

    2009-06-30

    It is imperative that acetic acid is removed from a waste stream in the UREX+process so that nitric acid can be recycled and possible interference with downstreatm steps can be avoidec. Acetic acid arises from acetohydrozamic acid (AHA), and is used to suppress plutonium in the first step of the UREX+process. Later, it is hydrolyzed into hydroxyl amine nitrate and acetic acid. Many common separation technologies were examined, and solvent extraction was determined to be the best choice under process conditions. Solvents already used in the UREX+ process were then tested to determine if they would be sufficient for the removal of acetic acid. The tributyl phosphage (TBP)-dodecane diluent, used in both UREX and NPEX, was determined to be a solvent system that gave sufficient distribution coefficients for acetic acid in addition to a high separation factor from nitric acid.

  2. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents; Processo alternativo para obtencao de tetrafluoreto de uranio a partir de efluentes fluoretados da etapa de reconversao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Joao Batista da

    2008-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}Si{sub 2}-Al fuel. (author)

  3. Removal of Acid Yellow 17 Dye by Fenton Oxidation Process

    Science.gov (United States)

    Khan, Jehangeer; Sayed, Murtaza; Ali, Fayaz; Khan, Hasan Mahmood

    2018-05-01

    In the present research work the degradation of acid yellow 17 (AY 17) by H2O2/Fe2+ was investigated. The effect of various conditions such as pH value, temperature, conc. of H2O2, Fe2+, conc. of AY 17 were studied. Additionally the scavenging effects of various anions such as Cl-, SO42-, CO32- and HCO3-, on percent degradation of AY 17 were examined. It was found that these anions decrease percent degradation as well as rate of degradation reaction. The optimum conditions were determined as [AY 17]=[Fe2+]=0.06 mM [H2O2]=0.9 mM, and pH 3.0 for 60 min of reaction time. It was found that at optimum conditions 89% degradation of AY17 was achieved. The degradation kinetics of AY17 followed pseudo-first-order reaction kinetics. Thermodynamic studies under natural conditions showed positive value of ΔH (enthalpy) which indicates the degradation process is endothermic.

  4. Physiochemical Treatment of Textile Industry Effluents

    International Nuclear Information System (INIS)

    Latif, M. I.; Qazi, M. A.; Khan, H.; Ahmad, N.

    2015-01-01

    The study mainly focuses on the application of chemical Coagulants (Lime, Alum and Ferrous Sulfate) and Advanced Oxidation Processes (AOPs) (Ozone Treatment and Fenton Process, alone and in combination) to treat textile industry effluents, optimization of coagulation process for various Coagulants in terms of process conditions, including coagulant dose, pH and settling time. The results revealed that Alum was most effective. The efficiency of coagulation process was dose dependent and 400 mg/L dose of Alum alone showed maximum color removal of 47%, 57% and 54% of yellow, red and blue dyes, respectively in addition to the COD removal of 44%. The combined applications of Alum and Lime (300:75 mg/L) and Lime and Alum (300:75 mg/L) showed slightly better COD removal of 51%. However, color removal efficiency of all coagulants was at par. The Ozonation process appeared the most promising for the treatment of waste water and color/COD removal, the efficiency of which increased with increasing the treatment time at constant Ozone dose. For less polluted effluents, 97% color removal was obtained after 1 minute and after 15 minutes for highly polluted effluents; The COD removal efficiency of the process for less polluted effluents was around 89% after 5 minutes Ozonation and for highly polluted effluents 88% COD removal after 40 minutes. The performance of Fenton process was extremely low as compared to Ozonation process. Increase in pH, significantly decreased the color removal efficiency of the process. COD removal efficiency of Fenton process increased with an increase in settling time. (author)

  5. Towards zero discharge by integrated effluent treatment approach

    International Nuclear Information System (INIS)

    Rath, Ashish Kumar; Pattnaik, Sambhu Prasad; Pati, Ganeswar; Saha, Sushant; Viswanath, Kowtha

    2014-01-01

    Heavy Water Plant, Talcher houses two Organo-phosphorus Solvent Production Plants namely, 60 MTPY TBP Plant engaged in the production of Tri-n-Butyl Phosphate and Versatile Solvent Production Plant (VSPP) capable of producing various Organo Phosphorus Solvents namely, 100 MTPY D2EHPA (Di-2-Ethyl Hexyl Phosphoric Acid), or 40 MTPY TAPO (Tri-Alkyl Phosphine Oxide) or TOPO (Tri-n-Octyl Phosphine Oxide) or DNPPA (Di-Nonyl Phenyl Phosphoric Acid). These solvents have important application for separation duties in front and back end of nuclear fuel cycle and also in conventional hydrometallurgy for separation metals like Ni, Cu, Zn, Co etc., both of these plants are first of their kind in India designed by the Heavy Water Board, Mumbai with R and D inputs from BARC. The two plants employ esterification (1) process between PCl 3 / and a suitable oxo-alcohol followed by hydrolysis, neutralization and product purification. The second and third steps find large usage of Water, which eventually surface as liquid effluent. All the gaseous emissions from plants, mostly HCl gas are traded off for Saline Water as liquid effluent by scrubbing the same with Sodium Hydroxide Solution

  6. Effluent treatment plant and decontamination centre, Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    The Bhabha Atomic Research Centre, Trombay, has a number of plants and laboratories, which generate Radioactive Liquid Waste and Protective Wears. Two facilities have been established in late 1960s to cater to this requirement. The Centre, on the average generates about 50,000 m"3 of active liquid effluents of varying specific activities. The Effluent Treatment Plant was setup to receive and process radioactive liquids generated by various facilities of BARC in Trombay. It also serves a single-point discharge facility to enable monitoring of radioactive effluents discharged from the Trombay site. About 120-150 Te of protective wears and inactive apparel are generated annually from various radioactive facilities and laboratories of BARC. In addition, contaminated fuel assembly components are generated by DHRUVA and formerly by CIRUS. These components require decontamination before its recycle to the fuel assembly process. The Decontamination Centre, setup in late 1960s, is mandated to carry out the above mentioned decontamination activities

  7. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  8. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Science.gov (United States)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  9. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  10. Amino Acid Profile, Group of Functional and Molecular Weight Distribution of Goat Skin Gelatin That Produced Through Acid Process

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Said

    2012-02-01

    Full Text Available Gelatin is a product of hydrolysis of collagen protein from animals that are partially processed.  Gelatin used in food and non food industries.  Gelatin is produced when many import of raw skins and bones of pigs and cows.  Goat skins potential as a raw material substitution that still doubt its halal. Process production of gelatin determine the properties of gelatin. The objectives of this research were to determine amino acid profile, group of functional and molecular weight distribution of gelatin made from goat skins which was produced through a process of acid. The skin of male Bligon goat, 1.5 to 2.5 year old was used as raw materials. Process production of gelatin was using acid type acetic acid (CH3COOH 0.5 M (v/v as curing material. The experimental design applied in this study and commercial gelatin was used as control. The results showed that gelatin produced from goat skin through the process of acid had properties identical with commercial gelatin. It can be concluded that the gelatin has the potential substitute product of commercial gelatin. Keywords: collagen, gelatin, goat skin, curing, acid process

  11. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  12. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  13. 40 CFR 429.163 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... application of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125...

  14. 40 CFR 429.171 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30...

  15. 40 CFR 429.173 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... best available technology economically achievable (BAT). Except as provided in 40 CFR 125.30 through...

  16. 40 CFR 429.161 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  17. Use of wetlands for the treatment of acidic mining drainage: the processes in the wetland; Utilizacion de humedales para el tratamiento de aguas acidas de mina: procesos que tienen lugar en el humedal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lastra, M.; Loredo Perez, J. [Departamento de Explotacion y Prospeccion de Minas. Escuela de Minas, Universidad de Oviedo, Oviedo (Spain)

    1995-04-01

    Wetlands constitute an alternative method for the treatment of acidic mining drainage, through the utilization of some plant species complex physico-chemical and biological processes take place, producing and improvement of the quality of waters moving through. The inherent characteristics of a wetland in operation will originate an horizontal zonation as for the quality of waters due to their progressive ameliorations of pH increase and heavy metals concentration decreases, anyway a vertical zonation, giving rise to oxidation and reduction zones on the wetland. From the different physical processes occurring on the wetland, the plant roots filtering, the dilution of effluents with superficial and underground waters and aeration phenomena can be considered very important. Oxidation, hydrolysis and sulphate reduction constitute important chemical processes leading to the removal of heavy metals from contaminated effluents. Wetlands have plants as sphagnum, typha and algae advantageous for the treatment of acidic waters provided that they retain heavy metals in their tissues and the contribute furthermore to modify the substrate conditions favoring the creation of reduction zones. The aerobic-anaerobic mixed systems are from the different wetland types those are prevailing because of the advantages of sulphate reduction as contrasted with oxides precipitation for the removal of heavy metals. Wetlands although are not the panacea for the treatment of acidic mining waters they offer advantages and some disadvantages too, over other treatment methods, and they constitute a real alternative for the conventional methods of chemical neutralization. (Author)

  18. USE OF A GRIFFITH TUBE TO EVALUATE THE ANAEROBIC SLUDGE SEDIMENTATION IN A UASB REACTOR TREATING AN EFFLUENT WITH LONG-CHAIN FATTY ACIDS

    Directory of Open Access Journals (Sweden)

    L. A. S. Miranda

    Full Text Available Abstract This paper proposes to study the sedimentation characteristics of anaerobic sludge, by determining the settling velocity of sludge granules with the Griffith Tube. This is a simple, low-cost method, suitable for use in full-scale treatment plants. The settling characteristics of sludge from two laboratory-scale UASB reactors fed with saccharose and different concentrations of sodium oleate and sodium stereate were evaluated. Addition of fatty acids caused a gradual destabilization of the system, affecting overall performance. The sedimentation profile changed after addition of fatty acids to the synthetic substrate, decreased sedimentation velocity and increased granule diameter. This behaviour was attributed to the adsorption of fatty acids onto the granules, modifying the diameter, shape and density of these bioparticles.

  19. Development of an improved two-cycle process for recovering uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Chen, H.M.; Chen, H.J.; Tsai, Y.M.; Lee, T.W.; Ting, G.

    1987-01-01

    An improved two-cycle separation process for the recovery of uranium from wet-process phosphoric acid by extraction with bis(2-ethylhexyl)phosphoric acid (D2EHPA) plus dibutyl butylphosphonate (DBBP) in kerosene has been developed and demonstrated successfully in bench-scale, continuous mixer-settler tests. The sulfuric acid and water scrubbing steps for the recycled extraction in the second cycle solve the problems of the contamination and dilution of the phosphoric acid by the ammonium ion and water and also avoid the formation of undesirable phosphatic precipitates during the subsequent extraction of uranium by recycled organic extractant

  20. Comparison of the effect of benzoic acid addition on the fermentation process quality with untreated silages

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2004-01-01

    Full Text Available The influence of benzoic acid and formic acid (positive control of ensilaged maize and pressed sugar beet pulp on quality fermentation processes was studied in a laboratory experiment. The effect of additive on the quality of fermentation process during maize ensiling was studied in a first model experiment. Preservatives such as formic acid and benzoic acid were added to ensiled maize at the concentration of 1L/t and 1 kg/t, respectively. When benzoic acid was used as a preservative, the pH and the N-NH3/ N total ratio decreased statistically (PSugar beet pulp silages with benzoic acid or formic acid after 32 days of storage had a better sensuous evaluation than the control silage. The most intensive decrease of pH value was observed after formic acid addition as compared with control silage. The statistically significantly (P<0.05 highest lactic acid content (49.64 ± 0.28 as well as the highest ratio of LA/VFA were found in the sugar beet pulp silage with benzoic acid. Lactic acid constituted the highest percentage (P<0.05 of all fermentation acids in the silage with benzoic acid additive (65.12 ± 0.80. Undesirable butyric acid (BA was not found in any variant of silages. The positive correlation between the titration acidity and acids sum in dry matter of silage conserved with formic acid was found. The additive of organic acids reduced significantly TA and fermentation acids content. Between the pH value and lactic acid content, no correlation was found.

  1. Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

    International Nuclear Information System (INIS)

    Sole, Stephanie V. Del; Garcia, Vanessa S.G.; Boiani, Nathalia F.; Rosa, Jorge M.; Andrade e Silva, Leonardo G. de; Borrely, Sueli I.

    2017-01-01

    Textile industry has an expressive scenario in the world economy and Brazil is the 5"t"h in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric (ABIT, 2017). The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations. Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective in reducing the color of the effluent, starting from 0.5 kGy. EB radiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes. (author)

  2. Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Stephanie V. Del; Garcia, Vanessa S.G.; Boiani, Nathalia F.; Rosa, Jorge M.; Andrade e Silva, Leonardo G. de; Borrely, Sueli I., E-mail: vanessagranadeiro@gmail.com, E-mail: steh.vdsole@gmail.com, E-mail: jotarosa@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); SENAI, Faculdade de Tecnologia Antoine Skaf, Sao Paulo, SP (Brazil)

    2017-11-01

    Textile industry has an expressive scenario in the world economy and Brazil is the 5{sup th} in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric (ABIT, 2017). The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations. Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective in reducing the color of the effluent, starting from 0.5 kGy. EB radiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes. (author)

  3. 40 CFR 458.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...

  4. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  5. 40 CFR 420.07 - Effluent limitations guidelines and standards for pH.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY General Provisions § 420.07 Effluent limitations guidelines and standards for pH. (a) The pH level in process wastewaters... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Effluent limitations guidelines and...

  6. Method and apparatus for treating gaseous effluents from waste treatment systems

    Science.gov (United States)

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  7. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available of major concern identified in the effluent are the large volume of byproduct calcium sulphate (phosphogypsum) which would smother marine life, high concentrations of fluoride highly toxic to marine life, heavy metals, chlorinated organic material... ........................ 9 THE RICHARDS BAY PIPELINE ........................................ 16 Environmental considerations ................................... 16 - Phosphogypsum disposal ................................... 16 - Effects of fluoride on locally occurring...

  8. Liquid effluent at Dounreay

    International Nuclear Information System (INIS)

    Sinclair, N.R.

    1995-01-01

    This short paper reviews the liquid effluent treatment at the Dounreay site. The significant reductions in volume and activity discharged from the site to the environment have been achieved over the many years of operation, and some of the techniques are highlighted. The Regulator interaction and the effect on the environment is discussed, while some of the requirements of the Regulator are presented. (author)

  9. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  10. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  11. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  12. Recycling liquid effluents in a ceramic industry

    International Nuclear Information System (INIS)

    Araujo Almeida, B.; Almeida, M.; Martins, S.; Alexandra Macarico, V.; Tomas da Fonseca, A.

    2016-01-01

    In this work is presented a study on the recycling of liquid effluents in a ceramic installation for sanitary industry. The effluents were characterized by X-ray diffraction and inductively coupled plasma to evaluate their compositions. It was also assessed the daily production rate. Several glaze-slurry mixtures were prepared and characterized according to procedures and equipment of the company's quality laboratory. The results show that for most of the properties, the tested mixtures exhibited acceptable performance. However, the pyro plasticity parameter is highly influenced by the glaze content and imposes the separation of glaze and slurry liquid effluents. In addition, it is necessary to invest on a storage plant, including tanks with constant stirring and a new pipeline structure to implement the reincorporation method on the slurry processing. (Author)

  13. Acidic precipitation. Volume 4: Soils, aquatic processes, and lake acidification. Advances in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Norton, S.A.; Lindberg, S.E.; Page, A.L. (eds.)

    1990-01-01

    Acidic precipitation and its effects have been the focus of intense research for over two decades. Recently, research has focused on a greater understanding of dose-response relationships between atmospheric loading of acidifying material and lake acidity. This volume of the subseries Acidic Precipitation emphasizes acid neutralizing processes and the capacity of terrestrial and aquatic systems to assimilate acidifying substances and, conversely, the ability of systems to recover after acid loading diminishes. Eight chapters have been processed separately for inclusion in the appropriate data bases.

  14. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15

  15. Gamma irradiation treatment of secondary sewage effluent

    International Nuclear Information System (INIS)

    Vajdic, A.H.

    The operation and monitoring of a pilot scale Co-60 gamma irradiation unit treating secondary sewage effluent is described. The disinfecting efficiency of the unit is compared to that of an experimental 'ideal' chlorination unit and to the plant chlorination process. A cost estimate for disinfection by gamma irradiation on a full plant scale is included. (author)

  16. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  17. Process for extracting uranium from phosphoric acid solutions

    International Nuclear Information System (INIS)

    1977-01-01

    The description is given of a method for extracting uranium from phosphoric acid solutions whereby the previously oxided acid is treated with an organic solvent constituted by a mixture of dialkylphosphoric acid and trialkylphosphine oxide in solution in a non-reactive inert solvent so as to obtain de-uraniated phosphoric acid and an organic extract constituted by the solvent containing most of the uranium. The uranium is then separated from the extract as uranyl ammonium tricarbonate by reaction with ammonia and ammonium carbonate and the extract de-uraniated at the extraction stage is recycled. The extract is treated in a re-extraction apparatus comprising not less than two stages. The extract to be treated is injected at the top of the first stage. At the bottom of the first stage, ammonia is introduced counter current as gas or as an aqueous solution whilst controlling the pH of the first stage so as to keep it to 8.0 or 8.5 and at the bottom of the last stage an ammonium carbonate aqueous solution is injected in a quantity representing 50 to 80% of the stoichiometric quantity required to neutralize the dialkylphosphoric acid contained in the solvent and transform the uranium into uranyl ammonium tricarbonate [fr

  18. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, G.; Sadulla, S.; Sehgal, P.K. [Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600 020 (India); Mandal, Asit Baran, E-mail: abmandal@hotmail.com [Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600 020 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Unnatural D-AA assisted tanned leathers found soft and full possessing tight grain. Black-Right-Pointing-Pointer Increased hydrothermal stability of collagen via intra and inter molecular crosslink. Black-Right-Pointing-Pointer D-Ly+Ald tanned leathers revealed a properly oriented with well aligned structure. Black-Right-Pointing-Pointer D-AA in collagen creates new topologies inaccessible to homo chiral molecules. Black-Right-Pointing-Pointer Improves conventional tanning process, and reduce the total solid and liquid wastes. - Abstract: In the present study, green and sustainable method or eco-friendly approaches to tanning process based on unnatural D-amino acids (D-AA)-aldehyde (Ald) as a substitute for chrome-free tanning has been attempted. The distribution of optically active D-AA in tanned leather, the hydrothermal stability, the mechanical properties and resistance to collagenolytic activity of tanned leather, the evaluation of eco-friendly characteristics were investigated. Scanning electron microscopic (SEM) and Atomic force microscopic (AFM) analyses indicate the surface morphology and roughness, respectively, of the tanned leather collagen matrix. Shrinkage and Differential scanning calorimetric (DSC) analyses shows that the shrinkage temperature (T{sub s}) and denaturation temperature (T{sub d}) of tanned leather are related to the content of D-AA+Ald present in the leather matrix. It has been found that the T{sub s} of D-AA tanned leather is more than that of Ald tanned leather and also more or less equal to chrome tanned leather. Environmental impact assessment (EIA) shows that the developed process results in significant reduction in total solids content (TSC) and improves better biodegradability of organic compound present in the effluent compared to chrome tanning.

  19. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids

    International Nuclear Information System (INIS)

    Krishnamoorthy, G.; Sadulla, S.; Sehgal, P.K.; Mandal, Asit Baran

    2012-01-01

    Highlights: ► Unnatural D-AA assisted tanned leathers found soft and full possessing tight grain. ► Increased hydrothermal stability of collagen via intra and inter molecular crosslink. ► D-Ly+Ald tanned leathers revealed a properly oriented with well aligned structure. ► D-AA in collagen creates new topologies inaccessible to homo chiral molecules. ► Improves conventional tanning process, and reduce the total solid and liquid wastes. - Abstract: In the present study, green and sustainable method or eco-friendly approaches to tanning process based on unnatural D-amino acids (D-AA)-aldehyde (Ald) as a substitute for chrome-free tanning has been attempted. The distribution of optically active D-AA in tanned leather, the hydrothermal stability, the mechanical properties and resistance to collagenolytic activity of tanned leather, the evaluation of eco-friendly characteristics were investigated. Scanning electron microscopic (SEM) and Atomic force microscopic (AFM) analyses indicate the surface morphology and roughness, respectively, of the tanned leather collagen matrix. Shrinkage and Differential scanning calorimetric (DSC) analyses shows that the shrinkage temperature (T s ) and denaturation temperature (T d ) of tanned leather are related to the content of D-AA+Ald present in the leather matrix. It has been found that the T s of D-AA tanned leather is more than that of Ald tanned leather and also more or less equal to chrome tanned leather. Environmental impact assessment (EIA) shows that the developed process results in significant reduction in total solids content (TSC) and improves better biodegradability of organic compound present in the effluent compared to chrome tanning.

  20. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-12-28

    ... amended FDA's regulations for thermally processed low-acid foods packaged in hermetically sealed... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 113 [Docket No. FDA-2007-N-0265] (formerly 2007N-0026) Temperature-Indicating Devices; Thermally Processed Low-Acid...

  1. Continuous tests of Phosphoric Acid - dihydrate process - from phosphatic concentrate of Itataia-CE ore

    International Nuclear Information System (INIS)

    Santos Benedetto, J. dos.

    1984-01-01

    A consolidation of principal studies and continuous tests done with phosphatic concentrated of Itataia ore intending phosphoric acid production by humid-route dihydrate way process is presented. The production of phosphoric acid is applied in uranium extraction process by solvents. (author) [pt

  2. Conceptual design of a novel CO2 capture process based on precipitating amino acid solvents

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Heffernan, K.; Ham, L.V. van der; Linders, M.J.G.; Eggink, E.; Schrama, F.N.H.; Brilman, D.W.F.; Goetheer, E.L.V.; Vlugt, T.J.H.

    2013-01-01

    Amino acid salt based solvents can be used for CO2 removal from flue gas in a conventional absorption-thermal desorption process. Recently, new process concepts have been developed based on the precipitation of the amino acid zwitterion species during the absorption of CO2. In this work, a new

  3. Chromium removal from tanning industries effluents

    International Nuclear Information System (INIS)

    Chaudry, M.A.; Ahmad, S.

    1997-01-01

    Air and water are the basic needs of human being and other living entities on the earth. Tanning industry uses water and some chemicals and so creates environmental problems, depending basically on two principal sources, hide and water. The processes of tanning are based on chromium sulphate and vegetable treatment of hide. According to the national environmental quality standards (NEQS) the effluent or disposed water should contain phenol less than 0.5 ppm, Cr, sulphates, chloride and other salts content. About 30-40 liters of water are used to process one Kg of raw hide into finished goods. Total installed capacity of hides and skins chrome tanning is 53.5 million square meter, earning a large amount of foreign exchange for our country. In the present work, seven tanning industries effluents from the suburbs of Multan city have been collected and analysed. The pH of the liquors have been found to vary from 2.72 to 4.4 and the constituent Cr have been found to be from zero to 8000 ppm from vegetable to chrome tanning industrial effluents studied. The stages involved in tanning and treatment of the effluent water waste including chemical treatment of Cr has been described with a special reference to supported liquid membranes process for removal of chromium ions. (author)

  4. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    NARCIS (Netherlands)

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  5. The Use of natural fatty acids in processing tritium gas

    International Nuclear Information System (INIS)

    El-Sharnouby, A.K.; Abdelgeleel, M.; Eskander, S.B.

    1997-01-01

    Natural unsaturated fatty acid (e.g cotton, corn, litmus, castor and palm oils) were used to fix tritium gas. The data obtained show that the affinity of the different used natural oils fixation of hydrogen (tritium) was in the following order: cotton oils> corn oil> litmus oil> castor oil> palm oil. The quantity of hydrogen (tritium) which can be fixed by one gram cotton oil is about 5.824 ml H 2 (5.56 x 10 1 1 Bq tritium) while one gram corn oil can fix only 5.04 ml H 2 (4.811 x 10 1 1 Bq tritium). Tritiated cotton oil and corn oil can be solidified using an epoxy resin (Araldite-B-W-1193), the polymer sample can contain up to 5% by weight from hydrogenated (tritiated) oils. The results obtained show that the compressive strength measurements of the final solid waste forms (fatty acid/epoxy) increased with increasing curing time and decreased with increasing fatty acid content. The leachability of tritium from the final solid waste forms increased with increasing fatty acid content in the polymer matrix. The cumulative leach fraction of tritium varied between 4.00 x 10 -3 cm and 6.60 x 10 -3 cm according to the experimental conditions. 15 figs., 1 tab

  6. Recovery of uranium in the production of concentrated phosphoric acid by a hemihydrate process

    International Nuclear Information System (INIS)

    Nakajima, S.; Miyamoto, M.

    1983-01-01

    Nissan Chemical Industries as manufacturers of phosphoric acid have studied the recovery of uranium, based on a concentrated phosphoric acid production process. The process consists of two stages, a hemihydrate stage with a formation of hemihydrate and a filtration section, followed by a dihydrate stage with hydration and a filtration section. In the hemihydrate stage, phosphate is treated with a mixture of phosphoric acid and sulphuric acid to produce phosphoric acid and hydrous calcium sulphate; the product is recovered in the filtration section and its concentration is 40-50% P 2 O 3 . In the dihydrate stage, the hemihydrate is transformed by re-dissolution and hydration, producing hydrous calcium sulphate, i.e. gypsum. This process therefore comprises two parts, each with different acid concentrations. As the extraction of uranium is easier in the case of a low concentration of phosphoric acid, the process consists of the recovery of uranium starting from the filtrate of the hydration section. The tests have shown that the yield of recovery of uranium was of the order of 80% disregarding the handling losses and no disadvantageous effect has been found in the combination of the process of uranium extraction with the process of concentrated phosphoric acid production. Compared with the classical process where uranium is recovered from acid with 30% P 2 O 5 , the process of producing high-concentration phosphoric acid such as the Nissan process, in which the uranium recovery is effected from acid with 15% P 2 O 5 from the hydration section, presents many advantages [fr

  7. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  8. Facility effluent monitoring plan for the tank farms facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, D.D.; Crummel, G.M.

    1995-05-01

    A facility effluent monitoring plan is required by the US Department of Energy for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using specific guidelines. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  9. Facility Effluent Monitoring Plan for the 222-S Laboratory

    International Nuclear Information System (INIS)

    Robinson, A.V.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems against applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. The current operation of the 222-S facilities includes the provision of analytical and radiological chemistry services in support of Hanford Site processing plants. The emphasis is on waste management, chemical processing, environmental monitoring effluent programs at B Plant, the Uranium Oxide Plant, Tank Farms, the 242-A Evaporator, the Waste Encapsulation and Storage Facility, the Plutonium-Uranium Extraction Facility, the Plutonium Finishing Plant, process development/impact activities, and essential materials. The laboratory also supplies analytical services in support of ongoing waste tank characterization

  10. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Blust, R.

    2004-01-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  11. In situ and laboratory bioassays to evaluate the impact of effluent discharges on receiving aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: roel.smolders@ua.ac.be; Bervoets, L. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Blust, R. [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2004-11-01

    Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure

  12. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  13. Treating effluents; recovering coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Jones, F B; Bury, E

    1920-02-18

    Liquor obtained by scrubbing coal gas with sea-water or fresh water, and containing or having added to it finely-divided carbonaceous material in suspension, is subjected to a froth-flotation process to recover the carbonaceous matter and organic materials in the froth, and render the remaining liquor innocuous. Liquor obtained by scrubbing distillation gases, such as coal gas, may be used as a frothing-agent in a froth flotation process for the recovery of carbonaceous substances such as coal from materials containing them, thereby producing a froth containing the coal, etc., and also the organic materials from the liquor. In some cases the effluent may be diluted with sea-water, and, in recovering carbonaceous shales, there may be added to the liquor a small proportion of paraffin oil.

  14. Acid in perchloroethylene scrubber solutions used in HTGR fuel preparation processes. Analytical chemistry studies

    International Nuclear Information System (INIS)

    Lee, D.A.

    1979-02-01

    Acids and corrosion products in used perchloroethylene scrubber solutions collected from HTGR fuel preparation processes have been analyzed by several analytical methods to determine the source and possible remedy of the corrosion caused by these solutions. Hydrochloric acid was found to be concentrated on the carbon particles suspended in perchloroethylene. Filtration of carbon from the scrubber solutions removed the acid corrosion source in the process equipment. Corrosion products chemisorbed on the carbon particles were identified. Filtered perchloroethylene from used scrubber solutions contained practically no acid. It is recommended that carbon particles be separated from the scrubber solutions immediately after the scrubbing process to remove the source of acid and that an inhibitor be used to prevent the hydrolysis of perchloroethylene and the formation of acids

  15. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats

    International Nuclear Information System (INIS)

    Kumar, Vikas; Chakraborty, Ajanta; Viswanath, Gunda; Roy, Partha

    2008-01-01

    Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern region of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated and intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450 SCC , cytochrome P450 C17 , 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health

  16. Destruction of nitric acid in purex process streams by formaldehyde treatment

    International Nuclear Information System (INIS)

    Kumar, S.V.; Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1974-01-01

    Efficiency of destruction of nitric acid in purex process streams with formaldehyde has been studied as a function of initial acidity, uranium concentration, rate of addition of formaldehyde and temperature in the range 6 - 0.5M acid. Guidelines are suggested for the accurate calculations of the volume of formaldehyde needed to effect the required change of acidity at 100degC. Sodium nitrite has been established as a 'key' to initiate the reaction and water as an effective scrubber for collecting the acid fumes emanating from the reaction vessel. (author)

  17. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  18. Furfural production by 'acidic steam stripping' of lignocellulose.

    Science.gov (United States)

    van Buijtenen, Jeroen; Lange, Jean-Paul; Espinosa Alonso, Leticia; Spiering, Wouter; Polmans, Rob F; Haan, Rene J

    2013-11-01

    Furfural and acetic acid are produced with approximately 60 and 90 mol % yield, respectively, upon stripping bagasse with a gaseous stream of HCl/steam and condensing the effluent to water/furfural/acetic acid. The reaction kinetics is 1(st)  order in furfural and 0.5(th)  order in HCl. A process concept with full recycling of the reaction effluents is proposed to reduce the energy demand to furfural-rich phase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrochemical Corrosion Investigations on Anaerobic Treated Distillery Effluent

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2014-09-01

    Present study is focused on the corrosivity of anaerobic treated distillery effluent and corrosion performance of mild steel and stainless steels. Accordingly, electrochemical polarization tests were performed in both treated distillery and synthetic effluents. Polarization tests were also performed in synthetic solutions and it was observed that Cl- and K+ increase whereas SO4 -, PO4 -, NO3 -, and NO2 - decrease the corrosivity of effluent at alkaline pH. Further, comparison in corrosivity of distillery and synthetic effluents shows the former to be less corrosive and this is assigned due to the presence of amino acids and melanoidins. Mild steel experienced to have the highest corrosion rate followed by stainless steels—304L and 316L and lowest in case of SAF 2205. Relative corrosion resistance of stainless steels is observed to depend upon Cr, Mo, and N content.

  20. Recovering of uranium from phosphoric acid produced by the wet process

    International Nuclear Information System (INIS)

    Barreiro, A.J.; Lyon, W.L.; Holleman, R.A.; Randell, C.C.

    1977-01-01

    Process for recovering uranium as from an aqueous solution of phosphoric acid arising from a wet process, with a scrubbing agent essentially composed of a hydrocarbon whose boiling point is situated between 150 0 C and 300 0 C, which reacts with the contaminents formed in the sludge in the phosphoric acid, in an efficient enough quantity to wash the contamination products forming the phosphoric acid sludge, give a sludge phase and a purified phosphoric acid phase, after which the sludge phase is extracted [fr

  1. Semitechnical studies of uranium recovery from wet process phosphoric acid by liquid-liquid-extraction method

    International Nuclear Information System (INIS)

    Poczynajlo, A.; Wlodarski, R.; Giers, M.

    1987-01-01

    A semitechnical installation for uranium recovery from wet process phosphoric acid has been built. The installation is based on technological process comprising 2 extraction cycles, the first with a mixture of mono- and dinonylphenylphosphoric acids (NPPA) and the second with a synergic mixture of di-/2-ethylhexyl/-phosphoric acid (D2EHPA) and trioctylphosphine oxide (TOPO). The installation was set going and the studies on the concentration distributions of uranium and other components of phosphoric acid have been performed for all technological circuits. 23 refs., 15 figs., 3 tabs. (author)

  2. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  3. Electrocoagulation of Palm Oil Mill Effluent

    Science.gov (United States)

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  4. Process for the separation of proteins from acid whey

    Energy Technology Data Exchange (ETDEWEB)

    Mirabel, B

    1980-01-01

    Acid whey from cheese or casein manufacture (pH less than 4.6) and containing about 5.2 g protein/l is passed through a cation exchange resin (of silica coated with a copolymer of styrene/vinyltriethoxysilane carrying SO/sub 3/H functional groups). The proteins adsorbed on the resin (alpha-lactalbumin, beta-lactoglobulin, serum albumin and immunoglobulins) are eluated with an 0.1 M ammonia solution, concentrated under vacuum and freeze-dried, obtaining a final product with 88% undenatured protein. The products are for use in the food and pharmaceutical industries and for dietetic and veterinary purposes.

  5. Study of metabolism of hydrazoic acid in the purex process

    International Nuclear Information System (INIS)

    Violet, A.

    1988-03-01

    The transfer of HN 3 between different phases has been studied - It has been found that the transfer of HN 3 from aqueous solution of the reprocessing to gaz phase is a physical mechanism of desorbtion. - The limiting phenomena of the transfer of HN 3 fromt the organic to the gaseous phase, is the decomplexation of this specy with tributyl phosphate (TBP). - Chemical reactions of hydrazoic acid occurring with nitrogen oxides in the gaseous flow has shown that it is rapidly destroyed in the presence of nitrogen dioxide [fr

  6. The effect of advanced treatment of sewage effluents on metal speciation and (bio)availability.

    Science.gov (United States)

    Peters, A; Merrington, G; Leverett, D; Ellor, B; Lofts, S; Gravell, A

    2014-02-01

    The bioavailability of metals can be strongly influenced by dissolved organic carbon (DOC). Wastewater treatment effluents add considerable quantities of DOC and metals to receiving waters, and as effluent controls become more stringent advanced effluent treatments may be needed. We assessed the effects of two types of advanced treatment processes on metal availability in wastewater effluents. Trace metal availability was assessed using diffuse gradients in thin films and predicted through speciation modelling. The results show little difference in metal availability post-advanced treatment. EDTA-like compounds are important metal complexants in the effluents.

  7. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  8. Process for the elimination of organic compounds in solution or in suspension from an aqueous solution such as a radioactive effluent

    International Nuclear Information System (INIS)

    Cordero, G.; Gauthier, F.; Perotin, J.P.; Saulze, J.L.

    1991-01-01

    Organic compounds such as complexing agents (for instance citric acid, EDTA and tartric acid) are oxidized with Co 3+ ions. For this purpose a cobalt (II) salt is added to the aqueous solution and Co 3+ ions required for oxidation are continuously generated by electrolysis. The cobalt salt is preferentially cobalt nitrate [fr

  9. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes

    Directory of Open Access Journals (Sweden)

    S. V. Komisarenko

    2013-12-01

    Full Text Available This interdisciplinary study, performed with participation of research workers of Palladin Institute of Biochemistry and Institute of Organic Chemist­ry of NAS of Ukraine, is devoted to analysis of biochemical effects of some calixarene methylene bisphosphonic acids (cyclic phenol oligomers on two well-known biological phenomenons – Mg2+-dependent ATP hydrolysis (myosin subfragment-1 of myometrium smooth muscle was used as an example and fibrin polymerization. Calix[4]arene С-97 (calix[4]arene methylene bisphosphonic acids is a macrocyclic substance, which contains intramolecular highly ordered lipophilic cavity formed by four aromatic rings, one of which is functionalized at the upper rim with methylene bisphosphonic group. At concentration of 100 µM, this substance was shown to effectively inhibit ATPase activity of pig myometrium myosin subfragment-1 (inhibition coefficient І0.5 = 83 ± 7 µM. At the same time, this calix[4]arene causes significant (vs. control increase of myosin subfragment-1 hydrodynamic diameter, which may indicate formation of an intermolecular complex between calixa­rene and myosin head. Computer simulation methods (docking and molecular dynamics with addition of grid technologies enabled to elucidate the grounds of intermolecular interactions between calix[4]arene С-97 and myometrium myosin subfragment-1, that involve hydrophobic, electrostatic and π-π-stacking interactions, some of which are close to the ATPase active centre. In view of the ability of calixarenes to penetrate into the cell and their low toxicity, the results obtained may be used as a basis for further development of a new generation of supramolecular effectors (starting from the above mentioned substances, in particular calix[4]arene С-97 for regulation of smooth muscle contractile activity at the level of ATP dependent actin-myosin interaction. Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper

  10. Harvesting Microalgal Biomass grown in Anaerobic Sewage Treatment Effluent by the Coagulation-Flocculation Method: Effect of pH

    Directory of Open Access Journals (Sweden)

    Servio Tulio Cassini

    2017-03-01

    Full Text Available ABSTRACT Harvesting is a critical step in microalgal biomass production process for many reasons. Among the existing techniques available for harvesting and dewatering microalgal biomass, recovery from aqueous medium by coagulation-flocculation has been the most economically viable process, althoughit is highly dependent on pH. This study aims to assess alternative coagulants compared to the standard coagulant aluminum sulfate for microalgal biomass recovery from anaerobic effluent of domestic sewage treatment. The effluent quality was also analyzed after biomass recovery. Coagulants represented by modified tannin, cationic starch and aluminum sulfate recovered more than 90% of algae biomass, at concentrations greater than 80 mg/L, in the pH range 7-10. Cationic starch promoted higher microalgal biomass recovery with a wider pH range. Powdered seeds of Moringa oleifera and Hibiscus esculentus(okra gum promoted biomass removal of 50%, only in the acidic range of pH. After sedimentation of the microalgal biomass, the effluents showed a removal of >80% for phosphorus and nitrogen values and >50% for BOD and COD when using aluminum sulfate, cationic starch and modified tannin as coagulants. Natural organic coagulants in a wide pH range can replace aluminum sulfate, a reference coagulant in microalgal biomass recovery, without decreasing microalgal biomass harvesting efficiency and the quality of the final effluent.

  11. Management of radioactive effluents from research Reactors and PHWRs

    International Nuclear Information System (INIS)

    Bodke, S.B.; Surender Kumar; Sinha, P.K.; Budhwar, R.K.; Raj, Kanwar

    2006-01-01

    Indian nuclear power programme is mainly based on pressurized heavy water reactors (PHWRs). In addition we have research reactors namely Apsara, CIRUS, Dhruva at Trombay. The operation and maintenance activities of these reactors generate radioactive liquid waste. These wastes require effective management so that the release of radioactivity to the environment is well within the authorized limits. India is self reliant in the design, erection, commissioning and operation of effluent management system for nuclear reactors. Segregation at source based on nature of effluents and radioactivity content is the first and foremost step in the over all management of liquid effluents. The effluents from the power reactors contain mainly activation products like 3 H. It also contains fission products like 137 Cs. Containment of these radionuclide along with 60 Co, 90 Sr, 131 I plays an important part in liquid waste management. Treatment processes for decontamination of these radionuclide include chemical treatment, ion exchange, evaporation etc. Effluents after treatment are monitored and discharged to the nearby water body after filtration and dilution. The concentrates from the processes are conditioned in cement matrix and disposed in Near Surface Disposal Facilities (NSDFs) co-located at each site. Some times large quantity of effluents with higher radioactivity concentration may get generated from the abnormal operation such as failure of heat exchangers. These effluents are handled on a campaign basis for which adequate storage capacity is provided. The treatment is given taking into consideration the required decontamination factor (DF), capacities of available treatment process, discharge limits and the availability of the dilution water. Similarly large quantities of effluents may get generated during fuel clad failure incident in reactors. In such situation, as in CIRUS large volume of effluent containing higher radioactivity are generated and are managed by delay

  12. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  13. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  14. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  15. Mixed matrix membranes for process intensification in electrodialysis of amino acids

    NARCIS (Netherlands)

    Kattan Readi, O.M.; Rolevink, Hendrikus H.M.; Nijmeijer, Dorothea C.

    2014-01-01

    BACKGROUND Amino acids are valuable intermediates in the biobased economy for the production of chemicals. Electro-membrane processes combined with enzymatic modification have been investigated as an alternative technology for the fractionation of a mixture of amino acids with almost identical

  16. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  17. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  18. Recovery of acids from dilute streams : A review of process technologies

    International Nuclear Information System (INIS)

    Talnikar, Vivek Digambar; Mahajan, Yogesh Shankar

    2014-01-01

    Chemical process industries convert raw materials into useful products. Acids, among other chemicals, are used in many industries as reactants, solvents and also as catalysts in a few instances as well. Resulting streams are dilute, from which the acids must be recovered. For recovery, many technologies can be used by which acids can be regained as such or can be converted into other value-added products like esters. Membrane processes and biological processes are being researched academically and practiced industrially. These have their own advantages and disadvantages in view of conversion, energy consumption etc. These are not always advantageous and hence an alternate process technology is necessary like reactive separation (RS). RS is advantageous especially when the acid is to be converted to other useful products by reaction, due to additional advantages or because no other technology is well suited or due to cost considerations alone. Conventional process technologies use the reactor configuration followed by the subsequent separation sequence. This approach can sometimes suffer from lesser conversion, difficulties in separation etc. To overcome these problems, RS has an edge over other processes in terms of the recovery of the useful compounds. Reactive distillation (RD), reactive extraction (RE) and reactive chromatography (RC) are the separation technologies that can be useful for acid recovery in an economically feasible way. This review covers the various processes of acid recovery along with the recent work in the field of reactive separations

  19. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  20. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  1. TBP determination in nitric acid solutions from solvent extraction process

    International Nuclear Information System (INIS)

    Kuada, T.A.; Carvalho, E.I. de; Araujo, I. da C.; Cohen, V.H.

    1988-07-01

    Heavy organic phases have been observed on some occasions during TBP extraction process. These products, described as red oils, were considered as the main cause for process failures, specially in evaporators and concentrators. In view of safety aspects it is necessary to control organic concentration in product and waste solutions. The proposed method involves the organic removal by chloroform as a first step, followed by purification onto a silica gel column. The results are given from analysing TBP and its degradation product (DBP) by gas chromatography. (author) [pt

  2. Production of highly unsaturated fatty acids using agro-processing by-products

    CSIR Research Space (South Africa)

    Jacobs, A

    2008-11-01

    Full Text Available The South African agro-processing industry generates millions of tons of cereal derived by-products annually. The by-products from biofuel production are expected to increase these volumes dramatically. Highly unsaturated fatty acids (HUFA...

  3. Process for the removal of radium from acidic solutions containing same

    Science.gov (United States)

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  4. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Katayeva

    2012-12-01

    Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  5. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  6. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  7. Electrochemical Investigation of The Catalytical Processes During Sulfuric Acid Production

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petrushina, Irina; Berg, Rolf W.

    1995-01-01

    The electrochemical behavior of molten K2S2O7 and its mixtures with V2O5 [2–20 mole percent (m/o) V2O5] was studiedat 440°C in argon, by using cyclic voltammetry on a gold electrode. The effect of the addition of sulfate and lithium ions onthe electrochemical processes in the molten potassium...

  8. Acid mine water reclamation using the ABC process

    CSIR Research Space (South Africa)

    De Beer, Morris

    2010-09-01

    Full Text Available of about 2 to 4.5 g/L of sulphate, 250 to 1200 mg/L of Ferrous iron, 60 to 175 mg/L of Mn and 120 mg/L of Mg. The CSIR ABC desalination process, developed for AMD neutralisation and the removal of total dissolved solids from 2 600 to 360 mg/L...

  9. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid

    OpenAIRE

    Konstantinos Hatzilyberis; Theopisti Lymperopoulou; Lamprini-Areti Tsakanika; Klaus-Michael Ochsenkühn; Paraskevas Georgiou; Nikolaos Defteraios; Fotios Tsopelas; Maria Ochsenkühn-Petropoulou

    2018-01-01

    Aiming at the industrial scale development of a Scandium (Sc)-selective leaching process of Bauxite Residue (BR), a set of process design aspects has been investigated. The interpretation of experimental data for Sc leaching yield, with sulfuric acid as the leaching solvent, has shown significant impact from acid feed concentration, mixing time, liquid to solids ratio (L/S), and number of cycles of leachate re-usage onto fresh BR. The thin film diffusion model, as the fundamental theory for l...

  10. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  11. Process technology for the application of d-amino acid oxidases in pharmaceutical intermediate manufacturing

    DEFF Research Database (Denmark)

    Tindal, Stuart; Carr, Reuben; Archer, Ian V. J.

    2011-01-01

    Recent advances in biocatalysis have seen increased interest in the use of D-amino acid oxidase to synthesize optically pure amino acids. However, the creation of a genuine oxidase based platform technology will require suitable process technology as well as an understanding of the challenges...... and opportunities of a wider portfolio of synthetic targets. In this article we address some of the recent progress in process technology to enable the future development of a generic platform technology....

  12. Effect of processing on phenolic acids composition and radical scavenging capacity of barley pasta.

    Science.gov (United States)

    De Paula, Rosanna; Rabalski, Iwona; Messia, Maria Cristina; Abdel-Aal, El-Sayed M; Marconi, Emanuele

    2017-12-01

    Phenolic acids, total phenolics content and DPPH radical scavenging capacity in raw ingredients, fresh and dried spaghetti, and in uncooked and cooked spaghetti were evaluated and compared with semolina spaghetti as a reference. Ferulic acid was the major phenolic acid found in the free and bound phenolic extracts in all the investigated pasta samples. The addition of barley flour into pasta at incorporation levels of 30, 50 and 100% increased phenolic acids and total phenolics content. Pasta processing did not significantly affect the total phenolics content and free radical scavenging capacity, but a significant reduction in total phenolic acids measured by HPLC was found. Drying process differently affected individual phenolic compounds in the free and bound fractions, and thus, the total phenolic acids content. Free vanillic, caffeic and p-coumaric acids did not significantly change, while p-hydroxybenzoic and ferulic acids of the free extracts showed higher values compared to the corresponding fresh pasta. Cooking did not greatly affect total phenolic acids, more leading to conserving free and bound phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document

  14. The application of XML in the effluents data modeling of nuclear facilities

    International Nuclear Information System (INIS)

    Yue Feng; Lin Quanyi; Yue Huiguo; Zhang Yan; Zhang Peng; Cao Jun; Chen Bo

    2013-01-01

    The radioactive effluent data, which can provide information to distinguish whether facilities, waste disposal, and control system run normally, is an important basis of safety regulation and emergency management. It can also provide the information to start emergency alarm system as soon as possible. XML technology is an effective tool to realize the standard of effluent data exchange, in favor of data collection, statistics and analysis, strengthening the effectiveness of effluent regulation. This paper first introduces the concept of XML, the choices of effluent data modeling method, and then emphasizes the process of effluent model, finally the model and application are shown, While there is deficiency about the application of XML in the effluents data modeling of nuclear facilities, it is a beneficial attempt to the informatization management of effluents. (authors)

  15. Filtration device for active effluents

    International Nuclear Information System (INIS)

    Guerin, M.; Meunier, G.

    1994-01-01

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter

  16. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay.

    Science.gov (United States)

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans.

  17. Safety measures for integrity test apparatus for IS process. Sulfuric acid decomposition section

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Onuki, Kaoru

    2013-07-01

    Hazardous substances such as sulfuric acid, sulfur dioxide and hydrogen iodide acid are employed in thermochemical Iodine-Sulfur (IS) process. It is necessary to take safety measure against workers and external environments to study experimentally on IS process. Presently we have been conducting to verify the soundness of main components made of engineering material in actual corrosive condition. An integrity test apparatus for the components of sulfuric acid decomposition was set up. We will use the hazardous substances such as sulfuric acid and sulfur dioxide and perform the experiment in pressurized condition in this integrity test. Safety measures for the test apparatus, operation and abnormal situation were considered prior to starting the test. This report summarized the consideration results for the safety measures on the integrity test apparatus for the components of sulfuric acid decomposition. (author)

  18. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    Geens, L.; Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Belien, H.; Ooms, E.; Smets, D.; Stevens, J.; van Vlerken, J.

    1988-01-01

    From 1975 until 1982 - within the framework of the CEC indirect action programme on management and storage of radioactive waste - the SCK/CEN has developed the ELEX process from laboratory scale experiments up to the construction of an integrated pilot installation. The ELEX process combines water electrolysis and catalytical isotope exchange for the separation of tritium from aqueous reprocessing effluents by isotope enrichment. Consequently, the pilot installation consists of two main parts: an 80 kW water electrolyser and a 10 cm diameter trickle bed exchange column. The feed rate of tritiated water amounts to 5 dm 3 .h -1 , containing up to 3.7 GBq.dm -3 of tritium. This report describes the further development of the process during the second phase of the second programme. Three main items are reported: (i) research work in the field of pretreatment of real reprocessing effluents, before feeding them to an ELEX installation; (ii) demonstration of the technical feasibility of the ELEX process with simulated active effluent streams in the pilot installation; (iii) a cost estimation for the ELEX installation, comprising the required investments and the annual operation costs

  19. High temperature corrosion control and monitoring for processing acidic crudes

    Energy Technology Data Exchange (ETDEWEB)

    Cross, C. [Betz/GE Water and Process Technologies, Woodlands, TX (United States)

    2009-07-01

    The challenge of processing heavy crudes and bitumen in a reliable and economical way was discussed. Many refiners use a conservative approach regarding the rate at which they use discounted crudes or depend upon capital-intensive upgrades to equipment. New strategies based on data-driven decisions are needed in order to obtain the greatest benefit from heavy feedstock. The feasibility of successfully processing more challenging feed can be estimated more accurately by better understanding the interactions between a particular feed and a particular crude unit. This presentation reviewed newly developed techniques that refiners can use to determine the feeds corrosion potential and the probability for this potential to manifest itself in a given crude unit. tabs., figs.

  20. In-Plant Corrosion Study of Steels in Distillery Effluent Treatment Plant

    Science.gov (United States)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2015-05-01

    The present study deals with corrosion and performance of steels observed in an effluent treatment plant (ETP) of a distillery. For this purpose, the metal coupons were exposed in primary (untreated effluent) and secondary tank (anaerobic treatment effluent) of the ETP. The extent of attack has been correlated with the composition of the effluent with the help of laboratory immersion and electrochemical tests. Untreated distillery effluent found to be more corrosive than the anaerobic-treated effluents and is assigned due to chloride, phosphate, calcium, nitrate, and nitrite ions, which enhances corrosivity at acidic pH. Mild steel showed highest uniform and localized corrosion followed by stainless steels 304L and 316L and lowest in case of duplex 2205.