WorldWideScience

Sample records for acid oxidation defects-remaining

  1. Refsum disease, peroxisomes and phytanic acid oxidation: a review.

    Science.gov (United States)

    Wanders, R J; Jansen, G A; Skjeldal, O H

    2001-11-01

    Refsum disease was first recognized as a distinct disease entity by Sigvald Refsum in the 1940s. The discovery of markedly elevated levels of the branched-chain fatty acid phytanic acid in certain patients marked Refsum disease as a disorder of lipid metabolism. Although it was immediately recognized that the accumulation of phytanic acid is due to its deficient breakdown in Refsum disease patients, the true enzymatic defect remained mysterious until recently. A major breakthrough in this respect was the resolution of the mechanism of phytanic acid alpha-oxidation in humans. In this review we describe the many aspects of Refsum disease from the clinical signs and symptoms to the enzyme and molecular defect plus the recent identification of genetic heterogeneity in Refsum disease.

  2. Wet oxidation of salicylic acid solutions.

    Science.gov (United States)

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  3. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  4. Direct Oxidation of Ethene to Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  5. Fatty acid oxidation and ketogenesis in astrocytes

    International Nuclear Information System (INIS)

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO2 in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO2 and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and ω-terminal carbons, indicating that fatty acids were oxidized by β-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the ω-terminal 4-carbon unit of the fatty acids bypassed the β-ketothiolase step of the β-oxidation pathway. The [14C]acetoacetate formed from the [1-14C]labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the [14C]acetoacetate formed from the (ω-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1

  6. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    OpenAIRE

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  7. Fatty acid oxidation in skeletal and cardiac muscle

    International Nuclear Information System (INIS)

    The biochemical investigations described in this thesis deal with two aspects of fatty acid oxidation in muscle: a comparison of the use of cell-free and cellular systems for oxidation measurements, and studies on the assay and the role of the fatty acid binding protein in fatty acid metabolism. The fatty acid oxidation rates are determined radiochemically by the sum of 14CO2 and 14C-labeled acid-soluble products formed during oxidation of [14C]-fatty acids. A radiochemical procedure for the assay of fatty acid binding by proteins is described. (Auth.)

  8. Quinolinic Acid: Neurotoxin or Oxidative Stress Modulator?

    Directory of Open Access Journals (Sweden)

    Lenka Kubicova

    2013-10-01

    Full Text Available Quinolinic acid (2,3-pyridinedicarboxylic acid, QUIN is a well-known neurotoxin. Consequently, QUIN could produce reactive oxygen species (ROS. ROS are generated in reactions catalyzed by transition metals, especially iron (Fe. QUIN can form coordination complexes with iron. A combination of differential pulse voltammetry, deoxyribose degradation and Fe(II autoxidation assays was used for explorating ROS formation in redox reactions that are catalyzed by iron in QUIN-Fe complexes. Differential pulse voltammetry showed an anodic shift of the iron redox potential if iron was liganded by QUIN. In the H2O2/FeCl3/ascorbic acid variant of the deoxyribose degradation assay, the dose-response curve was U-shaped. In the FeCl3/ascorbic acid variant, QUIN unambiguously showed antioxidant effects. In the Fe(II autoxidation assay, QUIN decreased the rate of ROS production caused by Fe(II oxidation. Our study confirms that QUIN toxicity may be caused by ROS generation via the Fenton reaction. This, however, applies only for unnaturally high concentrations that were used in attempts to provide support for the neurotoxic effect. In lower concentrations, we show that by liganding iron, QUIN affects the Fe(II/Fe(III ratios that are beneficial to homeostasis. Our results support the notion that redox chemistry can contribute to explaining the hormetic dose-response effects.

  9. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  10. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    The effect of untreated and Fenton-treated acid dyes (C.I. Acid Red 183 and C.I. Acid Orange 51) and a reactive dye (C.I. Reactive Blue 4) on aerobic, anoxic and anaerobic processes was investigated. The optimum Fe2+:H2O2 molar ratio was selected as 1:5 (4:hsp sp="0.25" mM:20:hsp sp="0.25"mM) for...... 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed for...... the untreated blue, red and orange dyes, respectively. The inhibitory effect of the blue reactive dye on methane production was ∼21% after Fenton treatment. Neither untreated nor treated dyes exhibited an inhibitory effect on denitrification. Aerobic glucose degradation was inhibited by 23-29% by...

  11. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine;

    2012-01-01

    Abstract The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme...... and skills requirement. The available ELISA methods present considerable specificity problems and cannot be recommended at present. The oxidized nucleic acid metabolites in urine are assumed to originate from the DNA and RNA. However, direct evidence is not available. A possible contribution from...... can easily be expanded to analyze the oxidized ribonucleosides. The urinary measurement of oxidized nucleic acid metabolites provides a non-invasive measurement of oxidative stress to DNA and RNA....

  12. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation...... carrying the prevalent 985A > G mutation are at risk of developing life-threatening attacks. In SCAD/ethylmalonic aciduria, on the other hand, the presence of the prevalent susceptibility variations, 625A and 511T, in the SCAD gene seems to require additional genetic and cellular factors to be present...... in order to result in a phenotype. For the prevalent mutations in the LCHAD and CPT II genes further data are needed to evaluate the penetrance and risk of manifest disease when carrying these mutations. CONCLUSION: Assessment of the prevalence of a prevalent mutation in the mutation spectrum...

  13. Acrylic acid obtaining from methanol and acetic acid in the presence of complex oxide catalysts

    OpenAIRE

    Небесний, Роман Володимирович; Піх, Зорян Григорович; Шпирка, Ірина Іванівна; Івасів, Володимир Васильович; Небесна, Юлія Віталіївна; Фуч, Уляна Василівна

    2015-01-01

    The purpose of this work is to research process of single-stage acrylic acid obtaining from methanol and acetic acid, namely: to develop effective catalysts for the process of methanol oxidation to formaldehyde with its further aldol condensation with acetic acid to acrylic acid, and to determine optimum conditions for the process. Complex oxide catalysts consisting of oxides of boron, phosphorus, tungsten and vanadium supported on the silica gel have been investigated. The effect of vanadium...

  14. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid int

  15. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    OpenAIRE

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid into the aldehydes nonanal and 9-oxo-nonanoic acid or into pelargonic and azelaic acid. Considerable hazards, including explosion risks, are associated with the use of ozone, and alternative processes...

  16. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    Directory of Open Access Journals (Sweden)

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  17. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    OpenAIRE

    Mohamed S. El-Deab

    2012-01-01

    The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles) as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt) and manganese oxide nanorods (nano-MnOx) electrodeposited onto glassy carbon (GC) electrodes. Cyclic voltammetric (CV) measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While tw...

  18. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  19. Investigation of products of molybdenite oxidation by nitric acid

    International Nuclear Information System (INIS)

    Physicochemical study of products of oxidation by nitric acid of molybdenum concentrate containing 98% MoS2 is carried out. It is shown that appearing molybdenum oxide forms block oxidizer access to the surface of sulfide phase and hinder its complete oxidation. When complexing reagents (H2SO4, H3PO4, HCl) are introduced in the solution the bulk of oxidized molybdenum transfers into solution in the form of a stable complex, at that. The effect of internal diffusion decreases and a considerable increase of MoS2 oxidation rate and completeness is achieved

  20. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease.

    Science.gov (United States)

    Sung, Chih-Chien; Hsu, Yu-Chuan; Chen, Chun-Chi; Lin, Yuh-Feng; Wu, Chia-Chao

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  1. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Chih-Chien Sung

    2013-01-01

    Full Text Available Patients with chronic kidney disease (CKD have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate, deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  2. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  3. Defective [U-14 C] palmitic acid oxidation in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased [U-14 C] palmitic acid oxidation. [1-14 C] palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation

  4. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    Science.gov (United States)

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to ...

  5. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.;

    2008-01-01

    with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase...... beta (IKKbeta) and protein kinase D (PKD) may phosphorylate ACC2 at Ser-221 but during in vitro phosphorylation assays only AMPK phosphorylated ACC2. These data demonstrate that AMPK is not essential for the regulation of fatty acid oxidation by AICAR or muscle contraction.......The activation of AMP-activated protein kinase (AMPK) and phosphorylation/inhibition of acetyl-CoA carboxylase 2 (ACC2) is believed to be the principal pathway regulating fatty acid oxidation. However, during exercise AMPK activity and ACC Ser-221 phosphorylation does not always correlate...

  6. Ghrelin reduces hepatic mitochondrial fatty acid beta oxidation.

    Science.gov (United States)

    Rigault, C; Le Borgne, F; Georges, B; Demarquoy, J

    2007-04-01

    Ghrelin is a 28-amino-acid peptide secreted during starvation by gastric cells. Ghrelin physiologically induces food intake and seems to alter lipid and glucid metabolism in several tissues such as adipose tissue and liver. Liver has a key position in lipid metabolism as it allows the metabolic orientation of fatty acids between oxidation and esterification. We investigated the effects of peripheral ghrelin administration on 2 crucial parameters of fatty acid oxidation: the levocarnitine (L-carnitine)-dependent entry of the fatty acids in the mitochondria and the mitochondrial fatty acid oxidation. Ghrelin was either given to rats prior to the hepatocyte preparation and culture or used to treat hepatocytes prepared from control animals. Direct incubation of ghrelin to raw hepatocytes did not induce any change in the studied parameters. In hepatocytes prepared from 3 nmol ghrelin-treated rats, a 44% reduction of the mitochondrial fatty acid oxidation while no alteration of the L-carnitine-related parameters were observed. These results suggested (a) that ghrelin has no direct effect on liver, and (b) that when administrated to a whole organism, ghrelin may alter the lipid metabolism and the energy balance through a marked decrease in liver fatty acid oxidation. PMID:17556859

  7. Modulating fatty acid oxidation in heart failure

    OpenAIRE

    Lionetti, Vincenzo; Stanley, William C.; Recchia, Fabio A.

    2011-01-01

    In the advanced stages of heart failure, many key enzymes involved in myocardial energy substrate metabolism display various degrees of down-regulation. The net effect of the altered metabolic phenotype consists of reduced cardiac fatty oxidation, increased glycolysis and glucose oxidation, and rigidity of the metabolic response to changes in workload. Is this metabolic shift an adaptive mechanism that protects the heart or a maladaptive process that accelerates structural and functional dera...

  8. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2012-01-01

    Full Text Available The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt and manganese oxide nanorods (nano-MnOx electrodeposited onto glassy carbon (GC electrodes. Cyclic voltammetric (CV measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While two oxidation peaks were observed at nano-Pt/GC electrode at ca. 0.2 and 0.55 V (corresponding to the direct oxidation of formic acid and the oxidation of the poisoning CO intermediate, respectively. The combined use of nano-MnOx and nano-Pt results in superb enhancement of the direct oxidation pathway. Nano-MnOx is shown to facilitate the oxidation of CO (to CO2 by providing oxygen at low over-potential. This leads to retrieval of Pt active sites necessary for the direct oxidation of formic acid. The higher catalytic activity of nano-MnOx/nano-Pt/GC electrode (with Pt firstly deposited compared to its mirror image electrode (i.e., with MnOx firstly deposited, nano-Pt/nano-MnOx/GC reveals that the order of the electrodeposition is an essential parameter.

  9. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.;

    2014-01-01

    . Catalysts prepared in this way exhibit about 10 times higher activity for formic acid oxidation in comparison to pure Pt, as revealed both by potentiodynamic and quasy-potentiostatic measurements. This high activity is the result of well-balanced ensemble effect induced by Bi-oxide species interrupting Pt......Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... domains. Prolonged cycling and chronoamperometry tests disclosed exceptional stability of the catalyst during formic acid oxidation. The activity is compatible with the activity of previously studied Pt2Bi alloy but the stability is significantly better. (C) 2014 The Electrochemical Society. All rights...

  10. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  11. Retinol oxidation to retinoic acid in human thyroid glandular cells.

    Science.gov (United States)

    Taibi, Gennaro; Gueli, Maria Concetta; Nicotra, Concetta M A; Cocciadiferro, Letizia; Carruba, Giuseppe

    2014-12-01

    Abstract Retinoic acid is regarded as the retinol metabolite that controls proliferation and differentiation of epithelial cells. In the present study, we investigated the potential role of xanthine dehydrogenase (XDH) in retinoic acid biosynthesis in human thyroid glandular cells (HTGC). In particular, we observed that cellular retinoids binding proteins (CRBPs) are also implicated in the biosynthetic pathway leading to retinoic acid formation in primary cultures of HTGC, as we have already reported for human mammary epithelial cells (HMEC). After partial protein purification, the enzyme responsible for retinoic acid biosynthesis was identified and quantified as XDH by immunoassay, by its ability to oxidize xanthine to uric acid and its sensitivity to the inhibitory effect of oxypurinol. The evidence of XDH-driven formation of retinoic acid in HTGC cultures further corroborates the potential role of XDH in retinoic acid biosynthesis in the epithelia. PMID:24506204

  12. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper......, the analytical reproducibility was tested by repeated analysis of plasma aliquots from one individual over four years. The plasma was subjected to acidic deproteinization with an equal volume of 10% meta-phosphoric acid containing 2 mM EDTA and analyzed for ascorbate and dehydroascorbic acid by high...

  13. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius;

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  14. Acid-catalyzed kinetics of indium tin oxide etching

    International Nuclear Information System (INIS)

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species

  15. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    in turn is trapped by carnitine. This will lead to less availability of free carnitine for fatty acid transport into mitochondria. This review summarizes our present view on how FA metabolism is regulated during exercise with a special focus on the limitations in FA oxidation in the transition from...... rate of energy expenditure during high intensity exercise the total fatty acid oxidation is suppressed to below that observed during moderate intensity exercise. Although this has been known for many years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose...

  16. Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity.

    Science.gov (United States)

    Maharaj, H; Maharaj, D S; Daya, S

    2006-09-01

    Due to the implication of oxidative stress in neurodegenerative disorders we decided to investigate the antioxidant properties of acetylsalicylic acid and acetaminophen either alone or in combination. The thiobarbituric acid assay (TBA) and the nitroblue tetrazolium (NBT) assay were used to investigate quinolinic acid (QA)-induced: lipid peroxidation and superoxide anion generation in the rat hippocampus, in vivo. The study also shows, using cresyl violet staining, the preservation of structural integrity of neuronal cells following treatment with acetylsalicylic acid and acetaminophen in QA-lesioned rat hippocampus. Furthermore the study sought to determine whether these agents have any effect on endogenous (QA) formation. This study shows that acetylsalicylic acid and acetaminophen inhibit QA-induced superoxide anion generation, lipid peroxidation and cell damage, in vivo, in the rat hippocampus. In addition these agents inhibit the enzyme, 3-hydroxyanthranilic acid oxygenase (3-HAO), responsible for the synthesis of endogenous QA.

  17. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    OpenAIRE

    Claude Daneault; Saïd Barazzouk

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, th...

  18. Oxidized Fatty Acids as Inter-Kingdom Signaling Molecules

    OpenAIRE

    Pohl, Carolina H.; Johan L. F. Kock

    2014-01-01

    Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to “listen” and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; ...

  19. Oxidation in fish oil enriched mayonnaise : Ascorbic acid and low pH increase oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Timm Heinrich, Maike; Meyer, Anne S.

    2001-01-01

    The effect of ascorbic acid (0-4000 ppm) and pH (3.8-6.2) on oxidation and levels of iron and copper in various fractions of mayonnaise enriched with 16% fish oil was investigated. Ascorbic acid induced release of iron from the assumed oil- water interface into the aqueous phase at all pH levels......, but this effect of ascorbic acid was strongest at low pH (pH 3.8- 4.2). Ascorbic acid generally promoted formation of volatile oxidation compounds and reduced the peroxide value in mayonnaises. Peroxide values and total volatiles generally increased with decreasing pH values, suggesting that low pH promoted...... oxidation. It is proposed that iron bridges between the egg yolk proteins low-density lipoproteins, lipovitellin, and phosvitin at the oil-water interface are broken at low pH values, whereby iron ions become accessible as oxidation initiators. In the presence of ascorbic acid, oxidation is further enhanced...

  20. Complexes of low oxidated /sup 99/Tc with salicylic acid

    International Nuclear Information System (INIS)

    While several complexes of technetium with hydroxycarboxylic acids in solution are well known, little has been done about complexes of technetium with phenolcarboxylic acids. M.A. Kayssi suggested the use of sulphosalicylic acid as a reagent for the quantitative determination of technetium. The resulting complex shows a spectrophotometric maximum at 460 nm; the author supposes that the complex could contain technetium in the (V) oxidation state. In this paper the reaction between technetium and salicylic acid at concentrations between 10/sup -4/ and 5 x 10/sup -2/ M, in a pH range of 2 to 4.5, has been studied. The pH does not seem to influence the reaction, while the salicylic acid concentration is particularly significant

  1. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  2. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  3. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  4. Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng; Zhenxing Yu; Ping Zhang; Yuhang Zhang; Hongying Fu; Xiaoli Zhang; Qiquan Sun; Xinguo Hu

    2008-01-01

    The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic perfor-mances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1 V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H81 :O2 : H2O : N1 = 4.4 : 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.

  5. Radiolytical oxidation of ascorbic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Complete text of publication follows. Ascorbic acid, AsA (vitamin c), has been widely studied as an antioxidant or as an initiator of some technological processes, for example polymerization or nanoparticles formation. AsA can be easily oxidized to ascorbyl radical, in the first stage, and to dehydroascorbic acid, DHA, in the second stage. It has been found that several different ascorbyl radicals are formed during AsA oxidation but the main radical exists as the anion with the unpaired electron delocalized on a highly conjugated tricarbonyl system. Absorption spectrum of ascorbyl radical shows two bands with maxima at 300 and 360 nm, however only that at 360 nm is proportional to the dose and thus this wavelength was chosen for observations. We studied the oxidation of AsA by the following oxidizing radicals generated by the pulse radiolysis method ·OH, (SCN)2-·, Cl2-·, N3· and NO2·. The observed dependence of the yield and the formation rate of the AsA radical on the reduction potential of the oxidizing radical is discussed. The results obtained in water are compared with those obtained with AsA enclosed in the water pools of reverse micelles formed by AOT in n-heptane or by Igepal CO-520 in c-hexane. Somewhat surprising observation of different ascorbyl radical in pulse irradiated reverse micelles containing DHA is also commented.

  6. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  7. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism ...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute.......A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  8. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  9. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    Science.gov (United States)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  10. Kinetics and mechanism of the oxidation of some neutral and acidic -amino acids by tetrabutylammonium tribromide

    Indian Academy of Sciences (India)

    Raghvendra Shukla; Pradeep K Sharma; Kalyan K Banerji

    2004-03-01

    The oxidation of eleven amino acids by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid results in the formation of the corresponding carbonyl compounds and ammonia. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with some of the amino acids while others exhibit second-order dependence. It failed to induce polymerization of acrylonitrile. The effect of solvent composition indicate that the rate of reaction increases with increase in the polarity of the medium. Addition of tetrabutylammonium chloride has no effect on the rate of oxidation. Addition of bromide ion causes decrease in the oxidation rate but only to a limiting value. The reaction is susceptible to both polar and steric effects of the substituents. A suitable mechanism has been proposed.

  11. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent;

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid-reactive ...

  12. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  13. Oxidation of aniline in the presence of phenolic acids

    Directory of Open Access Journals (Sweden)

    Janošević Aleksandra M.

    2010-01-01

    Full Text Available Aniline was oxidized with ammonium peroxydisulfate (APS in aqueous solutions of various phenolic acids: 5-sulfosalicylic acid (SSA, 3,5-dinitrosalicylic acid (DNSA and gallic acid (GA. Polymerizations were performed at the constant molar ratios [acid]/[aniline]=0.5 and [APS]/[aniline]=1.25. The conductivity of synthesized polyaniline (PANI is affected by the dopant anion type and decreases in order: PANI-SSA > PANI-DNSA > PANI-GA, the last polymer being nonconducting. This decrease is in accordance with the increase of initial pH value of the reaction mixture. The differences in molecular structure of synthesized PANI have been revealed by FTIR spectroscopy. FTIR spectra of PANI-SSA and PANI-DNSA show typical features of PANI conductive emeraldine salt segments. On the contrary, FTIR spectrum of PANI-GA shows absence of bands typical for conducting PANI polaronic lattice, and indicates the higher oxidation state of this polymer than that of emeraldine, the presence of substituted phenazines as constitutional units, as well as significant content of monosubstituted benzene rings which reflects low polymerization degree and/or pronounced chain branching. The strong hydrogen bonding between GA and PANI can obstruct propagation of oligoanilines and formation of longer conducting PANI chains.

  14. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    Science.gov (United States)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  15. Bezafibrate in skeletal muscle fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Ørngreen, Mette Cathrine; Madsen, Karen Lindhardt; Preisler, Nicolai;

    2014-01-01

    OBJECTIVE: To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS: This was a 3-month, randomized, double......-blind, crossover study of bezafibrate in patients with CPT II (n = 5) and VLCAD (n = 5) deficiencies. Primary outcome measures were changes in FAO, measured with stable-isotope methodology and indirect calorimetry, and changes in HR during exercise. RESULTS: Bezafibrate lowered low-density lipoprotein......, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION: Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro...

  16. Oxide for valve-regulated lead-acid batteries

    Science.gov (United States)

    Lam, L. T.; Lim, O. V.; Haigh, N. P.; Rand, D. A. J.; Manders, J. E.; Rice, D. M.

    In order to meet the increasing demand for valve-regulated lead-acid (VRLA) batteries, a new soft lead has been produced by Pasminco Metals. In this material, bismuth is increased to a level that produces a significant improvement in battery cycle life. By contrast, other common impurities, such as arsenic, cobalt, chromium, nickel, antimony and tellurium, that are known to be harmful to VRLA batteries are controlled to very low levels. A bismuth (Bi)-bearing oxide has been manufactured (Barton-pot method) from this soft lead and is characterized in terms of phase composition, particle size distribution, BET surface area, and reactivity. An investigation is also made of the rates of oxygen and hydrogen evolution on pasted electrodes prepared from the Bi-bearing oxide. For comparison, the characteristics and performance of a Bi-free (Barton-pot) oxide, which is manufactured in the USA, are also examined. Increasing the level of bismuth and lowering those of the other impurities in soft lead produces no unusual changes in either the physical or the chemical properties of the resulting Bi-bearing oxide compared with Bi-free oxide. This is very important because there is no need for battery manufacturers to change their paste formulae and paste-mixing procedures on switching to the new Bi-bearing oxide. There is little difference in the rates of oxygen and hydrogen evolution on pasted electrodes prepared from Bi-bearing or Bi-free oxides. On the other hand, these rates increase on the former electrodes when the levels of all the other impurities are made to exceed (by deliberately adding the impurities as oxide powders) the corresponding, specified values for the Bi-bearing oxide. The latter behaviour is particularly noticeable for hydrogen evolution, which is enhanced even further when a negative electrode prepared from Bi-bearing oxide is contaminated through the deposition of impurities added to the sulfuric acid solution. The effects of impurities in the positive

  17. Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays

    OpenAIRE

    Mohamed S. El-Deab

    2010-01-01

    The electro-oxidation of formic acid (an essential reaction in direct formic acid fuel cells) is a challenging process because of the deactivation of anodes by the adsorption of the poisoning intermediate carbon monoxide (CO). Pt electrodes in two geometries (planar and nanohole-array) were modified by the electrodeposition of manganese oxide nanorods (nano-MnOx). The modified Pt electrodes were then tested for their electrocatalytic activity through the electro-oxidation of formic acid in a ...

  18. Stearic acid protects primary cultured cortical neurons against oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Ze-jian WANG; Cui-ling LIANG; Guang-mei LI; Cai-yi YU; Ming YIN

    2007-01-01

    Aim: To observe the effects of stearic acid against oxidative stress in primary cultured cortical neurons. Methods: Cortical neurons were exposed to glutamate,hydrogen peroxide (H202), or NaN3 insult in the presence or absence of stearic acid. Cell viability of cortical neurons was determined by MTT assay and LDH release. Endogenous antioxidant enzymes activity[superoxide dismutases (SOD),glutathione peroxidase (GSH-Px), and catalase (CAT)] and lipid peroxidation in cultured cortical neurons were evaluated using commercial kits. {3-[1(p-chloro-benzyl)-5-(isopropyl)-3-t-butylthiondol-2-yl]-2,2-dimethylpropanoic acid, Na}[MK886; 5 pmol/L; a noncompetitive inhibitor of proliferator-activated receptor(PPAR)α], bisphenol A diglycidyl ether (BADGE; 100 μmol/L; an antagonist of PPARγ), and cycloheximide (CHX; 30 μmol/L, an inhibitor of protein synthesis)were tested for their effects on the neuroprotection afforded by stearic acid.Western blotting was used to determine the PPARγ protein level in cortical neurons.Results: Stearic acid dose-dependently protected cortical neurons against glutamate or H202 injury and increased glutamate uptake in cultured neurons.This protection was concomitant to the inhibition of lipid peroxidation and to the promotion activity of Cu/Zn SOD and CAT in cultured cortical neurons. Its neuroprotective effects were completely blocked by BADGE and CHX. After incubation with H2O2 for 24 h, the expression of the PPARγ protein decreased significantly (P<0.05), and the inhibitory effect of H2O2 on the expression of PPARγ can be attenuated by stearic acid. Conclusion: Stearic acid can protect cortical neurons against oxidative stress by boosting the internal antioxidant enzymes.Its neuroprotective effect may be mainly mediated by the activation of PPARγ and new protein synthesis in cortical neurons.

  19. Kinetics and Mechanism of Oxidation of Glutamic Acid by N-Bromophthalimide in Aqueous Acidic Medium

    OpenAIRE

    2011-01-01

    The kinetics of oxidation of glutamic acid (Glu) with N-bromophthalimide (NBP) was studied in perchloric acid medium at 30 °C by potentiometric method. The reaction is first order each in NBP and glutamic acid and is negative fractional order in [H+]. Addition of KBr or the reaction product, phthalimide had no effect on the rate. Similarly variation of ionic strength of the medium did not affect the rate of the reaction. Also the rate increased with decrease in dielectric constant of the reac...

  20. Oxidative desulfurization of askale coal by nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M. [Gazi University, Ankara (Turkey). Dept. of Chemical Engineering

    2007-07-01

    Efficient use of fossil fuels is of utmost importance in a world that depends on these for the greatest part of its energy needs. Although lignite is a widely used fossil fuel, its sulfur content limits its consumption. This study aims to capture combustible sulfur in the ash by oxidizing it with solution of nitric acid solution. Thus, the combustible sulfur in the coal was converted to sulfate form in the ash. Parameters affecting the conversion of sulfur were determined to be nitric acid concentration, reaction time and mean particle size at constant (near room) temperature and shaking rate. The maximum desulfurization efficiency reached was 38.7% of the original combustible sulfur with 0.3 M nitric acid solution, 16 h of reaction time and 0.1 mm mean particle size.

  1. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    Science.gov (United States)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  2. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  3. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    Science.gov (United States)

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. PMID:27474618

  4. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    Science.gov (United States)

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  5. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  6. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  7. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  8. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    OpenAIRE

    Alireza Haghighat Mamaghani; Shohreh Fatemi; Mehrdad Asgari

    2013-01-01

    An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was ...

  9. Kinetics and mechanism of the oxidation of some -hydroxy acids by hexamethylenetetramine-bromine

    Indian Academy of Sciences (India)

    Dimple Garg; Seema Kothari

    2004-11-01

    The oxidation of lactic acid, mandelic acid and ten monosubstituted mandelic acids by hexamethylenetetramine-bromine (HABR) in glacial acetic acid, leads to the formation of the corresponding oxoacid. The reaction is first order with respect to each of the hydroxy acids and HABR. It is proposed that HABR itself is the reactive oxidizing species. The oxidation of -deuteriomandelic acid exhibits the presence of a substantial kinetic isotope effect (/ = 5.91 at 298 K). The rates of oxidation of the substituted mandelic acids show excellent correlation with Brown’s + values. The reaction constants are negative. The oxidation exhibits an extensive cross conjugation between the electron-donating substituent and the reaction centre in the transition state. A mechanism involving transfer of a hydride ion from the acid to the oxidant is postulated.

  10. Kinetics of coal desulfurization in an oxidative acid media

    Energy Technology Data Exchange (ETDEWEB)

    Davalos, A.; Pecina, E.T.; Soria, M.; Carrillo, F.R. [University of Autonoma Coahuila, Monclova (Mexico)

    2009-05-15

    Tests were carried out for determining pyrite dissolution present in carbon in an aqueous media by using sulfuric acid and hydrogen peroxide as oxidant. The main objective is the evaluation of an oxidative treatment in acid media focused on the elimination of pyrite from coal. The influence of several parameters such as temperature, acid, and hydrogen peroxide concentrations were investigated. It was found that the dissolution curves for pyritic sulfur follow the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. Additional tests show the preferential release of iron from pyrite leaving a reacted 'polysulfide' or 'metal deficient' layer. Results also indicate that, in aqueous solutions of 0.5 M of H{sub 2}SO{sub 4} at 60{sup o}C and with an increase in hydrogen peroxide concentration, pyrite dissolution increases around 50%. The results also show the peroxide degradation due to the presence of iron ions and the coal matrix.

  11. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    Science.gov (United States)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  12. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides

    KAUST Repository

    Paniagua, Sergio A.

    2016-05-26

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface - the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology - significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. © 2016 American Chemical Society.

  13. Fatty acids and oxidative stress in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tonello Lucio

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categories: mental retardation; autistic disorder; Rett's disorder; attention-deficit hyperactivity disorder; delirium; dementia; amnestic disorders; alcohol-related disorders; amphetamine (or amphetamine-like-related disorders; hallucinogen-related disorders; nicotine-related disorders; opioid-related disorders; schizophrenia and other psychotic disorders; mood disorders; anxiety disorders; sexual dysfunctions; eating disorders; and sleep disorders. Conclusion Most psychiatric disorders are associated with increased oxidative stress. Patients suffering from that subgroup of these psychiatric disorders in which there is increased lipid peroxidation might therefore benefit from fatty acid supplementation (preferably with the inclusion of an antioxidant-rich diet while patients suffering from all these psychiatric disorders might benefit from a change to a whole-food plant-based diet devoid of refined carbohydrate products.

  14. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides.

    Science.gov (United States)

    Paniagua, Sergio A; Giordano, Anthony J; Smith, O'Neil L; Barlow, Stephen; Li, Hong; Armstrong, Neal R; Pemberton, Jeanne E; Brédas, Jean-Luc; Ginger, David; Marder, Seth R

    2016-06-22

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface-the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology-significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. PMID:27227316

  15. Formation of Nanoporous Tin Oxide Layers on Different Substrates during Anodic Oxidation in Oxalic Acid Electrolyte

    Directory of Open Access Journals (Sweden)

    Leszek Zaraska

    2015-01-01

    Full Text Available Nanoporous tin oxide layers were obtained on various Sn substrates including high- and low-purity foils and wire by one-step anodic oxidation carried out in a 0.3 M oxalic acid electrolyte at various anodizing potentials. In general, amorphous oxide layers with the atomic ratio of Sn : O (1 : 1 were grown during anodization, and a typical structure of the as-obtained film consists of the “outer” layer with less regular, interconnetted pores and the “inner” layer with much more uniform and regular channels formed as a result of vigorous gas evolution. It was found that the use of electrochemical cell with the sample placed horizontally on the metallic support and stabilized by the Teflon cover, instead of the typical two-electrode system with vertically arranged electrodes, can affect the morphology of as-obtained layers and allows fabrication of nanoporous oxides even at anodizing potentials up to 11 V. An average pore diameter in the “outer” oxide layer increases with increasing anodizing potential, and no significant effect of substrate purity on the structure of anodic film was proved, except better uniformity of the oxides grown on high-purity Sn. A strong linear relationship between the average steady-state current density and anodizing potential was also observed.

  16. Lewis Acid Catalysis in the Oxidative Cycloaddition of Thiophenes

    OpenAIRE

    Li, Yuanqiang; Thiemann, Thies; Sawada, Tsuyoshi; Mataka, Shuntaro; Tashiro, Masashi

    1997-01-01

    Thiophenes 1 were treated with m-chloroperbenzoic acid (m-CPBA) under BF3·Et2O catalysis to afford thiophene S-monoxides. These could be reacted in situ as intermediary species with a number of dienophiles to provide arenes (with alkynes as dienophiles) or 7-thiabicyclo[2.2.1]hept-2-ene 7-oxides (with alkenes as dienophiles). It was also possible to isolate thiophene S-monoxides in solution and to cycloadd them in a second step. In either way it could be shown that the use of BF3·Et2O enhance...

  17. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    OpenAIRE

    C. L. P. S. Zanta; Martínez-Huitle, C. A.

    2009-01-01

    In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton p...

  18. In situ electrocatalytic oxidation of acid violet 12 dye effluent.

    Science.gov (United States)

    Mohan, N; Balasubramanian, N

    2006-08-21

    Electrochemical treatment of organic pollutants is a promising treatment technique for substances which are recalcitrant to biodegradation. Experiments were carried out to treat acid violet 12 dye house effluent using electrochemical technique for removal color and COD reduction covering wide range in operating conditions. Ruthenium/lead/tin oxide coated titanium and stainless steel were used as anode and cathode, respectively. The influence of effluent initial concentration, pH, supporting electrolyte and the electrode material on rate of degradation has been critically examined. The results indicate that the electrochemical method can be used to treat dye house effluents. PMID:16730894

  19. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  20. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of B-oxid

  1. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  2. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    OpenAIRE

    Sathler M.N.B.; Eon J.G.

    1998-01-01

    Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reacti...

  3. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    Science.gov (United States)

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines. PMID:25263417

  4. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  5. Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2010-01-01

    Full Text Available The electro-oxidation of formic acid (an essential reaction in direct formic acid fuel cells is a challenging process because of the deactivation of anodes by the adsorption of the poisoning intermediate carbon monoxide (CO. Pt electrodes in two geometries (planar and nanohole-array were modified by the electrodeposition of manganese oxide nanorods (nano-MnOx. The modified Pt electrodes were then tested for their electrocatalytic activity through the electro-oxidation of formic acid in a solution of pH 3.45. Two oxidation peaks (Ipd and Ipind were observed at 0.2 and 0.55 V, respectively; these were assigned to the direct and indirect oxidative pathways. A significant enhancement of the direct oxidation of formic acid to CO2 was observed at the modified electrodes, while the formation of the poisoning intermediate CO was suppressed. Ipd increases with surface coverage (θ of nano-MnOx with a concurrent depression of Ipind. An increase in the ratio Ipd/ν1/2 with decreasing potential scan rate (ν indicates that the oxidation process proceeds via a catalytic mechanism. The modification of Pt anodes with manganese oxide nanorods results in a significant improvement of the electrocatalytic activity along with a higher tolerance to CO. Thus nano-MnOx plays a crucial role as a catalytic mediator which facilitates the charge transfer during the direct oxidation of formic acid to CO2.

  6. Contribution to the study of the oxidation reaction of Np(V) by nitric acid catalyzed par nitrous acid

    International Nuclear Information System (INIS)

    The oxidation reaction kinetics of Np(V) to Np(VI) by nitric acid catalyzed by nitrous acid was studied. In a first part, a detailed bibliographical survey was made of the oxidation-reduction reactions of U, Np, Pu, Am with nitrous and nitric acids (51 references). It is shown that only when both the organic and aqueous phases are mixed up, the extraction of a reaction product (NpVI) induces an equilibrium displacement. TBP was used as solvent. It is shown that the extraction of nitrous acid from the solvent enables the nitrous acid concentration to be kept constant and in the same order of magnitude than that of Np. This enables to show that Np(V) and nitrous acid have no simple orders. The temperature and nitric acid concentration dependence was studied. It is shown that tetravalent nitrogen must play a major part in the Np(V) oxidation

  7. Fast and efficient benign oxidation of native wheat starch by acidic bromate under microwave activation.

    Science.gov (United States)

    Komulainen, Sanna; Diaz, Estibaliz; Pursiainen, Jouni; Lajunen, Marja

    2013-02-15

    A simple oxidation of starch in water by bromate was substantially improved by microwave activation. In the oxidation of native wheat starch its advantages were the highly reduced need of oxidant from 1.05 to 0.1-0.25 equiv, shortened reaction time from 2 to 5.5h to 10 min, and moderate or high yields of oxidation content (degree of oxidation 0.22-0.55) of water-soluble products. Acidic treatment before the oxidation reaction promoted the carbonyl formation yielding higher contents of oxidized products (degree of oxidation 0.43-0.55) than without it (degree of oxidation 0.22-0.28). The pretreatment did not have similar effect on the amount of carboxyl groups. The oxidation route of acidic bromate oxidation of starch is discussed.

  8. Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium: A mechanistic approach

    Indian Academy of Sciences (India)

    Puttaswamy; Nirmala Vaz

    2001-08-01

    Kinetics of oxidation of acidic amino acids (glutamic acid (Glu) and aspartic acid (Asp)) by sodium N-bromobenzenesulphonamide (bromamine-B or BAB) has been carried out in aqueous HClO4 medium at 30°C. The rate shows firstorder dependence each on [BAB]o and [amino acid]o and inverse first-order on [H+]. At [H+] > 0 60 mol dm-3, the rate levelled off indicating zero-order dependence on [H+] and, under these conditions, the rate has fractional order dependence on [amino acid]. Succinic and malonic acids have been identified as the products. Variation of ionic strength and addition of the reaction product benzenesulphonamide or halide ions had no significant effect on the reaction rate. There is positive effect of dielectric constant of the solvent. Proton inventory studies in H2O-D2O mixtures showed the involvement of a single exchangeable proton of the OH- ion in the transition state. Kinetic investigations have revealed that the order of reactivity is Asp > Glu. The rate laws proposed and derived in agreement with experimental results are discussed.

  9. Mechanisms of oxide dissolution by acid chelating agents

    International Nuclear Information System (INIS)

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  10. Kinetics and mechanism of the oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate

    Indian Academy of Sciences (India)

    Poonam Gupta; Seema Kothari

    2001-04-01

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic isotope effect. Addition of benzyltrimethylammonium chloride enhances the rate. It is proposed that the reactive oxidizing species is [(PhCH2Me3N)+ (IZn2Cl6)−]. Suitablemechanisms have been proposed.

  11. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    M.N.B. Sathler

    1998-06-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  12. [The influence of panthotenic acid mitochondrial oxidation and oxidative phosphorylation in liver of rats with alimentary obesity].

    Science.gov (United States)

    Naruta, E E; Egorov, A I; Omel'ianchik, C N; Buko, V U

    2004-01-01

    Alimentary obesity induced by the long-term feeding of rats by high-fat diet results the reducing of rate and efficiency of oxidative phosphorylation in liver mitochondria when NAD-dependent substrates are used. The treatment of the obese rats with panthotenic acid derivatives (phosphopantotenate, panthetin, panthenol) enhanced oxidative phosphorylation of pyruvate and fatty acid carnitine esters. Among investigated compounds panthenol activated respiratory control and phosphorylation rate more effectively. Moreover, panthenol, but not phosphopanthotenate nor panthetine, increased the activity of carnitine palmitoyltransferase 1 that confirms the preferable usage of fatty acids for mitochondrial oxidation under the influence of this compound. PMID:15460980

  13. Oxidation states of molybdenum in oxide films formed in sulphuric acid and sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Okonkwo, I.A.; Doff, J.; Baron-Wiechec, A. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Jones, G. [Waters Corporation, Floats Rd, Roundthorn Ind. Est., Manchester M23 9LZ (United Kingdom); Koroleva, E.V. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Skeldon, P., E-mail: p.skeldon@manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-07-31

    X-ray photoelectron spectroscopy is used to investigate the oxidation states of molybdenum in thin films formed potentiostatically, over a range of potentials, in either 1 mol dm{sup -3} H{sub 2}SO{sub 4} or 10 mol dm{sup -3} NaOH at 20 Degree-Sign C. Mo 3d spectra suggested that MoO{sub 2} and Mo(OH){sub 2} were the main components of the films, with smaller amounts of MoO{sub 3} and possibly Mo{sub 2}O{sub 5}. O 1s spectra indicated the presence of oxygen as oxide and hydroxide species and as bound water. Ion beam analysis revealed the formation of thin films at all potentials, with significant losses of oxidized molybdenum to the electrolyte. - Highlights: Black-Right-Pointing-Pointer Oxides are formed on molybdenum in sulphuric acid and sodium hydroxide solutions. Black-Right-Pointing-Pointer Molybdenum IV and VI are identified by XPS, with MoO2 species dominating. Black-Right-Pointing-Pointer Thicknesses of films are determined by ion beam analysis for a range of potentials. Black-Right-Pointing-Pointer Films form at low efficiency due to loss of molybdenum species to electrolyte.

  14. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus)

    International Nuclear Information System (INIS)

    The fate of [1(-14C] linoleic acid and [1(14C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish, Heteropneustes fossilis and Clarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated 14C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of linolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species

  15. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  16. Investigation of the oxidation of hydrochloric acid in scrubbing solutions containing hydrogen peroxide

    International Nuclear Information System (INIS)

    Oxidation and absorption of nitrogen oxides by a solution containing sulphuric, nitric acids and hydrogen peroxide have been investigated. The oxidation of nitric oxide is dependent among others on hydrogen peroxide concentration total acidity and temperature. The absorption of N O2 by the scrubbing solution (H2 S O4,H N O3 and H2 O2) in all cases studied is not less than 98%. The oxidation of chloride into chlorine gas increases as the concentration of each of hydrochloric acid, nitric oxide and nitric acid increases. On the other hand as the concentration of hydrogen peroxide increases the amount of chlorine gas decreases. The results show that the oxidation of chloride into chlorine gas is mainly due to nitrogen dioxide. 7 fig., 2 tab

  17. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  18. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  19. Bifunctional Nb/Ti-MCM-41 catalyst in oxidative acidic reaction of cyclohexene to diol

    International Nuclear Information System (INIS)

    Bifunctional oxidative and acidic catalyst was prepared by incorporating titanium ion (Ti4+) and niobic acid in meso porous molecular sieves MCM-41 structure. The catalyst is active both in oxidation, and acid-catalyzed reaction of olefin to diol. Nb/ Ti-MCM-41 catalyst was prepared by first synthesizing Ti-MCM-41 by hydrothermal method, followed by subsequent impregnation of niobic acid (Nb) into Ti-MCM-41 at various % wt Nb loading. The framework structure of Ti-MCM-41 collapsed after incorporation of Nb but the tetrahedral form of Ti4+ still maintained with octahedral Nb species. Both Bronsted and Lewis acid sites are present in all Nb/ Ti-MCM-41 samples. The formation of cyclohexanediol in the epoxidation of cyclohexene proved the bifunctional oxidative and acidic catalyst through the formation of cyclohexane oxide. The yield increased with the increase amount of the Bronsted acid sites provided by niobium species. (author)

  20. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    Science.gov (United States)

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-19

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.

  1. Study of Oxidation of Glutathione Treated with Hypochlorous Acid by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Capillary electrophoresis (CE) method was developed for the separation and quantification of reduced glutathione (GSH), oxidized glutathione (GSSG) and glutathione sulphonic acid (GSO3H). Baseline separation was obtained within five minutes. The effects of reaction time and molar ratio of hypochlorous acid (HOCI) to GSH on the oxidation of GSH were investigated.

  2. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    Science.gov (United States)

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  3. Alpha-oxidation of fatty acids in fasted or diabetic rats.

    Science.gov (United States)

    Takahashi, T; Takahashi, H; Takeda, H; Shichiri, M

    1992-05-01

    Induction of alpha-oxidation, a possible gluconeogenic process, which should produce odd-chain fatty acids from even-chain fatty acids, was studied in rats fasted or made diabetic with streptozotocin. When a omega-phenylated even-chain fatty acid, phenylbutyric acid (1.2 mmol/kg), was administered to rats under these conditions, a significant increase in the urinary excretion of benzoic acid, the metabolic end-product of omega-phenylated odd-chain fatty acids, was observed in fasted (3.54 +/- 0.46 mumol/day) and diabetic (6.73 +/- 2.10) rats (control, 0.58 +/- 0.43; P less than 0.001). Phenylated longer chain fatty acids, phenylhexanoic and phenyldecanoic acid, did not produce significantly more benzoic acid than did phenylbutyric acid. Although the rate of alpha-oxidation was very low compared to that of beta-oxidation, these results suggested that alpha-oxidation of fatty acids was induced under fasting or diabetic conditions, and that alpha-oxidation might take place at the butyric acid stage. PMID:1600847

  4. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue-gas desulfurization. Final report, June 1984-June 1986

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Rochelle, G.T.

    1988-02-01

    This report gives results of a study of organic acid-degradation conjugated with sulfite oxidation under flue-gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic-acid degradation rate and sulfite oxidation-rate times the ratio of the concentrations of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of Mn or Fe. However, k12 is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free-radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide (the major product), smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons.

  5. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  6. The association between low-grade inflammation, iron status and nucleic acid oxidation in the elderly

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Siersma, Volkert Dirk; Andersen, Jon T;

    2011-01-01

    nucleic acid oxidation and various iron status markers and especially a close relationship between nucleic acid oxidation and ferritin. This study shows no association between low-grade inflammation and urinary markers of nucleic acid oxidation in a population of elderly Italian people. The results...... suggest that low-grade inflammation only has a negligible impact on whole body nucleic acid oxidation, whereas iron status seems to be of great importance.......This study applied a case-control approach to investigate the association between low-grade inflammation, defined by high values within the normal range of C-reactive protein (CRP) and interleukin-6 (IL-6), and urinary markers of nucleic acid oxidation. No differences in excretion of urinary...

  7. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway

    OpenAIRE

    Wanders, Ronald J.A.; Duran, Marinus; Loupatty, Ference J.

    2010-01-01

    Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.

  8. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway.

    Science.gov (United States)

    Wanders, Ronald J A; Duran, Marinus; Loupatty, Ference J

    2012-01-01

    Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.

  9. Interference by morpholine ethanesulfonic acid (MES) and related buffers in phenolic oxidation by peroxidase

    Science.gov (United States)

    While characterizing the kinetic parameters of apoplastic phenolic oxidation by peroxidase, we found anomalies caused by the 4-morpholine ethanesulfonic acid (MES) buffer being used. In the presence of MES, certain phenolics appeared not to be oxidized by peroxidase, yet the oxidant, H2O2, was uti...

  10. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  11. Formation and dissolution behaviour of niobium oxide in phosphoric acid solutions

    International Nuclear Information System (INIS)

    The effect of phosphoric acid concentration and temperature on the formation and dissolution process of niobium oxide was investigated using capacitance, potential and galvanostatic measurements. The formation rate of the niobium oxide increases with increasing phosphoric acid concentration and decreases with increasing temperature. The dissolution rate of the niobium oxide is accelerated by increasing phosphoric acid concentration and temperature. The activation energy was calculated for both the formation and dissolution process and found to be 8.93 and 16.65 kJ/mol respectively. The effect of formation voltage on the dissolution process of niobium oxide was also investigated. The oxide film formed at high-formation voltage has a more defective character than that formed at lower voltage. This enhances the dissolution process of the oxide. The effect of current density on the formation rate and the thickness during the oxide film growth was measured. (orig.)

  12. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.;

    2016-01-01

    , can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation.......-) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces......-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 μM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids...

  13. Elevated oxidative stress and sensorimotor deficits but normal cognition in mice that cannot synthesize ascorbic acid

    OpenAIRE

    Harrison, Fiona E.; Yu, S Sarah; Van Den Bossche, Kristen L; Li, Liying; May, James M.; McDonald, Michael P.

    2008-01-01

    Oxidative stress is implicated in the cognitive deterioration associated with normal aging as well as neurodegenerative disorders such as Alzheimer’s and Parkinson's diseases. We investigated the effect of ascorbic acid (vitamin C) on oxidative stress, cognition and motor abilities in mice null for gulono-γ-lactone oxidase (Gulo). Gulo−/− mice are unable to synthesize ascorbic acid and depend on dietary ascorbic acid for survival. Gulo−/− mice were given supplements that provided them either ...

  14. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  15. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  16. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  17. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  18. Electrochemical oxidation of salicylic acid using BDD as electrode material

    OpenAIRE

    Bottesi, Linda

    2016-01-01

    The major project of the SHMIL landfill's leachate aims to find a complete treatment scheme, that leads to sty below the limits of the polluted compounds in Table before 2020. The presented work is part of the initial phase and it focuses on an advanced oxidation process, which uses radicals to oxidize pollutants, in particular the organic matter. The process is called electrochemical oxidation and it uses electrodes, that generate radicals on the anode surface, which oxidize hazardous com...

  19. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. PMID:27507447

  20. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    Science.gov (United States)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  1. Refsum disease: a defect in the alpha-oxidation of phytanic acid in peroxisomes.

    Science.gov (United States)

    Singh, I; Pahan, K; Singh, A K; Barbosa, E

    1993-10-01

    The oxidation of phytanic acid to pristanic acid was previously demonstrated to be deficient in monolayer cultures of skin fibroblasts (Herndon et al. 1969. J. Clin. Invest. 48: 1017-1032). However, identification of subcellular organelle with deficient enzyme activity has not been established. To define the subcellular organelle with deficient enzyme activity in the catabolism of phytanic acid, we measured the oxidation of [1-14C] phytanic acid to 14CO2 and pristanic acid in different subcellular organelles isolated from cultured skin fibroblasts from control and Refsum patients. The rates of oxidation of phytanic acid in peroxisomes, mitochondria, and endoplasmic reticulum were 37.1 +/- 2.65, 1.9 +/- 0.3, and 0.4 +/- 0.07 pmol/h per mg protein, respectively, from control fibroblasts. The phytanic acid oxidation activity in mitochondria (2.04 +/- 0.7 pmol/h per mg protein) and endoplasmic reticulum (0.43 +/- 0.2 pmol/h per mg protein) from Refsum fibroblasts was similar to control fibroblasts. However, phytanic acid oxidation in peroxisomes from Refsum fibroblasts was not detected at all the protein concentrations tested. On the other hand, the peroxisomes from Refsum fibroblasts had normal rates of activation and oxidation of palmitic and lignoceric acids, suggesting that the peroxisomes isolated from Refsum fibroblasts were metabolically active. The phytanoyl-CoA ligase, the first enzyme in the alpha-oxidation pathway, had activity similar to that in peroxisomes from control (9.86 +/- 0.09 nmol/h per mg protein) and Refsum (10.25 +/- 0.31 nmol/h per mg protein) fibroblasts. The data described here clearly demonstrate that pathognomonic accumulation of phytanic acid in patients with Refsum disease is due to the deficient activity of peroxisomal alpha-oxidation enzyme system.

  2. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    Science.gov (United States)

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  3. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  4. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  5. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  6. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm;

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...... was attributed to its ability to chelate free metal ions and iron from egg yolk located at the oil-water interface. Gallic acid reduced the levels of both free radicals and lipid hydroperoxides but promoted slightly the oxidative flavor deterioration in mayonnaise and influenced the profile of volatiles. Gallic...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  7. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells

    OpenAIRE

    E. P. da Silva; Nachbar, R. T.; Levada-Pires, A. C.; Hirabara, S. M.; Lambertucci, R. H.

    2015-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual’s performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be bene...

  8. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    Science.gov (United States)

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional supplementation of vitamin E enhanced the lipid oxidation stability of sous vide chicken meat.

  9. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    Science.gov (United States)

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional supplementation of vitamin E enhanced the lipid oxidation stability of sous vide chicken meat. PMID:21248346

  10. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    Science.gov (United States)

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  11. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA in Groundwater under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Penghua Yin

    2016-06-01

    Full Text Available Perfluorooctanoic acid (PFOA is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C, persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH. The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  12. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  13. Low ascorbic acid and increased oxidative stress in gulo−/− mice during development

    OpenAIRE

    Harrison, Fiona E.; Meredith, M. Elizabeth; Dawes, Sean M.; Saskowski, Jeanette L.; May, James M.

    2010-01-01

    Vitamin C (ascorbic acid, AA) depletion during pre-natal and post-natal development can lead to oxidative stress in the developing brains and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/−) mice can synthesize AA and typically have similar tissue ...

  14. A novel application of horseradish peroxidase: Oxidation of alcohol ethoxylate to alkylether carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylie acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the a-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.

  15. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    Science.gov (United States)

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  16. Synthesis of pteroylglutamic acid-3',5'-2H2 by trifluoroacetic acid catalyzed exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Pteroylglutamic acid (PGA) was deuterated by trifluoroacetic acid catalyzed exchange with deuterium oxide. The product, pteroylglutamic acid-3',5'-2H2, was specifically deuterated in the aromatic protons of the p-aminobenzoyl (PABA) moiety; the protons on C7 and C9 and in the glutamic acid residue were not exchanged. Deuterium incorporation was measured by chemical ionization mass spectrometry (CI-MS). Pteroylglutamates were cleaved by a base-catalyzed, oxidative hydrolysis to PABA, which was converted to the methyl ester, N-trifluoroacetate for analysis by gas chromatography-chemical ionization-mass spectrometry. Products from the exchange typically contained 1 percent 2H1 and 90 percent 2H2 species. The procedure may be used to label specifically various analogs of PGA with deuterium in the PABA portion of the molecule

  17. Biological implications of oxidation and unidirectional chiral inversion of D-amino acids.

    Science.gov (United States)

    Wang, Yong-Xiang; Gong, Nian; Xin, Yan-Fei; Hao, Bin; Zhou, Xiang-Jun; Pang, Catherine C Y

    2012-03-01

    Recent progress in chiral separation of D- and L-amino acids by chromatography ascertained the presence of several free Damino acids in a variety of mammals including humans. Unidirectional chiral inversion of many D-amino acid analogs such as exogenous NG-nitro-D-arginine (D-NNA), endogenous D-leucine, D-phenylanine and D-methionine have been shown to take place with inversion rates of 4-90%, probably dependent on various species D-amino acid oxidase (DAAO) enzymatic activities. DAAO is known to catalyze the oxidative deamination of neutral and basic D-amino acids to their corresponding α-keto acids, hydrogen peroxide and ammonia, and is responsible for the chiral inversion. This review provides an overview of recent research in this area: 1) oxidation and chiral inversion of several D-amino acid analogs in the body; 2) the indispensable but insufficient role of DAAO particularly in the kidneys and brain for the oxidation and chiral inversion of D-amino acids analogs; and 3) unidentified transaminase(s) responsible for the second step of chiral inversion. The review also discusses the physiological significance of oxidation and chiral inversion of D-amino acids, which is still a subject of dispute. PMID:22304623

  18. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria.

    Science.gov (United States)

    Abo-Khatwa, A N; al-Robai, A A; al-Jawhari, D A

    1996-01-01

    Three lichen acids-namely, (+)usnic acid, vulpinic acid, and atranorin-were isolated from three lichen species (Usnea articulata, Letharia vulpina, and Parmelia tinctorum, respectively). The effects of these lichen products on mice-liver mitochondrial oxidative functions in various respiratory states and on oxidative phosphorylation were studied polarographically in vitro. The lichen acids exhibited characteristics of the 2,4-dinitrophenol (DNP), a classical uncoupler of oxidative phosphorylation. Thus, they released respiratory control and oligomycin inhibited respiration, hindered ATP synthesis, and enhanced Mg(+2)-ATPase activity. (+)Usnic acid at a concentration of 0.75 microM inhibited ADP/O ratio by 50%, caused maximal stimulation of both state-4 respiration (100%) and ATPase activity (300%). Atranorin was the only lichen acid with no significant effect on ATPase. The uncoupling effect was dose-dependent in all cases. The minimal concentrations required to cause complete uncoupling of oxidative phosphorylation were as follows: (+)usnic acid (1 microM), vulpinic acid, atranorin (5 microM) and DNP (50 microM). It was postulated that the three lichen acids induce uncoupling by acting on the inner mitochondrial membrane through their lipophilic properties and protonophoric activities. PMID:8726330

  19. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Science.gov (United States)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  20. Oxidation of L-tyrosine by vanadium (V) in presence of sulphuric acid

    International Nuclear Information System (INIS)

    Oxidation of L-tyrosine with vanadium (V) in sulphuric acid mediumn at constant ionic strength is first order in oxidant and H+. The order in tyrosine varies from 1 to 0. A mechanism consistent with the kinetic results is proposed in which the rate determining step is the decompostition of the complex formed in the prior equilibrium. (Author)

  1. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    ), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  2. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    Science.gov (United States)

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  3. Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts

    Institute of Scientific and Technical Information of China (English)

    Yang Zhiyuan; Gong Liang; Ran Pan

    2012-01-01

    Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal,with added catalysts.We investigated catalytic oxidation processes and the factors that affect the reactions.The effects of different catalysts,including NiSO4 support on active carbon (AC-NiSO4),NiSO4 support on silicon dioxide (SiO2-NiSO4),composites of SO42-/Fe2O3,Zr-iron and vanadium-iron composite were studied.As well.we investigated nitric humic acid yields and the chemical structure of products by element analysis,FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions).The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%,16.36%,12.94%,5.61% and 8.59%,respectively.The highest yield of humic acid,i.e.,36.0%,was obtained with AC-NiSO4 as the catalyst.The amounts of C and H decreased with the amount of nitrogen.The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions.

  4. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. (Unite de Recherches de Physiolopathologie Hepatique (INSERM U-24), Hopital Beaujon, Clichy (France))

    1990-11-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of (1-{sup 14}C)palmitic acid but not that of (1-{sup 14}C)palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of (1-{sup 14}C)palmitic acid and markedly inhibited the beta oxidation of (1-{sup 14}C)octanoic acid and (1-{sup 14}C)butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of ({sup 14}C)CO{sub 2} from (1-{sup 14}C)fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids.

  5. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  6. Hypochlorite-induced oxidation of amino acids, peptides and proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Pattison, D I; Davies, Michael Jonathan

    2003-01-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction...... with HOCl within a cell due to their abundance and high reactivity with HOCl. This review summarizes information on the rate of reaction of HOCl with proteins, the nature of the intermediates formed, the mechanisms involved in protein oxidation and the products of these reactions. The predicted targets...... for reaction with HOCl from kinetic modeling studies and the consequences of HOCl-induced protein oxidation are also discussed....

  7. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  8. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  9. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate

    NARCIS (Netherlands)

    Hiemstra, T.; Mia, S.; Duhaut, P.B.; Molleman, B.

    2013-01-01

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application

  10. Serum uric acid levels and leukocyte nitric oxide production in multiple sclerosis patients outside relapses

    NARCIS (Netherlands)

    Mostert, JP; Ramsaransing, GSM; Heerserna, DJ; Heerings, M; Wilczak, N; De Keyser, J

    2005-01-01

    Background: A number of studies found that patients with multiple sclerosis (MS) have low serum levels of uric acid. It is unclear whether this represents a primary deficit or secondary effect. Uric acid is a scavenger of peroxynitrite, which is the product of nitric oxide (NO) and superoxide. Becau

  11. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress

    NARCIS (Netherlands)

    Teixeira, A.; Cox, R.C.; Egmond, M.R.

    2013-01-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact f

  12. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  13. Influence of Fluorine on the Conductivity and Oxidation of Silicon Nanomembranes after Hydrofluoric Acid Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-Fu; HAN Ping; ZHANG Rong; ZHENG You-Dou

    2011-01-01

    @@ After immersion in hydrofluoric acid, the sheet resistance of a 220-nm-thick silicon nanomembrane, measured in dry air by van der Pauw method, drops around two orders of magnitude initially, then increases and reaches the level of a sample with a native oxide surface in about one month.The surface component and oxidation rate are also characterized by x-ray photo electronic spectroscopy measurement.Fluorine is found to play a significant role in improving conductivity and has no apparent influence on the oxidation rate after hydrofluoric acid treatment.

  14. Synthesis and characterization of poly acrylic acid/graphite oxide nanocomposite

    Institute of Scientific and Technical Information of China (English)

    胡源; 丁溶芳; 徐加艳; 王清安; 陈祖耀; 范维澄

    2003-01-01

    Acrylic acid-intercalated graphite oxide and poly acrylic acid (PAA)-intercalated graphite oxide were prepared and characterized by X-Ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and high resolution electronic microscope (HREM). Results show that the intercalation process is not only a physical diffusion process but also mainly a chemical reaction process. The high resolution electronic microscope results also reveal that the Ic value of PAA-intercalated graphite oxide (GO) could change widely from 1.6nm to 4.0nm.

  15. Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid

    OpenAIRE

    Carrott, M. J.; Fox, O. D.; LeGurun, G.; Jones, C J; Mason, C; Taylor, Robin; Andrieux, Fabrice; Boxall, Colin

    2008-01-01

    Simple hydroxamic acids such as formo- and aceto-hydroxamic acids have been proposed as suitable reagents for the separation of either Pu and/or Np from U in modified or single cycle Purex based solvent extraction processes designed to meet the emerging requirements of advanced fuel cycles. The stability of these hydroxamic acids is dominated by their decomposition through acid hydrolysis. Kinetic studies of the acid hydrolysis of formo- and acetohydroxamic acids are reported in the absence a...

  16. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-10-01

    Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.

  17. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-10-01

    Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26996746

  18. Effects of Fe oxide on N transformations in subtropical acid soils

    Science.gov (United States)

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-02-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3--N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3--N immobilization rate increased 8 fold. NO3--N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3--N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3--N immobilization caused by high Fe oxide content rather than a low pH.

  19. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closо-dodecaboric acid

    Science.gov (United States)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  20. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    Science.gov (United States)

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  1. Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    GHASEM KARIM-NEZHAD

    2009-05-01

    Full Text Available The electrochemical behavior of ascorbic acid on a cobalt hydroxide modified glassy carbon (CHM–GC electrode in alkaline solution was investigated. The process of the involved oxidation and its kinetics were established using the cyclic voltammetry, chronoamperometry techniques, as well as by steady state polarization measurements. The results revealed that cobalt hydroxide promotes the rate of oxidation by increasing the peak current; hence ascorbic acid is oxidized at lower potentials, which is thermodynamically more favorable. The cyclic voltammograms and chronoamperometry indicate a catalytic EC mechanism is operative with the electrogeneration of Co(IV as the electrochemical process. Also, the process is diffusion-controlled and the current–time responses follow Cottrellian behavior. This result was confirmed by steady state measurements. The rate constants of the catalytic oxidation of ascorbic acid and the electron-transfer coefficient are reported.

  2. Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov. : a sporeforming, obligately syntrophic bacterium

    OpenAIRE

    Stieb, Marion; Schink, Bernhard

    1985-01-01

    From marine and freshwater mud samples strictly anaerobic, Gram-positive, sporeforming bacteria were isolated which oxidized fatty acids in obligately syntrophic association with H2-utilizing bacteria. Even-numbered fatty acids with up to 10 carbon atoms were degraded to acetate and Hz, odd-numbered fatty acids with up to 11 carbon atoms including 2-methylbutyrate were degraded to acetate, propionate and H2. Neither fumarate, sulfate, thiosulfate, sulfur, nor nitrate were reduced. A marine is...

  3. COMPLEX OXIDE CATALYSTS OF ACRYLIC ACID OBTAINING BY ALDOL CONDENSATION METHOD

    OpenAIRE

    Nebesnyi, R.

    2015-01-01

    The present work is dedicated to solving the problem of diversification of the raw materials base for acrylate monomers obtaining,  first of all acrylic acid. Acrylic acid and its derivatives are bulk products of organic synthesis with a wide range of applications. The main industrial method of acrylic acid production is  propylene oxidation. But this method has instable economic indicators as propylene is petroleum origin raw material.It is possible to expand the resource base of acrylic aci...

  4. Kinetics of oxidation of ethyldigol by vanadium(V) in aqueous acidic medium

    International Nuclear Information System (INIS)

    The kinetics of oxidation of ethyldigol by vanadium(V) in aqueous acidic medium has been carried out. The reaction is first order with respect to vanadium(V) and the substrate and is acid catalysed. Hammett acidity function (H0) and Bunnett hypothesis have been applied. The formation of free radicals during the course of the reaction has been indicated. A probable reaction mechansim is proposed. (Author)

  5. Electrochemical Oxidation of Methanol and Formic Acid in Fuel Cell Processes

    OpenAIRE

    Seland, Frode

    2005-01-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 °C.D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and ...

  6. Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes

    OpenAIRE

    Gonzalez Cuervo, Laura; Kozlov, Yuriy N.; Süss-Fink, Georg; Shul’pin, Georgiy B.

    2009-01-01

    Peroxyacetic acid (PAA) oxidizes alkanes in acetonitrile or acetic acid at 60 °C if a soluble vanadium(V) salt, n-Bu4NVO3 (1), is used as a catalyst. Corresponding ketones, alcohols and alkyl hydroperoxides are the main products. Methane, ethane, propane, cyclohexane, and other higher alkanes were substrates in the oxidations. The proposed mechanism involves the formation of a complex between (1) and PAA with equilibrium constants 3.3 and 6.8 dm3 mol−1 for acetonitrile and acetic acid as solv...

  7. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Directory of Open Access Journals (Sweden)

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  8. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum

    International Nuclear Information System (INIS)

    In nuclear fuel processing by the PUREX process, the purification of plutonium in nitric acid medium requires the oxidation of Pu(III) to Pu(IV), and of hydrazinium nitrate to nitrogen. The study helped to characterize the electrochemical behavior of the oxidation of hydrazinium nitrate and the reduction of nitric acid to nitrous acid, a compound which can chemically oxidize hydrazinium nitrate and Pu(III). Electro-analytical studies on polycrystalline platinum showed that hydrazine is oxidized in two potential zones, which depend on the surface texture of the platinum anode. Electrolysis in separate compartments, carried out in medium-acid media (2 and 4 mo/l) in the potential zone where these processes take place, showed that, at 0.9 V/ECS, the hydrazine oxidation reactions involved are: a four-electron process (75 %) with nitrogen formation and a one-electron process (25 %) with formation of nitrogen and ammonium ion. By contrast, electrolysis carried out at 0.65 V/ECS (with reactivation of the electrode at - 0.2 V/ECS to remove the poison from the platinum) allowed the selective oxidation of hydrazine to nitrogen by the four-electron reaction. Nitric acid can only be reduced to nitrous acid in the absence of hydrazine. For medium-acid media (≤ 6 mol/l), this reaction takes place at potentials below - 0.2 V/ECS. However, the production rate of nitrous acid (partial order 0 with respect to nitric acid) is very low compared with the values obtained for strongly-acid media (6 to 10 mol/l) at the potential of - 0.1 V/ECS. Note that, in concentrated nitric medium, the selectivity of the reduction reaction is 47 to 85 % for nitrous acid, depending on the nitric acid concentration (6 to 10 mol/l) and the potential imposed (- 0.1 ≤ E ≤ 0.6 V/ECS). A kinetic study helped to determine the hydrazine oxidation rates as a function of the operating conditions. In all cases, the reaction rate is of partial order 0 with respect to hydrazine. These studies accordingly

  9. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  10. Cyclobutyl methyl ketone as a model compound for pinonic acid to elucidate oxidation mechanisms

    Directory of Open Access Journals (Sweden)

    A. P. Praplan

    2012-04-01

    Full Text Available 3-Methyl-1,2,3-tricarboxylic acid (MBTCA, terpenylic acid and diaterpenylic acid acetate were identified in secondary organic aerosol (SOA from α-pinene photooxidation or ozonolysis. These compounds display interesting structural features: MBTCA has a high oxygen to carbon ratio, terpenylic acid contains a lactone ring in its structure and diaterpenylic acid acetate possesses an ester functional group. The reaction mechanisms leading to these products are still unknown, but it was demonstrated experimentally in earlier studies that MBTCA is formed from pinonic acid, a primary ozonolysis product of α-pinene. Because the direct observation of pinonic acid oxidation in a smog chamber would be difficult due to its relatively low volatility, a model compound possessing the substructure of interest was used instead: cyclobutyl methyl ketone (CMK. From its oxidation, several organic acids could be measured with ion chromatography (IC coupled to a mass spectrometer (MS. Succinic acid, the analogous product of MBTCA is formed at molar yields of 2 to 5%. Butyrolactone is detected as butanoic acid, due to hydrolysis in the sampling device. A monocarboxylic acid with nominal mass 146 was detected in the absence of nitrogen oxides (NOx and could be the analogous product of diaterpenylic acid acetate. However, due to a lack of available standards, the exact structure of this compound remains unelucidated. Finally, 4-oxobutanoic acid could also be measured and two structures of its expected analogous compound from pinonic acid oxidation are proposed. Because these compounds are primary products of the CMK oxidation, reaction mechanisms capable of adding one or two carboxylic functional groups without formation of stable intermediate products needs to be formulated. Such a formation mechanism of MBTCA from pinonic acid was found in the literature; however, it includes a hydrogen atom migration to an acyloxy radical, which is expected to loose

  11. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic drawing of electrochemical oxidize AA, DA and UA on graphitic carbon nitride nanosheets-graphene oxide composite modified electrode. - Highlights: • Synthesize g-C3N4, GO and CNNS-GO composite. • CNNS-GO composite was the first time for simultaneous determination of AA, DA and UA. • CNNS-GO/GCE displays fantastic selectivity and sensitivity for AA, DA and UA. • CNNS-GO/GCE was applied to detect real sample with satisfactory results. - Abstract: Graphitic carbon nitride nanosheets with a graphite-like structure have strong covalent bonds between carbon and nitride atoms, and nitrogen atoms in the carbon architecture can accelerate the electron transfer and enhance electrical properties effectually. The graphitic carbon nitride nanosheets-graphene oxide composite was synthesized. And the electrochemical performance of the composite was investigated by cyclic voltammetry and differential pulse voltammetry ulteriorly. Due to the synergistic effects of layer-by-layer structures by π-π stacking or charge-transfer interactions, graphitic carbon nitride nanosheets-graphene oxide composite can improved conductivity, electro-catalytic and selective oxidation performance. The proposed graphitic carbon nitride nanosheets-graphene oxide composite modified electrode was employed for simultaneous determination of ascorbic acid, dopamine and uric acid in their mixture solution, it exhibited distinguished sensitivity, wide linear range and low detection limit. Moreover, the modified electrode was applied to detect urine and dopamine injection sample, and then the samples were spiked with certain concentration of three substances with satisfactory recovery results

  12. Empirical Modeling of Iron Oxide Dissolution in Sulphuric and Hydrochloric Acid

    Science.gov (United States)

    Hemmelmann, Jan C.; Xu, Hao; Krumm, Wolfgang

    2013-10-01

    A new approach is presented to an empirical modeling of chemical pickling processes, based on the activation energy of oxide dissolution in hydrochloric acid (HCl) and sulfuric acid (H2SO4). The model allows us to calculate pickling times as a function of definite parameters. The main oxide layers on hot-rolled materials are magnetite (Fe3O4), hematite (Fe2O3), and wustite (FeO). On the laboratory scale, the activation energy of each oxide has been determined. FeO is a metastable oxide and has been produced based on magnetite powder in a H2/H2O atmosphere. The oxide powders used for the experimental procedure have been analyzed by X-ray powder diffraction to insure the proper stoichiometry and composition. The model allows us to calculate the time of oxide dissolution based on the parameters temperature, acid concentration, and the composition of the oxide layer. Calculated values are verified by surface potential measurement on industrial oxide layers. The hot-rolled material used for verification is low carbon steel. A comparison between calculated pickling times and experimental data will be presented.

  13. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    Science.gov (United States)

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  14. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage...

  15. Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

    Indian Academy of Sciences (India)

    Madhu Khurana; Pradeep K Sharma; Kalyan K Banerji

    2000-04-01

    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants. The reaction is acid-catalysed and the acid dependence has the form: obs = + [H+]. The oxidation of -deuterioformic acid exhibits a substantial primary kinetic isotope effect (H/D = 6.01 at 303 K). The reaction has been studied in nineteen different organic solvents and the solvent effect has been analysed using Taft’s and Swain’s multiparametric equations. The temperature dependence of the kinetic isotope effect indicates the presence of a symmetrical cyclic transition state in the rate-determining step. Suitable mechanisms have been proposed

  16. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection?

    Directory of Open Access Journals (Sweden)

    Paulo J. Oliveira

    2012-01-01

    Full Text Available Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.

  17. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  18. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  19. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  20. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    International Nuclear Information System (INIS)

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP+ accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [14C]-palmitate oxidation (measured as [14C]O2 release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency

  1. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ndukwe Erlingsson, Uzochi Chimdinma [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Iacobazzi, Francesco [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari (Italy); Liu, Aiping [ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Ardon, Orly; Pasquali, Marzia [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States); Longo, Nicola, E-mail: Nicola.Longo@hsc.utah.edu [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States)

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  2. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    Science.gov (United States)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  3. Orphan drugs in development for long-chain fatty acid oxidation disorders: challenges and progress

    Directory of Open Access Journals (Sweden)

    Sun A

    2015-04-01

    Full Text Available Angela Sun, J Lawrence Merritt II Department of Pediatrics, University of Washington, Seattle, WA, USA Abstract: Fatty acid oxidation disorders are inborn errors of metabolism resulting in failure of ß-oxidation within or transport of fatty acids into the mitochondria. The long-chain fatty acid oxidation disorders are characterized by variable presentations ranging from newborn cardiomyopathy, to infantile hypoketotic hypoglycemia resulting from liver involvement, to skeletal myopathy often resulting in rhabdomyolysis in adolescents and adults. Treatments for these long-chain fatty acid oxidation disorders have typically focused upon avoidance of fasting with dietary fat restriction and medium-chain triglyceride supplementation. These treatments have resulted in only a partial response with improvements in hypoglycemia, reduction in frequency of rhabdomyolysis, and improvement in cardiomyopathy with early therapy, but significant risk remains. Recent advances in therapies for long-chain fatty acid oxidation disorders are reviewed in this article. These include sodium D,L-3-hydroxybutyrate, triheptanoin, gene therapy, and bezafibrates. Sodium D,L-3-hydroxybutyrate has shown clinical effect, with improvements in muscle tone, neurological abnormalities, and some cases of cardiomyopathy and leukodystrophy. Triheptanoin has been used as an alternative medium-chain triglyceride in a number of fatty acid oxidation disorders and has shown promising findings in the treatment of cardiomyopathy and hypoglycemia. However, it does not significantly reduce episodes of rhabdomyolysis. Gene therapy has been shown to improve acylcarnitine levels in very-long-chain acyl-coenzyme A dehydrogenase deficiency mouse models, with preservation of glucose levels. Bezafibrates have shown improvements in acylcarnitine concentrations in fibroblast studies, but clinical observations have not demonstrated consistent effects. Together, these treatments have shown some

  4. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    Science.gov (United States)

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  5. Uric acid correlates to oxidation and inflammation in opposite directions in women

    Science.gov (United States)

    Wu, Sheng Hui; Shu, Xiao Ou; Milne, Ginger; Xiang, Yong-Bing; Zhang, Xianglan; Cai, Qiuyin; Fazio, Sergio; Linton, MacRae F; Chen, Honglei; Purdue, Mark; Rothman, Nathaniel; Gao, Yu-Tang; Zheng, Wei; Yang, Gong

    2016-01-01

    Objective To evaluate the association of uric acid (UA) levels with a panel of markers of oxidative stress and inflammation. Methods Plasma UA levels, along with a panel of oxidative stress and inflammatory markers, were measured in 755 Chinese women. Results Plasma UA levels were inversely associated with urinary levels of the oxidative stress marker F2-isoprostanes and positively correlated to levels of inflammatory markers such as C-reactive protein and some proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) in blood as well as prostaglandin E2 metabolites in urine. Conclusions Plasma UA levels correlate to oxidation and inflammation biomarkers in opposite directions in women. PMID:26301880

  6. Correlation between the different chain lengths of free fatty acid oxidation and ability of trophoblastic invasion

    Institute of Scientific and Technical Information of China (English)

    Yu Huan; Yang Zi; Ding Xiaoyan; Wang Yanling; Han Yiwei

    2014-01-01

    Background Preeclampsia (PE) is associated with abnormal fatty acid beta-oxidation (FAO),especially metabolic disorders of long-chain fatty acid oxidation.The role of FAO dysfunction in inadequate invasion is unclear.The aim of this study was to explore the influence of various lengths fatty acids oxidation on invasiveness of trophoblasts.Methods Primary human trophoblast cells and HTR8/SVneo cells were treated with fatty acids of various lengths.Morphological changes,lipid deposition and ultrastructure changes of trophoblast cells were detected.Cells invasiveness was determined by transwell insert.CPT1,CPT2 and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) protein expression were analyzed.The correlation between intracellular lipid droplets deposition and cells invasiveness was evaluated.Results Cells treated with long-chain fatty acids showed significant increased lipid droplets deposition,severe mitochondrial damage,decreased CPT2 and LCHAD protein expression (P <0.05) but no significant difference in CPT1 protein expression (P >0.05).Invasiveness of the trophoblast cells of the LC-FFA group significantly decreased (P <0.05).Intracellular lipid droplets deposition was negatively correlated with invasivenss (R=-0.745,P <0.05).Conclusion Trophoblast cells after stimulation with long chain fatty acids exist fatty acid oxidation disorders,and reduce the ability of trophoblastic invasion.

  7. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  8. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  9. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels.

    Science.gov (United States)

    Lei, Shi; Sun, Run-Zhu; Wang, Di; Gong, Mei-Zhen; Su, Xiang-Ping; Yi, Fei; Peng, Zheng-Wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  10. The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    Yuan; Bu; Wenle; Dai; Nan; Li; Xinran; Zhao; Xia; Zuo

    2013-01-01

    The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid.

  11. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  12. Passivation Mechanism of 316L Stainless Steel in Oxidizing Acid Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.

  13. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  14. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, H.; Miwa, A. (Josai Univ., Saitama (Japan))

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  15. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    Science.gov (United States)

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed.

  16. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  17. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    OpenAIRE

    Xiaoli An; Haibin Ma; Bin Liu; Jizeng Wang

    2013-01-01

    Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO) were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the fil...

  18. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  19. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    Science.gov (United States)

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency.

  20. Selective liquid phase oxidation of glycerol to glyceric acid over novel supported Pt catalysts

    Directory of Open Access Journals (Sweden)

    Sproge Elina

    2013-01-01

    Full Text Available Several supported platinum catalysts were prepared by extractive-pyrolytic method for the selective glyceric acid production from glycerol. Al2O3, Y2O3, Lu2O3, ZrO2-Y2O3 TiO2, SG, Fe2O3, γ-AlO(OH and C were used as catalyst supports, glycerol oxidation was carried out in the alkaline solutions and oxygen was used as oxidant. The optimal catalyst preparation parameters and glycerol oxidation conditions to obtain glyceric acid were determined. The best result (selectivity to glyceric acid 57% with glycerol conversion 92% was achieved in the presence of 4.8%Pt/Al2O3 catalyst.

  1. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  2. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  3. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    Directory of Open Access Journals (Sweden)

    Alireza Haghighat Mamaghani

    2013-01-01

    Full Text Available An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was followed by a liquid-liquid extraction stage using acetonitrile as a polar solvent to remove produced sulfones from the model fuel. The impact of operating parameters including the molar ratio of formic acid to sulfur (, hydrogen peroxide to sulfur (, and the time of reaction was investigated using Box-Behnken experimental design for oxidation of the model fuel. A significant quadratic model was introduced for the sulfur removal as a function of effective parameters by the statistic analysis.

  4. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    DEFF Research Database (Denmark)

    Cadet, Jean; Loft, Steffen; Olinski, Ryszard;

    2012-01-01

    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several...... on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand...... and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included....

  5. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    Science.gov (United States)

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  6. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    Science.gov (United States)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  7. Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis

    DEFF Research Database (Denmark)

    Laursen, Anders Bo; Gorbanev, Yury; Cavalca, Filippo;

    2012-01-01

    for the selective aerobic oxidation of ethanol to acetic acid. The RuOx was deposited onto different oxide supports using a new gas-phase reaction, which in all cases resulted in homogeneous nanoparticulate films. The RuOx particle size ranged from 0.3 to 1.5nm. The catalytic activity was evaluated on TiO2, Mg6Al2...

  8. Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid

    OpenAIRE

    Zoran Nedić; Stevan Stojadinović; Ubavka B. Mioč

    2009-01-01

    This paper is a brief review of our recent research into novel uses for heteropoly compounds as precursors for thin films that can be used as catalysts and materials with good optical, conductive and other characteristics. In view of this, we have chosen thin film obtained with 12-tungsphosphoric acid on aluminum substrates. In all cases, a relatively new, microarc oxidation technique has been used to prepare oxide coatings on substrate surfaces. Advanced physicochemical methods, AFM and SEM-...

  9. Oxidation and Textural Characteristics of Butter and Ice Cream with Modified Fatty Acid Profiles

    OpenAIRE

    Gonzalez, Sonia

    2001-01-01

    Milk fat composition determines specific rheological, sensory and physicochemical properties of dairy products such as texture, melting point, flavor, color, oxidation rates, and viscosity. Previous studies have shown that milkfats containing higher levels of long chain polyunsaturated fatty acids have lower melting points and decreased solid fat contents which leads to softer-textured products. An increased risk of higher oxidation rates can be a disadvantage of high levels of polyunsaturate...

  10. Influence of concentration in phosphoric acid treatment of titanium oxide and their powder properties

    OpenAIRE

    Hiroaki Onoda; Aki Matsukura

    2015-01-01

    Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with various concentrations of phosphoric acid to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium ox...

  11. Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid

    OpenAIRE

    Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham

    2015-01-01

    Purpose It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) i...

  12. Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature

    OpenAIRE

    Sweejiang Yoo; Xin Li; Yuan Wu; Weihua Liu; Xiaoli Wang; Wenhui Yi

    2014-01-01

    Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGOTA functionalized. Our results sho...

  13. Synthesis and characterization of nanocrystalline nickel oxide using NaOH and oxalic acid as oxide sources

    International Nuclear Information System (INIS)

    Precursors of nickel oxide (NiO) nanoparticles were synthesized through a simple chemical precipitation method by changing the oxide source used for the synthesis. The synthesized precursors were subjected to thermo gravimetric analysis (TGA) to determine the temperature at which the precursors decompose into nickel oxide. The obtained results of TGA suggest that precursor NiO prepared using sodium hydroxide (NaOH) showed NiO formation at 600 °C, whereas, when oxalic acid was used as oxide source the formation of NiO took place at 400 °C. After calcinations of the precursors at respective temperatures, NiO nanocrystals have been harvested. The synthesized NiO powders were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDX), and vibrating sample magnetometer (VSM) analysis. An FE-TEM image of NiO prepared using oxalic acid showed spherical and elliptical particles with sizes in the range of 15 nm. The Williamson–Hall (W–H) plots were drawn for the annealed products to study their lattice strain and crystallite size. The sizes of NiO nanocrystals obtained from W–H analysis are well correlated with sizes estimated using Scherrer’s formula. The relatively low saturation magnetization of NiO confirms its super paramagnetic behavior. (papers)

  14. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  15. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  16. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies.

    Science.gov (United States)

    Seo, Young Ho; Carroll, Kate S

    2009-09-22

    Hydrogen peroxide (H2O2) functions as a second messenger that can activate cell proliferation through chemoselective oxidation of cysteine residues in signaling proteins. The connection between H2O2 signaling, thiol oxidation, and activation of growth pathways has emerged as fertile ground for the development of strategies for cancer treatment. Central to achieving this goal is the development of tools and assays that facilitate characterization of the molecular events associated with tumorigenesis and evaluation of patient response to therapy. Here we report on the development of an immunochemical method for detecting sulfenic acid, the initial oxidation product that results when a thiolate reacts with H2O2. For this approach, the sulfenic acid is derivatized with a chemical tag to generate a unique epitope for recognition. The elicited antibody is exquisitely specific, context-independent, and capable of visualizing sulfenic acid formation in cells. Applying this approach to several systems, including cancer cell lines, shows it can be used to monitor differences in thiol redox status and reveals a diverse pattern of sulfenic acid modifications across different subtypes of breast tumors. These studies demonstrate a general strategy for producing antibodies against a specific oxidation state of cysteine and show the utility of these reagents for profiling thiol oxidation associated with pathological conditions such as breast cancer.

  17. Electro-oxidation of perfluorooctanoic acid by carbon nanotube sponge anode and the mechanism.

    Science.gov (United States)

    Xue, An; Yuan, Zi-Wen; Sun, Yan; Cao, An-Yuan; Zhao, Hua-Zhang

    2015-12-01

    As an emerging persistent organic pollutant (POPs), perfluorooctanoic acid (PFOA) exists widely in natural environment. It is of particular significance to develop efficient techniques to remove low-concentration PFOA from the contaminated waters. In this work, we adopted a new material, carbon nanotube (CNT) sponge, as electrode to enhance electro-oxidation and achieve high removal efficiency of low-concentration (100μgL(-1)) PFOA from water. CNT sponge was pretreated by mixed acids to improve the surface morphology, hydrophilicity and the content of carbonyl groups on the surface. The highest removal efficiencies for low-concentration PFOA electrolyzed by acid-treated CNT sponge anode proved higher than 90%. The electro-oxidation mechanism of PFOA on CNT sponge anode was also discussed. PFOA is adsorbed on the CNT sponge rapidly increasing the concentration of PFOA on anode surface. When the potential on the anode is adjusted to more than 3.5V, the adsorbed PFOA undergoes electrochemically oxidation and hydrolysis to produce shorter-chain perfluorocarboxylic acids with less CF2 unit. The efficient electro-oxidation of PFOA by CNT sponge anode is due to the combined effect of adsorption and electrochemical oxidation. These findings provide an efficient method to remove actual concentration PFOA from water. PMID:26172515

  18. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR

  19. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO2− oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  20. Electrochemical oxidation of substituted benzylamines in aquo-acetic acid medium: substituent and solvent effects

    Indian Academy of Sciences (India)

    A Thirumoorthi; K P Elango

    2007-07-01

    Electrochemical oxidation of nine para- and meta-substituted benzylamines in varying mole fractions of acetic acid in water has been investigated in the presence of 0.1 M sulphuric acid as supporting electrolyte. The oxidation potentials correlate well with Hammett’s substituent constants affording negative reaction constants. The correlation of potential values with macroscopic solvent parameters is non-linear suggesting that the operation of both specific and non-specific solvent-solvent-solute interaction mechanisms. Multiple correlation analysis of the experimental data with Kamlet-Taft solvatochromic parameters is employed.

  1. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William;

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...... of catalysts, oxidant pressure, reaction temperature, and substrate concentration were investigated. Quantitative yield of acetic acid was obtained with 1.2 wt % Ru(OH)x/CeO2 under optimized conditions (150 °C, 10 bar O2, 12 h of reaction time, 0.23 mol % Ru to substrate)....

  2. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H+. A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  3. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  4. Low ascorbic acid and increased oxidative stress in gulo(-/-) mice during development.

    Science.gov (United States)

    Harrison, Fiona E; Meredith, M Elizabeth; Dawes, Sean M; Saskowski, Jeanette L; May, James M

    2010-08-19

    Vitamin C (ascorbic acid, AA) depletion during prenatal and postnatal development can lead to oxidative stress in the developing brain and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/-) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/-) dams were mated with gulo(+/-) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and postnatal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On postnatal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo(-/-) mice and malondialdehyde (MDA) levels were significantly increased. In postnatal day 18 pups (P18) AA levels decreased further in gulo(-/-) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F(2)-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(-/-) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(-/-) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA.

  5. Oxidation Effect on Tribological Pproperties of Rapeseed oil and Lard Mixtures Containing Monoglycerides and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Violeta Makareviciene

    2012-10-01

    Full Text Available Vegetable oils and animal fats are increasingly popular base material to produce environmentally friendly lubricants. This is a renewable and easily biodegradable in the natural environment material. The main disadvantage of vegetable oils and animal fats as raw materials and its lubricants is pour oxidation stability. There are already a wide range of environmentally friendly lubricants in the market, while the variety of greases offer is not so high. This research aims to explore the properties of prepared compositions of lubricating greases produced from rapeseed oil and lard, modifying them with monoglycerides, stearic and oleic acids. The plastic properties (penetration and oxidation influence on tribological and corrosive properties of these compositions were studied. It was found that modifying rapeseed oil and lard with monoglycerides, oleic and stearic acids a few lubricating compositions of NLGI grades can be achieved: soft or very soft rapeseed oil based greases and medium or nearly hard consistency lard based compositions. The oxidation studies showed that it decreases the tribological properties of base and monoglycerides modified lubricants. Oxidation has greater negative impact on lard and lard based compositions. Oleic and stearic acids reduces or completely eliminates the negative influence of oxidation. Corrosion studies have shown that both fresh and oxidized lubricant compositions have no significant affect on copper strip corrosion.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1763

  6. Malic acid assisted precursor route to hierarchical structured nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haizhen [Zhejiang California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang (China); Qian, Yitai [Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui (China)

    2010-05-15

    A novel malic acid assisted precursor route to prepare NiO materials with novel hierarchical structures has been investigated in this work. The Ni-based precursors can be synthesized by a malic acid-assisted hydrothermal route, which have been characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA). NiO materials can be prepared via the thermal treatment of the precursor in ambient atmosphere. The XRD, SEM, Energy dispersive X-ray spectroscopy (EDS) and UV-Vis spectroscopy of the NiO materials were also examined. The effects of the reaction conditions, such as the reaction temperature, the quantity of the raw materials on the morphologies of the precursors were discussed, which indicates that it is an effective method to synthesize NiO materials with different hierarchical structures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    Science.gov (United States)

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  8. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  9. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    OpenAIRE

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. E...

  10. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  11. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  12. Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst

    International Nuclear Information System (INIS)

    Highlights: • The photoactivity of sprayed WO3 thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO3 thin films were deposited using spray pyrolysis technique. The prepared WO3 thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO3 films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (Iph = 261 μA/cm2) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO3 has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO3 thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO3 film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO3 photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value

  13. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  14. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    OpenAIRE

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and ...

  15. Effect of acid oxidization of carbon nanotube electrode on the capacitances of double layer capacitors

    Institute of Scientific and Technical Information of China (English)

    LI; Chensha; WANG; Dazhi; LIANG; Tongxiang; WANG; Xiaofen

    2004-01-01

    Polarizable electrode of electric double layer capacitor was made from carbon nanotubes. The effect of acid oxidation of electrode on the specific capacitance was studied. Oxidation removed the redundant carbon, expanded the pore size and introduced some kinds of functional groups on the surface of CNTs. The specific capacit ance of the electrodes with organic electrolyte was increased from 21.4 to 49.6 F/gafter being oxidized at a volume ratio of H2SO4 to HNO3 of 3:1.

  16. Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    Yang Su-Dong; Shen Cheng-Min; Tong Hao; He Wei; Zhang Xiao-Gang; Gao Hong-Jun

    2011-01-01

    A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine.Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction.The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts.

  17. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Science.gov (United States)

    Yang, Su-Dong; Chen, Lin

    2015-11-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  18. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  19. Performance of Caro's acid as an oxidant at the Nabarlek Mill

    International Nuclear Information System (INIS)

    Pyrolusite (manganese dioxide) was originally chosen as the oxidant at the Nabarlek Mill in northern Australia. Subsequent laboratory and plant trial investigations showed that if Caro's acid were to replace pyrolusite, acid consumption in the leaching circuit could be reduced by 15-20% for the same uranium extraction. Lime required to neutralize the tailings/raffinate slurry could also be similarly reduced. A Caro's acid generator was commissioned at Nabarlek in April 1983. Caro's acid is manufactured at the mill site by reaction of hydrogen peroxide with concentrated sulphuric acid. This installation is the first commercial utilization of Caro's acid in uranium processing. The system has operated successfully for three months and reagent savings have resulted in a reduction in operating costs of greater than $3.t-1 ore processed. (author)

  20. PPAR{delta} is a fatty acid sensor, which enhances mitochondrial oxidation in insulin

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Frigerio, Francesca; Boergesen, Michael;

    2010-01-01

    RNA-mediated knockdown we demonstrate that the ability of unsaturated fatty acids to stimulate fatty acid metabolism is dependent on PPARdelta. Activation of PPARdelta increases the fatty acid oxidation potential in INS-1E beta-cells, enhances glucose-stimulated insulin secretion (GSIS) from islets, and protects GSIS...... against adverse effects on GSIS associated with prolonged fatty acid exposure. The presented results indicate that the nuclear receptor PPARdelta is a fatty acid sensor that adapts beta-cell mitochondrial function to long-term changes in unsaturated fatty acid levels. As maintenance of mitochondrial...... metabolism is essential to preserve beta-cell function, these data indicate that dietary or pharmacological activation of PPARdelta and RXR may be beneficial in the prevention of beta-cell dysfunction....

  1. Cu2+-Catalyzed Oscillatory Oxidation of Ascorbic Acid by O2 Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel heterogeneous oscillator, the Cu2+-catalyzed oscillatory oxidation of ascorbic acid (Vitamin C) in aqueous solution by O2 flow was reported. Both the potential oscillations on Pt-electrode corresponding to [Cu2+] and the absorbance oscillations at l=260 nm corresponding to [ascorbic acid] were observed. Oscillations in the completely homogeneous system were also observed. Effects of several factors on the oscillations were investigated.

  2. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    OpenAIRE

    F. Casellas; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; J. R. Malagelada

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can...

  3. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    Science.gov (United States)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  4. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  5. Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar

    International Nuclear Information System (INIS)

    Synthesis of boronic acid functionalized superparamagnetic iron oxide nanoparticles has been reported. Magnetite nanoparticles were prepared by simple co-precipitation from Fe2+ and Fe3+ solution. m-Aminophenyl boronic acid was attached to iron oxide particles through 3,4-dihydroxy benzaldehyde through C=N bond. X-ray diffraction and selected area electron diffraction have shown the formation of inverse spinel phase magnetite of both as prepared and functionalized magnetite particles. FTIR shows attachment of boronic acid-imine onto iron oxide surface through enediol group. Transmission electron microscopy shows well dispersion of boronic acid functionalized particles of size 8 ± 2 nm. Vibration sample magnetometry shows both the particles are superparamagnetic at room temperature having saturation magnetization (Ms) 52 emu/g. In this work the affinity of these boronic acid functionalized particles towards sugar binding was studied taking dextrose sugar as a model. The influence of pH and sugar concentration has been extensively investigated. The results show that such boronic acid modified superparamagnetic particles are efficient support for sugar separation having maximum sugar loading capacity (60 μg/50 μl) at pH 8.

  6. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  7. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra;

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  8. Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats.

    Science.gov (United States)

    Ateşşahín, Ahmet; Ceríbaşi, Ali Osman; Yuce, Abdurrauf; Bulmus, Ozgür; Cikim, Gürkan

    2007-02-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with ellagic acid on cisplatin-induced nephrotoxicity using biochemical and histopatological approaches. Adult male Sprague-Dawley rats were randomly divided into four groups. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in the cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The effects of ellagic acid on cisplatin-induced nephrotoxicity were evaluated by plasma creatinine, urea, sodium and calcium concentrations; kidney tissue malondialdehyde, reduced glutathione (GSH), glutathione peroxidase (GSH peroxidase) and catalase activities and histopatological examinations. Administration of cisplatin to rats induced a marked renal failure, characterized by significant increases in plasma creatinine, urea and calcium concentrations. Cisplatin also induced oxidative stress, as indicated by increased kidney tissue concentrations of malondialdehyde, and reduced activities of GSH peroxidase and catalase. Furthermore, treatment with cisplatin caused a marked tubular necrosis, degeneration and desquamation, luminal cast formation, karyomegaly, tubular dilatation, interstitial mononuclear cell infiltration and inter-tubular haemorrhagia. Ellagic acid markedly reduced elevated plasma creatinine, urea and calcium levels and counteracted the deleterious effects of cisplatin on oxidative stress markers. In the same way, ellagic acid ameliorated cisplatin-induced pathological changes including tubular necrosis, degeneration, karyomegaly, tubular dilatation when compared to the cisplatin alone group. These results indicate that the antioxidant ellagic acid might have a protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat, but not enough to inhibit cisplatin-induced renal dysfunction.

  9. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata.

    Science.gov (United States)

    Pahan, K; Khan, M; Singh, I

    1996-05-01

    In humans the oxidation of phytanic acid is a peroxisomal function. To understand the possible mechanisms for the pathognomic accumulation of phytanic acid in plasma and body fluids of Refsum disease (RD) and rhizomelic chondrodysplasia punctata (RCDP), we investigated activities of various steps (activation, transport, and oxidation) in the metabolism of phytanic acid in peroxisomes isolated from cultured skin fibroblasts from control, RD, and RCDP subjects. Activation of phytanic acid was normal in peroxisomes from both RD and RCDP. Transport of phytanic acid or phytanoyl-CoA in the absence or presence of fatty acid activating cofactors (ATP, MgCl2, and CoASH) into peroxisomes isolated from RD and RCDP skin fibroblasts was also similar to that of peroxisomes from control fibroblasts. Defective oxidation of [(2,3)-3H]- or [1-14C]phytanic acid, or [1-14C]phytanoyl-CoA (substrate for the first step of alpha-oxidation) but normal oxidation of [1-14C] alpha-hydroxyphytanic acid (substrate for the second step of the alpha-oxidation pathway) in peroxisomes from RD clearly demonstrates that excessive accumulation of phytanic acid in plasma and body fluids of RD is due to the deficiency of phytanic acid alpha-hydroxylase in peroxisomes. However, in RCDP peroxisomes, in addition to deficient oxidation of [1-14C]phytanic acid or phytanoyl-CoA or [(2,3)-3H]phytanic acid, the oxidation of [1-14C] alpha-hydroxyphytanic acid was also deficient, indicating that in RCDP the activities both of alpha-hydroxylation of phytanic acid and decarboxylation of alpha-hydroxyphytanic acid are deficient. These observations indicate that peroxisomal membrane functions (phytanic acid activation and transport) in phytanic acid metabolism are normal in both RD and RCDP. The defect in RD is in the alpha-hydroxylation of phytanic acid; whereas in RCDP both alpha-hydroxylation of phytanic acid as well as decarboxylation of alpha-hydroxyphytanic acid are deficient.

  10. Synergistic Effects of Zinc Oxide Nanoparticles and Fatty Acids on Toxicity to Caco-2 Cells

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Kermanizadeh, Ali;

    2015-01-01

    Fatty acids exposure may increase sensitivity of intestinal epithelial cells to cytotoxic effects of zinc oxide (ZnO) nanoparticles (NPs). This study evaluated the synergistic effects of ZnO NPs and palmitic acid (PA) or free fatty acids (FFAs) mixture (oleic/PA 2:1) on toxicity to human colon...... epithelial (Caco-2) cells. The ZnO NPs exposure concentration dependently induced cytotoxicity to Caco-2 cells showing as reduced proliferation and activity measured by 3 different assays. PA exposure induced cytotoxicity, and coexposure to ZnO NPs and PA showed the largest cytotoxic effects. The presence of...

  11. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation.

    Science.gov (United States)

    Skulachev, V P

    1991-12-01

    Free fatty acids, natural uncouplers of oxidative phosphorylation, are shown to differ from artificial ones in that they fail to increase conductance of phospholipid bilayers which are permeable for the protonated form of fatty acids but impermeable for their anionic form. Recent studies have revealed that uncoupling by fatty acids in mitochondria is mediated by the ATP/ADP antiporter and, in brown fat, by thermogenin which is structurally very similar to the antiporter. It is suggested that both the ATP/ADP antiporter and thermogenin facilitate translocation of the fatty anions through the mitochondrial membrane. PMID:1756853

  12. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  13. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial

    Science.gov (United States)

    Amador-Licona, Norma; Díaz-Murillo, Teresa A.; Pereyra-Nobara, Texar A.; Guízar-Mendoza, Juan M.; Barbosa-Sabanero, Gloria; Orozco-Aviña, Gustavo; Moreno-Martínez, Sandra C.; Luna-Montalbán, Rafael; Vázquez-Valls, Eduardo

    2016-01-01

    HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART) were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA) or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals), and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55%) and AZT/3TC/EFV (15%) without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04), but oxidative stress markers were not different between groups. Trial Registration ClinicalTrials.gov NCT02041520 PMID:27015634

  14. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro.

    Science.gov (United States)

    Kanski, J; Lauderback, C; Butterfield, D A

    2001-01-01

    The antioxidant properties of 5-aminosalicylic acid in vitro were evaluated in a synaptosomal membrane system prepared from gerbil cortical synaptosomes using EPR spin labeling and spectroscopic techniques. MAL-6 (2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl) and 5-NS (5-nitroxide stearate) spin labels were used to assess changes in protein oxidation and membrane lipid fluidity, respectively. Synaptosomal membranes were subjected to oxidative stress by incubation with 1 mM azo-bis(isobutyronitrile) (AIBN) or 1 mM 2,2'-azobis(amidino propane) dihydrochloride (AAPH) at 37 degrees C for 30 minutes. The EPR analyses of the samples showed significant oxidation of synaptosomal proteins and a decrease in membrane fluidity. 5-Aminosalicylic acid also was evaluated by means of FRAP (the ferric reducing ability of plasma) test as a potential antioxidant. 5-Aminosalicylic acid also showed protection against the oxidation in gerbil cortical synaptosomes system caused by AIBN and AAPH. These results are consistent with the notion of antioxidant protection against free radical induced oxidative stress in synaptosomal membrane system by this agent.

  15. Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Liyuan; Cheng; Hong; Liu; Yuming; Cui; Nianhua; Xue; Weiping; Ding

    2014-01-01

    Considering energy shortage, large molecules in corn cob and easy separation of solid catalysts, nano oxides are used to transform corn cob into useful chemicals. Because of the microcrystals, nano oxides offer enough accessible sites for cellulose, hemicellulose and monosaccharide from corn cob hydrolysis and oxidant. Chemical conversion of corn cob to organic acids is investigated over nano ceria, alumina, titania and zirconia under various atmospheres. Liquid products are mainly formic and acetic acids. A small amount of other compounds, such as D-xylose,D-glucose, arabinose and xylitol are also detected simultaneously. The yield of organic acids reaches 25%–29% over the nano oxide of ceria,zirconia and alumina with 3 h reaction time under 453 K and 1.2 MPa O2. The unique and fast conversion of corn cob is directly approached over the nano oxides. The results are comparative to those of biofermentation and offer an alternative method in chemically catalytic conversion of corn cob to useful chemicals in a one-pot chemical process.

  16. Vitamin E supplementation in elderly lowers the oxidation rate of linoleic acid in LDL.

    NARCIS (Netherlands)

    Waart, de F.; Moser, U.; Kok, F.J.

    1997-01-01

    .Oxidation of LDL–linoleic acid (LDL–LA), a major substrate for lipid peroxidation, may be counteracted by the antioxidant vitamin E. In a 3-month randomized double-blind placebo-controlled trial in 83 apparently healthy Dutch elderly, aged 67–85 years, the direct protective effect of 100 IU vitamin

  17. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  18. Critical phenomena in ethylbenzene oxidation in acetic acid solution at high cobalt(II) concentrations

    NARCIS (Netherlands)

    Gavrichkov, AA; Zakharov, [No Value

    2005-01-01

    Critical phenomena in ethylbenzene oxidation in an acetic acid solution at high cobalt(ill) concentrations (from 0.01 to 0.2 mol L-1) were studied at 60-90 degrees C by the gasometric (O-2 absorption), spectrophotometric (Co-III accumulation), and chemiluminescence (relative concentration of radical

  19. Urinary markers of nucleic acid oxidation and cancer in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Kasper Broedbaek

    2015-04-01

    Conclusions: Urinary excretion of the nucleic acid oxidation markers 8-oxodG and 8-oxoGuo at the time of diagnosis was not associated with cancer overall in type 2 diabetes patients. For site-specific cancers, risk elevations were seen for breast cancer (8-oxodG. These findings should be examined in future and larger studies.

  20. Application of the Generic Modeling Template Approach to Unsaturated Fatty Acid Oxidation and Crystallization Systems

    DEFF Research Database (Denmark)

    Fedorova, Marina; Papadakis, Emmanouil; Meisler, Kresten Troelstrup;

    2014-01-01

    for following the modelling workflow steps, guidance through the steps , as well as providing additional information and comments. The application of the tool is highlighted with two case studies: oxidation of unsaturated acid with hydrogen peroxide and modeling of a crystal lization operation...... for the paracetamol-ethanol system....

  1. Synthesis and bioactivity of novel nitric oxide-releasing ursolic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Wen Qiu; Jia Tang; Zhi Feng Wang; Shu Ying He

    2011-01-01

    A series of furoxan-based novel nitric oxide-donating ursolic acid (UA) derivatives (7a-f) were synthesized, and their cytotoxic activities against HepG2 cells in vitro were evaluated by MTT method. It was found that 7a-d and 7f showed more potent cytotoxic activities than control 5-fluorouracil and UA.

  2. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...

  3. Method for the manufacture of nitric acid soluble mixed oxide fuel pellets

    International Nuclear Information System (INIS)

    For the manufacture of nitric acid-soluble mixed oxide fuel pellets with adjustable proportions, the starting powder is ground down to a primary grain size of < 2 μm together with a halogen-free grinding aid and subsequently mixed. The change is then granulated in a rotating chamber, pressed into pellet form and sintered. (orig.)

  4. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  5. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    International Nuclear Information System (INIS)

    Highlights: ► Oxidation with BDD is a powerful electrochemical method able to mineralize. ► SA is oxidized to aromatic compounds then CO2 and H2O. ► Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0–10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm2 area, by applying a current of 100, 300 and 450 mA at 25 °C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical (·OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L−1. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  6. Synthesis and characterisation of manganese oxides from potassium permanganate and citric acid mixtures

    Science.gov (United States)

    Burhanuddin, Syazwani; Yarmo, Ambar; Yamin, Bohari M.

    2013-11-01

    Reaction of KMnO4 and citric acid at different stoichiometric ratio found to give black precipitate after calcined at 500 %C. The black precipitate are classified as two type of manganese oxides mineral namely as bixbyite and hollandite. IR and XRD data were in agreement with the literature report.

  7. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode

    NARCIS (Netherlands)

    Schoonman, J.; Manea, F.; Radovan, C.; Corb, I.; Pop, A.; Burtica, G.; Malchev, P.G.; Picken, S.J.

    2007-01-01

    An exfoliated graphite-polystyrene composite electrode was evaluated as analternative electrode in the oxidation and the determination of oxalic acid in 0.1 M Na2SO4supporting electrolyte. Using CV, LSV, CA procedures, linear dependences I vs. C wereobtained in the concentrations range of oxalic aci

  8. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  9. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  10. Development of procedures for determining the amino acid requirements of chickens by the indicator amino acid oxidation method.

    Science.gov (United States)

    Ewing, H P; Pesti, G M; Bakalli, R I

    2001-02-01

    To better understand the amino acid requirements of chickens, a method is needed to determine a point estimate of the requirement. A method developed to determine the amino acid requirements of piglets and human infants by using the oxidation rate of an indicator amino acid as the test parameter was adapted for use in growing chickens. Polycarbonate chambers measuring 30 x 40 x 30 (L x W x H) were constructed to house one small mature chicken or several small immature chickens and to trap exhaled CO2. In the first experiment, 10-d-old chicks (250 to 300 g each) were feed deprived for 12 h and given 1 g of a methionine-deficient diet (gavage) with L-[1-C14]phenylalanine. Peak oxidation of L-[1-C14]phenylalanine occurred between 30 and 90 min (-200 dpm/g). A linear rate of oxidation (slope = -1.84; r2 = 0.96) was achieved by 120 min after feeding until after 180 min, when oxidation stabilized at a low rate. The second experiment tested different chambers and chicks with the same treatment to show repeatability. There were four chicks (250 to 300 g each) in each of three apparently identical chambers. Chicks were given two meals labeled with L-[1-C14]phenylalanine, 2 h apart. The CV for the 0- and 30-min collections were 17 and 10%, respectively. The CV for the remaining collections remained at <4%. These data supported a system of two feedings, 2 h apart to reduce variability and a collection period that included up to 3 h after the second feeding.

  11. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface.

    Science.gov (United States)

    Casado-Rivera, Emerilis; Gál, Zoltán; Angelo, A C D; Lind, Cora; DiSalvo, Francis J; Abruña, Héctor D

    2003-02-17

    The electrocatalytic oxidation of formic acid at a PtBi ordered intermetallic electrode surface has been investigated using cyclic voltammetry, rotating disk electrode (RDE) voltammetry and differential electrochemical mass spectrometry (DEMS). The results are compared to those at a polycrystalline platinum electrode surface. The PtBi electrode exhibits superior properties when compared to polycrystalline platinum in terms of oxidation onset potential, current density, and a much diminished poisoning effect by CO. Using the RDE technique, a value of 1.4 x 10(-4) cm s-1 was obtained for the heterogeneous charge transfer rate constant. The PtBi surface did not appear to be poisoned when exposed to a CO saturated solution for periods exceeding 0.5 h. The results for PtBi are discussed within the framework of the dual-path mechanism for the electrocatalytic oxidation of formic acid, which involves formation of a reactive intermediate and a poisoning pathway. PMID:12619419

  12. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    Directory of Open Access Journals (Sweden)

    Xiaoli An

    2013-01-01

    Full Text Available Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the film surfaces, resulting in that the PLA/PU/GO composite films show remarkably improved antibacterial activity compared with PLA/PU composite film. The inhibition efficiency is proportional to the amount of GO. Furthermore, PLA/PU/GO composite fibrous paper was fabricated using electrospinning and exhibited good biocompatibility. The addition of GO does not destroy normal cell’s proliferation and differentiation. PLA/PU/GO composites with good antibacterial activity and biocompatibility make it attractive for the environmental and clinical applications and also provide a candidate for future application of tissue engineering.

  13. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    Directory of Open Access Journals (Sweden)

    Rodrigo Polimeni Constantin

    2013-01-01

    Full Text Available Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD+ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD+ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide.

  14. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  15. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Science.gov (United States)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  16. Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts

    Institute of Scientific and Technical Information of China (English)

    LI She-Qiang; FU Xing-Qiu; HU Bing; DENG Jia-Jun; CHEN Lei

    2009-01-01

    The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7 V, respectively. A specific surface area activity of 1.76mA·cm~(-2) at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.

  17. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.

    Science.gov (United States)

    Cohen, Jamie L; Volpe, David J; Abruña, Héctor D

    2007-01-01

    The oxidation pathways of methanol (MeOH) have been the subject of intense research due to its possible application as a liquid fuel in polyelectrolyte membrane (PEM) fuel cells. The design of improved catalysts for MeOH oxidation requires a deep understanding of these complex oxidation pathways. This paper will provide a discussion of the literature concerning the extensive research carried out in acidic and alkaline electrolytes. It will highlight techniques that have proven useful in the determination of product ratios, analysis of surface poisoning, anion adsorption, and oxide formation processes, in addition to the effects of temperature on the MeOH oxidation pathways at bulk polycrystalline platinum (Pt(poly)) electrodes. This discussion will provide a framework with which to begin the analysis of activation energy (E(a)) values. This kinetic parameter may prove useful in characterizing the rate-limiting step of the MeOH oxidation at an electrode surface. This paper will present a procedure for the determination of E(a) values for MeOH oxidation at a Pt(poly) electrode in acidic and alkaline media. Values from 24-76 kJ mol(-1) in acidic media and from 36-86 kJ mol(-1) in alkaline media were calculated and found to be a function of applied potential and direction of the potential sweep in a voltammetric experiment. Factors that influence the magnitude of the calculated E(a) include surface poisoning from MeOH oxidation intermediates, anion adsorption from the electrolyte, pH effects, and oxide formation processes. These factors are all potential, and temperature, dependent and must clearly be addressed when citing E(a) values in the literature. Comparison of E(a) values must be between systems of comparable electrochemical environment and at the same potential. E(a) values obtained on bulk Pt(poly), compared with other catalysts, may give insight into the superiority of other Pt-based catalysts for MeOH oxidation and lead to the development of new catalysts

  18. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-07-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which no additional water is taken up. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  19. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  20. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  1. A Study on Anti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soybean bioactive peptides(SBPs) were prepared from the isolated soybean protein by proteolysis with an alkaline protease, alcalase, at 50 ℃ and pH = 8. 0. The dependence of hydrolysis time on hydrolysis degree and molecular weight distribution were examined. The hydrolysate was fractionated on a Sephadex G-25 column and the anti-oxidative activities of the fractions were detected by the method of pyrogallol auto-oxidation. The average chain length of soybean peptides that have anti-oxidative activity was estimated to be about 7. The anti-oxidative properties of the soybean peptide were also studied by using linoleic acid peroxidation systems. The optimal condition of the peroxidation system was set up, Vc/Cu2 + as the inducer at pH = 7.4 and 25 ℃. In addition, soybean peptides show higher antioxidative activity compared with GSH.

  2. Effect of omega-3 fatty acid oxidation products on the cellular and mitochondrial toxicity of BDE 47

    OpenAIRE

    Yeh, Andrew; Kruse, Shane E.; Marcinek, David J.; Gallagher, Evan P.

    2015-01-01

    High levels of the flame retardant 2,2′,4,4′-tetrabromodiphenyl ether (BDE 47) have been detected in Pacific salmon sampled near urban areas, raising concern over the safety of salmon consumption. However, salmon fillets also contain the antioxidants eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose oxidation products induce cellular antioxidant responses. Because oxidative stress is a mechanism of BDE 47 toxicity, we hypothesized that oxidized EPA and DHA can ameliorate the c...

  3. Hepatic Oxidative Stress in Fructose-Induced Fatty Liver Is Not Caused by Sulfur Amino Acid Insufficiency

    OpenAIRE

    Jones, Dean P.; Youngja Park; Ziegler, Thomas R; Orr, Michael L.; Young-Mi Go; Vos, Miriam B.; James R. Roede; Kunde, Sachin S.

    2011-01-01

    Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as...

  4. The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds.

    Science.gov (United States)

    Tsahar, Ella; Arad, Zeev; Izhaki, Ido; Guglielmo, Christopher G

    2006-09-01

    Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.

  5. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    Science.gov (United States)

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-01

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (Phigh pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  6. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  7. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.

    Science.gov (United States)

    Samjeské, Gabor; Miki, Atsushi; Ye, Shen; Osawa, Masatoshi

    2006-08-24

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account. PMID:16913790

  8. Influence of humic acids of different origins on oxidation of phenol and chlorophenols by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    He Di, E-mail: hedy1997@hotmail.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Guan Xiaohong, E-mail: hitgxh@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Ma Jun, E-mail: majun@hit.edu.cn [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Yang Xue, E-mail: yangxue1_ok@163.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China); Cui Chongwei, E-mail: cuichongwei1991@126.com [State Key Lab of Urban Water Resource and Environment (HIT), Harbin Institute of Technology, Harbin (China)

    2010-10-15

    The influences of humic acids (HAs) of different origins, including two commercial HAs, three soil HAs and one aquatic HA, on phenols oxidation by permanganate were studied. The apparent second-order rate constants of 2-chlorophenol (2-CP)/phenol oxidation by permanganate in the presence of HAs at pH 7 followed the order of commercial HA (Shanghai) > soil HAs > commercial HA (Fluka) > aquatic HA. Moreover, the commercial HA (Shanghai) could accelerate the oxidation of different chlorophenols (CP) significantly under neutral condition. The FTIR analysis demonstrated greater content of C=C moieties and less amount of carboxylate, aliphatic groups and polysaccharide-like substances in soil HAs than in aqueous HA, suggesting that the increase of aromaticity in HA was beneficial to the oxidation of phenols by permanganate. The apparent second-order rate constants of 2-CP/phenol oxidation by permanganate in the presence of HAs correlated well with specific visible absorption (SVA) at 665 nm of HAs. High positive correlation coefficients (R{sup 2} > 0.75) implied that {pi}-electrons of HA strongly influenced the reactivity of 2-CP/phenol towards permanganate oxidation, which agreed well with positive correlation between Fluorescence Regional Integration (FRI) and the apparent second-order rate constants. The {pi}-{pi} interaction between HAs and phenols, the steric hindrance effect and the dissociation of phenols may affect the oxidation of phenols by permanganate in the presence of HA at pH = 7.0.

  9. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  10. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  11. Comparative Study of Stearic Acid/Iron-Oxide Binary and Stearic Acid/Iron-Oxide/Titanium-Oxide Ternary for Use as Energy Storage Material

    Science.gov (United States)

    Andiarto, Rizky; Khalish Nuryadin, Muhammad; Saleh, Rosari

    2016-04-01

    In this work, a series of stearic acid/Fe3O4, and stearic acid/Fe3O4/TiO2 nanocomposites for thermal energy storage (TES) system were synthesized through a two-step process. Fe3O4 nanoparticles and Fe3O4/TiO2 nanocomposites were first prepared using sol-gel methods and then both samples were mixed into stearic acid by dispersion technique at three different weight % ratio to stearic acid: 5%, 10% and 15% to obtain stearic acid/Fe3O4, and stearic acid/Fe3O4/TiO2 nanocomposites. Morphologies and structural properties of the samples were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDX), while thermal properties of the sample were determined by differential scanning calorimetry (DSC) and fhermogravimetric analysis (TGA). The XRD patterns demonstrate, that stearic acid/Fe3O4 contained characteristic peaks of Fe3O4 and stearic acid structures, while peaks corresponded to anatase TiO2 structures appear in stearic acid/ Fe3O4/TiO2 nanocomposites. From the DSC measurements, it is found that the maximum latent heat was found at samples with weight ratio of 5%. Moreover, the enhancement up to 20% of latent heat in solidifying as well as melting processes was observed. TGA measurements show high degradation temperature in the range of 246 - 251°C. The TGA results also shows that the residual mass of the sample matches the composition of Fe3O4 and Fe3O4/TiO2 which is added to the stearic acid.

  12. Preparation and characterization of nano-structured lead oxide from spent lead acid battery paste.

    Science.gov (United States)

    Li, Lei; Zhu, Xinfeng; Yang, Danni; Gao, Linxia; Liu, Jianwen; Kumar, R Vasant; Yang, Jiakuan

    2012-02-15

    As part of contribution for developing a green recycling process of spent lead acid battery, a nanostructural lead oxide was prepared under the present investigation in low temperature calcination of lead citrate powder. The lead citrate, the precursor for preparation of this lead oxide, was synthesized through leaching of spent lead acid battery paste in citric acid solution. Both lead citrate and oxide products were characterized by means of thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The results showed that the lead citrate was sheet-shape crystal of Pb(C(6)H(6)O(7)) · H(2)O. When the citrate was calcined in N(2) gas, β-PbO in the orthorhombic phase was the main product containing small amount of Pb and C and it formed as spherical particles of 50-60 nm in diameter. On combusting the citrate in air at 370°C (for 20 min), a mixture of orthorhombic β-PbO, tetragonal α-PbO and Pb with the particle size of 100-200 nm was obtained, with β-PbO as the major product. The property of the nanostructural lead oxide was investigated by electrochemical technique, such as cyclic voltammetry (CV). The CV measurements presented the electrochemical redox potentials, with reversibility and cycle stability over 15 cycles.

  13. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    International Nuclear Information System (INIS)

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and k s for the immobilized redox species were determined as 0.43 ± 0.03 and 2.47 ± 0.02 x 106 s-1, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined

  14. Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majdi, S. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)]. E-mail: jabbari@kntu.ac.ir; Heli, H. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2007-04-01

    This study investigated the electrocatalytic oxidation of alanine, L-arginine, L-phenylalanine, L-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of {alpha} and k {sub s} for the immobilized redox species were determined as 0.43 {+-} 0.03 and 2.47 {+-} 0.02 x 10{sup 6} s{sup -1}, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined.

  15. Influence of Oxide Film to Stress Corrosion Cracking of Zirconium in Boiling Nitric Acid Solution

    International Nuclear Information System (INIS)

    Nuclear fuel reprocessing process acts an important role of nuclear energy cycle. In Japan, a commercial reprocessing plant has been operating at the Rokkasho reprocessing plant. Purex process that is used nitric acid and dodecane with tributyl phosphate for solvent has been adopted in the plant. Boiling nitric acid is applied to dissolve oxide spent nuclear fuel. In the boiling nitric acid solution, plant material corrodes severely and intergranular corrosion is observed in stainless steels. In order to avoid corrosion in such severe environment, some equipment in the plants has been made of zirconium, which has excellent corrosion resistance in nitric acid solutions. However, it has been known that zirconium has stress corrosion cracking (SCC) susceptibility in concentrated HNO3 with nobler corrosion potential. Nobler corrosion potential causes breakdowns of passive film having excellent protective performance and raises SCC susceptibility of zirconium in nitric acid solutions. Therefore, it is important to clarify the relationship among potential, growth and the breakdown of oxide film for the SCC initiation mechanism. In this study, we investigated the oxide film growth of zirconium with various potentials in boiling nitric acid solutions. Electrochemical tests and immersion tests with various applied potentials conducted in boiling 3. 6 and 9 mol.dm-3 HNO3. The potentials in the immersion tests were set at 1.3, 1.4 and 1.5 V vs. sat. KCl-Ag/AgCl electrode (SSE). These were in the region of trans-passive state of zirconium in boiling nitric acid solution. The test durations were 10, 100 and 500 h. After the corrosion tests, cross-sectional observations of oxide films were conducted. From the results of anodic polarization curves of zirconium in boiling nitric acid, passivity region was observed through rest potential to about 1.5 V in boiling 6 mol.dm-3 HNO3. Rapid increase of current density was observed at the potential attributed to transition from passivity

  16. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  17. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  18. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18 O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18 O labeling. All the results will be presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle. 9 figs., 17 refs

  19. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18O labeling. In this paper all the results are presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle

  20. Acid Separation, Catalytic Oxidation and Coagulation for ATC Waste Liquid Treatment

    Institute of Scientific and Technical Information of China (English)

    DING Xiaoling; JIA Chunning

    2005-01-01

    It is difficult to treat 2-amino-thiazoline-4-carboxylic acid (ATC) waste liquid effectively at present for its characteristics of high chemical oxygen demand (COD), high salinity and low biodegradability. In order to solve this problem, this paper presents several kinds of physical-chemical treatment unit techniques, including acid separation, catalytic oxidation and coagulation. First of all, acid separation was adopted to precipitate relevant organics at isoelectric point. When the temperature and pH value of acid separation were controlled at about 5 ℃ and 2.2 respectively, the COD removal rate could reach 27.6%. Secondly, oxidation was used to break chemical constitution of refractory organics. The optimal reaction parameters of catalytic oxidation should be 20 ℃, pH adjusted to 5.0 and [Fe2+] 300 mg/L. Then with 5% H 2O 2 added and after one-hour reaction, the COD removal rate could achieve about 52%. Finally, coagulation was adopted to remove a portion of refractory organics, and 15% polymeric molysite flocculant was the best for the coagulation, and the COD removal rate could reach about 15%. Therefore, the proposed feasible process of physical-chemical pretreatment for ATC waste liquid could have about 70% COD removed in total.

  1. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

    Directory of Open Access Journals (Sweden)

    Lee Uk

    2011-06-01

    Full Text Available Abstract Background Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD, natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract. Methods Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt] (ABTS and ferric reducing antioxidant power (FRAP assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide] (MTT and lactate dehydrogenase (LDH assays. Results This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g. Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated. Conclusion Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

  2. Spontaneously Bi decorated carbon supported Pt nanoparticles for formic acid electro-oxidation

    International Nuclear Information System (INIS)

    Highlights: ► Selective decoration of Bi onto commercial Pt/C is carried out by a simple gas controlled surface potential modulation technique. ► Electrochemical measurements indicate Bi decorated Pt/C catalyst exhibits higher and much longer electrocatalytic performance for formic acid electro-oxidation due to a combination of the electronic effect and third-body effect. ► The 3.4 nm catalysts demonstrated higher performance over that of 2.4 nm due to decrease in Pt–COads bond strength. ► The onset potential for formic acid electro-oxidation reduced by more than 100 mV. - Abstract: This work presents carbon supported Platinum (Pt) nanoparticles decorated with a submonolayer of Bismuth (Bi) to enhance the anodic electro-oxidation efficiency for a Direct Formic Acid Fuel Cell (DFAFC). The coverage of Bi adatoms, as measured by cyclic voltammetry was controlled in the range of 15–75%. This ex situ study of the Bi decorated Pt/C catalysts was done using a three electrode electrochemical cell at room temperature to access formic acid electro-oxidation performance and durability. Two commercial Pt/C catalysts were investigated of varying average size: 2.4 nm and 3.4 nm. An optimal Bi coverage was observed to be 54% coverage or greater for both catalyst sizes, resulting in a favorable decrease in the formic acid onset potential by greater than 0.1 V. The 3.4 nm catalyst demonstrated higher performance over that of 2.4 nm, with a 23-fold current density increase at 0.2 V vs. RHE. The results indicate that Bi decorated Pt nanoparticles have excellent electrochemical properties for the electro-oxidation of formic acid (high electro-catalytic activity and excellent stability) due to a combination of the electronic effect and third-body effect, thereby promoting the non-poisoning direct electro-oxidation reaction pathway. Based on position of CO stripping peak for 15% Bi coverage, Pt–COads bond strength decreased for 3.4 nm Pt/C whereas no shift was observed in

  3. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  4. Performance characteristics of lead oxides in pasted lead/acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, S.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Saba, A.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Shenouda, A.Y. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt))

    1993-10-15

    The performance characteristics of lead oxides used for the pasted type of lead/acid battery plate have been investigated. The [alpha]- and [beta]-PbO polymorphs have been prepared carefully and used for pasting model electrodes. The factors that may affect the electrical capacity of such electrodes have been studied. These are: the type of oxide; percentage of free lead; additives such as carboxymethyl cellulose, zeolite and graphite. Lead hydroxide has also been studied with special attention. Photomicrographs have been taken to examine the crystal forms that develop on the electrode surface. Finally, some industrial samples have been investigated. (orig.)

  5. Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Zoran Nedić

    2009-12-01

    Full Text Available This paper is a brief review of our recent research into novel uses for heteropoly compounds as precursors for thin films that can be used as catalysts and materials with good optical, conductive and other characteristics. In view of this, we have chosen thin film obtained with 12-tungsphosphoric acid on aluminum substrates. In all cases, a relatively new, microarc oxidation technique has been used to prepare oxide coatings on substrate surfaces. Advanced physicochemical methods, AFM and SEM-EDS, XRD, Raman and Micro-Raman, and luminescence spectroscopy, as the most powerful techniques, have been used for the characterization of new materials. Possible applications have been discussed as well.

  6. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  7. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare L; Davies, Michael Jonathan

    2003-01-01

    Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates...... are relatively ineffective as direct scavengers for HOCl as compared to water soluble antioxidants (e.g., ascorbate, k ca. 10(6) M(-)(1) s(-)(1)). The reaction of HOCl with hydroquinone (a simple model for ubiquinol-10) was also investigated both in aqueous solution (k = 45 M(-)(1) s(-)(1)) and in a less polar...

  8. Reduced Capacity for Fatty Acid Oxidation in Rats with Inherited Susceptibility to Diet-Induced Obesity

    OpenAIRE

    Ji, Hong; Friedman, Mark I.

    2007-01-01

    High-fat, energy-dense diets promote weight gain and obesity in humans and other animals, but the mechanisms underlying such diet-induced obesity remain elusive. To determine whether a reduced capacity to oxidize fat is involved in the etiology of diet-induced obesity, we examined different measures of fatty acid oxidation in rats selectively bred for susceptibility (DIO) or resistance (DR) to dietary obesity before and after they were fed a high-fat diet and became obese. DIO rats eating a l...

  9. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  10. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton.

    Science.gov (United States)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric

    2016-12-01

    Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.

  11. Strategies for comprehensive analysis of amino acid biomarkers of oxidative stress.

    Science.gov (United States)

    Ptolemy, A S; Lee, R; Britz-McKibbin, P

    2007-07-01

    Despite the wide interest in using modified amino acids as putative biomarkers of oxidative stress, many issues remain as to their overall reliability for early detection and diagnosis of diseases. In contrast to conventional single biomarker studies, comprehensive analysis of biomarkers offers an unbiased strategy for global assessment of modified amino acid metabolism due to reactive oxygen and nitrogen species. This review examines recent analytical techniques amenable for analysis of modified amino acids in biological samples reported during 2003-2007. Particular attention is devoted to the need for validated methods applicable to high-throughput analysis of multiple amino acid biomarkers, as well as consideration of sample pretreatment protocols on artifact formation for improved clinical relevance. PMID:17514495

  12. Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Priyamvada; Hemkar, Shalini; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-02-15

    The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

  13. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  14. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Science.gov (United States)

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  15. α-Tocopherol/Gallic Acid Cooperation in the Protection of Galactolipids Against Ozone-Induced Oxidation.

    Science.gov (United States)

    Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria

    2016-04-01

    The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.

  16. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  17. Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain.

    Science.gov (United States)

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2008-02-01

    Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.

  18. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve;

    2010-01-01

    and eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA......) significantly increased beta-oxidation of EPA in HPCs, but only marginally elevated the oxidation of AA in HPCs and the oxidation of both fatty acids in KCs; 2) decreased the esterification, but did not alter the preferential incorporation of AA into glycerolipids; and 3) alleviated the significant competitive...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...

  19. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2011-06-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008 proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM–10 mM was oxidized by OH radical. Products were analyzed by ion chromatography (IC, electrospray ionization mass spectrometry (ESI-MS, and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  20. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    Directory of Open Access Journals (Sweden)

    BG Sarvari

    2015-12-01

    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  1. Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyung Suk; Kim, Jeong-Jin; Kim, Young-Hun [Andong National University, Andong (Korea, Republic of)

    2016-03-15

    The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa{sub 1} and pKa{sub 2} of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa{sub 2}. At a low pH, below pKa{sub 1}, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

  2. Photo-Fenton-like treatment of K-acid: assessment of treatability, toxicity and oxidation products.

    Science.gov (United States)

    Olmez-Hanci, Tugba; Arslan-Alaton, Idil; Gelegen, Ozlem

    2014-01-01

    Photo-Fenton-like treatment of the commercially important naphthalene sulphonate K-acid (2-naphthylamine-3,6,8-trisulphonic acid) was investigated using UV-C, UV-A and visible light irradiation. Changes in toxicity patterns were followed by the Vibrio fischeri bioassay. Rapid and complete degradation of K-acid accompanied with nearly complete oxidation and mineralization rates (>90%) were achieved for all studied irradiation types. On the other hand, detoxification was rather limited and did not change significantly during photo-Fenton-like treatment. Several oxidation products could be identified via liquid chromatograph-mass spectrometer analyses, such as desulphonated and hydroxylated naphthalene derivatives, quinones, and ring-opening as well as dimerization products. Photo-Fenton-like treatment of K-acid with UV-C, UV-A and visible light irradiation occurred through a series of hydroxylation and desulphonation reactions, followed by ring cleavage. A common degradation pathway for photo-Fenton-like treatment of K-acid using different irradiation types was proposed. PMID:25259495

  3. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles.

    Science.gov (United States)

    Gonzalez, S; Duncan, S E; O'Keefe, S F; Sumner, S S; Herbein, J H

    2003-01-01

    The primary objective of this study was to evaluate oxidation and firmness of butter and ice cream made with modified milkfat containing enhanced amounts of linoleic acid or oleic acid. The influence of the fatty acid profile of the HO milkfat relating to product properties as compared with the influence the fatty acid profile of the HL milkfat was the main focus of the research. Altering the degree of unsaturation in milkfat may affect melting characteristics and oxidation rates, leading to quality issues in dairy products. Three milkfat compositions (high-oleic, high-linoleic, and control) were obtained by modifying the diets of Holstein cows. Ice cream and butter were processed from milkfat obtained from cows in each dietary group. Butter and ice cream samples were analyzed to determine fatty acid profile and firmness. High-oleic milkfat resulted in a softer butter. Solid fat index of high-oleic and high-linoleic milkfat was lower than the control. Control ice cream mix had higher viscosity compared with high-oleic and high-linoleic, but firmness of all ice creams was similar when measured between -17 and -13 degrees C. Nutritional and textural properties of butter and ice cream can be improved by modifying the diets of cows. PMID:12613850

  4. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  5. Effect of Diluents on the Extraction of Oxalic Acid by Trialkylphosphine Oxide

    Institute of Scientific and Technical Information of China (English)

    李玉鑫; 王运东; 戴猷元

    2004-01-01

    Abstract In liquid-liquid solvent extraction processes, diluents have a strong influence on the extraction mechanism and efficiency. In this study, benzene, cyclohexane, trichloromethane, carbon tetrachloride, methyl isobutyl ketone (MIBK), butyl acetate, and 1-octanol were used as diluents in the extraction of oxalic acid by trialkylphosphine oxide (TRPO). The effects of extractant concentration, initial concentration of oxalic acid and diluent type on the extraction equilibrium partition coefficient are analyzed. The sequence of the extraction ability by different diluents is MIBK > butyl acetate > cyclohexane=benzene > carbon tetrachloride > 1-octanol > trichloromethane. Extraction mechanism was analyzed and extraction model parameters were evaluated.

  6. Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    We report on the kinetics of photoelectrochemical oxidation of salicylic acid (SA) and salicylaldehyde (SH) on titanium dioxide nanotube arrays. The TiO2 nanotubes were prepared by the electrochemical oxidation of titanium substrates in a nonaqueous electrolyte (DMSO/HF). Scanning electron microscopy (SEM) was employed to examine the morphology of the formed nanotubes. Linear voltammetry was used to study the electrochemical and photoelectrochemical behavior of the synthesized TiO2 nanotube arrays. The photoelectrochemical oxidation of SA and SH on the TiO2 nanotubes was monitored by in situ UV-vis spectroscopy, showing that the kinetics of the photoelectrochemical oxidation of SA and SH follows pseudo first-order and that the rate constant of SH oxidation is 1.5 times larger than that of SA degradation. Quantum chemical calculations based on the DFT method were performed on SA and SH to address the large difference in kinetics. The relatively higher ELUMO - EHOMO makes SA more stable and thus more difficult to be oxidized photoelectrochemically. The impact of temperature and initial concentrations on the kinetics of SA and SH photoelectrochemical degradation was also investigated in the present work.

  7. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    Science.gov (United States)

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA. PMID:27424124

  8. Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Tiedan Chen

    2014-01-01

    Full Text Available Graphene oxide (GO nanosheets were prepared by modified Hummers and Offeman methods. Furthermore, oleic acid (OA capped graphene oxide (OACGO nanosheets were prepared and characterized by means of Fourier transform-infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. At the same time, the friction and wear properties of OA capped graphite powder (OACG, OACGO, and oleic acid capped precipitate of graphite (OACPG as additives in poly-alpha-olefin (PAO were compared using four-ball tester and SRV-1 reciprocating ball-on-disc friction and wear tester. By the addition of OACGO to PAO, the antiwear ability was improved and the friction coefficient was decreased. Also, the tribological mechanism of the GO was investigated.

  9. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. PMID:27474635

  10. Fast repair of oxidizing OH adducts of DNA by hydroxycinnamic acid derivatives. A pulse radiolytic study

    International Nuclear Information System (INIS)

    Using pulse radiolytic techniques, it has been demonstrated that the interactions of oxidizing OH adducts of DNA (ssDNA and dsDNA), polyA and polyG with hydroxycinnamic acid derivatives proceed via an electron transfer process (k=5-30x108 dm3 mol-1 s-1). In addition, the rates for fast repair of OH adducts of dAMP, polyA and DNA (ssDNA and dsDNA) are slower than the corresponding rates for the rest OH adducts of DNA constituents. The slower rates for repair of oxidizing OH adducts of dAMP may be the rate determining step during the interaction of hydroxycinnamic acid derivatives with OH adducts of DNA containing the varieties of OH adducts of DNA constituents

  11. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    Science.gov (United States)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  12. Exacerbation of alcohol-induced oxidative stress in rats by polyunsaturated fatty acids and iron load

    Directory of Open Access Journals (Sweden)

    S N Patere

    2011-01-01

    Full Text Available The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography, polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron.

  13. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

    Science.gov (United States)

    Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Bhat, Rakesh; Anwar-Mohamed, Anwar; Logan, Michael; Lund, Garry; Addison, William R; Lehner, Richard; Kneteman, Norman M

    2016-01-22

    Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis. PMID:26627833

  14. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings.

    Science.gov (United States)

    Berg; Boon; Pastorova; Spetter

    2000-04-01

    Diterpenoid resins from larch and pine trees and the corresponding fractions in a >100-year-old wax-resin adhesive and varnish and a 200-year-old resin/oil paint sample were analysed with by gas chromatography/mass spectrometry (GC/MS) using several off-line and on-line derivatization methods. The main resin compounds were highly oxidized abietic acids. Important products found are hydroxydehydroabietic acids (OH-DHAs), 7-oxoDHA, di-OH-DHAs and 15-OH-7-oxoDHA. The last two compounds have not been reported to occur in artworks before. Larixyl acetate, an important marker from larch resins, was found to be still present in high amounts in the adhesive. A large number of mass spectra of the different oxidation products and larixol and larixyl acetate are presented and their fragmentation behaviour under electron impact conditions is discussed. An index for the degree of oxidation (IDOX) of the abietic acids is presented as an indicator of the degree of oxidation of the matrix in which the resin is present. The IDOX was 0.10, 0.67, 0.81 and 0.76 for the fresh resins, the dark-aged adhesive, the aged varnish and the resin/oil paint, respectively (measured with pyrolysis (Py)-tetramethylammonium hydroxide (TMAH)-GC/MS). Py-TMAH-GC/MS and direct temperature-resolved mass spectrometry are reliable, valuable and fast techniques for the assessment of the presence and degree of oxidation of diterpenoid resins. Copyright 2000 John Wiley & Sons, Ltd. PMID:10797648

  15. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    Science.gov (United States)

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. PMID:22423599

  16. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    OpenAIRE

    Rodrigo Polimeni Constantin; Gilson Soares do Nascimento; Renato Polimeni Constantin; Clairce Luzia Salgueiro; Adelar Bracht; Emy Luiza Ishii-Iwamoto; Nair Seiko Yamamoto; Jorgete Constantin

    2013-01-01

    Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was ...

  17. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide

    OpenAIRE

    Delstanche, Séverine; Opfergelt, Sophie; Cardinal, Damien; Elsass, Francoise; André, Luc; Delvaux, Bruno

    2009-01-01

    The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si an readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch ex...

  18. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains.

    OpenAIRE

    Zellner, G; Kneifel, H; De Winter, J.

    1990-01-01

    Desulfovibrio vulgaris Marburg, "Desulfovibrio simplex" XVI, and Desulfovibrio sp. strain MP47 used benzaldehydes such as vanillin, 3,4,5-trimethoxybenzaldehyde, protocatechualdehyde, syringaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, and 2-methoxybenzaldehyde as electron donors for sulfate reduction and carbon dioxide and/or components of yeast extract as carbon sources for cell synthesis. The aldehydes were oxidized to their corresponding benzoic acids. The three sulfate reducers oxidiz...

  19. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig;

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic ...... acid during the reaction poisons the catalyst. The activity however, of the catalyst can be restored again by addition of base....

  20. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    OpenAIRE

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  1. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    OpenAIRE

    Nilgun Akgul; Pinar Gul; Hamit Hakan Alp; Ahmet Kiziltunc

    2015-01-01

    Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO) and uric acid (UA) levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male) participated in the stu...

  2. Electrochromic iridium oxide films: Compatibility with propionic acid, potassium hydroxide, and lithium perchlorate in propylene carbonate

    OpenAIRE

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-01-01

    Porous thin films of It oxide were prepared by reactive dc magnetron sputtering onto unheated substrates. The crystallite size was similar to 5 nm, and a small amount of unoxidized Ir was present. The electrochromic performance was studied by optical transmittance measurements and cyclic voltammetry applied to films in aqueous and non-aqueous electrolytes, specifically being 1 M propionic acid, 1 M potassium hydroxide (KOH), and 1 M lithium perchlorate in propylene carbonate (Li-PC). Cyclic v...

  3. Oxidation Reactivities of Organic Sulfur Compounds in Fuel Oil Using Immobilized Heteropoly Acid as Crystal

    Institute of Scientific and Technical Information of China (English)

    YAN Xuemin; LEI Jiaheng; LIU Dan; GUO Liping; WU Yangchun

    2007-01-01

    Heteropoly acid of Keggin structure phosphotungstic(HPW) and phosphomolybdic(HPMo) were chemically anchored to the modified SBA-15 channel. The materials were used as catalyst for oxidative desulfurization of organic sulfur compounds including benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethydibenzothiophene (4,6-DMDBT). The experimental results show that the catalysts are efficient and reusable, the catalytic activity is hardly reduced even in the 5th cycle of use.

  4. Effect of Salicylic and Picolinic Acids on the Adsorption of U(VI) onto Oxides

    International Nuclear Information System (INIS)

    The effect of organic acids on the adsorption of U(VI) onto oxide surfaces (TiO2(anatase), SiO2 (amorphous) and Al2O-3(amorphous)) has been investigated. Two different organic acids, salicylic and picolinic acids, were used. Changes of adsorption ratio of U(VI), which depend on the existence of organic acids in a sample, were measured as a function of pH. Quantities of adsorbed organic acids, which depend on the existence of U(VI) in a sample, were also measured as a function of pH. It is confirmed that the soluble complex formation of U(VI) with organic acids can deteriorate the adsorption of U(VI) onto TiO2 surface. It is noteworthy that salicylic acid does not affect the adsorption of U(VI) onto SiO2 surface, however, picolinic acid enhances the adsorption of U(VI) onto SiO2 surface. The latter effect can be understood by considering the formation of a ternary surface complex on SiO2 surface, which was confirmed by the co-adsorption of picolinic acid with U(VI) and the change in a fluorescence spectra of U(VI) on surface, In the case of Al2O-3, organic acids themselves were largely adsorbed onto a surface without deteriorating the adsorption of U(VI). This would support the possibility of a ternary surface complex formation on the Al2O-3 surface, and an additional spectroscopic study is required.

  5. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  6. Kinetics of oxidation and dissolution of uranium dioxide in aqueous acid solutions

    International Nuclear Information System (INIS)

    The oxidation and dissolution of UO2 has been studied using electrochemical methods with an UO2 rotating disc electrode in acidic (pH 3) and non-complexing (trifluoromethanesulfonate: 0.1 mol L−1 NaCF3SO3) media. The effect of the experimental parameters such as scan rate (v) and rotation rate (ω) on the electrochemical signal has been studied. The rotation rate of the electrode does not influence the resulting signal, which indicates that only a charge transfer is involved in the UO2 oxidation kinetic. However, scan rate variations show different reactions involved in the UO2 oxidation. Linear sweep voltammetry and cyclic voltammetry coupled to X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) measurements suggest two successive electrochemical reactions with an exchange of one electron for each of them and the formation of one intermediate species of U(V).

  7. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  8. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  9. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  10. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  11. Acrylic acid polymerization and its graft copolymerization to poly(ethylene oxide) by gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, A.

    1984-01-01

    Free radical initiated polymerization of acrylic acid was investigated in methanol-water solutions with and without poly(ethylene oxide) (PEO). The formation of poly(acrylic acid) (PAA) initiated both by gamma irradiation and water soluble azo initiators was found to follow classical free radical kinetics. A significant increase in the rate of the propagation step (together with the degree of polymerization) was observed as the water fraction of the medium increased. During homogeneous polymerization of acrylic acid in methanol-water solutions containing poly(ethylene oxide), PAA grafting efficiency was found to be 67% and independent of initiation rate and yield. A mechanism of grafting to poly(ethylene oxide) was proposed. Chain transfer to PEO (K/sub tr/ = 6.5 x 10/sup -5/) was found to be the dominant mechanism for graft formation. Drag reduction characteristics of these PEO-PAA graft copolymers were measured in dilute aqueous solutions as a function of Reynolds number and solution pH. PEO graft copolymers containing 45% by mole PAA graft had, in neutral and basic solutions, drag reduction characteristics equivalent on a mass basis to the initial PEO. However at low pH, drag reduction characteristics disappeared as the PEO-PAA coacervate formed.

  12. Optical Basicity: A Practical Acid-Base Theory for Oxides and Oxyanions

    Science.gov (United States)

    Duffy, J. A.

    1996-12-01

    The optical basicity concept relies on the Lewis approach to acids and bases and was developed for dealing with chemical problems in non-aqueous, non-protonic media such as silicates, phosphates and borates which are important in glass making and (as slags) for refining steel. Basic oxides such as Na2O or CaO are ionic while SO3, P4O10 or SiO2 are covalent, and it is the magnitude of negative charge borne by the oxygen atoms or ions which governs the degree of acidity or basicity. The oxygen atoms of sulfates, phosphates or network systems such as silicates bear charges which are between those of their parent oxides. In principle, the negative charge can be estimated using the optical (ultraviolet) spectra of certain probe ions and is represented by the optical basicity value, Lambda. Optical basicity values, available for 16 oxides, increase from the acidic SO3 to the very basic Cs2O in a way which conforms with electronegativity and polarizability. The optical basicity concept also extends to fluorides and sulfides.

  13. Effect of Mannitol on Hyaluronic Acid Stability in Two in Vitro Models of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marguerite Rinaudo

    2014-07-01

    Full Text Available In this paper, we propose the evaluation of the mannitol’s ability to reduce hyaluronic acid (HA degradation using two different models of oxidative stress. Firstly, a solution of hyaluronan and a solution of the same HA including mannitol in PBS buffer were submitted to an oxidative stress generated by the addition of xanthine + xanthine oxidase generating oxygen free radicals. Different enzyme concentrations were used and the HA properties were studied after 24 h of contact at ambient temperature. Decreases of the viscosity of the solution were assessed by rheometry (viscous and elastic module and that of HA molecular weight was determined by steric exclusion chromatography. Rheologic behavior was assessed on identical HA solutions subjected to another model of oxidative stress imposed by addition of hydrogen peroxide. The influence of mannitol concentration on HA degradation was also demonstrated. Whatever the stress applied, it appears very clearly that mannitol protects hyaluronic acid from mediated oxygen free radicals degradation. These in vitro results suggest that mannitol could be a simple way to significantly increase the intra-articular residence time of the injected hyaluronic acid and therefore might improve viscosupplementation effectiveness.

  14. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    Science.gov (United States)

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon. PMID:23875678

  15. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  16. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W; Nielsch, K; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2007-11-28

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H{sub 4}C{sub 3}O{sub 4}) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and {approx}100 mA cm{sup -2}. Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D{sub int}) for a given anodization potential (U) during malonic acid anodization.

  17. Oxidation of hydrogen peroxide by [NiIII(cyclam)]3+ in aqueous acidic media

    Indian Academy of Sciences (India)

    Sankaran Anuradha; Venkatapuram Ramanujam Vijayaraghavan

    2013-09-01

    The kinetics of oxidation of H2O2 by [NiIII(cyclam)]3+, [NiIIIL1], was studied in aqueous acidic media at 25°C and I = 0.5M (NaClO4). The [NiIIIL1] to [NiIIL1] reduction was found to be fast in the presence of Cu(II) ion than the oxidation of the cyclam ligand by ·OH. The rate constant showed an inverse acid dependence on H+ ion at the pH range 1-1.5. The presence of sulphate retards the reaction. Macrocylic ligand oxidation was followed spectrophotometrically by examining the oxidation of nickel(II) complexes of macrocyclic ligands such as 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane (L2), -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L3), rac-Me6[14]-4,11-dieneN4 (L4) by reaction with hydrogen peroxide. The rate constant for the cross reaction is discussed in terms of Marcus relationship.

  18. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  19. Biochemical competition makes fatty-acid β-oxidation vulnerable to substrate overload.

    Directory of Open Access Journals (Sweden)

    Karen van Eunen

    Full Text Available Fatty-acid metabolism plays a key role in acquired and inborn metabolic diseases. To obtain insight into the network dynamics of fatty-acid β-oxidation, we constructed a detailed computational model of the pathway and subjected it to a fat overload condition. The model contains reversible and saturable enzyme-kinetic equations and experimentally determined parameters for rat-liver enzymes. It was validated by adding palmitoyl CoA or palmitoyl carnitine to isolated rat-liver mitochondria: without refitting of measured parameters, the model correctly predicted the β-oxidation flux as well as the time profiles of most acyl-carnitine concentrations. Subsequently, we simulated the condition of obesity by increasing the palmitoyl-CoA concentration. At a high concentration of palmitoyl CoA the β-oxidation became overloaded: the flux dropped and metabolites accumulated. This behavior originated from the competition between acyl CoAs of different chain lengths for a set of acyl-CoA dehydrogenases with overlapping substrate specificity. This effectively induced competitive feedforward inhibition and thereby led to accumulation of CoA-ester intermediates and depletion of free CoA (CoASH. The mitochondrial [NAD⁺]/[NADH] ratio modulated the sensitivity to substrate overload, revealing a tight interplay between regulation of β-oxidation and mitochondrial respiration.

  20. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    Science.gov (United States)

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects. PMID:27193377

  1. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides.

    Science.gov (United States)

    Jiang, Bo; Qu, Yanyan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2016-03-17

    Selective enrichment and isolation of glycopeptides from complex biological samples was indispensable for mass spectrometry (MS)-based glycoproteomics, however, it remained a great challenge due to the low abundance of glycoproteins and the ion suppression of non-glycopeptides. In this work, 4-mercaptophenylboronic acid functionalized graphene oxide composites were synthesized via loading gold nanoparticles on polyethylenimine modified graphene oxide surface, followed by 4-mercaptophenylboronic acid immobilization by the formation of Au-S bonding (denoted as GO/PEI/Au/4-MPB composites). The composites showed highly specific and efficient capture of glycopeptides due to their excellent hydrophilicity and abundant boronic acid groups. The composites could selectively capture the glycopeptides from the mixture of glycopeptides and nonglycopeptides, even when the amounts of non-glycopeptides were 100 times more than glycopeptides. Compared with commercial meta-amino phenylboronic acid agarose, the composites showed better selectivity when the sample was decreased to 10 ng. These results clearly verified that the GO/PEI/Au/4-MPB composites might be a promising material for glycoproteomics analysis.

  2. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    Science.gov (United States)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  3. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    Science.gov (United States)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, pamoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  4. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid - a mass spectrometric study of SOA aging

    Science.gov (United States)

    Müller, L.; Reinnig, M.-C.; Naumann, K. H.; Saathoff, H.; Mentel, T. F.; Donahue, N. M.; Hoffmann, T.

    2012-02-01

    This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a very low volatile α-pinene SOA product and a tracer compound for terpene SOA, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  5. Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging

    Directory of Open Access Journals (Sweden)

    L. Müller

    2011-07-01

    Full Text Available This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS. The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA, a known and very low volatile α-pinene SOA product, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

  6. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    OpenAIRE

    Michel D. Santos; Norberto P. Lopes; Yassuko Iamamoto

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  7. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  8. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode

    Directory of Open Access Journals (Sweden)

    Joop Schoonman

    2007-04-01

    Full Text Available An exfoliated graphite-polystyrene composite electrode was evaluated as analternative electrode in the oxidation and the determination of oxalic acid in 0.1 M Na2SO4supporting electrolyte. Using CV, LSV, CA procedures, linear dependences I vs. C wereobtained in the concentrations range of oxalic acid between 0.5 to 3 mM, with LOD =0.05mM, and recovery degree of 98%, without need of surface renewing between successiveruns. The accuracy of the methods was evaluated as excellent comparing the detection resultswith that obtained using conventional KMnO4 titration method. In addition, the apparentdiffusion coefficient of oxalic acid D was found to be around 2.89 · 10-8 cm2·s-1 by CA andCV.

  9. Ascorbic acid-containing whey protein film coatings for control of oxidation.

    Science.gov (United States)

    Min, Seacheol; Krochta, John M

    2007-04-18

    A formulation for the whey protein isolate film or coating incorporating ascorbic acid (AA-WPI film or coating) was developed. Tensile and oxygen-barrier properties of the AA-WPI film were measured. Antioxidant effects of the AA-WPI coating on roasted peanuts were studied by comparing the values of peroxide (PO), thiobarbituric acid reactive substance (TBARS), and free-radical-scavenging activity, determined with noncoated peanuts and peanuts coated with WPI with and without ascorbic acid during storage at 21% relative humidity (RH) and 23, 35, and 50 degrees C. The incorporation of AA reduced elongation of WPI films. The oxygen-barrier property of the WPI film was significantly improved by incorporation of AA. The AA-WPI coating retarded lipid oxidation in peanuts significantly at 23, 35, and 50 degrees C. The AA-WPI coated peanuts were more red than noncoated peanuts at all storage temperatures.

  10. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  11. Iridium-based double perovskites for efficient water oxidation in acid media

    Science.gov (United States)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

  12. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  13. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.

    Science.gov (United States)

    Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2014-08-27

    Considerable work has been focused on developing replacements for ammonium perchlorate (AP), a primary choice for solid rocket and missile propellants, due to environmental concerns resulting from the release of perchlorate into groundwater systems [corrected]. Additionally, the generation of hydrochloric acid contributes to high concentrations of acid rain and to ozone layer depletion. En route to synthesizing salts that contain cationic FOX-7, a novel, high oxygen-containing oxidizer, tetranitroacetimidic acid (TNAA), has been synthesized and fully characterized. The properties of TNAA were found to be exceptional, with a calculated specific impulse exceeding that of AP, leading to its high potential as a replacement for AP. TNAA can be synthesized easily in a one-step process by the nitration of FOX-7 in high yield (>93%). The synthesis, properties, and chemical reactivity of TNAA have been examined.

  14. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.

    Science.gov (United States)

    Houten, Sander M; Violante, Sara; Ventura, Fatima V; Wanders, Ronald J A

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders. PMID:26474213

  15. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    Science.gov (United States)

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

  16. Electro-Oxidation of Concentrated Ce(Ⅲ) at Carbon Felt Anode in Nitric Acid Media

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Electro-oxidation of Ce( Ⅲ) to Ce( Ⅳ ) in parallel plate flow type electrolyzer divided with cation exchange membrane was carried out in nitric acid media at carbon felt anode under galvanostatic conditions. Carbon felt was used as an anode for its high specific surface area and high oxygen evolution overpotential. Pt coated Ti plates were used as cathcurrent efficiency (92%) until about 80% of Ce( Ⅲ) was oxidized. Then, oxygen evolution, accompanied by terminal voltage jump, took place, lowering current efficiency. Ce( Ⅲ ) was oxidized up to 90% with current efficiency of 62%. In this mode, strong carbon felt anode oxidation was observed. The wear out of carbon felt was 46% in six consequent runs (6 h of operation). After each run, carbon felt surface had to be renewed with slightly alkaline solution to remove carbon oxidation products and ensure regular operational conditions. When anode surface was blocked, oxygen evolution took place from the beginning of electrolysis due to higher actual current density. The wear out of carbon felt anode could be minimized by means of oxygen evolution prevention. In the case when electrolysis had been stopped before oxygen evolution started (at Ce( Ⅳ ) conversion of about 80% ), the wear out of anode was less than 2% during 6 consequent runs (4 h of operation).

  17. Electrochemical oxidation of oxalic acid in the presence of halides at boron doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Huitle, C.A. [University of Milan, Milan (Italy). Dept. of Analytical Chemistry]. E-mail: Carlos.Martinez@unimi.it; Ferro, S.; Battisti, A. de [University of Ferrara (Italy). Dept. of Chemistry. Lab. of Electrochemistry; Reyna, S.; Cerro-Lopez, M.; Quiroz, M.A. [Universidad de las Americas-Puebla, Puebla (Mexico). Dept. de Quimica y Biologia. Lab. de Electroquimica]. E-mail: marcoa.quiroz@udlap.mx

    2008-07-01

    Aim of this work is to discuss the electrochemical oxidation of oxalic acid (OA), analyzing the influence of NaCl and NaBr. Experiments were carried out at boron-doped diamond (BDD) electrodes, in alkaline media. BDD electrodes have a poor superficial adsorptivity so their great stability toward oxidation allows the reaction to take place with reactants and intermediates in a non-adsorbed state. The process is significantly accelerated by the presence of a halogen salt in solution; interestingly, the mediated process does not depend on applied current density. Based on the results, bromide was selected as a suitable mediator during OA oxidation at BDD. Br{sup -} primarily acts in the volume of the solution, with the formation of strong oxidants; while Cl{sup -} action has shown lower improvements in the OA oxidation rate at BDD respect to the results reported using Pt electrode. Finally, the parameters of removal efficiency and energy consumption for the electrochemical incineration of OA were calculated. (author)

  18. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    Science.gov (United States)

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. PMID:25686985

  19. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    Science.gov (United States)

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  20. Direct Oxidation of Ethene to Acetic Acid over Pd-H4SiW12O40-Based Catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The direct oxidation of ethene to acetic acid has the advantages of abundant raw materials and low cost of equipment[1],hence the research for this process has been of much interest in industry application.

  1. Stress corrosion cracking of alloys 690, 800, and 600 in acid environments containing copper oxides

    International Nuclear Information System (INIS)

    Secondary side stress corrosion cracking (SCC) of steam generator (SG) tubes may be due to the formation of an acid environment in crevices, as demonstrated for several Belgian PWR plants. The susceptibility of alloys 600 and 800 in this type of environment, which had been partially evidenced by several laboratory works, has been confirmed by capsule tests performed at Laborelec, whereas the SCC resistance of alloy 690 always appeared excellent. Capsule tests have been recently conducted at 320 C with the same heats of tubings in the same acid solutions (cationic resins + magnetite + sodium silicate, with or without lead, and sodium sulfate + iron sulfate, with or without lead oxide) containing CuO and Cu2O. It appeared that the SCC resistance of the three alloys was generally reduced by the addition of copper oxides, at least when the cover gas did not contain hydrogen. The situation was particularly dramatic for the capsules made of alloy 690 tubing: most of them developed deep cracks, sometimes throughwall (the shortest time to failure being less than 50 h) whereas the same solutions without copper oxides had produced no cracking at all in alloy 690 capsules exposed during more than 2,000 h. Although the corrosion is reduced in presence of hydrazine or at lower concentration, copper oxides probably contribute significantly to the degradation of the tubes in alloy 600, at least in SG's forming acid sulfate crevice environments. This is also an issue for the new SG's, especially for those equipped with tubes in alloy 690 TT, particularly for the top of the tubesheet which is a critical deposit area since the high stresses and strains resulting from the expansion of the tube in the tubesheet lead to a risk of circumferential cracking at the transition

  2. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  3. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  4. Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties

    Energy Technology Data Exchange (ETDEWEB)

    Munirathinam, Balakrishnan, E-mail: blkrish88@gmail.com; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO{sub 2} nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5 h, 1 h, 2 h and 3 h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600 °C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10{sup 5}–10{sup 6} Ω cm{sup 2}) and lower passive current density (10{sup −7} A cm{sup −2}) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. - Highlights: • TiO{sub 2} nanotubes were synthesized in a citric acid and sodium fluoride environment. • Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. • TiO{sub 2} nanotube layer behaves as an n-type semiconductor. • Annealed TiO{sub 2} nanotubes had a higher impedance magnitude compared to as-formed nanotubes.

  5. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  6. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    Science.gov (United States)

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  7. Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe2O3, influence of polycarboxylic acids.

    Science.gov (United States)

    Kribéche, Mohamed El Amine; Mechakra, Hind; Sehili, Tahar; Brosillon, Stephan

    2016-01-01

    The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion. PMID:26102217

  8. Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells

    NARCIS (Netherlands)

    Ishola, D. A.; Post, J. A.; van Timmeren, M. M.; Bakker, S. J. L.; Goldschmeding, R.; Koomans, H. A.; Braam, B.; Joles, J. A.

    2006-01-01

    Albumin induces oxidative stress and cytokine production in proximal tubular cells (PTECs). Albumin-bound fatty acids (FAs) enhance tubulopathic effects of albumin in vivo. We proposed that FA aggravation of albumin-induced oxidative stress in PTECs might be involved. We hypothesized that mitochondr

  9. Spontaneously Bi decorated carbon supported Pd nanoparticles for formic acid electro-oxidation

    International Nuclear Information System (INIS)

    Highlights: • Selective decoration of Bi onto commercial Pd/C is carried out by a simple gas controlled surface potential modulation technique. • Bi decorated Pd/C catalyst exhibits higher and sustained formic acid oxidation activity presumably via the electronic effect. • Shielding of Pd atoms by Bi increases long term stability. • Formic acid electro-oxidation current increased by 121% at 0.2 V vs. RHE. -- Abstract: The activity and stability of carbon supported palladium (Pd/C) nanoparticles decorated with a submonolayer of bismuth (Bi) for formic acid (FA) electro-oxidation was investigated herein. The FA electro-oxidation activity enhancement of Bi decorated Pd/C was evaluated electrochemically using a rotating disk electrode configuration by linear sweep voltammetric and chronoamperometric measurements. Commercial Pd/C was decorated by irreversible adsorption of Bi via a simple gas controlled surface potential modulation technique, and the coverage of Bi adatoms as measured by cyclic voltammetry was controlled in the range of 30–87%. An optimal Bi coverage was observed to be 40%, resulting in a favorable decrease in the FA onset potential by greater than 0.1 V and increase in electro-oxidation current density from 0.25 mA cm−2SA to 0.55 mA cm−2SA at 0.2 V vs. RHE, compared to commercial Pd/C. The results indicate that Bi decorated Pd nanoparticles have excellent properties for the electro-oxidation of FA, i.e. high electro-catalytic activity and excellent stability, due to sustained promotion of dehydrogenation pathway attributed to the electronic effect, thereby promoting FA adsorption in the CH-down orientation. Based on no significant shifting in the CO stripping peak position, minimal impact of Bi on the Pd-CO bond strength is observed. Chronoamperometry results show much better long-term electro-catalytic activity for Bi decorated Pd nanoparticles attributed to shielding of surface Pd atoms by Bi and reducing Pd dissolution

  10. A novel and selective oxidation of benzylic alcohols with polymer-supported periodic acid under mild aprotic conditions

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Pourali; Mehrosadat Tabaean; S. Mohamad Reza Nazifi

    2012-01-01

    A new polymeric oxidizing reagent was prepared by supporting periodic acid on poly(1,4-phenylene-2,5-pyridine dicarboxyamide).This polymeric reagent was used for the selective oxidation of primary benzylic alcohols to the corresponding benzaldehydes in CH3CN at reflux conditions.Excellent selectivity was observed between primary benzyl alcohols and secondary ones as well as non-benzylic alcohols in the oxidation reactions.Allylic alcohols were also converted to the corresponding aldehydes with good yields.

  11. Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Jayachamarajapura Pranesh Shubha

    2014-01-01

    Full Text Available Tetracaine hydrochloride (TCH is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

  12. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis. PMID:21237633

  13. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  14. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components.

    Science.gov (United States)

    Taniguchi, Yoshimasa; Matsukura, Yasuko; Taniguchi, Harumi; Koizumi, Hideki; Katayama, Mikio

    2015-01-01

    The bitter acids in hops (Humulus lupulus L.) and beer, such as α-, β-, and iso-α-acids, are known to affect beer quality and display various physiological effects. However, these compounds readily oxidize, and the effect of the oxides on the properties of beer or their potential health benefits are not well understood. In this study, we developed a simple preparative method for the bitter acid oxide fraction derived from hops and designated the constituents as matured hop bitter acids (MHBA). HPLC-PDA-ESI/HRMS and MS(2) revealed that MHBA are primarily composed of α-acid-derived oxides, which possess a common β-tricarbonyl moiety in their structures similar to α-, β-, and iso-α-acids. We also developed a quantitative analytical method of whole MHBA by HPLC, which showed high precision and reproducibility. Using our newly developed method, the concentration of whole MHBA in several commercial beers was evaluated. Our results will promote the study of bitter acid oxides. PMID:25996959

  15. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  16. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [3H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  17. Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures

    Science.gov (United States)

    Chen, Yubo; Su, Chao; Zheng, Tao; Shao, Zongping

    2012-12-01

    Formic acid is investigated as a fuel for Solid Oxide Fuel Cells (SOFCs) for the first time. Thermodynamic calculations demonstrate that carbon deposition is avoidable above 600 °C. The carbon deposition properties are also investigated experimentally by first treating a nickel plus yttria-stabilized zirconia (Ni-YSZ) anode material in particle form under a formic acid-containing atmosphere for a limited time at 500-800 °C and then analyzing the particles by O2-TPO. This analysis confirms that carbon deposition on Ni-YSZ is weak above 600 °C. We further treat half-cells composed of YSZ electrolyte and Ni-YSZ anode under formic acid-containing atmosphere at 600, 700 and 800 °C; the anodes maintain their original geometric shape and microstructure and show no obvious weight gain. It suggests that formic acid can be directly fed into SOFCs constructed with conventional nickel-based cermet anodes. I-V tests show that the cell delivers a promising peak power density of 571 mW cm-2 at 800 °C. In addition, the cells also show good performance stability. The results indicate that formic acid is highly promising as a direct fuel for SOFCs without the need for cell material modifications.

  18. A novel ultrafine leady oxide prepared from spent lead pastes for application as cathode of lead acid battery

    Science.gov (United States)

    Yang, Danni; Liu, Jianwen; Wang, Qin; Yuan, Xiqing; Zhu, Xinfeng; Li, Lei; Zhang, Wei; Hu, Yuchen; Sun, Xiaojuan; Kumar, R. Vasant; Yang, Jiakuan

    2014-07-01

    A novel ultrafine leady oxide has been prepared from a combustion-calcination process of lead citrate precursor (Pb3(C6H5O7)2·3H2O), by hydrometallurgical leaching of spent lead pastes firstly. The leady oxides are used to assemble lead acid battery which are subjected to cyclic voltammetry (CV) and battery testing. Various key properties of the new oxides, such as morphology, crystalline phases, degree of oxidation, apparent density and water and acid absorption value have been characterized by chemical analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that leady oxides synthesized at different calcination temperatures mainly comprise β-PbO, α-PbO and Pb. Unlike traditional leady oxide, the new oxide product prepared at 375 °C has a rod-like morphology with greater porous structure, and appears smaller density, lower value of acid absorption and larger propensity for water absorption. In battery testing, the 20 h rate and 1C rate discharge time have exceeded 26 h and 40 min, respectively. Results reveal that the leady oxide prepared at 375 °C exhibits excellent electrochemical performance and initial capacity as positive active material. While leady oxide obtained at 450 °C presents a relatively improved cycle life. Further work is to optimize the battery manufacturing process for better cycle performance.

  19. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  20. Synergistic hypergolic ignition of blends of dienes and dienophiles with red fuming nitric acid as oxidizer

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.P.; Kulkarni, S.G.; Prabhakaran, C.

    1989-04-01

    Synergistic hypergolic ignition of several fuel blends and mixtures with red fuming nitric acid (RFNA) as oxidizer has been reported previously. The liquid fuels consisted of blends of 3-carene, cyclopentadiene, or norbornadiene with cardanol in the weight ratio 70:30 for the first two and 85:15 for norbornadiene. In all these cases, synergism in ignition was believed to be due to the fast and exothermic oligomerization of 3-carene, cyclopentadiene, and norbornadiene in the presence of acid. The exothermicity of the systems was enhanced by the addition of cardanol to the unsaturation of oligomers, leading to the formation of highly oxidizable phenolic ethers. Two more important reactions at the preignition stage were nitration and oxidation of the ethers leading to the production of gaseous combustibles and heat. In this case, an attempt has been made to extend the range of possible preignition reactions by introducing diene-dienophile Diels-Alder cycloaddition with low activation energy by replacing cardanol with furfuryl alcohol or furfurylideneacetone having a furan ring to behave as acid polymerizable dienes in the above systems.

  1. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    Directory of Open Access Journals (Sweden)

    Ningjian Liang

    2015-12-01

    Full Text Available Chlorogenic acids (CGAs are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1 the relative composition of different CGA isomers present in coffee beverages; (2 analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3 description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  2. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    Science.gov (United States)

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  3. Oxidation of formic acid on platinum surfaces decorated with cobalt(III) macrocyclic complexes

    Science.gov (United States)

    Stevanović, S.; Babić-Samardžija, K.; Sovilj, S. P.; Tripković, A.; Jovanović, V. M.

    2009-09-01

    Platinum electrode decorated with three different mixed-ligand cobalt(III) complexes of the general formula [Co(Rdtc)cyclam](ClO4)2 [cyclam = 1,4,8,11-tetraazacyclotetradecane, Rdtc- = morpholine-(Morphdtc), piperidine-(Pipdtc), and 4-methylpiperidine-(4-Mepipdtc) dithiocarbamates, respectively] was used to study oxidation of formic acid in acidic solution. The complexes were adsorbed on differently prepared Pt surfaces, at open circuit potential. The preliminary results show increased catalytic activity of Pt for formic acid oxidation with complex ion adsorbed on the polycrystalline surfaces. The increase in catalytic activity depends on the structure of the complex applied and follows the order of metal-coordinated bidentate ligand as Morphdtc > Pipdtc > 4-Mepipdtc. Based on IR and NMR data, the main characteristics of the Rdtc ligands do not vary dramatically, but high symmetry of the corresponding complexes decreases in the same order. Accordingly, the complexes are distinctively more mobile, causing chemical interactions to occur on the surface with appreciable speed and enhanced selectivity. The effect of the complexes on catalytic activity presumably depends on structural changes on Pt surfaces caused by their adsorption.

  4. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  5. Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA)

    International Nuclear Information System (INIS)

    Terephthalic acid (TPA) is widely applied as a raw material in making polyester fiber, polyethylene terephthalate (PET) bottles, polyester films, etc. TPA is toxic and is known to act as endocrine disruptor. TPA wastewater is traditionally treated by biological process and this study aims to evaluate the effectiveness of several advanced oxidation processes on TPA removal. The oxidation processes studied were: UV-TiO2, UV-H2O2, UV-H2O2-Fe, O3, O3/Fe, O3/TiO2, UV-O3-H2O2-Fe and UV-O3-H2O2-Fe-TiO2. The results indicate that the time required for the complete destruction of 50 ppm of TPA can be minimized from 10 h using UV-TiO2 system, to less than 10 min by UV-H2O2-Fe-O3 system. Some of the likely organic intermediates identified during TPA destruction include, benzoquinone, benzene, maleic acid and oxalic acid. Possible destruction pathway of TPA has been proposed. TPA degradation by various systems was also analyzed based on the reaction kinetics and operating costs

  6. Calcination/acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst

    Institute of Scientific and Technical Information of China (English)

    YAO Zhongping; JIANG Yanli; JIANG Zhaohua; ZHU Hongkui; BAI Xuefeng

    2009-01-01

    The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) re-duction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and mtile TiO2 with a mi-cro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film cat.a/ysts. The removal rate of potassium chromate was related to the tech-nique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.

  7. Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition

    Directory of Open Access Journals (Sweden)

    Karolina Maria Wójciak

    2015-02-01

    Full Text Available Organic fermented sausages typically spoil during long-term storage due to oxidative rancidity. The application of natural antioxidants to meat stuffing is a major practice intended to inhibit the oxidation process and color changes. This study aimed to assess the effect of two unusual starter cultures: three probiotic strains (Lactobacillus casei LOCK 0900, Lactobacillus casei LOCK 0908 and Lactobacillus paracasei LOCK 0919 and lactic acid bacteria from acid whey on model fermented sausage type products focusing on oxidative stability by measuring instrumental color (L*, a*, b* values, conjugated dienes (CD, TBARS immediately after 21 days of ripening (0 and after 90 and 180 days of refrigerated storage (4 ºC. Determination of fatty acid composition, in meat product was performed after ripening and after 180 days of storage. At the end of the storage period, the salted sausages were characterized by the same content of polyunsaturated fatty acids (PUFA compared to cured samples. The addition of acid whey and a mixture of probiotic strains to nitrite-free sausage formulation was barely able to protect lipids against oxidation in comparison to nitrite during vacuum storage. Surprisingly, the use of acid whey has an influence on the desired red-pinkish color of organic fermented sausage after ripening and after 180 days of storage period.

  8. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  9. Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water.

    Science.gov (United States)

    Ventura, Maria; Aresta, Michele; Dibenedetto, Angela

    2016-05-23

    A simple, cheap, and selective catalyst based on copper/cerium oxides is described for the oxidation of 5-(hydroxymethyl)furfural (5-HMF) in water. An almost quantitative conversion (99 %) with excellent (90 %) selectivity towards the formation of 5-formyl-2-furancarboxylic acid, a platform molecule for other high value chemicals, is observed. The catalyst does not require any pretreatment or additives, such as bases, to obtain high yield and selectivity in water as solvent and using oxygen as oxidant. When a physical mixture of the oxides is used, low conversion and selectivity are observed. Air can be used instead of oxygen, but a lower conversion rate is observed if the same overall pressure is used, and the selectivity remains high. The catalyst can be recovered almost quantitatively and reused. Deactivation of the catalyst, observed in repeated runs, is due to the deposition of humins on its surface. Upon calcination the catalyst almost completely recovers its activity and selectivity, proving that the catalyst is robust. PMID:27101568

  10. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.

  11. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  12. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    Science.gov (United States)

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  13. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution.

    Science.gov (United States)

    Lee, M H; Kim, J Y; Kim, W H; Jung, E C; Jee, K Y

    2008-12-01

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO(3) and HClO(4). The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III) approximately Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9M HCl medium was applied to IAEA reference soils where the activity concentrations of (239,240)Pu and (238)Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA. PMID:18674920

  14. Preparation and characterization of a composite hydrogel with graphene oxide as an acid catalyst.

    Science.gov (United States)

    Jiang, Ting; Sui, Zhu-Yin; Yang, Quan-Sheng; Zhang, Xuetong; Han, Bao-Hang

    2015-04-28

    In this study, a facile method for synthesizing a novel graphene oxide/pyrrole-formaldehyde (GOP-1) composite hydrogel was developed via in situ polymerization of pyrrole and formaldehyde in the presence of graphene oxide sheets without any additional catalyst. During the polymerization, graphene oxide can act as a two-dimensional template to regulate the aggregation state of polymer and as an acid catalyst to accelerate the reaction rate of pyrrole and formaldehyde. The morphology and microstructure were investigated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, respectively. The chemical properties were analyzed via X-ray photoelectron spectroscopy, infrared spectroscopy, and Raman spectroscopy. The freeze-dried GOP-1 composite hydrogel exhibited a large specific surface area, high nitrogen content, and three-dimensional network structure. Based on the above features, the freeze-dried GOP-1 composite hydrogel used as a gas adsorbent showed a high carbon dioxide uptake capacity at 1.0 bar and 273 K (11.1 wt%), in sharp contrast to that of graphene oxide (7.4 wt%). Furthermore, the as-prepared composite hydrogel may possess attractive potential in the fields of electrode material, tissue engineering, and water treatment. PMID:25760407

  15. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    Science.gov (United States)

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  16. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  17. Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids

    NARCIS (Netherlands)

    Spannring, Peter; Bruijnincx, Pieter C. A.; Weckhuysen, Bert. M.; Klein Gebbink, Bert

    2014-01-01

    The oxidative cleavage of the C=C double bond in unsaturated fatty acids into aldehydes or carboxylic acids is a reaction of current interest in biomass valorization. The products of this reaction, which is currently being performed on an industrial scale by means of ozonolysis, can be applied for t

  18. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    NARCIS (Netherlands)

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  19. A novel mechanism for poisoning of metal oxide SCR catalysts: base-acid explanation correlated with redox properties.

    Science.gov (United States)

    Chang, Huazhen; Li, Junhua; Su, Wenkang; Shao, Yuankai; Hao, Jiming

    2014-09-11

    A novel mechanism is proposed for the poisoning effect of acid gases and N2O formation on SCR catalysts involving base-acid properties correlated with redox ability of M-O or M-OH (M = Ce or V) of metal oxides and the strength of their basicity responsible for resistance to HCl and SO2 at medium and low temperatures.

  20. Electrochemical oxidation of loop diuretic furosemide in aqueous acid medium and its analytical application

    Directory of Open Access Journals (Sweden)

    Shikandar D. Bukkitgar

    2016-12-01

    Full Text Available An investigation of oxidative–reductive mechanisms of pharmaceutically important molecules gives us information about the metabolic fact of targeted drug. As compared to recent ongoing, time-consuming and costly techniques, there is an urgent needing for development of a sensitive technique, which can help easy understanding of these pathways. Therefore, in the present work, an effective, low-cost and time-saving technique to investigate the reaction mechanism of furosemide in aqueous acid medium is attempted. Furosemide undergoes two-proton and two-electron transfer reaction. The product obtained was analysed by UV spectra. It was found that the chemical oxidation and electrochemical oxidation of furosemide follows two different pathways. In addition, an effective technique has been developed to determine furosemide in its trace level. Good recoveries and low detection limit accomplished the magnitude of the proposed method. The proposed method was adopted for furosemide determination in human urine and pharmaceutical samples.

  1. Intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid under different water quality and light conditions

    Institute of Scientific and Technical Information of China (English)

    WANG LiDong; ZHAO Yi; LI QiangWei; CHEN ZhouYan; LIU SongTao; MA YongLiang; HAO JiMing

    2009-01-01

    Oxidation of sulfite is an important process in wet flue gas desulfurization. Using highly purified water or distilled water as a reaction medium and a transparent or an opaque intermittent reaction apparatus, the intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid was investigated under four dif-ferent conditions. The reaction order of the reagents and the activation energy were obtained. The re-sults indicate that water quality and light have no obvious effects on the reaction order and activation energy, but have an influence on the reaction rate constant. The mechanism of the intrinsic reaction is proposed. The results derived with this mechanism are in good agreement with the experimental re-sults.

  2. Intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid under different water quality and light conditions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Oxidation of sulfite is an important process in wet flue gas desulfurization.Using highly purified water or distilled water as a reaction medium and a transparent or an opaque intermittent reaction apparatus,the intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid was investigated under four dif-ferent conditions.The reaction order of the reagents and the activation energy were obtained.The re-sults indicate that water quality and light have no obvious effects on the reaction order and activation energy,but have an influence on the reaction rate constant.The mechanism of the intrinsic reaction is proposed.The results derived with this mechanism are in good agreement with the experimental re-sults.

  3. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity.

    Science.gov (United States)

    Gerin, Fethullah; Erman, Hayriye; Erboga, Mustafa; Sener, Umit; Yilmaz, Ahsen; Seyhan, Hatice; Gurel, Ahmet

    2016-08-01

    This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters. PMID:27235018

  4. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid.

    Science.gov (United States)

    Calderón Guzmán, David; Brizuela, Norma Osnaya; Ortíz Herrera, Maribel; Hernández García, Ernestina; Barragán Mejía, Gerardo; Juárez Olguín, Hugo; Valenzuela Peraza, Armando; Attilus, Jonas; Labra Ruíz, Norma

    2016-09-01

    The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA). To address this hypothesis, the levels of dopamine (DA) and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP), glutathione (GSH), calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  5. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid

    Directory of Open Access Journals (Sweden)

    Calderón Guzmán David

    2016-09-01

    Full Text Available The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA. To address this hypothesis, the levels of dopamine (DA and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP, glutathione (GSH, calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  6. Kinetics of oxidation of pentavalent neptunium by pentavalent vanadium in solutions of nitric acid

    Science.gov (United States)

    Precek, Martin; Paulenova, Alena

    2010-03-01

    Management of the oxidation state of neptunium in the reprocessing of spent nuclear fuel by solvent extraction is very important. The kinetics of the oxidation of neptunium(V) by vanadium(V) in solutions of nitrate acid was investigated at constant ionic strength 4M. The reaction rate is first order with respect to Np(V) and V(V). The effects of proton concentration on the apparent second order rate constant k1" was determined for temperature 25°C as k1" = (0.99±0.03)·[H+]1.21M-1s-1. Activation parameters associated with the overall reaction have been calculated; the standard reaction enthalpy and entropy were 52.6±0.9 kJ/mol and -55.8±0.9 J/K/mol respectively.

  7. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    Science.gov (United States)

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  8. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride. PMID:26361086

  9. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  10. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO2 (rutile and anatase), ZnO and ZrO2. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained

  11. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    DEFF Research Database (Denmark)

    Corpeleijn, Eva; Hessvik, Nina P; Bakke, Siril S;

    2010-01-01

    Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments...... were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO...

  12. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  13. Oxidative stripping process for the recovery of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    The present invention is a two-cycle liquid-liquid extraction process in which the uranium, as uranous ion, is extracted with a first-cycle extractant and then oxidatively stripped with a concentrated phosphoric acid solution. This uranium-enriched strip solution then serves as feed for a second liquid-liquid solvent extraction cycle where uranyl ions are extracted into an organic phase, stripped from the organic phase with ammonium carbonate soluton, and recovered as a high-grade u3O8 product. (author)

  14. Salicylic acid alleviates cold-induced photosynthesis inhibition and oxidative stress in Jasminum sambac

    OpenAIRE

    CAI, HAN; He, Mengying; Ma, Kun; HUANG, YONGGAO; Wang, Yun

    2015-01-01

    Salicylic acid (SA) is a signal molecule that mediates many biotic and abiotic stress-induced physiological responses in plants. In the current study the protective effects of SA on cold stress-caused oxidative damage and photosynthesis inhibition in jasmine plants (Jasminum sambac) were examined. Jasmine seedlings were pretreated with 100 µM SA for 3 days and then subjected to cold stress (4 °C) for 15 days. The amounts of superoxide radicals (O_2^{-}) and hydrogen peroxide (H_{2}O_{2}) sign...

  15. Removal of Acid Alizarin Black Dye from Aqueous Solution by Adsorption using Zinc Oxide

    OpenAIRE

    Haydar A. Mohammad Salim

    2016-01-01

    The adsorption of Acid Alizarin Black (AAB) dye (C.I. 21725) on zinc oxide was investigated in this study. The adsorption was carried out under different operating conditions. The operating conditions were adsorbent dosage (10, 30, 50, 70 and 100 mg), initial dye concentration (10, 20, 30, 40, 50, 60 and 70 mg/L), pH of solution (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 30, 40, 50 and 60 oC). The removal percentage of dye on ZnO decreases from 67 % to 54 % with increase in initial dye c...

  16. Two-parameter stochastic resonance in a model of electrochemical oxidation of formic acid on Pt

    Institute of Scientific and Technical Information of China (English)

    皮宗新; 辛厚文

    2002-01-01

    Stochastic resonance (SR) is shown in a two-parameter system, a model of electro-chemical oxidation of formic acid on Pt. The driving current and the saturation coverage for carbon monoxide are two control parameters in this model. Modulation of an excitable focal stable state close to a Hopf bifurcation by a weak periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The results indicate that the noise can enlarge a weak peri-odic signal and lead the system to be ordered. The scenario and novel aspects of SR in this system are discussed.

  17. Two-parameter stochastic resonance in a model of electrochemical oxidation of formic acid on Pt

    Institute of Scientific and Technical Information of China (English)

    皮宗新; 辛厚文

    2002-01-01

    Stochastic resonance (SR) is shown in a two-parameter system, a model of electrochemical oxidation of formic acid on Pt. The driving current and the saturation coverage for carbon monoxide are two control parameters in this model. Modulation of an excitable focal stable state close to a Hopf bifurcation by a weak periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The results indicate that the noise can enlarge a weak periodic signal and lead the system to be ordered. The scenario and novel aspects of SR in this system are discussed.

  18. Oxidation of some disubstituted anisole derivatives with ceric perchlorate in perchloric acid solution

    International Nuclear Information System (INIS)

    The influence of concentration of particular reagents on the kinetics of Ce(IV) reduction by 2,6-dimethyl and 3,5-dimethyl-anisole as well as 2-methoxy-5-methyl- and 4-methoxy-2-methyl-aniline in perchloric acid solution was investigated, establishing the stoichiometry of these processes. Some intermediate products - macromolecular, derivatives of p-benzoquinone and 4,4'-diphenoquinone - were separated and identified. The effects of substituents and the conditions of performed oxidation processes on the kind and yields of the resultant products were considered. (author). 22 refs, 1 fig., 1 tab

  19. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  20. Crystal structure of the 1:2 molecular complex of tetrafluoroboric acid with triphenylphosphine oxide

    International Nuclear Information System (INIS)

    Crystalline molecular complex of tetrafluoroboric acid with triphenylphosphine oxide of Ph3PO·0.5HBF4 (1) is prepared and studied by means of x-ray diffraction method. HBF4 molecule is situated near crystallographic axis 2 and is statistically disordered relatively this axis. All the atoms of the molecule have positions of population density equal 0.5. Boron atom has distorted tetrahedral coordination. B-F(H) bond is significantly more lengthy then other three B-F bonds and is donor-acceptor one. HBF4 molecule is bonded with Ph3PO molecule by strong asymmetrical hydrogen bond with 50 % probability

  1. Three-dimensional graphene oxide/phytic acid composite for uranium(VI) sorption

    International Nuclear Information System (INIS)

    In this work, a novel three dimensional graphene oxide sponge composite material was synthesized by functionalized GO sheets with phytic acid (PA). The as-synthesized samples were characterized and employed to investigate the removal of U(VI) from aqueous solution. Results show that higher pH favored the sorption of uranium on PA-GO. Ionic strength puts insignificant influence on the sorption. The maximum adsorption capacity is 124.3 mg g-1 at pH 5.5. The adsorption isotherms can be well described by Langmuir isotherm model and the sorption kinetics has been successfully modeled by pseudo-second-order kinetic model. (author)

  2. Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate

    OpenAIRE

    Regeane M. Freitas; Perilli, Thomaz A. G.; Ladeira, Ana Claudia Q.

    2013-01-01

    Although oxidative precipitation by potassium permanganate is a widely recognised process for manganese removal, research dealing with highly contaminated acid mine drainage (AMD) has yet to be performed. The present study investigated the efficiency of KMnO4 in removing manganese from AMD effluents. Samples of AMD that originated from inactive uranium mine in Brazil were chemically characterised and treated by KMnO4 at pH 3.0, 5.0, and 7.0. Analyses by Raman spectroscopy and geochemical mode...

  3. Evaluation of the performance of platinum nanoparticle-titanium oxide nanotubes as a new refreshable electrode for formic acid electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.G.; Momeni, M.M. [Chemistry Faculty, Department of Physical Chemistry, Electrochemistry Research Laboratory, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-06-15

    Platinum nanoparticles (Pt-NP) are deposited on the surface of titanium oxide nanotubes (TN) by microemulsion method. Highly ordered TN on a pure titanium substrate are successfully fabricated by anodizing of titanium. The morphology and surface analysis of Pt-NP/TN electrodes were investigated using scanning electron microscopy and X-ray diffraction spectroscopy, respectively. The electro-oxidation of formic acid on Pt-NP/TN electrodes in acidic medium was studied by cyclic voltammetry and chronoamperometry methods. The results showed that the oxidation peak currents on the Pt-NP/TN electrode for formic acid oxidation are several times larger than a smooth platinum electrode and confirmed the better electro-catalytic activity and stability of these new electrodes. The photocatalytic properties of titanium oxide make the Pt-NP/TN electrode reusable after a short UV treatment, and the electro-oxidation current density of Pt-NP/TN electrode after UV-cleaning can be re-established. So Pt-NP/TN electrode has a good application potential to fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The effects of omega 3 fatty acid supplementation on brain tissue oxidative status in aged wistar rats

    OpenAIRE

    Avramovic, N; Dragutinovic, V; Krstic, D; Colovic, MB; Trbovic, A; de Luka, S; Milovanovic, I; Popovic, T

    2012-01-01

    Background: The omega 3 fatty acids play an important role in many physiological processes. Their effect is well documented in neurodegenerative diseases and inflammatory diseases. Also, aging as a biophysiological process could be influenced by eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) components of fish oil. However there are not many studies showing the effect of PUFA (polyunsaturated FA) suplementation in eldery brain functions and the response to oxidative strees. The aim ...

  5. Synthesis of o-Carboxyarylacrylic Acids by Room Temperature Oxidative Cleavage of Hydroxynaphthalenes and Higher Aromatics with Oxone.

    Science.gov (United States)

    Parida, Keshaba Nanda; Moorthy, Jarugu Narasimha

    2015-08-21

    A simple procedure for the synthesis of a variety of o-carboxyarylacrylic acids has been developed with Oxone (2KHSO5·KHSO4·K2SO4); the oxidation reaction involves the stirring of methoxy/hydroxy-substituted naphthalenes, phenanthrenes, anthracenes, etc. with Oxone in an acetonitrile-water mixture (1:1, v/v) at rt. Mechanistically, the reaction proceeds via initial oxidation of naphthalene to o-quinone, which undergoes cleavage to the corresponding o-carboxyarylacrylic acid. The higher aromatics are found to yield carboxymethyl lactones derived from the initially formed o-carboxyarylacrylic acids.

  6. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    International Nuclear Information System (INIS)

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs

  7. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  8. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    Science.gov (United States)

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons. PMID:27400953

  9. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ)in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    SHANJin-huan; WANGLi; LIUBao-sheng; SHENShi-gang

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)]anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25-40℃.The order of the redox reaction of lactic acid and DDA was found to be first-order.The rates increased with the increase in [OH-]and decreased with the increase in [tellurate].No free radical was detected.In the view of this the dihydroxymonotelluratoargentate(Ⅲ)species(DMA) is assumed to be the active species.A plausible mechanism involving a two-electron transfer is proposed,and the rate equation derived from the mechanism can be used to explain all the experimenttal results.The activation parameters(25℃)and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  10. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ) in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25—40 ℃. The order of the redox reaction of lactic acid and DDA was found to be first-order. The rates increased with the increase in [OH-] and decreased with the increase in [tellurate]. No free radical was detected. In the view of this the dihydroxymonotelluratoargentate(Ⅲ) species(DMA) is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed, and the rate equation derived from the mechanism can be used to explain all the experimental results. The activation parameters(25 ℃) and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  11. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    Science.gov (United States)

    Wood, Mary H; Casford, M T; Steitz, R; Zarbakhsh, A; Welbourn, R J L; Clarke, Stuart M

    2016-01-19

    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations. PMID:26707597

  12. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    Science.gov (United States)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  13. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  14. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    Science.gov (United States)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  15. A case of impairment of mitochondrial fatty acid beta-oxidation.

    Science.gov (United States)

    Hasegawa, Tomonobu; Hori, Naoaki; Du, Wenlin

    2002-06-01

    We describe a patient with impairment of mitochondrial fatty acid P-oxidation. A Japanese baby boy was delivered in the 38th week of gestation by emergency cesarean section due to fetal asphyxia. His birth weight was 1,985 g (head circumference 31.0 cm (10th percentile). His Apgar scores were 3 and 5 at 1 min and 5 min, respectively. Blood glucose was 12 mg/dl at 1 hour after birth, requiring glucose administration. On day 1 his serum CK was 20,780 IU/l, which was thought to be due to asphyxia. His serum CK levels gradually began to decrease. At 3 months of age, he sucked poorly, had poor body weight gain, and muscle hypotonia was observed. On day 117 his general condition was impaired, and marked hepatomegaly was observed. The blood glucose level was 43 mg/dl. The patient's urine was negative for ketone bodies. His serum triglyceride level was 3,670 mg/dl. Abdominal CT scan revealed a fatty liver. Serum levels of acyl carnitine from very-long chain fatty acid increased. On day 118 he died due to ventricular fibrillation. On necropsy, massive lipid deposition was observed in the liver, cardiac muscle, kidney, skeletal muscle, and intestinal mucosa. The ratio of very-long chain acyl-CoA dehydrogenase (VLCAD) activity for C16/C8 fatty acid was 0.50 (normal control 1.29), suggesting abnormal VLCAD. He was diagnosed as having impairment of mitochondrial fatty acid beta-oxidation, presumably due to the VLCAD deficiency. PMID:12125906

  16. Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-T and bromamine-T: A comparative spectrophotometric kinetic study

    Indian Academy of Sciences (India)

    Puttaswamy; S Dakshayani

    2014-11-01

    Balsalazide (BSZ) belongs to a class of non-steroidal anti-inflammatory drugs. Kinetics and mechanism of oxidation of BSZ with sodium N-halo-p-toluenesulfonamides viz., chloramine-T(CAT) and bromamine-T(BAT) in HClO4 medium have been spectrophotometrically investigated (max =357nm) at 303 K. Under comparable experimental conditions, reactions with both the oxidants follow a first-order dependence of rate on [BSZ] and fractional-order dependence on each [oxidant] and [HClO4]. Activation parameters and reaction constants have been computed. 2-hydroxy-5-nitroso-benzoic acid and 3-(4-nitroso-benzoylamino)-propionic acid are identified as the oxidation products of BSZ with both CAT and BAT. The rate of oxidation of BSZ is about five-fold faster with BAT than with CAT. Plausible mechanism and related rate law have been deduced for the observed kinetics.

  17. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.;

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...... conditions, yields of 90-95% of acetic acid could be achieved at moderate temperatures and pressures. Based on our findings, a reaction pathway for the catalytic oxidation of ethanol via acetaldehyde to acetic acid is proposed, and the rate-determining step (RDS) in the mechanism is found to be the (possibly......, the possibilities for producing ethyl acetate by the aerobic oxidation of ethanol is also studied. At low ethanol concentrations, the main product is acetic acid; at concentrations >60 wt%, it is ethyl acetate....

  18. Preparation of Nicotinic Acid from Oxidation of 3-Picoline with Oxygen Under Catalysis of T(0-CI)PPMn

    Institute of Scientific and Technical Information of China (English)

    BAI Jin-quan; WANG Qi-chang; HU Yun; GUO Feng-yan

    2008-01-01

    The oxidation of 3-picoline to nicotinic acid took place efficiently in an ethanol solution with O2 as the oxidant under the catalysis of T(o-C1)PPMn at 40-150℃ and 0.5-3.0 MPa oxygen pressure.The influences of temperature,oxygen pressure,reaction time,concentration of 3-picoline,concentration of sodium hydroxide,and concentration of T(0-C1)PPMn catalyst,etc.on the production of nicotinic acid were investigated.The results show that T(0-C1)PPMn presented excellent catalytic activity in the oxidation of 3-picoline to nicotinic acid and the yield of nicotinic acid varied greatly with the reaction temperature,oxygen pressure,T(0-C1)PPMn concentration,etc.

  19. Oxidation process intensity in microsomal fraction of rat liver under conditions of different supplementation with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    O. V. Ketsa

    2014-02-01

    Full Text Available The effect of fat compositions with the varying ratio of polyunsaturated fatty acids (PUFAs of families ω-3 and ω-6 on oxidation process intensity in microsomal fraction of rat liver has been investigated. The aim of the study was to investigate the level of markers of oxidative modification of lipids and proteins in microsomal fraction of rat liver. Fat components in the experiment diets were presented by sunflower oil, soybean oil and fish oil. Rats were fed using one of the fillowing 5 diets for the period of 4 weeks: 1 AIN-93 diet with 7% sunflower oil and fish oil, with the inclusion of linoleic acid, eicosapentaenoic acid and docosahexaenoic acid in the ratio of ω-6:ω-3 – 7:1 (control diet; 2 AIN-93 diet with 7% soybean oil, with the inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1; 3 the diet containing only ω-6 PUFAs; 4 the diet containing only ω-3 PUFAs; 5 the diet without PUFAs. The fatty acid compositions of the diets were analysed by gas chromatography. We measured the primary and secondary lipoperoxidation products, proteins carbonyl derivatives and SH-groups of proteins. It was shown that inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1 or ω-6 PUFAs into the animal diet increased lipid peroxidation in microsomal fraction of the rat liver as compared with the control group. Only ω-6 PUFAs increased the oxidative modification of proteins in microsomal fraction of the rat liver as compared with the control rat group. High dose of ω-3 PUFAs – eicosapentaenoic acid and docosahexaenoic acid had no influence on free radical oxidation of lipids and proteins. Using the diet without PUFAs increased oxidation process intensity in microsomal fraction of rat liver. According to our study, ω-6 PUFAs increased the oxidative modification of lipids and proteins in microsomal fraction of the rat liver. ω-3 PUFAs, in particular, eicosapentaenoic acid and docosahexaenoic acid, increased lipid and

  20. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    Science.gov (United States)

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  1. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-05-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to

  2. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  3. Role of Bismuth Oxide in Bi-MCo2O4(M=Co,Ni,Cu,Zn) Catalysts for Wet Air Oxidation of Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    JIANG Peng-bo; CHENG Tie-xin; ZHUANG Hong; CUI Xiang-hao; BI Ying-li; ZHEN Kai-ji

    2004-01-01

    Two series of cobalt(Ⅲ)-containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD, TEM, ESR, UV-DRS and XPS, and the interaction between Co and Bi was studied as well. It has been found that nano-sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)-containing spinel are still maintained. The shift of the binding energy of Bi4f7/2 is related to the catalytic activity of these catalysts doped with bismuth oxide.

  4. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  5. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.

    OpenAIRE

    Berlett, B S; Chock, P B; Yim, M B; Stadtman, E. R.

    1990-01-01

    In bicarbonate/CO2 buffer, Mn(II) and Fe(II) catalyze the oxidation of amino acids by H2O2 and the dismutation of H2O2. As the Mn(II)/Fe(II) ratio is increased, the yield of carbonyl compounds per mole of leucine oxidized is essentially constant, but the ratio of alpha-ketoisocaproate to isovaleraldehyde formed increases, and the fraction of H2O2 converted to O2 increases. In the absence of Fe(II), the rate of Mn(II)-catalyzed leucine oxidation is directly proportional to the H2O2, Mn(II), an...

  6. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    International Nuclear Information System (INIS)

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers

  7. Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits.

    Science.gov (United States)

    Asakawa, Y; Ishida, T; Toyota, M; Takemoto, T

    1986-08-01

    The metabolism of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid was studied in rabbits. Each of these sesquiterpenoids was converted to primary, secondary or tertiary alcohols, among which the primary alcohol was predominant. A vinylic methyl group and an exomethylene group were easily hydroxylated and converted to a glycol via an epoxide in many cases. Eight new metabolites were determined by chemical and spectroscopic methods. PMID:3765656

  8. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino [Universidad Autnoma de Coahuila, Coahuila (Mexico). Facultad de Metalurgia

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  9. 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma.

    Science.gov (United States)

    Raju, K Rama Satyanarayana; Kumar, M N Sathish; Gupta, Saurabh; Naga, Srinivas T; Shankar, Jaya K; Murthy, Vishakantha; Madhunapanthula, Subba Rao V; Mulukutla, Shashank; Ambhore, Nilesh S; Tummala, Shashank; Vishnuvarthan, V J; Azam, Afzal; Elango, Kannan

    2014-12-01

    Pro-inflammatory cytokines regulate the magnitude of allergic reactions during asthma. Tumor necrosis factor--alpha (TNF-α), interleukin-6 (IL-6) and interleukin-13 (IL-13) play a crucial role in aggravating the inflammatory conditions during allergic asthma. In addition, oxidative stress contributes to the pathogenesis of asthma by altering the physiological condition resulting in the development of status asthmaticus. Anti-inflammatory corticosteroids are being widely used for treating allergic asthma. In the present study 5-aminosalicylic acid (5-ASA), a salicylic acid derivative, was evaluated, in vivo for its potential to suppress TNF-α, IL-6 and IL-13 using ovalbumin (OVA) induced allergic asthma in Balb/C mice. Oral administration of 65, 130 and 195 mg/kg 5-ASA significantly reduced the OVA induced total and differential leucocyte count, TNF-α, IL-6, IL-13, nitrite, nitrate, MDA, MPO and TPL levels in the lung lavage samples. Collectively, these findings suggest that 5-ASA is a potent immunomodulator and suppresses key Th2 cytokines production and oxidative stress in OVA-induced asthma.

  10. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Shen Shengrong

    2010-09-01

    Full Text Available Abstract Some polyunsaturated fatty acids (PUFAs, if not all, have been shown to have tumoricidal action, but their exact mechanism(s of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA inhibited tumor cell growth at high concentrations (above 300 μM; while low concentrations (100-200 μM promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS formation, malondialdehyde (MDA accumulation and superoxide dismutase (SOD activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO while the normal human umbilical vein endothelial cells (HUVEC were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC. LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction.

  11. Evaluation of the Protein Requirement in Chinese Young Adults Using the Indicator Amino Acid Oxidation Technique

    Institute of Scientific and Technical Information of China (English)

    LI Min; ZHANG Yu Hui; WANG Zhi Ling; GOU Ling Yan; LI Wei Dong; TIAN Yuan; HU Yi Chun; WANG Rui; PIAO Jian Hua; YANG Xiao Guang

    2013-01-01

    Objective To accurately calculate the protein requirements in Chinese young adults using the indicator amino acid oxidation technique. Methods Nine women and ten men received a restricted daily level of protein intake (0.75, 0.82, 0.89, 0.97, and 1.05 g/kg), along with L-[1-13C]-leucine. Subjects’ protein requirement was determined by a biphasic linear regression crossover analysis of F13CO2 data. In doing so, a breakpoint at the minimal rate of appearance of 13CO2 expiration specific to each level of dietary protein was identified. This trial was registered with the Chinese clinical trial registry as ChiCTR-ONC-11001407. Results The Estimated Average Requirement (EAR) and the Recommended Nutrient Intake (RNI) of protein for healthy Chinese young adults were determined to be 0.87 and 0.98 g/(kg·d), respectively, based on the indicator amino acid oxidation technique. Conclusion The EAR and RNI of mixed protein are 5% and 16% that are lower than the current proposed EAR and RNI (0.92 and 1.16 g/(kg·d), respectively), as determined by the nitrogen balance method. The respective EAR and RNI recommendations of 0.87 and 0.98 g/(kg·d) of mixed protein are estimated to be reasonable and suitable for Chinese young adults.

  12. Urinary markers of nucleic acid oxidation in Danish overweight/obese children and youths

    DEFF Research Database (Denmark)

    Kloppenborg, Julie Tonsgaard; Fonvig, Cilius Esman; Johannesen, Jesper;

    2016-01-01

    study we investigated the relationships between urinary markers of nucleic acid oxidation concentrations and the degree of obesity and glucose metabolism in overweight compared to lean children. 42 (24 girls) and 35 lean (19 girls) children and adolescents were recruited from the Registry of the Danish...... or glucose metabolism in lean and obese children. However, sub-analyses adjusted for age, sex and the degree of obesity showed positive associations between the two hour glucose (2 h glucose) and the urinary markers 8-oxoGuo (p=0.02, r(2)= 0.63) and 8-oxodG (p=0.046, r(2)= 0.48) and between the insulinogenic...... index and 8-oxoGuo (p=0.03, r(2)=0.60) in the 12 obese children exhibiting impaired glucose tolerance. Excretion of the urinary markers of nucleic acid oxidation and the degree of obesity or the glucose metabolism were not associated in this study. Nevertheless, obese children with impaired glucose...

  13. Direct electrochemical formation of alloyed AuPt nanostructured electrocatalysts for the oxidation of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Balkis, Ali; O' Mullane, Anthony P., E-mail: anthony.omullane@rmit.edu.au

    2014-01-15

    The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO{sub (ads)} removal from the surface as well as the highly anisotropic nanostructure of AuPt. - Highlights: • Highly anisotropic AuPt alloys can be fabricated via a simple electrochemical method in the absence of surfactants. • The morphology is controlled by the competing deposition of Au and Pt which is dependent on the applied voltage. • The AuPt alloys are highly active for formic acid oxidation through the dehydrogenation pathway due to an ensemble effect.

  14. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    Science.gov (United States)

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  15. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  16. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, S.S. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Shinde, P.S. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Sapkal, R.T. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Oh, Y.W. [Department of Nano-Engineering, Kyungnam University, Masan 631-701 (Korea, Republic of); Haranath, D. [National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Rajpure, K.Y., E-mail: rajpure@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Influence of substrate temperature onto the physico-chemical properties. Black-Right-Pointing-Pointer Photochemical, structural, luminescent, optoelectrical and thermal properties. Black-Right-Pointing-Pointer The kinetics of oxalic acid degradation with reaction mechanism. Black-Right-Pointing-Pointer Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV-Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I{sub sc} = 0.357 mA) and open circuit voltage (V{sub oc} = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14-3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  17. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    International Nuclear Information System (INIS)

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (Isc = 0.357 mA) and open circuit voltage (Voc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  18. Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, Perumal; Selvi, Natesan Thamil [Aditanar College of Arts and Science, Tiruchendur (India); Devi, Soundarapandian Sugirtha [Kamaraj College, Thoothukudi (India)

    2014-02-15

    The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile . 80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [H{sup +}] and ionic strength. The reaction is acid catalysed, the order with respect to [H{sup +}] is unity and the active oxidizing species is found to be HCrO{sub 3}{sup +}. The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of HCrO{sub 3}{sup +} forming a sulfonium ion intermediate. The intermediate then undergoes α,β-cleavage leading to the liberation of CO{sub 2}. The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log k{sub 2} and Hammett σ constants with a negative value of reaction constant. The ρ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs.

  19. Synthesis ofε-Caprolactone by Oxidation of Cyclohexanone with Monoperoxysuccinic Acid

    Institute of Scientific and Technical Information of China (English)

    陈建; 赵小双; 张光旭; 陈波; 蔡卫权

    2013-01-01

    In the absence of catalyst, 70%hydrogen peroxide was used to oxidize succinic anhydride to solid mo-noperoxysuccinic acid (PSA). Then PSA was applied to synthesis ofε-caprolactone (ε-CL) by oxidation of cyclo-hexanone in the heterogeneous system. In order to achieve material recycle, solid precipitated in the process of synthesizing ε-CL was dehydrated via reactive distillation followed by recrystallization to prepare succinic anhy-dride, which was characterized by IR (infrared spectra) and 1HNMR (1H nuclear magnetic resonance). Effects of molar ratio of PSA to cyclohexanone, acetic acid dosage, reaction temperature, reaction time on conversion of cyclohexanone, yield and selectivity ofε-CL were investigated respectively. The results indicated that conversion of cyclohexanone, yield and selectivity of ε-CL were upto 98.1%, 97.5% and 99.4% respectively under the optimal conditions. In addition, in the process of synthesizing succinic anhydride, the optimal yield of succinic anhydride reached 67.4%.

  20. A method for concentrating organic dyes: colorimetric measurements of nitric oxides and sialic acids.

    Science.gov (United States)

    Lalezari, Parviz; Lekhraj, Rukmani; Casper, Diana

    2011-09-01

    A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye-detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations. PMID:21605540

  1. Phylogenomic evidence for a myxococcal contribution to the mitochondrial fatty acid beta-oxidation.

    Directory of Open Access Journals (Sweden)

    Agatha Schlüter

    Full Text Available BACKGROUND: The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer. CONCLUSIONS/SIGNIFICANCE: Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to enter eukaryotes.

  2. Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead

    Directory of Open Access Journals (Sweden)

    Mohammad Amani

    2010-01-01

    Full Text Available Background: Extended exposure to low levels of lead causes high blood pressure in human and laboratory animals. The mechanism is not completely recognized, but it is relatively implicated with generation of free radicals, oxidant agents such as ROS, and decrease of available nitric oxide (NO. In this study, we have demonstrated the effect of ascorbic acid as an antioxidant on nitric oxide metabolites and systolic blood pressure in rats exposed to low levels of lead. Materials and Methods: The adult male Wistar rats weighing 200-250 g were divided into four groups: control, lead acetate (receiving 100 ppm lead acetate in drinking water, lead acetate plus ascorbic acid (receiving 100 ppm lead acetate and 1 g/l ascorbic acid in drinking water, and ascorbic acid (receiving 1 g/l ascorbic acid in drinking water groups. The animals were anesthetized with ketamin/xylazine (50 and 7 mg/kg, respectively, ip and systolic blood pressure was then measured from the tail of the animals by a sphygmomanometer. Nitric oxide levels in serum were measured indirectly by evaluation of its stable metabolites (total nitrite and nitrate (NOc. Results: After 8 and 12 weeks, systolic blood pressure in the lead acetate group was significantly elevated compared to the control group. Ascorbic acid supplementation could prevent the systolic blood pressure rise in the lead acetate plus ascorbic acid group and there was no significant difference relative to the control group. The serum NOc levels in lead acetate group significantly decreased in relation to the control group, but this reduction was not significantly different between the lead acetate plus ascorbic acid group and the control group. Conclusion: Results of this study suggest that ascorbic acid as an antioxidant prevents the lead induced hypertension. This effect may be mediated by inhibition of NOc oxidation and thereby increasing availability of NO.

  3. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows.

    Science.gov (United States)

    Hanschke, N; Kankofer, M; Ruda, L; Höltershinken, M; Meyer, U; Frank, J; Dänicke, S; Rehage, J

    2016-10-01

    Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS

  4. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows.

    Science.gov (United States)

    Hanschke, N; Kankofer, M; Ruda, L; Höltershinken, M; Meyer, U; Frank, J; Dänicke, S; Rehage, J

    2016-10-01

    Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS

  5. Protective effect of alpha-lipoic acid on cypermethrin-induced oxidative stress in Wistar rats.

    Science.gov (United States)

    Mignini, F; Nasuti, C; Fedeli, D; Mattioli, L; Cosenza, M; Artico, M; Gabbianelli, R

    2013-01-01

    Cypermethrin (CY), a class II pyrethroid pesticide, is globally used to control insects in the household and in agriculture. Despite beneficial roles, its uncontrolled and repetitive application leads to unintended effects in non-target organisms. In light of the relevant anti-oxidant properties of alpha-lipoic acid (ALA), in the work described herein we tested the effect of a commercially available ALA formulation on cypermethrin CY)-induced oxidative stress in Wistar rats. The rats were orally administered with 53.14 mg/kg of ALA and 35.71 mg/kg of CY for 60 days. The treatment with CY did not induce changes in either locomotor activities or in body weight. Differences were observed on superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation that were re-established by ALA treatment at similar levels of the placebo group. Furthermore, ALA formulation increased glutathione (GSH) level and glutathione peroxidase (GPx) activity. Because of the widespread use of CY, higher amounts of pesticide residues are present in food, and a diet supplementation with ALA could be an active free radical scavenger protecting against diseases associated with oxidative stress.

  6. Protection of Salvianolic Acid B for Human Endothelial Cells Against Hydrogen Peroxide-Induced Oxidative Damage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jungang; ZHAO Guangrong; LIU Jinling; JI Xiangwu

    2009-01-01

    Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was evaluated with human endothelial cells under oxidative stress. Human endothelial cells were pretreated with Sal B for 12 h followed by hydrogen peroxide for another 12 h. Production of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and concentration of glu-tathione were measured: Protective effect of Sal B on the endothelial cells from hydrogen peroxide-induced damage ' was observed, and ROS production in the cells was found significantly inhibited. Sal B remarkably enhanced the activities of antioxidant enzymes SOD, CAT and GPX. Furthermore, Sal B up-regulated the intracellular glutathione concentration. The results indicate that Sal B protected endothelial cells from oxidative stress by improving the redox status of the cells through enhancing the antioxidant enzyme activities and increasing the reductive glutathione concentration after the oxidative challenge.

  7. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid

    Indian Academy of Sciences (India)

    Fereshteh Chekin; Samira Bagheri; Sharifah Bee Abd Hamid

    2015-12-01

    A simple approach for the preparation of gelatin functionalized reduced graphene oxide nanosheet (Gel-RGONS) by chemical reduction of graphene oxide (GO) using gelatin as both reducing agent and stabilizing agent in an aqueous solution was developed. The morphology and structure of the Gel-RGONS were examined by X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy and Raman spectroscopy. Gelatin acted as a functionalizing reagent to guarantee good dispersibility and stability of the r in distilled water. Moreover, a new electrochemical sensor was developed based on Gel-RGONS modified glassy carbon electrode (Gel-RGONS/GCE). Gel-r exhibits excellent electrocatalytic activity to gallic acid (GA) oxidation. The experimental conditions such as pH, adsorption time and scan rate were optimized for the determination of GA. Under optimum conditions, the sensor responded linearly to GA in the concentration of 1.0 × 10−6 to 1.1 × 10−4 M with detection limit of 4.7 × 10−7 M at 3 using linear sweep voltammetry (LSV). The method has been successfully applied to the determination of GA in sample of black tea.

  8. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis

    International Nuclear Information System (INIS)

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and 1H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  9. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ferk, Franziska; Chakraborty, Asima [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Jaeger, Walter [Department of Clinical Pharmacy and Diagnostic, University of Vienna, Vienna (Austria); Kundi, Michael [Institute of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Bichler, Julia; Misik, Miroslav [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Department of Nutritional Sciences, University of Vienna, 1090 Vienna (Austria); Grasl-Kraupp, Bettina; Sagmeister, Sandra [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Haidinger, Gerald [Department of Epidemiology, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Hoelzl, Christine; Nersesyan, Armen [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Dusinska, Maria [Health Effect Laboratory, Center for Ecological Economics, Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Simic, Tatjana [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Knasmueller, Siegfried, E-mail: siegfried.knasmueller@meduniwien.ac.at [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria)

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-{pi}) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against {gamma}-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of

  10. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    Science.gov (United States)

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  11. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    International Nuclear Information System (INIS)

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  12. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  13. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Science.gov (United States)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  14. Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats.

    Science.gov (United States)

    Kharroubi, Wafa; Dhibi, Madiha; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-02-01

    The present study aimed to evaluate the effect of arsenic on liver fatty acids (FA) composition, hepatotoxicity and oxidative status markers in rats. Male rats were randomly devised to six groups (n=10 per group) and exposed to sodium arsenate at a dose of 1 and 10 mg/l for 45 and 90 days. Arsenate exposure is associated with significant changes in the FA composition in liver. A significant increase of saturated fatty acids (SFA) in all treated groups (p<0.01) and trans unsaturated fatty acids (trans UFA) in rats exposed both for short term for 10 mg/l (p<0.05) and long term for 1 and 10 mg/l (p<0.001) was observed. However, the cis UFA were significantly decreased in these groups (p<0.05). A markedly increase of indicator in cell membrane viscosity expressed as SFA/UFA was reported in the treated groups (p<0.001). A significant increase in the level of malondialdehyde by 38.3 % after 90 days of exposure at 10 mg/l was observed. Compared to control rats, significant liver damage was observed at 10 mg/l of arsenate by increasing plasma marker enzymes after 90 days. It is through the histological investigations in hepatic tissues of exposed rats that these damage effects of arsenate were confirmed. The antioxidant perturbations were observed to be more important at groups treated by the high dose (p<0.05). An increase in the level of protein carbonyls was observed in all treated groups (p<0.05). The present study provides evidence for a direct effect of arsenite on FA composition disturbance causing an increase of SFA and TFAs isomers, liver dysfunction and oxidative stress. Therefore, arsenate can lead to hepatic damage and propensity towards liver cancer. PMID:23949113

  15. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation

    International Nuclear Information System (INIS)

    Electric discharges burning in humid air at atmospheric pressure over aqueous solutions induce acid effects in the liquid phase resulting from the formation of nitric acid and peroxynitrous acid as transient precursor. These acid effects affect the degradation mechanisms of organic wastes and the relevant kinetic rates; therefore they thus must be controlled (e.g. using buffers). Nitrogen reactive species such as peroxynitrous acid or its salt are directly concerned with both acid effects as precursor to nitric acid, and strong oxidizing properties E0(ONO2H/NO2) = 2.02 V/SHE. Illustrating examples are given in the case of an organic dye (Alizarin S) removal and the gliding discharge treatment of urban wastewaters. Additional arguments are presented to explain the biocidal effect of humid air discharges.

  16. PPARd IS A LIPID SENSOR AND A REGULATOR OF FATTY ACID OXIDATION IN PANCREATIC β-CELLS

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Nielsen, Tina; Børgesen, Michael;

    islets and in the insulinoma cell line INS-1E. This is reflected at the functional level in activity assays using a PPRE-driven luciferase reporter construct. The fatty acids oleic, arachidonic and linolenic acid are able to acivate this construct synergistically with the synthetic RXR agonist LG100268....... Selective activation of PPARd in INS-1E cells with the PPARd agonist L165041 in the presence or absence of the RXRa agonist LG100268 induces luciferase activity 3- and 7-fold respectively and mimics the effect of the fatty acids. The same subset genes involved in fatty acid uptake and oxidation...

  17. Thermal properties of poly(ethylene oxide)/lauric acid blends. A SSA-DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Pielichowski, Krzysztof; Flejtuch, Kinga [Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow (Poland)

    2006-03-15

    A series of poly(ethylene oxide) (PEO)/lauric acid blends with different compositions has been prepared and characterised by differential scanning calorimetry (DSC) in dynamic mode. It has been found that the enthalpy of melting and crystallisation reaches its highest value for PEO/lauric acid blend (1:1, w/w) which makes this system a promising candidate for thermal energy storage applications. Further studies by step-scan alternating (SSA)-DSC revealed that an increase of the temperature step causes that the average total heating rate is also increasing and the heat flow is characterised by higher values. Reversing component of the heat flow during melting reaches lowest values at highest step (step=1{sup o}) when the re-crystallisation of PEO is hindered. An increase of step generally leads to an increase of the number of non-equilibrium effects and facilitates the activation of kinetic non-reversing processes, hindering the overall crystallisation of PEO. For lauric acid, due to facile crystallisation and self-association, formation of ordered regular structures takes place faster and is influenced by non-reversing processes in higher proportion. (author)

  18. Electrochemical detection of uric acid via uricase-immobilized graphene oxide.

    Science.gov (United States)

    Omar, Muhamad Nadzmi; Salleh, Abu Bakar; Lim, Hong Ngee; Ahmad Tajudin, Asilah

    2016-09-15

    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility. PMID:27402177

  19. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant.

    Science.gov (United States)

    Hori, Hisao; Yamamoto, Ari; Hayakawa, Etsuko; Taniyasu, Sachi; Yamashita, Nobuyoshi; Kutsuna, Shuzo; Kiatagawa, Hiroshi; Arakawa, Ryuichi

    2005-04-01

    Photochemical decomposition of persistent perfluorocarboxylic acids (PFCAs) in water by use of persulfate ion (S2O8(2-)) was examined to develop a technique to neutralize stationary sources of PFCAs. Photolysis of S2O8(2-) produced highly oxidative sulfate radical anions (SO4-), which efficiently decomposed perfluorooctanoic acid (PFOA) and other PFCAs bearing C4-C8 perfluoroalkyl groups. The major products were F- and CO2; also, small amounts of PFCAs with shorter than initial chain lengths were detected in the reaction solution. PFOA at a concentration of 1.35 mM (typical of that in untreated wastewater after an emulsifying process in fluoropolymer manufacture) was completely decomposed by a photochemical system with 50 mM S2O8(2-) and 4 h of irradiation from a 200-W xenon-mercury lamp. The initial PFOA decomposition rate was 11 times higherthan with photolysis alone. All sulfur-containing species in the reaction solution were eventually transformed to sulfate ions by this method. This method was successfully applied to the decomposition of perfluorononanoic acid contained in a floor wax solution.

  20. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent