WorldWideScience

Sample records for acid oxidation defects-remaining

  1. Mitochondrial fatty acid oxidation defects--remaining challenges

    DEFF Research Database (Denmark)

    Gregersen, Niels; Andresen, Brage S; Pedersen, Christina B;

    2008-01-01

    Mitochondrial fatty acid oxidation defects have been recognized since the early 1970s. The discovery rate has been rather constant, with 3-4 'new' disorders identified every decade and with the most recent example, ACAD9 deficiency, reported in 2007. In this presentation we will focus on three...... of different mitochondrial dehydrogenases as well as deficiency of FAD and coenzyme Q(10). With SCAD deficiency, the challenge is to elucidate whether ACADS gene variations are disease-associated, especially when combined with other genetic/cellular/environmental factors, which may act synergistically....

  2. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  3. Refsum disease, peroxisomes and phytanic acid oxidation: a review.

    Science.gov (United States)

    Wanders, R J; Jansen, G A; Skjeldal, O H

    2001-11-01

    Refsum disease was first recognized as a distinct disease entity by Sigvald Refsum in the 1940s. The discovery of markedly elevated levels of the branched-chain fatty acid phytanic acid in certain patients marked Refsum disease as a disorder of lipid metabolism. Although it was immediately recognized that the accumulation of phytanic acid is due to its deficient breakdown in Refsum disease patients, the true enzymatic defect remained mysterious until recently. A major breakthrough in this respect was the resolution of the mechanism of phytanic acid alpha-oxidation in humans. In this review we describe the many aspects of Refsum disease from the clinical signs and symptoms to the enzyme and molecular defect plus the recent identification of genetic heterogeneity in Refsum disease.

  4. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  5. Kinetics of wet oxidation of formic acid and acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. [Univ. of Mumbai (India). Dept. of Chemical Technology

    1997-11-01

    Oxidation of lower molecular weight carboxylic acids such as formic, acetic, glyoxalic, and oxalic acids is often the rate-controlling step during wet oxidation (WO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WO of formic acid was studied in the absence and presence of a cupric sulfate as catalyst in the temperature range 150--240 C and oxygen partial pressure range 0.345--1.380 MPa. Wet oxidation of acetic acid was carried out in the presence of cupric sulfate in the temperature range 215--235 C. Homogeneous copper sulfate was found to be a very good catalyst for oxidation of formic acid and acetic acid.

  6. Wet oxidation of salicylic acid solutions.

    Science.gov (United States)

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  7. Oxidation of phenolic acids by soil iron and manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90, and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.

  8. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  9. Direct Oxidation of Ethene to Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Direct oxidation of ethene to acetic acid over Pd-SiW12/SiO2 catalysts prepared by several methods was studied. A better method for reducing palladium composition of the catalysts was found. Acetic acid was obtained with selectivity of 82.7% and once-through space time yield (STY) of 257.4 g/h×L.

  10. Fatty acid oxidation and ketogenesis in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  11. Prevalent mutations in fatty acid oxidation disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    2000-01-01

    UNLABELLED: The mutational spectrum in a given disease-associated gene is often comprised of a large number of different mutations, of which a single or a few are present in a large proportion of diseased individuals. Such prevalent mutations are known in four genes of the fatty acid oxidation: t...... of the disease in question and determination of the carrier frequency in the general population may help in elucidating the penetrance of the genotype. This is exemplified in disorders of mitochondrial fatty acid oxidation....

  12. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  13. CATALYTIC HYDROGENATION AND OXIDATION OF BIOMASS-DERIVED LEVULINIC ACID

    Directory of Open Access Journals (Sweden)

    Yan Gong

    2011-02-01

    Full Text Available Levulinic acid (LA, 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK and methyl-vinyl-ketone (MVK by cupric oxide (CuO, cupric oxide/cerium oxide (CuO/CeO2, cupric oxide/ alumina (CuO/ Al2O3, and silver(I/ peroxydisulfate (Ag(I/S2O82-.

  14. Kinetics of wet air oxidation of glyoxalic acid and oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. (Univ. of Bombay (India). Dept. of Chemical Technology)

    1994-12-01

    Oxidation of lower molecular weight monobasic and dibasic acids such as formic acid, acetic acid, glyoxalic acid, and oxalic acid is often the rate-controlling step during wet air oxidation (WAO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WAO of glyoxalic acid and oxalic acid was studied in absence and presence of a cupric sulfate catalyst in the temperature range of 120--245 C and oxygen partial pressure of 0.345--1.380 MPa. The wet oxidation of oxalic acid was found to require more severe conditions as compared to glyoxalic acid. The reaction mechanism and kinetic model have been discussed.

  15. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...... for the untreated blue, red and orange dyes, respectively. The inhibitory effect of the blue reactive dye on methane production was ∼21% after Fenton treatment. Neither untreated nor treated dyes exhibited an inhibitory effect on denitrification. Aerobic glucose degradation was inhibited by 23-29% by untreated dyes......The effect of untreated and Fenton-treated acid dyes (C.I. Acid Red 183 and C.I. Acid Orange 51) and a reactive dye (C.I. Reactive Blue 4) on aerobic, anoxic and anaerobic processes was investigated. The optimum Fe2+:H2O2 molar ratio was selected as 1:5 (4:hsp sp="0.25" mM:20:hsp sp="0.25"m...

  16. Kinetics of wet oxidation of propionic and 3-hydroxypropionic acids

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Levec, J. [National Inst. of Chemistry, Ljubljana (Slovenia). Lab. for Catalysis and Chemical Reaction Engineering]|[Univ. of Ljubljana (Slovenia). Dept. of Chemical Engineering

    1999-07-01

    Oxidation of aqueous solutions of 3-hydroxypropionic (3-HPA) and propionic acids (PA) was studied in a titanium high-pressure reactor at 280--310 C using oxygen partial pressures between 10 and 45 bar. Oxidation of both acids was found to obey first-order kinetic with respect to their concentrations as well as to their lumped TOC concentrations. Oxidation rate revealed a half order dependence with respect to oxygen for oxidation of both acids. In the case of 3-HPA oxidation, the activation energy was found to be 135 kJ/mol, and it was 140 kJ/mol when lumped concentration TOC was used. The activation energy for PA oxidation is 150 kJ/mol, and it is slightly higher, 158 kJ/mol, for TOC reduction. Almost complete conversion of 3-HPA was achieved at 300 C after 1 h, whereas 95% conversion of PA acid was obtained at 310 C after 3 h. During oxidation of 3-HPA, 3-oxopropionic and acetic acids were identified as intermediate products. Oxidation of PA yielded acetic and formic acids as intermediates; at oxygen partial pressures above 25 bar and 310 C, the formation of acetic acid was appreciably reduced. In both cases, however, direct oxidation to carbon dioxide and water was found to be the main reaction route.

  17. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    Directory of Open Access Journals (Sweden)

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  18. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  19. Wet oxidation kinetics of refractory low molecular mass carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Levec, J.

    1999-10-01

    Wet oxidation kinetics of aqueous solutions of formic, acetic, oxalic, and glyoxalic acids was studied in a titanium autoclave at a temperature range of 150--320 C and oxygen partial pressures between 8 and 60 bar. Oxidation reactions obeyed a first-order kinetics with respect to concentration of all substrates. On the basis of acid concentration decay, the activation energy for acetic, oxalic, and glyoxalic acid oxidation was 178, 137, and 97 kJ/mol, respectively; whereas on the total organic carbon (TOC) conversion basis, these values were slightly higher, namely 182, 141, and 104 kJ/mol. The activation energy for formic acid took a unique value of 149 kJ/mol regardless of the type of concentration used. The rate of oxidation was proportional to a square root of oxygen concentration (partial pressure) for acetic, formic, and oxalic acids, whereas it was linearly proportional for glyoxalic acid. When sufficiently high oxygen partial pressure was applied ({ge}22 bar), the individual acid conversion in a mixture of these acids was well predicted by the rate expression derived for that acid. The lumped TOC concentration of mixtures did not obey a first-order kinetic behavior, although underlying TOC kinetics for each individual acid was linear. The oxidation results are also discussed in a view of speculated reaction pathways and the reactor material.

  20. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease.

    Science.gov (United States)

    Sung, Chih-Chien; Hsu, Yu-Chuan; Chen, Chun-Chi; Lin, Yuh-Feng; Wu, Chia-Chao

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  1. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Chih-Chien Sung

    2013-01-01

    Full Text Available Patients with chronic kidney disease (CKD have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate, deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  2. Acetic Acid bacteria: physiology and carbon sources oxidation.

    Science.gov (United States)

    Mamlouk, Dhouha; Gullo, Maria

    2013-12-01

    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called "oxidative fermentations", especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism.

  3. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    Science.gov (United States)

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  4. Induction of omega-oxidation of monocarboxylic acids in rats by acetylsalicylic acid.

    Science.gov (United States)

    Kundu, R K; Tonsgard, J H; Getz, G S

    1991-12-01

    The accumulation of dicarboxylic acids, particularly long chain, is a prominent feature of Reye's syndrome and diseases of peroxisomal metabolism. We assessed the omega-oxidation of a spectrum of fatty acids in rats and asked whether pretreatment of rats with aspirin, which is known to predispose children to Reye's syndrome, would affect omega-oxidation of long chain fatty acids. We found that aspirin increased liver free fatty acids and increased the capacity for omega-oxidation three- to sevenfold. Omega-oxidation of long chain substrate was stimulated to a greater degree than medium chain substrate and was apparent within one day of treatment, at serum aspirin concentrations below the therapeutic range in humans. The apparent Km for lauric acid was 0.9 microM and 12 microM for palmitate. We also found a difference in the storage stability of activity toward medium and long chain substrate. Saturating concentrations of palmitate had no effect on the formation of dodecanedioic acid, whereas laurate decreased but never eliminated the omega-oxidation of palmitate. 97% of the total laurate omega-oxidative activity recovered was found in the microsomes, but 32% of palmitate omega-oxidative activity was present in the cytosol. These results demonstrate that aspirin is a potent stimulator of omega-oxidation and suggest that there may be multiple enzymes for omega-oxidation with overlapping substrate specificity.

  5. The Oxidation of Hydrazine by Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  6. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    Science.gov (United States)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  7. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2012-01-01

    Full Text Available The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt and manganese oxide nanorods (nano-MnOx electrodeposited onto glassy carbon (GC electrodes. Cyclic voltammetric (CV measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While two oxidation peaks were observed at nano-Pt/GC electrode at ca. 0.2 and 0.55 V (corresponding to the direct oxidation of formic acid and the oxidation of the poisoning CO intermediate, respectively. The combined use of nano-MnOx and nano-Pt results in superb enhancement of the direct oxidation pathway. Nano-MnOx is shown to facilitate the oxidation of CO (to CO2 by providing oxygen at low over-potential. This leads to retrieval of Pt active sites necessary for the direct oxidation of formic acid. The higher catalytic activity of nano-MnOx/nano-Pt/GC electrode (with Pt firstly deposited compared to its mirror image electrode (i.e., with MnOx firstly deposited, nano-Pt/nano-MnOx/GC reveals that the order of the electrodeposition is an essential parameter.

  8. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    Science.gov (United States)

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  9. Control of food intake by fatty acid oxidation and ketogenesis.

    Science.gov (United States)

    Scharrer, E

    1999-09-01

    Fatty acid oxidation seems to provide an important stimulus for metabolic control of food intake, because various inhibitors of fatty acid oxidation (mercaptoacetate, methyl palmoxirate, R-3-amino-4-trimethylaminobutyric acid) stimulated feeding in rats and/or mice, in particular when fed a fat-enriched diet, and long-term intravascular infusion of lipids reduced voluntary food intake in various species, including humans. The feeding response to decreased fatty acid oxidation was due to a shortening of the intermeal interval with meal size remaining unaffected. Thus, energy derived from fatty acid oxidation seems to contribute to control of the duration of postmeal satiety and meal onset. Since inhibition of glucose metabolism by 2-deoxy-D-glucose affects feeding pattern similarly, and spontaneous meals were shown to be preceded by a transient decline in blood glucose in rats and humans, a decrease in energy availability from glucose and fatty acid oxidation seems to be instrumental in eliciting eating. Since the feeding response of rats to inhibition of fatty acid oxidation was abolished by total abdominal vagotomy and pretreatment with capsaicin destroying non-myelinated afferents and attenuated by hepatic branch vagotomy, fatty acid oxidation in abdominal tissues, especially in the liver, apparently is signalled to the brain by vagal afferents to affect eating. Brain lesions and Fos immunohistochemistry were employed to identify pathways within the brain mediating eating in response to decreased fatty acid oxidation. According to these studies, the nucleus tractus solitarii (NTS) of the medulla oblongata represents the gate for central processing of vagally mediated afferent information related to fatty acid oxidation. The lateral parabrachial nucleus of the pons seems to be a major relay for pertinent ascending input from the NTS. In particular the central nucleus of the amygdala, a projection area of the parabrachial nucleus, appears to be crucial for eating

  10. Candida cloacae oxidation of long-chain fatty acids to dioic acids.

    Science.gov (United States)

    Green; Turner; Woodley

    2000-08-01

    Candida cloacae cells oxidize long-chain fatty acids to their corresponding dicarboxylic acids (dioic acids) at rates dependent on their chain length and degree of saturation. This is despite the well-known toxicity of the fatty acids. Among the saturated substrates, the oxidation is limited to lauric acid (C12). The addition of pristane (5% v/v), which acts as an inert carrier for the poorly water-soluble substrate, boosts the oxidation of lauric acid to a rate that is comparable to that of dodecane. When dissolved in pristane, myristic (C14) and palmitic (C16) acids are effective carbon sources for C. cloacae, but dioic acid production is very low. Media glucose concentration and pH also influence cell growth and productivity. After the glucose is depleted, oxidation is optimal at a low pH. A two-phase (pristane/water) reaction was tested in a 2-l stirred tank bioreactor in which growth and oxidation were separated. A 50% w/w conversion of lauric acid (10 g/l) to dodecanedioic acid was achieved. The bioreactor also alleviated poor mass transfer characteristics experienced in shake flasks.

  11. Kinetics of Oxidation of 3-Benzoylpropionic Acid by N-Chlorobenzamide in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2011-01-01

    Full Text Available The kinetics of oxidation of 3-benzoylpropionic acid (KA by N-chlorobenzamide (NCB in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order dependence each in [KA], [NCB] and [H+]. The main product of the oxidation is the corresponding carboxylic acid. The rate decreases with the addition of benzamide, one of the products of the reaction. Variation in ionic strength of the reaction medium has no significant effect on the rate of oxidation. But the rate of the reaction is enhanced by lowering the dielectric constant of the reaction medium. Hypochlorous acidium ion (H2O+Cl, has been postulated as the reactive oxidizing species. A mechanism consistent with observed results have been proposed and the related rate law deduced. The activation parameters have been computed with respect to slow step of the mechanism.

  12. Kinetics of Oxidation of Some Amino Acids by N-Chlorosaccharin in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2004-01-01

    Full Text Available The kinetics of oxidation of some amino acids namely, glycine, alanine, aspartic acid, arginine, and histidine, (AA by N-chlorosaccharin (NCSA in aqueous acetic acid medium in the presence of perchloric acid have been investigated. The observed rate of oxidation is first order in [AA], [NCSA] and of inverse fractional order in [H+]. The main product of the oxidation is the corresponding aldehyde. The ionic strength on the reaction rate has no significant effect. The effect of changing the dielectric constant of the medium on the rate indicates the reaction to be of dipole-dipole type. Hypochlorous acid has been postulated as the reactive oxidizing species. The reaction constants involved in the mechanism are derived. The activation parameters are computed with respect to slow step of the mechanism.

  13. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi...... dissolution, deposits were subjected to electrochemical oxidation, in the relevant potential range and supporting electrolyte, prior to use as catalysts for HCOOH oxidation. Anodic striping charges indicated that along oxidation procedure most of deposited Bi was oxidized. ICP mass spectroscopy analysis...

  14. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    Science.gov (United States)

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  15. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation

    DEFF Research Database (Denmark)

    Dzamko, Nicolas; Schertzer, Jonathan D.; Ryall, James G.;

    2008-01-01

    with rates of fatty acid oxidation. To address this issue we have investigated the requirement for skeletal muscle AMPK in controlling aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside (AICAR) and contraction-stimulated fatty acid oxidation utilizing transgenic mice expressing a muscle-specific kinase......-based approach we identified 18 Ser/Thr protein kinases whose phosphorylation was increased by greater than 25% in contracted KD relative to WT muscle. Utilizing bioinformatics we predicted that extracellular regulated protein-serine kinase (ERK1/2), inhibitor of nuclear factor (NF)-kappaB protein-serine kinase...... beta (IKKbeta) and protein kinase D (PKD) may phosphorylate ACC2 at Ser-221 but during in vitro phosphorylation assays only AMPK phosphorylated ACC2. These data demonstrate that AMPK is not essential for the regulation of fatty acid oxidation by AICAR or muscle contraction....

  16. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius;

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  17. Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity.

    Science.gov (United States)

    Maharaj, H; Maharaj, D S; Daya, S

    2006-09-01

    Due to the implication of oxidative stress in neurodegenerative disorders we decided to investigate the antioxidant properties of acetylsalicylic acid and acetaminophen either alone or in combination. The thiobarbituric acid assay (TBA) and the nitroblue tetrazolium (NBT) assay were used to investigate quinolinic acid (QA)-induced: lipid peroxidation and superoxide anion generation in the rat hippocampus, in vivo. The study also shows, using cresyl violet staining, the preservation of structural integrity of neuronal cells following treatment with acetylsalicylic acid and acetaminophen in QA-lesioned rat hippocampus. Furthermore the study sought to determine whether these agents have any effect on endogenous (QA) formation. This study shows that acetylsalicylic acid and acetaminophen inhibit QA-induced superoxide anion generation, lipid peroxidation and cell damage, in vivo, in the rat hippocampus. In addition these agents inhibit the enzyme, 3-hydroxyanthranilic acid oxygenase (3-HAO), responsible for the synthesis of endogenous QA.

  18. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  19. Lewis acidity enhancement of triarylborane by appended phosphine oxide groups.

    Science.gov (United States)

    Kwak, Jaewoo; Nghia, Nguyen Van; Lee, Junseong; Kim, Hyoseok; Park, Myung Hwan; Lee, Min Hyung

    2015-03-14

    A series of mono-, di-, and tri-phosphine oxide substituted triarylboranes, Mes2BAr (1), MesBAr2 (2), and BAr3 (3) (Ar = 4-(Ph2PO)-2,6-Me2-C6H2) were prepared to investigate the effect of a phosphine oxide group (Ph2PO) on Lewis acidity enhancement of triarylboranes. The X-ray crystal structure of 3 revealed peripheral decoration of Ph2PO groups with a C3-axis perpendicular to the trigonal boron center. UV/Vis absorption and PL spectra indicated a significant contribution of π(Mes or phenylene) → pπ(B) charge transfer in the lower-energy electronic transition. The reduction potential measured by cyclic voltammetry showed apparent LUMO stabilization by introduction of phosphine oxide groups, the extent of which gradually increased with the increasing number of phosphine oxide groups. Lewis acidity enhancement was also supported by the gradual increase in fluoride ion affinity in the order 3 > 2 > 1. Theoretical calculations suggest that introduction of a Ph2PO group into a triarylborane significantly enhances the Lewis acidity of the boron center via an inductive electron-withdrawing effect and this effect is additive for multiple phosphine oxide groups.

  20. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine;

    2012-01-01

    and skills requirement. The available ELISA methods present considerable specificity problems and cannot be recommended at present. The oxidized nucleic acid metabolites in urine are assumed to originate from the DNA and RNA. However, direct evidence is not available. A possible contribution from...

  1. Oxidation in fish oil enriched mayonnaise : Ascorbic acid and low pH increase oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Timm Heinrich, Maike; Meyer, Anne S.

    2001-01-01

    The effect of ascorbic acid (0-4000 ppm) and pH (3.8-6.2) on oxidation and levels of iron and copper in various fractions of mayonnaise enriched with 16% fish oil was investigated. Ascorbic acid induced release of iron from the assumed oil- water interface into the aqueous phase at all pH levels......, but this effect of ascorbic acid was strongest at low pH (pH 3.8- 4.2). Ascorbic acid generally promoted formation of volatile oxidation compounds and reduced the peroxide value in mayonnaises. Peroxide values and total volatiles generally increased with decreasing pH values, suggesting that low pH promoted...... oxidation. It is proposed that iron bridges between the egg yolk proteins low-density lipoproteins, lipovitellin, and phosvitin at the oil-water interface are broken at low pH values, whereby iron ions become accessible as oxidation initiators. In the presence of ascorbic acid, oxidation is further enhanced...

  2. Implications of impaired ketogenesis in fatty acid oxidation disorders.

    Science.gov (United States)

    Olpin, Simon Edward

    2004-03-01

    Long-chain fatty acids are important sources of respiratory fuel for many tissues and during fasting the rate of hepatic production of ketone bodies is markedly increased. Many extra hepatic tissues utilize ketone bodies in the fasted state with the advantage that glucose is "spared" for more vital tissues like the brain. This glucose sparing effect of ketones is especially important in infants where there is a high proportional glucose utilization in cerebral tissue. The first reported inherited defect affecting fatty acid oxidation was described in 1973 and to date about 15 separate disorders have been described. Although individually rare, cumulatively fatty acid oxidation defects are relatively common, have major consequences for affected individuals and their families, and carry significant health care implications. The major biochemical consequence of fatty acid oxidation defects is an inability of extra hepatic tissues to utilize fatty acids as an energy source with absent or limited hepatic capacity to generate ketones. Clinically patients usually present in infancy with acute life-threatening hypoketotic hypoglycaemia, liver disease, hyperammonaemia and cerebral oedema, with or without cardiac involvement, usually following a period of catabolic stress. Chronically there may be muscle involvement with hypotonia or exercise intolerance with or without cardiomyopathy. Treatment is generally by the avoidance of fasting, frequent carbohydrate rich feeds and for long-chain defects, the replacement of long-chain dietary fats with medium-chain formulae. Novel approaches to treatment include the use of d,l-3-hydoxybutyrate or heptanoate as an alternative energy source.

  3. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper, the analy......Lack of post-sampling stability of ascorbate and dehydroascorbic acid and failure to block their in vivo equilibrium have lowered their value as biomarkers of oxidative stress and limited the ability to further investigate their possible role in disease prevention. In the present paper......-performance liquid chromatography with coulometric detection. In a parallel experiment, stability of human plasma samples treated as above and stored at -80°C for five years was tested in a cohort of 131 individuals. No degradation or shift in the equilibrium between ascorbate and dehydroascorbic acid was observed...

  4. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  5. Effect of sulfonylureas on hepatic fatty acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.

  6. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  7. Selective oxidation of propane to acrylic acid over mixed metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng; Zhenxing Yu; Ping Zhang; Yuhang Zhang; Hongying Fu; Xiaoli Zhang; Qiquan Sun; Xinguo Hu

    2008-01-01

    The effects of metal atomic ratio, water content, oxygen content, and calcination temperature on the catalytic perfor-mances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid have been investigated and discussed. Among the catalysts studied, it was found that the MoVTeNbO catalyst calcined at a temperature of 600 ℃ showed the best performance in terms of propane conversion and selectivity for acrylic acid under an atmosphere of nitrogen. An effective MoVTeNbO oxide catalyst for propane selective oxidation to acrylic acid was obtained with a combination of a preferred metal atomic ratio (Mo1 V0.31Te0.23Nb0.12). The optimum reaction condition for the selective oxidation of propane was the molar ratio of C3H81 :O2 : H2O : N1 = 4.4 : 12.8 : 15.3 : 36.9. Under such conditions, the conversion of propane and the maximum yield of acrylic acid reached about 50% and 21%, respectively.

  8. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  9. The inborn errors of mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Vianey-Liaud, C; Divry, P; Gregersen, N; Mathieu, M

    1987-01-01

    To date, seven inborn errors of mitochondrial fatty acid oxidation have been identified. A total of about 100 patients in the world have been reported. Clinically the beta-oxidation defects are more often characterized by episodic hypoglycaemia leading to a coma mimicking Reye's syndrome. The hypoglycaemia is non-ketotic since the synthesis of ketone bodies is deficient. Periods of decompensation occur when carbohydrate supply is poor, e.g. prolonged fasting, vomiting, or increased caloric requirements, as and when lipid stores are used. Defects in beta-oxidation have also been reported to be one cause of sudden infant death syndrome. The diagnosis of these inborn errors is by biochemical investigation since where symptoms suggest such a defect, the precise aetiology cannot be assessed. The biochemical diagnosis is based firstly on identification of abnormal plasma and of urinary metabolites during acute attacks. Derivatives of the omega-oxidation and omega-1-oxidation of medium chain fatty acids have been identified, as well as acylglycine and acylcarnitine conjugates. These metabolites are nearly always absent when patients are in good clinical condition. Secondly, the diagnosis must be based on the identification of the enzymatic defects: this involves global assays which allow a localization of the 'level' of the defect (i.e. the oxidation of long, medium or short chain fatty acids) and specific measurement of enzyme activities (acyl-CoA dehydrogenases and electron carriers: ETF and ETF-DH). The diagnosis of these disorders is of prime importance because of the severity of the clinical symptoms. These can be prevented, in some cases, by an appropriate diet (a high carbohydrate, low fat diet, sometimes supplemented with L-carnitine). In other cases, genetic counselling can be offered.

  10. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  11. Efficiency of mitochondrially targeted gallic acid in reducing brain mitochondrial oxidative damage.

    Science.gov (United States)

    Parihar, P; Jat, D; Ghafourifar, P; Parihar, M S

    2014-07-03

    Oxidative stress is associated with mitochondrial impairments. Supplying mitochondria with potent antioxidants can reduce oxidative stress—induced mitochondrial impairment. Gallic acid can be used to reduce oxidative burden in mitochondria. In order to increase the bioavailability of gallic acid inside the mitochondria we synthesized mitochondrially targeted gallic acid and explored its preventive effects against sodium nitroprusside induced oxidative stress in isolated mitochondria. Our observations revealed an increase in oxidative stress,decrease in reduced glutathione in mitochondria and increase in the mitochondrial permeability pore transition due to sodium nitroprusside treatment. Pre—treatment of gallic acid and mitochondrially targeted gallic acid to sodium nitroprusside treated mitochondria not only significantly reduced the oxidative stress but also prevented mitochondrial permeability pore transition to a significant difference. Mitochondrially targeted gallic acid was found more effective in reducing oxidative stress and mitochondrial permeability pore transition than gallic acid. We conclude that mitochondrially targeted gallic acid can be used for preventing mitochondrial impairment caused by oxidative stress.

  12. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    Science.gov (United States)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  13. Kinetics and mechanism of the oxidation of some neutral and acidic -amino acids by tetrabutylammonium tribromide

    Indian Academy of Sciences (India)

    Raghvendra Shukla; Pradeep K Sharma; Kalyan K Banerji

    2004-03-01

    The oxidation of eleven amino acids by tetrabutylammonium tribromide (TBATB) in aqueous acetic acid results in the formation of the corresponding carbonyl compounds and ammonia. The reaction is first order with respect to TBATB. Michaelis-Menten type kinetics is observed with some of the amino acids while others exhibit second-order dependence. It failed to induce polymerization of acrylonitrile. The effect of solvent composition indicate that the rate of reaction increases with increase in the polarity of the medium. Addition of tetrabutylammonium chloride has no effect on the rate of oxidation. Addition of bromide ion causes decrease in the oxidation rate but only to a limiting value. The reaction is susceptible to both polar and steric effects of the substituents. A suitable mechanism has been proposed.

  14. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  15. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    Science.gov (United States)

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  16. Downscaled anodic oxidation process for aluminium in oxalic acid

    Science.gov (United States)

    Sieber, M.; Morgenstern, R.; Kuhn, D.; Hackert-Oschätzchen, M.; Schubert, A.; Lampke, T.

    2017-03-01

    The increasing multi-functionality of parts and assemblies in several fields of engineering demands, amongst others, highly functionalised surfaces. For the different applications, on the one hand, there is a need to scale up surface modification processes originating in the nano- and micro-scale. On the other hand, conventional macro-scale surface refinement methods offer a huge potential for application in the said nano- and micro-scale. The anodic oxidation process, which is established especially for aluminium and its alloys, allows the formation of oxide ceramic layers on the surface. The build-up of an oxide ceramic coating comes along with altered chemical, tribological and electrical surface properties. As a basis for further investigations regarding the use of the anodic oxidation process for micro-scale-manufacturing, the scale effects of oxalic acid anodising on commercially pure aluminium as well as on the AlZn5.5MgCu alloy are addressed in the present work. The focus is on the amount of oxide formed during a potentiostatic process in relation to the exchanged amount of charge. Further, the hardness of the coating as an integral measure to assess the porous oxide structure is approached by nano-indentation technique.

  17. Regulation and limitations to fatty acid oxidation during exercise

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    tissue to deliver sufficient fatty acids to exercising muscle has been proposed, but evidence is emerging that factors within the muscle might be of more importance. The high rate of glycolysis during high intensity exercise might be the "driving force" via the increased production of acetyl CoA which...... in turn is trapped by carnitine. This will lead to less availability of free carnitine for fatty acid transport into mitochondria. This review summarizes our present view on how FA metabolism is regulated during exercise with a special focus on the limitations in FA oxidation in the transition from...

  18. Oxidized fatty acids as inter-kingdom signaling molecules.

    Science.gov (United States)

    Pohl, Carolina H; Kock, Johan L F

    2014-01-20

    Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to "listen" and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.

  19. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    Science.gov (United States)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  20. Free fatty acid oxidation in insulin resistance and obesity

    OpenAIRE

    Abel, E. Dale

    2010-01-01

    The growing worldwide epidemic of obesity and diabetes portends a significant increase in cardiovascular disease. Obesity is associated with insulin resistance, and there is growing evidence that these conditions independently increase the risk of heart failure. Changes in myocardial substrate utilization develop in obesity and insulin resistance, and are characterized by increased fatty acid oxidation and utilization, and decreased glucose utilization. This paper will review the evidence for...

  1. Stearic acid protects primary cultured cortical neurons against oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Ze-jian WANG; Cui-ling LIANG; Guang-mei LI; Cai-yi YU; Ming YIN

    2007-01-01

    Aim: To observe the effects of stearic acid against oxidative stress in primary cultured cortical neurons. Methods: Cortical neurons were exposed to glutamate,hydrogen peroxide (H202), or NaN3 insult in the presence or absence of stearic acid. Cell viability of cortical neurons was determined by MTT assay and LDH release. Endogenous antioxidant enzymes activity[superoxide dismutases (SOD),glutathione peroxidase (GSH-Px), and catalase (CAT)] and lipid peroxidation in cultured cortical neurons were evaluated using commercial kits. {3-[1(p-chloro-benzyl)-5-(isopropyl)-3-t-butylthiondol-2-yl]-2,2-dimethylpropanoic acid, Na}[MK886; 5 pmol/L; a noncompetitive inhibitor of proliferator-activated receptor(PPAR)α], bisphenol A diglycidyl ether (BADGE; 100 μmol/L; an antagonist of PPARγ), and cycloheximide (CHX; 30 μmol/L, an inhibitor of protein synthesis)were tested for their effects on the neuroprotection afforded by stearic acid.Western blotting was used to determine the PPARγ protein level in cortical neurons.Results: Stearic acid dose-dependently protected cortical neurons against glutamate or H202 injury and increased glutamate uptake in cultured neurons.This protection was concomitant to the inhibition of lipid peroxidation and to the promotion activity of Cu/Zn SOD and CAT in cultured cortical neurons. Its neuroprotective effects were completely blocked by BADGE and CHX. After incubation with H2O2 for 24 h, the expression of the PPARγ protein decreased significantly (P<0.05), and the inhibitory effect of H2O2 on the expression of PPARγ can be attenuated by stearic acid. Conclusion: Stearic acid can protect cortical neurons against oxidative stress by boosting the internal antioxidant enzymes.Its neuroprotective effect may be mainly mediated by the activation of PPARγ and new protein synthesis in cortical neurons.

  2. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    Science.gov (United States)

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.

  3. Kinetics and Mechanism of Oxidation of Glutamic Acid by N-Bromophthalimide in Aqueous Acidic Medium

    OpenAIRE

    2011-01-01

    The kinetics of oxidation of glutamic acid (Glu) with N-bromophthalimide (NBP) was studied in perchloric acid medium at 30 °C by potentiometric method. The reaction is first order each in NBP and glutamic acid and is negative fractional order in [H+]. Addition of KBr or the reaction product, phthalimide had no effect on the rate. Similarly variation of ionic strength of the medium did not affect the rate of the reaction. Also the rate increased with decrease in dielectric constant of the reac...

  4. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  5. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  6. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    Science.gov (United States)

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  7. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  8. Aspects of the regulation of long-chain fatty acid oxidation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Factors involved in regulation of bovine hepatic fatty acid oxidation were examined using liver slices. Fatty acid oxidation was measured as the conversion of l-(/sup 14/C) palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C) acid-soluble metabolites. Extended (5 to 7 d) fasting of Holstein cows had relatively little effect on palmitate oxidation to acid-soluble metabolites by liver slices, although oxidation to CO/sup 2/ was decreased. Feeding a restricted roughage, high concentrate ration to lactating cows resulted in inhibition of palmitate oxidation. Insulin, glucose, and acetate inhibited palmitate oxidation by bovine liver slices. The authors suggest the regulation of bovine hepatic fatty acid oxidation may be less dependent on hormonally induced alterations in enzyme activity as observed in rat liver and more dependent upon action of rumen fermentation products or their metabolites on enzyme systems involved in fatty acid oxidation.

  9. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  10. Kinetics and mechanism of the oxidation of some -hydroxy acids by hexamethylenetetramine-bromine

    Indian Academy of Sciences (India)

    Dimple Garg; Seema Kothari

    2004-11-01

    The oxidation of lactic acid, mandelic acid and ten monosubstituted mandelic acids by hexamethylenetetramine-bromine (HABR) in glacial acetic acid, leads to the formation of the corresponding oxoacid. The reaction is first order with respect to each of the hydroxy acids and HABR. It is proposed that HABR itself is the reactive oxidizing species. The oxidation of -deuteriomandelic acid exhibits the presence of a substantial kinetic isotope effect (/ = 5.91 at 298 K). The rates of oxidation of the substituted mandelic acids show excellent correlation with Brown’s + values. The reaction constants are negative. The oxidation exhibits an extensive cross conjugation between the electron-donating substituent and the reaction centre in the transition state. A mechanism involving transfer of a hydride ion from the acid to the oxidant is postulated.

  11. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    Science.gov (United States)

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.

  12. Quinolinic acid induces oxidative stress in rat brain synaptosomes.

    Science.gov (United States)

    Santamaría, A; Galván-Arzate, S; Lisý, V; Ali, S F; Duhart, H M; Osorio-Rico, L; Ríos, C; St'astný, F

    2001-03-26

    The oxidative action of quinolinic acid (QUIN), and the protective effects of glutathione (GSH), and 2-amino-5-phosphonovaleric acid (APV), were tested in rat brain synaptosomes, Reactive oxygen species (ROS) formation was quantified after the exposure of synaptosomes to increasing concentrations of QUIN (25-500 microM). The potency of QUIN to induce lipid peroxidation (LP) was tested as a regional index of thiobarbituric acid-reactive substances (TBARS) production, and the antioxidant actions of both GSH (50 microM) and APV (250 microM) on QUIN-induced LP were evaluated in synaptosomes prepared from different brain regions. QUIN induced concentration-dependent increases in ROS formation and TBARS in all regions analyzed, but increased production of fluorescent peroxidized lipids only in the striatum and the hippocampus, whereas both GSH and APV decreased this index. These results suggest that the excitotoxic action of QUIN involves regional selectivity in the oxidative status of brain synaptosomes, and may be prevented by substances exhibiting antagonism at the NMDA receptor.

  13. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides

    KAUST Repository

    Paniagua, Sergio A.

    2016-05-26

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface - the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology - significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. © 2016 American Chemical Society.

  14. Fatty acids and oxidative stress in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tonello Lucio

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categories: mental retardation; autistic disorder; Rett's disorder; attention-deficit hyperactivity disorder; delirium; dementia; amnestic disorders; alcohol-related disorders; amphetamine (or amphetamine-like-related disorders; hallucinogen-related disorders; nicotine-related disorders; opioid-related disorders; schizophrenia and other psychotic disorders; mood disorders; anxiety disorders; sexual dysfunctions; eating disorders; and sleep disorders. Conclusion Most psychiatric disorders are associated with increased oxidative stress. Patients suffering from that subgroup of these psychiatric disorders in which there is increased lipid peroxidation might therefore benefit from fatty acid supplementation (preferably with the inclusion of an antioxidant-rich diet while patients suffering from all these psychiatric disorders might benefit from a change to a whole-food plant-based diet devoid of refined carbohydrate products.

  15. Oxidation of cumene in an aprotic medium in the presence of ascorbic acid

    Science.gov (United States)

    Smirnova, O. V.; Efimova, I. V.; Opeida, I. A.

    2015-06-01

    The process of the initiated oxidation of cumene (IPB) with oxygen under homophase conditions in the presence of ascorbic acid (AA) used over a wide range of concentrations is studied. It is shown that in this system, ascorbic acid is consumed in two ways: the auto-oxidation and the inhibition of the oxidation of cumene. The amount of ascorbic acid that participates in inhibiting the oxidation of cumene falls from 28.5 to 16.6% with a rise in the concentration of ascorbic acid in the range of 0.003-0.3 mol/L. The contribution from the rate of the oxidation of ascorbic acid to the total rate of the oxidation of the IPB-AA-DMSO-AIBN system grows from 67.2 to 92.5% with a rise in the concentration of ascorbic acid in the range of 0.01-0.3 mol/L. It is established that the most effective inhibition of the oxidation of cumene with ascorbic acid in aprotic media occurs at concentrations of ascorbic acid of up to 0.01 mol/L. A scheme for the initiated radical-chain oxidation of cumene with ascorbic acid in the aprotic medium that considers the inhibition of the oxidation of cumene with ascorbic acid and the auto-oxidation of ascorbic acid is proposed.

  16. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  17. Oxidized Fatty Acids as Inter-Kingdom Signaling Molecules

    Directory of Open Access Journals (Sweden)

    Carolina H. Pohl

    2014-01-01

    Full Text Available Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to “listen” and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.

  18. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... have been compared to the experimental results of de Wilde and van Tiggelen (1968) who measured the laminar burning velocities for HOCHO flames over a range of stoichiometries and dilution ratios. The modeling predictions are generally satisfactory. The governing reaction mechanisms are outlined based...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  19. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent;

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid-reactive ....... Evaporation of solvent traces from a lipid film should preferably be done under nitrogen as vacuum evaporation was found to increase oxidation of the phospholipid....

  20. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of B-oxid

  1. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.

    Science.gov (United States)

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-04-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.

  2. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    Science.gov (United States)

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pHnitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  3. Cyanide-insensitive and clofibrate enhanced beta-oxidation of dodecanedioic acid in rat liver. An indication of peroxisomal beta-oxidation of N-dicarboxylic acids.

    Science.gov (United States)

    Mortensen, P B; Kølvraa, S; Gregersen, N; Rasmussen, K

    1982-11-12

    The beta-oxidation rate of dodecanedioic acid in rat liver homogenates (600 X g supernatant fraction) was determined by simultaneous measurements of the C6-C12-dicarboxylic acids, i.e., adipic, suberic, sebacic and dodecanedioic acids, in relation to time in assays incubated with dodecanedioic acid. Measurements were performed by a combined gas chromatographic-mass spectrometric technique, i.e., selected ion-monitoring. The beta-oxidation rate was registered as the consumption rate of dodecanedioic acid and as the initial rise in the concentrations of C6-C10-dicarboxylic acids. The beta-oxidation rate of C8-C12-dicarboxylic acids was increased many times in homogenates from clofibrate-treated rats. Moreover, it was unexpectedly found that 2.0 mM cyanide was unable to inhibit the beta-oxidation rate of the dicarboxylic acids in vitro, but in fact caused a minor increase in the rate of beta-oxidation in homogenates from both normal and clofibrate-treated rats. It was concluded that the present results strongly indicate the existence of a peroxisomal beta-oxidation of dicarboxylic acids.

  4. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    Science.gov (United States)

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  5. Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2010-01-01

    Full Text Available The electro-oxidation of formic acid (an essential reaction in direct formic acid fuel cells is a challenging process because of the deactivation of anodes by the adsorption of the poisoning intermediate carbon monoxide (CO. Pt electrodes in two geometries (planar and nanohole-array were modified by the electrodeposition of manganese oxide nanorods (nano-MnOx. The modified Pt electrodes were then tested for their electrocatalytic activity through the electro-oxidation of formic acid in a solution of pH 3.45. Two oxidation peaks (Ipd and Ipind were observed at 0.2 and 0.55 V, respectively; these were assigned to the direct and indirect oxidative pathways. A significant enhancement of the direct oxidation of formic acid to CO2 was observed at the modified electrodes, while the formation of the poisoning intermediate CO was suppressed. Ipd increases with surface coverage (θ of nano-MnOx with a concurrent depression of Ipind. An increase in the ratio Ipd/ν1/2 with decreasing potential scan rate (ν indicates that the oxidation process proceeds via a catalytic mechanism. The modification of Pt anodes with manganese oxide nanorods results in a significant improvement of the electrocatalytic activity along with a higher tolerance to CO. Thus nano-MnOx plays a crucial role as a catalytic mediator which facilitates the charge transfer during the direct oxidation of formic acid to CO2.

  6. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  7. Kinetics and mechanism of the oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate

    Indian Academy of Sciences (India)

    Poonam Gupta; Seema Kothari

    2001-04-01

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic isotope effect. Addition of benzyltrimethylammonium chloride enhances the rate. It is proposed that the reactive oxidizing species is [(PhCH2Me3N)+ (IZn2Cl6)−]. Suitablemechanisms have been proposed.

  8. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation

    OpenAIRE

    2016-01-01

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled “Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia,” reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in ca...

  9. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    M.N.B. Sathler

    1998-06-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  10. Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium: A mechanistic approach

    Indian Academy of Sciences (India)

    Puttaswamy; Nirmala Vaz

    2001-08-01

    Kinetics of oxidation of acidic amino acids (glutamic acid (Glu) and aspartic acid (Asp)) by sodium N-bromobenzenesulphonamide (bromamine-B or BAB) has been carried out in aqueous HClO4 medium at 30°C. The rate shows firstorder dependence each on [BAB]o and [amino acid]o and inverse first-order on [H+]. At [H+] > 0 60 mol dm-3, the rate levelled off indicating zero-order dependence on [H+] and, under these conditions, the rate has fractional order dependence on [amino acid]. Succinic and malonic acids have been identified as the products. Variation of ionic strength and addition of the reaction product benzenesulphonamide or halide ions had no significant effect on the reaction rate. There is positive effect of dielectric constant of the solvent. Proton inventory studies in H2O-D2O mixtures showed the involvement of a single exchangeable proton of the OH- ion in the transition state. Kinetic investigations have revealed that the order of reactivity is Asp > Glu. The rate laws proposed and derived in agreement with experimental results are discussed.

  11. Oxidation states of molybdenum in oxide films formed in sulphuric acid and sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Okonkwo, I.A.; Doff, J.; Baron-Wiechec, A. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Jones, G. [Waters Corporation, Floats Rd, Roundthorn Ind. Est., Manchester M23 9LZ (United Kingdom); Koroleva, E.V. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Skeldon, P., E-mail: p.skeldon@manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-07-31

    X-ray photoelectron spectroscopy is used to investigate the oxidation states of molybdenum in thin films formed potentiostatically, over a range of potentials, in either 1 mol dm{sup -3} H{sub 2}SO{sub 4} or 10 mol dm{sup -3} NaOH at 20 Degree-Sign C. Mo 3d spectra suggested that MoO{sub 2} and Mo(OH){sub 2} were the main components of the films, with smaller amounts of MoO{sub 3} and possibly Mo{sub 2}O{sub 5}. O 1s spectra indicated the presence of oxygen as oxide and hydroxide species and as bound water. Ion beam analysis revealed the formation of thin films at all potentials, with significant losses of oxidized molybdenum to the electrolyte. - Highlights: Black-Right-Pointing-Pointer Oxides are formed on molybdenum in sulphuric acid and sodium hydroxide solutions. Black-Right-Pointing-Pointer Molybdenum IV and VI are identified by XPS, with MoO2 species dominating. Black-Right-Pointing-Pointer Thicknesses of films are determined by ion beam analysis for a range of potentials. Black-Right-Pointing-Pointer Films form at low efficiency due to loss of molybdenum species to electrolyte.

  12. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  13. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    Science.gov (United States)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  14. Supercritical water oxidation of acrylic acid production wastewater.

    Science.gov (United States)

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  15. Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides.

    Science.gov (United States)

    Fu, Tingting; Qiao, Hongwei; Peng, Zhimin; Hu, Gaobo; Wu, Xueji; Gao, Yuxing; Zhao, Yufen

    2014-05-14

    We present a novel and highly efficient methodology that allows for the construction of C-P bonds via the palladium-catalyzed air-based oxidative coupling of various commercially available arylboronic acids with easily oxidized H-phosphine oxides leading to valuable aryl phosphine oxides, particularly triarylphosphine oxides, with the use of air as the green oxidant, broad substrate applicability and good to excellent yields. The described catalytic system should be an efficient complement to the Chan-Lam type reaction and be useful in synthetic programs.

  16. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA......Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  17. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  18. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    Science.gov (United States)

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-19

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.

  19. Study of Oxidation of Glutathione Treated with Hypochlorous Acid by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Capillary electrophoresis (CE) method was developed for the separation and quantification of reduced glutathione (GSH), oxidized glutathione (GSSG) and glutathione sulphonic acid (GSO3H). Baseline separation was obtained within five minutes. The effects of reaction time and molar ratio of hypochlorous acid (HOCI) to GSH on the oxidation of GSH were investigated.

  20. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    Science.gov (United States)

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  1. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... ester with pentaerythritol. 721.3680 Section 721.3680 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  2. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Science.gov (United States)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  3. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway.

    Science.gov (United States)

    Wanders, Ronald J A; Duran, Marinus; Loupatty, Ference J

    2012-01-01

    Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.

  4. Manoyl oxide alpha-arabinopyranoside and grindelic acid diterpenoids from Grindelia integrifolia.

    Science.gov (United States)

    Ahmed, A A; Mahmoud, A A; Ahmed, U M; El-Bassuony, A A; Abd El-Razk, M H; Pare, P W; Karchesy, J

    2001-10-01

    Two new manoyl oxide-alpha-arabinopyranoside diterpenoids, 15-hydroxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-14-O-alpha-L-arabinopyranoside) (1) and 15-acetoxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-15-acetate-14-O-alpha-L-arabinopyranoside) (2), as well as a new grindelic acid derivative, 19-hydroxygrindelic acid (3), together with five known diterpenoids (tarapacol, tarapacanol A, grindelic acid, methyl grindeloate, 3beta-hydroxygrindelic acid, 4) were isolated from the aerial parts of Grindelia integrifolia. The structures of 1-3 were elucidated by spectral data analysis.

  5. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  6. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    Science.gov (United States)

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  7. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    Science.gov (United States)

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  8. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  9. Photocatalytic oxidation of humic acid and its effect on haloacetic acid formation potential: a fluorescence spectrometry study.

    Science.gov (United States)

    Xiaoju, Yan; Ruiling, Bao; Shuili, Yu; Qiongfang, Li; Wei, Chen

    2012-01-01

    By fluorescence spectrometry method, molecular conformation changes of humic acid (HA) during the photocatalytic oxidation process were studied. Haloacetic acids formation potential (HAAFP) changes during the oxidation process were also measured. The results indicated that aromatic rings of HA decreased and conjugated double bonds were destroyed at the beginning of the process. Meanwhile, organic matter with large molecular weight decomposed into intermediates with smaller molecular weight, such as tryptophan and tyrosine. HA can be degraded almost completely, but not be mineralized thoroughly. Structures of the intermediates were changing during the oxidation process. Molecular structure transformation of HA led to the fluctuation tendency of the HAAFP changes during the photocatalytic oxidation process. HAAFP increased to 1.22 times that in raw water after 30 min of ultraviolet (UV) radiation, and decreased to 0.66 times that in raw water after 60 min of photocatalytic oxidation.

  10. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    Science.gov (United States)

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved.

  11. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  12. In vitro studies on the oxidation of medium-chain dicarboxylic acids in rat liver.

    Science.gov (United States)

    Kølvraa, S; Gregersen, N

    1986-05-21

    The degradation of medium-chained dicarboxylic (DC) acids was investigated on purified mitochondria and peroxisomes. Intact organelles were incubated with dodecanedioic acid (DC12), suberic acid (DC8) and adipic acid (DC6), and the production of lower-chained DC-acids and of acetyl-CoA + acetyl-carnitine was monitored. It was shown, that intact peroxisomes could beta-oxidize DC12, DC10, and DC8 at least as far as DC6, while intact mitochondria readily beta-oxidized DC12, and DC10 as far as succinic acid. DC8 and DC6 were not oxidized by intact mitochondria when these two acids were presented externally to the intact organelle. When they were formed intramitochondrially from DC12 and DC10, both DC8 and DC6 were, however, to a great extent beta-oxidized as far as succinic acid. The major reason for this difference between mitochondrial oxidation of externally and internally located DC8 and DC6 seems to be an inability to transport these two acids through the mitochondrial membrane. For DC12 and DC10, the mitochondrial transport systems, which were indicated to be identical to the systems used by the corresponding monocarboxylic acids, were found to be rate-limiting in the beta-oxidation of these acids. A contributing factor to the undetectable beta-oxidation of externally located DC8 and DC6 may also be, that the Km values of DC8-CoA (460 +/- 70 mumol/l) and DC6-CoA (980 +/- 90 mumol/l) towards the acyl-CoA dehydrogenases are very high. These results imply that very high concentrations of intermediates are created intramitochondrially during beta-oxidation, concentrations which are probably only formed through formation of DC8-CoA and DC6-CoA from longer DC-acids and not by transport from outside the mitochondria. The data presented thus for the first time give evidence to a pathway for medium-chained monocarboxylic acids (especially lauric acid and decanoic acid) through cytosolic omega-oxidation followed by activation, transport over the mitochondrial membrane and

  13. The use of ascorbate as an oxidation inhibitor in prebiotic amino acid synthesis: a cautionary note.

    Science.gov (United States)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO(2)-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO(2) was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO(2)-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO(2)-rich atmosphere under the conditions studied.

  14. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

    Science.gov (United States)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

  15. Overexpression of Fatty-Acid-β-Oxidation-Related Genes Extends the Lifespan of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shin-Hae Lee

    2012-01-01

    Full Text Available A better understanding of the aging process is necessary to ensure that the healthcare needs of an aging population are met. With the trend toward increased human life expectancies, identification of candidate genes affecting the regulation of lifespan and its relationship to environmental factors is essential. Through misexpression screening of EP mutant lines, we previously isolated several genes extending lifespan when ubiquitously overexpressed, including the two genes encoding the fatty-acid-binding protein and dodecenoyl-CoA delta-isomerase involved in fatty-acid β-oxidation, which is the main energy resource pathway in eukaryotic cells. In this study, we analyzed flies overexpressing the two main components of fatty-acid β-oxidation, and found that overexpression of fatty-acid-β-oxidation-related genes extended the Drosophila lifespan. Furthermore, we found that the ability of dietary restriction to extend lifespan was reduced by the overexpression of fatty-acid-β-oxidation-related genes. Moreover, the overexpression of fatty-acid-β-oxidation-related genes enhanced stress tolerance to oxidative and starvation stresses and activated the dFOXO signal, indicating translocation to the nucleus and transcriptional activation of the dFOXO target genes. Overall, the results of this study suggest that overexpression of fatty-acid-β-oxidation-related genes extends lifespan in a dietary-restriction-related manner, and that the mechanism of this process may be related to FOXO activation.

  16. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films.

  17. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    Science.gov (United States)

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  18. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    Science.gov (United States)

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  19. Refsum disease: a defect in the alpha-oxidation of phytanic acid in peroxisomes.

    Science.gov (United States)

    Singh, I; Pahan, K; Singh, A K; Barbosa, E

    1993-10-01

    The oxidation of phytanic acid to pristanic acid was previously demonstrated to be deficient in monolayer cultures of skin fibroblasts (Herndon et al. 1969. J. Clin. Invest. 48: 1017-1032). However, identification of subcellular organelle with deficient enzyme activity has not been established. To define the subcellular organelle with deficient enzyme activity in the catabolism of phytanic acid, we measured the oxidation of [1-14C] phytanic acid to 14CO2 and pristanic acid in different subcellular organelles isolated from cultured skin fibroblasts from control and Refsum patients. The rates of oxidation of phytanic acid in peroxisomes, mitochondria, and endoplasmic reticulum were 37.1 +/- 2.65, 1.9 +/- 0.3, and 0.4 +/- 0.07 pmol/h per mg protein, respectively, from control fibroblasts. The phytanic acid oxidation activity in mitochondria (2.04 +/- 0.7 pmol/h per mg protein) and endoplasmic reticulum (0.43 +/- 0.2 pmol/h per mg protein) from Refsum fibroblasts was similar to control fibroblasts. However, phytanic acid oxidation in peroxisomes from Refsum fibroblasts was not detected at all the protein concentrations tested. On the other hand, the peroxisomes from Refsum fibroblasts had normal rates of activation and oxidation of palmitic and lignoceric acids, suggesting that the peroxisomes isolated from Refsum fibroblasts were metabolically active. The phytanoyl-CoA ligase, the first enzyme in the alpha-oxidation pathway, had activity similar to that in peroxisomes from control (9.86 +/- 0.09 nmol/h per mg protein) and Refsum (10.25 +/- 0.31 nmol/h per mg protein) fibroblasts. The data described here clearly demonstrate that pathognomonic accumulation of phytanic acid in patients with Refsum disease is due to the deficient activity of peroxisomal alpha-oxidation enzyme system.

  20. Increased hepatic fatty acids uptake and oxidation by LRPPRC-driven oxidative phosphorylation reduces blood lipid levels

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2016-07-01

    Full Text Available Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc. Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, oxidative phosphorylation, and lipid metabolism. Increased oxidative phosphorylation in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic oxidative phosphorylation could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.

  1. The rationale forpreventing cancer cachexia:targeting excessive fatty acid oxidation

    Institute of Scientific and Technical Information of China (English)

    Chao-Nan Qian

    2016-01-01

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published inNature Medicine, entitled “Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia,”reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also dis‑cussed in this research highlight.

  2. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    Science.gov (United States)

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  3. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  4. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  5. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    Science.gov (United States)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  6. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defence pathways.

    Directory of Open Access Journals (Sweden)

    Luis A.J. Mur

    2013-06-01

    Full Text Available Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA or jasmonic acid (JA/ethylene (ET pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses to be tailored to particular biotic stresses. Nitric oxide (NO has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA—dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1 will promote the NPR1 oligomerisation within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S –nitrosylation and inhibition of s-adenosylmethionine transferases which provides methyl groups for ethylene production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  7. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    Science.gov (United States)

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional supplementation of vitamin E enhanced the lipid oxidation stability of sous vide chicken meat.

  8. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA in Groundwater under Acidic Conditions

    Directory of Open Access Journals (Sweden)

    Penghua Yin

    2016-06-01

    Full Text Available Perfluorooctanoic acid (PFOA is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C, persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH. The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  9. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    Science.gov (United States)

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (pacetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  10. Oxidation of resin acids in colophony (rosin) and its implications for patch testing.

    Science.gov (United States)

    Sadhra, S; Foulds, I S; Gray, C N

    1998-08-01

    Commercial preparations of colophony (rosin) used for patch testing are made from unmodified rosin in pet. and may be stored for some considerable time before being used. This would be satisfactory if the composition and dermatological activity of the preparations were both reproducible and stable, but investigations by the authors have shown that the resin acids undergo progressive and substantial oxidation and that the dermatological activity of the preparations increases significantly with time. This may be a cause of inconsistent patch test results unless the composition can be stabilized. Gas liquid chromatography (GLC) analysis of a raw rosin sample and its commercial patch test preparation has shown that they both contained the same resin acids, but the concentration of the abietic type resin acids was found to be lower in the patch test preparations. The degradation of resin acids is due to their atmospheric oxidation, which may occur during the preparation and storage of the commercial rosin patch test preparation. The susceptibility of individual resin acids to atmospheric oxidation was demonstrated by analysing a sample of raw Portuguese gum rosin, which was then left exposed to air and light. Most of the resin acids were found to undergo oxidation at a rate which gradually diminished. More importantly, it is presumed that the concentration of oxidized resin acids increased correspondingly, and these have been shown to be more dermatologically active than the unoxidised resin acids. The rate of decrease of resin acid concentration was found to be in the following order: neoabietic>levopimaric and palustric>abietic>dehydroabetic acid. The pimaric type resin acids were found to be relatively inert to atmospheric oxidation when compared with the abietic type resin acids. Patch testing with the resulting partly oxidized Portuguese rosin produced positive reactions at a 35% higher frequency than the raw Portuguese rosin. The study demonstrates that the

  11. Insights into support wettability in tuning catalytic performance in the oxidation of aliphatic alcohols to acids.

    Science.gov (United States)

    Wang, Min; Wang, Feng; Ma, Jiping; Chen, Chen; Shi, Song; Xu, Jie

    2013-07-28

    A superhydrophobic catalyst was prepared by immobilizing Pt nanoparticles on superhydrophobic organic-inorganic hybrid silicas, which showed high activity and selectivity in the oxidation of aliphatic alcohols to carboxylic acids.

  12. Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens

    2007-01-01

    , the analytical reproducibility was tested by repeated analysis of plasma aliquots from one individual over four years. The plasma was subjected to acidic deproteinization with an equal volume of 10% meta-phosphoric acid containing 2 mM EDTA and analyzed for ascorbate and dehydroascorbic acid by high...

  13. A novel application of horseradish peroxidase: Oxidation of alcohol ethoxylate to alkylether carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel application of horseradish peroxidase (HRP) in the oxidation of alcohol ethoxylate to alkylether carboxylie acid in the present of H2O2 was reported in this paper. We propose the mechanism for the catalytic oxidation reaction is that the hydrogen transfers from the substrate to the ferryl oxygen to form the a-hydroxy carbon radical intermediate. The reaction offers a new approach for further research structure and catalytic mechanism of HRP and production of alkylether carboxylic acid.

  14. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    Directory of Open Access Journals (Sweden)

    Wai-Leng Lee

    2013-01-01

    Full Text Available Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.

  15. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate.

  16. β-Cyclodextrin promoted oxidation of aldehydes to carboxylic acids in water

    Institute of Scientific and Technical Information of China (English)

    Dong Po Shi; Hong Bing Ji

    2009-01-01

    A facile,efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaC10 catalyzed by β-cyclodextdn in water has been developed.A series of aldehydes which could form inclusion complex with β-cyclodextrin(β-CD)were oxidized selectively with excellent yields.

  17. Nitrogen dioxide-dependent oxidation of uric acid in the human oral cavity under acidic conditions: implications for its occurrence in acidic dental plaque.

    Science.gov (United States)

    Takahama, Umeo; Hirota, Sachiko

    2010-06-21

    The pH in dental plaque falls to below 5 after the ingestion of foods, and it may remain low if acid-tolerant bacteria grow in the plaque. Certain nitrate-reducing bacteria in the oral cavity can proliferate in dental plaque at low pH, and nitrite is detected in such plaque. In acidic dental plaque, NO(2) can be produced by self-decomposition of nitrous acid and also by peroxidase-catalyzed oxidation of nitrite, and it may oxidize uric acid, a major antioxidant in the oral cavity. Under experimental conditions that simulate oral cavity, the oxidation of uric acid by nitrite and by nitrite/peroxidase systems was much more rapid at pH 5 than at pH 7, suggesting the more rapid production of NO(2) in dental plaque at lower pH. We propose that if the pH of plaque developed in a dental crevice decreased, NO(2) and other nitrogen oxides produced in the plaque would diffuse into the adjoining gingival tissues. The results of this study seem to contribute to the understanding of the induction of periodontal diseases in the context of nitrite-dependent production of nitrogen oxides in acidic dental plaque.

  18. Catalytic Degradation of Methylphosphonic Acid Using Iron Powder/Iron Oxides

    Science.gov (United States)

    2005-11-01

    aluminium/ aluminium oxide on the degradation of methylphosphonic acid (MPA), the final hydrolysis product of most nerve agents. EGA-FTIR provides... ALUMINIUM OXIDE ) UNDER AIR (BOTTOM). .................. 37 DSTO-TR-1849 1 1. Introduction The Convention on the Prohibition of the...as well as aluminium/ aluminium oxide , using temperature programmed EGA-FTIR. Since MPA is a Schedule II chemical the above requirement can only be

  19. Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts

    Institute of Scientific and Technical Information of China (English)

    Yang Zhiyuan; Gong Liang; Ran Pan

    2012-01-01

    Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal,with added catalysts.We investigated catalytic oxidation processes and the factors that affect the reactions.The effects of different catalysts,including NiSO4 support on active carbon (AC-NiSO4),NiSO4 support on silicon dioxide (SiO2-NiSO4),composites of SO42-/Fe2O3,Zr-iron and vanadium-iron composite were studied.As well.we investigated nitric humic acid yields and the chemical structure of products by element analysis,FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions).The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%,16.36%,12.94%,5.61% and 8.59%,respectively.The highest yield of humic acid,i.e.,36.0%,was obtained with AC-NiSO4 as the catalyst.The amounts of C and H decreased with the amount of nitrogen.The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions.

  20. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Science.gov (United States)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  1. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  2. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.

    Science.gov (United States)

    Lloyd, Mitchell M; Grima, Michael A; Rayner, Benjamin S; Hadfield, Katrina A; Davies, Michael J; Hawkins, Clare L

    2013-12-01

    In the immune response, hypohalous acids are generated by activated leukocytes via the release of myeloperoxidase and the formation of H2O2. Although these oxidants have important bactericidal properties, they have also been implicated in causing tissue damage in inflammatory diseases, including atherosclerosis. Hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) are the major oxidants formed by myeloperoxidase under physiological conditions, with the ratio of these oxidants dependent on diet and smoking status. HOCl is highly reactive and causes marked cellular damage, but few data are available on the effects of HOSCN on mammalian cells. In this study, we have compared the actions of HOCl and HOSCN on human coronary artery endothelial cells (HCAEC). HOCl reacts rapidly with the cells, resulting in extensive cell death by both apoptosis and necrosis, with necrosis dominating at higher oxidant doses. In contrast, HOSCN is consumed more slowly, with cell death occurring only by apoptosis. Exposure of HCAEC to HOCl and HOSCN induces changes in mitochondrial membrane permeability, which, in the case of HOSCN, is associated with mitochondrial release of proapoptotic factors, including cytochrome c, apoptosis-inducing factor, and endonuclease G. With each oxidant, apoptosis appears to be caspase-independent, with the inactivation of caspases 3/7 observed, and pretreatment of the cells with the caspase inhibitor Z-VAD-fmk having no effect on the extent of cell death. Loss of cellular thiols, depletion of glutathione, and the inactivation of thiol-dependent enzymes, including glyceraldehyde-3-phosphate dehydrogenase, were seen with both oxidants, though to a much greater extent with HOCl. The ability of myeloperoxidase-derived oxidants to induce endothelial cell apoptosis may contribute to the formation of unstable lesions in atherosclerosis. The results with HOSCN may be particularly significant for smokers, who have elevated plasma levels of SCN(-), the precursor

  3. Influence of Fluorine on the Conductivity and Oxidation of Silicon Nanomembranes after Hydrofluoric Acid Treatment

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-Fu; HAN Ping; ZHANG Rong; ZHENG You-Dou

    2011-01-01

    @@ After immersion in hydrofluoric acid, the sheet resistance of a 220-nm-thick silicon nanomembrane, measured in dry air by van der Pauw method, drops around two orders of magnitude initially, then increases and reaches the level of a sample with a native oxide surface in about one month.The surface component and oxidation rate are also characterized by x-ray photo electronic spectroscopy measurement.Fluorine is found to play a significant role in improving conductivity and has no apparent influence on the oxidation rate after hydrofluoric acid treatment.

  4. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....

  5. Synthesis and characterization of poly acrylic acid/graphite oxide nanocomposite

    Institute of Scientific and Technical Information of China (English)

    胡源; 丁溶芳; 徐加艳; 王清安; 陈祖耀; 范维澄

    2003-01-01

    Acrylic acid-intercalated graphite oxide and poly acrylic acid (PAA)-intercalated graphite oxide were prepared and characterized by X-Ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and high resolution electronic microscope (HREM). Results show that the intercalation process is not only a physical diffusion process but also mainly a chemical reaction process. The high resolution electronic microscope results also reveal that the Ic value of PAA-intercalated graphite oxide (GO) could change widely from 1.6nm to 4.0nm.

  6. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress

    NARCIS (Netherlands)

    Teixeira, A.; Cox, R.C.; Egmond, M.R.

    2013-01-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact f

  7. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  8. Primary oxidation and reduction products in x-irradiated aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-08-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine. (AIP)

  9. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    Science.gov (United States)

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  10. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate

    NARCIS (Netherlands)

    Hiemstra, T.; Mia, S.; Duhaut, P.B.; Molleman, B.

    2013-01-01

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application

  11. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    Science.gov (United States)

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.

  12. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    Science.gov (United States)

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-07

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction.

  13. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.

    Science.gov (United States)

    Fukushima, Arata; Lopaschuk, Gary D

    2016-10-01

    Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.

  14. Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation.

    Science.gov (United States)

    Gaut, Joseph P; Belaaouaj, Abderrazzaq; Byun, Jaeman; Roberts, L Jackson; Maeda, Nobuyo; Frei, Balz; Heinecke, Jay W

    2006-05-01

    The observation that antioxidant vitamins fail to confer protective benefits in large, well-designed randomized clinical trials has led many to question the role of oxidative stress in the pathogenesis of disease. However, there is little evidence that proposed antioxidants actually scavenge reactive intermediates in vivo. Ascorbate reacts rapidly with oxidants produced by activated neutrophils in vitro, and neutrophils markedly increase their oxidant production when mice are infected intraperitoneally with the gram-negative bacterium Klebsiella pneumoniae. To explore the antioxidant properties of ascorbate in vivo, we therefore used K. pneumoniae infection as a model of oxidative stress. When mice deficient in L-gulono-gamma-lactone oxidase (Gulo(-/-)), the rate-limiting enzyme in ascorbate synthesis, were depleted of ascorbate and infected with K. pneumoniae, they were three times as likely as ascorbate-replete Gulo(-/-)mice to die from infection. Mass spectrometric analysis of peritoneal lavage fluid revealed a marked increase in the levels of oxidized amino acids and of F2-isoprostanes (sensitive and specific markers of lipid oxidation) in infected animals. Surprisingly, there were no significant differences in the levels of the oxidation products in the ascorbate-deficient and -replete Gulo(-/-)mice. Our observations suggest that ascorbate plays a previously unappreciated role in host defense mechanisms against invading pathogens but that the vitamin does not protect amino acids and lipids from oxidative damage during acute inflammation. To examine the oxidation hypothesis of disease, optimal antioxidant regimens that block oxidative reactions in animals and humans need to be identified.

  15. Effects of Fe oxide on N transformations in subtropical acid soils

    Science.gov (United States)

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-02-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3--N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3--N immobilization rate increased 8 fold. NO3--N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3--N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3--N immobilization caused by high Fe oxide content rather than a low pH.

  16. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    Science.gov (United States)

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  17. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    Science.gov (United States)

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  18. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  19. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets.

    Science.gov (United States)

    Gravador, Rufielyn S; Luciano, Giuseppe; Jongberg, Sisse; Bognanno, Matteo; Scerra, Manuel; Andersen, Mogens L; Lund, Marianne N; Priolo, Alessandro

    2015-09-01

    Male Comisana lambs were individually stalled and, for 56 days, were fed concentrates with 60% barley (n = 8 lambs), or concentrates in which barley was partially replaced by 24% or 35% carob pulp (n = 9 lambs in each group). The intramuscular fatty acids were analyzed and the color stability, lipid and protein oxidation were measured in fresh meat overwrapped with polyvinyl chloride film at 0, 3 or 6 days of storage at 4 °C in the dark. Carob pulp increased the concentration of polyunsaturated fatty acids (PUFA) in muscle, including the rumenic acid (P carob in lamb diet could increase PUFA in muscle without compromising meat oxidative stability.

  20. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Directory of Open Access Journals (Sweden)

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  1. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta

    OpenAIRE

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L.; Perdomo, Germán

    2013-01-01

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase...

  2. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  3. Cyclobutyl methyl ketone as a model compound for pinonic acid to elucidate oxidation mechanisms

    Directory of Open Access Journals (Sweden)

    A. P. Praplan

    2012-04-01

    Full Text Available 3-Methyl-1,2,3-tricarboxylic acid (MBTCA, terpenylic acid and diaterpenylic acid acetate were identified in secondary organic aerosol (SOA from α-pinene photooxidation or ozonolysis. These compounds display interesting structural features: MBTCA has a high oxygen to carbon ratio, terpenylic acid contains a lactone ring in its structure and diaterpenylic acid acetate possesses an ester functional group. The reaction mechanisms leading to these products are still unknown, but it was demonstrated experimentally in earlier studies that MBTCA is formed from pinonic acid, a primary ozonolysis product of α-pinene. Because the direct observation of pinonic acid oxidation in a smog chamber would be difficult due to its relatively low volatility, a model compound possessing the substructure of interest was used instead: cyclobutyl methyl ketone (CMK. From its oxidation, several organic acids could be measured with ion chromatography (IC coupled to a mass spectrometer (MS. Succinic acid, the analogous product of MBTCA is formed at molar yields of 2 to 5%. Butyrolactone is detected as butanoic acid, due to hydrolysis in the sampling device. A monocarboxylic acid with nominal mass 146 was detected in the absence of nitrogen oxides (NOx and could be the analogous product of diaterpenylic acid acetate. However, due to a lack of available standards, the exact structure of this compound remains unelucidated. Finally, 4-oxobutanoic acid could also be measured and two structures of its expected analogous compound from pinonic acid oxidation are proposed. Because these compounds are primary products of the CMK oxidation, reaction mechanisms capable of adding one or two carboxylic functional groups without formation of stable intermediate products needs to be formulated. Such a formation mechanism of MBTCA from pinonic acid was found in the literature; however, it includes a hydrogen atom migration to an acyloxy radical, which is expected to loose

  4. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ndukwe Erlingsson, Uzochi Chimdinma [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Iacobazzi, Francesco [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari (Italy); Liu, Aiping [ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Ardon, Orly; Pasquali, Marzia [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States); Longo, Nicola, E-mail: Nicola.Longo@hsc.utah.edu [Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Mario Capecchi Drive, Salt Lake City, UT 84132 (United States); ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah, Salt Lake City, UT 84132 (United States)

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  5. Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Homma, Rika; Suzuki, Karin; Cui, Leqi; McClements, David Julian; Decker, Eric A

    2015-11-25

    The impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters was investigated. Association colloids did not affect lipid oxidation of high oleic safflower and high linoleic safflower triacylglycerols, but were prooxidative in fish triacylglycerols. Association colloids retarded aldehyde formation in stripped ethyl oleate, linoleate, and fish oil ethyl esters. Interfacial tension revealed that lipid hydroperoxides were surface active in the presence of the surfactants found in association colloids. The lipid hydroperoxides from ethyl esters were less surface active than triacylglycerol hydroperoxides. Stripping decreased iron and copper concentrations in all oils, but more so in fatty acid ethyl esters. The combination of lower hydroperoxide surface activity and low metal concentrations could explain why association colloids inhibited lipid oxidation in fatty acid ethyl esters. This research suggests that association colloids could be used as an antioxidant technology in fatty acid ethyl esters.

  6. Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

    Indian Academy of Sciences (India)

    Madhu Khurana; Pradeep K Sharma; Kalyan K Banerji

    2000-04-01

    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants. The reaction is acid-catalysed and the acid dependence has the form: obs = + [H+]. The oxidation of -deuterioformic acid exhibits a substantial primary kinetic isotope effect (H/D = 6.01 at 303 K). The reaction has been studied in nineteen different organic solvents and the solvent effect has been analysed using Taft’s and Swain’s multiparametric equations. The temperature dependence of the kinetic isotope effect indicates the presence of a symmetrical cyclic transition state in the rate-determining step. Suitable mechanisms have been proposed

  7. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid......Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... and differences in production/purification, which caused lower tocopherol content and higher initial levels of primary and secondary oxidation products in SL compared with RL and SO. Grindox 117 and gallic acid did not exert a distinct antioxidative effect in the SL oil samples during storage...

  8. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection?

    Directory of Open Access Journals (Sweden)

    Paulo J. Oliveira

    2012-01-01

    Full Text Available Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.

  9. Oxidation and hydrolysis of lactic acid in near-critical water

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Vallejo, D.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Civil Engineering Dept.; Portela, J.R. [Univ. de Cadiz (Spain). Dept. de Ingenieria Quimica

    1999-07-01

    Hydrothermal reactions (oxidation and hydrolysis) involving lactic acid (LA) were studied at temperatures ranging from 300 to 400 C and a nominal pressure of 27.6 MPa. Kinetic models were developed with respect to concentrations of LA and total organic carbon (TOC), respectively. On the basis of identified liquid and gaseous products, pathways for hydrothermal reactions involving lactic acid were proposed. Acetic acid and acetaldehyde were confirmed as the major liquid intermediates for oxidation and hydrolysis reactions, respectively. Carbon monoxide and methane were identified as the major gaseous byproducts from these reactions. These results demonstrate the potential of completely oxidizing, as well as converting, lactic acid into other organic products, in high-temperature water.

  10. Effects of rapeseed oil on fatty acid oxidation and lipid levels in rat heart and liver.

    Science.gov (United States)

    Kienle, M G; Cighetti, G; Spagnuolo, C; Galli, C

    1976-09-01

    The comparative rates of oxidation of erucic and oleic acids and of their CoA esters were studied in heart and liver mitochondria of rats fed a standard diet or semisynthetic diets containing 25% of the calories as either rapeseed oil (46.6% erucic and 10.4% eicosenoic acid) or olive oil, for a period of 5 months. The long exposure to the diet containing 25% rapeseed oil did not alter the oxidative activity of mitochondria and did not induce morphological changes in the heart. It is confirmed that erucic acid is oxidized in mitochondria at lower rates than other long chain fatty acids and that its activation as CoA derivative may be one of the rate limiting steps of the overall oxidationprocess. Total lipids and triglycerides do not significantly change in the heart whereas they increase in the liver of rats fed the diet containing rapeseed oil.

  11. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    Science.gov (United States)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  12. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Andrew [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Vivekanandhan, Singaravelu [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Sustainable Materials and Nanotechnology Lab, Department of Physics, VHNSN College, Virudhunagar 626 001, Tamilnadu (India); Rodriguez-Uribe, Arturo [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Mohanty, Amar Kumar, E-mail: mohanty@uoguelph.ca [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2016-04-15

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  13. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  14. Correlation between the different chain lengths of free fatty acid oxidation and ability of trophoblastic invasion

    Institute of Scientific and Technical Information of China (English)

    Yu Huan; Yang Zi; Ding Xiaoyan; Wang Yanling; Han Yiwei

    2014-01-01

    Background Preeclampsia (PE) is associated with abnormal fatty acid beta-oxidation (FAO),especially metabolic disorders of long-chain fatty acid oxidation.The role of FAO dysfunction in inadequate invasion is unclear.The aim of this study was to explore the influence of various lengths fatty acids oxidation on invasiveness of trophoblasts.Methods Primary human trophoblast cells and HTR8/SVneo cells were treated with fatty acids of various lengths.Morphological changes,lipid deposition and ultrastructure changes of trophoblast cells were detected.Cells invasiveness was determined by transwell insert.CPT1,CPT2 and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) protein expression were analyzed.The correlation between intracellular lipid droplets deposition and cells invasiveness was evaluated.Results Cells treated with long-chain fatty acids showed significant increased lipid droplets deposition,severe mitochondrial damage,decreased CPT2 and LCHAD protein expression (P <0.05) but no significant difference in CPT1 protein expression (P >0.05).Invasiveness of the trophoblast cells of the LC-FFA group significantly decreased (P <0.05).Intracellular lipid droplets deposition was negatively correlated with invasivenss (R=-0.745,P <0.05).Conclusion Trophoblast cells after stimulation with long chain fatty acids exist fatty acid oxidation disorders,and reduce the ability of trophoblastic invasion.

  15. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  16. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  17. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  18. Passivation Mechanism of 316L Stainless Steel in Oxidizing Acid Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.

  19. Hypochlorite-induced oxidation of amino acids, peptides and proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Pattison, D I; Davies, Michael Jonathan

    2003-01-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction...

  20. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid.

    Science.gov (United States)

    Brühlmann, Fredi; Fourage, Laurent; Ullmann, Christophe; Haefliger, Olivier P; Jeckelmann, Nicolas; Dubois, Cédric; Wahler, Denis

    2014-08-20

    Directed evolution via iterative cycles of random and targeted mutagenesis was applied to the P450 domain of the subterminal fatty acid hydroxylase CYP102A1 of Bacillus megaterium to shift its regioselectivity towards the terminal position of palmitic acid. A powerful and versatile high throughput assay based on LC-MS allowed the simultaneous detection of primary and secondary oxidation products, which was instrumental for identifying variants with a strong preference for the terminal oxidation of palmitic acid. The best variants identified acquired up to 11 amino acid alterations. Substitutions at F87, I263, and A328, relatively close to the bound substrate based on available crystallographic information contributed significantly to the altered regioselectivity. However, non-obvious residues much more distant from the bound substrate showed surprising strong contributions to the increased selectivity for the terminal position of palmitic acid.

  1. The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    Yuan; Bu; Wenle; Dai; Nan; Li; Xinran; Zhao; Xia; Zuo

    2013-01-01

    The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid.

  2. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  3. PPAR{delta} is a fatty acid sensor, which enhances mitochondrial oxidation in insulin

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Frigerio, Francesca; Boergesen, Michael;

    2010-01-01

    against adverse effects on GSIS associated with prolonged fatty acid exposure. The presented results indicate that the nuclear receptor PPARdelta is a fatty acid sensor that adapts beta-cell mitochondrial function to long-term changes in unsaturated fatty acid levels. As maintenance of mitochondrial...... is the PPAR subtype expressed at the highest level in insulinoma cells and rat pancreatic islets. Furthermore, PPARdelta displays high transcriptional activity and acts in pronounced synergy with RXR. Interestingly, unsaturated fatty acids mimic the effects of synthetic PPARdelta agonists. Using sh......RNA-mediated knockdown we demonstrate that the ability of unsaturated fatty acids to stimulate fatty acid metabolism is dependent on PPARdelta. Activation of PPARdelta increases the fatty acid oxidation potential in INS-1E beta-cells, enhances glucose-stimulated insulin secretion (GSIS) from islets, and protects GSIS...

  4. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    Science.gov (United States)

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed.

  5. Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage

    Institute of Scientific and Technical Information of China (English)

    MA Rui-qiong; SUN Min-na; YANG Zi

    2011-01-01

    Background Preeclampsia is one of hypertensive disorders in pregnancy. It is associated with abnormal lipid metabolism, including fatty acid oxidation metabolism. Long chain 3-hydroxyacyI-CoA dehydrogenase (LCHAD) plays an indispensable role in the oxidation of fatty acids. It has been reported that nitric oxide (NO) is one of the regulatory factors of the fatty acid oxidation pathway. The aim of this research was to investigate whether the nitric oxide synthase (NOS)inhibitor L-NAME may cause down-regulation of LCHAD in the pathogenesis of preeclampsia.Methods Pregnant wild-type (WT) mice were treated with L-NAME or normal saline (NS) during gestation days 7-18 (early group), days 11-18 (mid group) and days 16-18 (late group), and apoE-/- mice served as a control. Systolic blood pressure (SBP), urine protein, feto-placental outcome, plasma lipid levels and NO concentrations were measured, and the expression of mRNA and protein for LCHAD in placental tissue were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively.Results In WT and apoE-/- mice, SBP and urinary protein increased following L-NAME injection. Fetal and placental weights and NO concentrations were reduced and total cholesterol, triglycerides and free fatty acid levels were increased in early and mid L-NAME groups in WT and apoE-/- mice, compared with the NS group. There was no significant difference between the late L-NAME group and NS group. RT-PCR and Western blotting analysis showed that the mRNA and protein levels of LCHAD expression were significantly down-regulated in the early and mid L-NAME groups but not in the late L-NAME group in the WT and apoE-/- mice compared with the corresponding NS groups.Conclusions Inhibition of NO in early and mid gestation in mice may cause hyperlipidemia and suppression of fatty acid oxidation, whereas preeclampsia-like conditions in late gestation may be a maternal vascular response to inhibition of NO.

  6. Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid)

    NARCIS (Netherlands)

    Prigent, S.V.E.; Voragen, A.G.J.; Visser, A.J.W.G.; Koningsveld, van G.A.; Gruppen, H.

    2007-01-01

    BACKGROUND: The interactions between phenolic compounds and proteins can modify protein properties important in the food industry. To understand the effects of these interactions, the covalent interactions between caffeoylquinic acid (chlorogenic acid, CQA) oxidised by polyphenol oxidase (PPO) at ac

  7. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    OpenAIRE

    Xiaoli An; Haibin Ma; Bin Liu; Jizeng Wang

    2013-01-01

    Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO) were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the fil...

  8. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress.

    Science.gov (United States)

    Teixeira, Antoinette; Cox, Ruud C; Egmond, Maarten R

    2013-08-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact furan ring. It is proposed that brain cells are rescued by F6 scavenging radicals elicited by lipid peroxidation within the cell membrane. Oxidative processes outside the cell membrane, such as protein carbonylation, are not affected by F6. Furan fatty acids such as those present in fish oils and marine organisms are likely beneficial for consumption in reducing the risk of diseases that have been implicated to arise from oxidative stress, such as Alzheimer's disease.

  9. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    Science.gov (United States)

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency.

  10. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  11. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  12. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  13. Copper-catalyzed decarboxylative C-P cross-coupling of alkynyl acids with H-phosphine oxides: a facile and selective synthesis of (E)-1-alkenylphosphine oxides.

    Science.gov (United States)

    Hu, Gaobo; Gao, Yuxing; Zhao, Yufen

    2014-09-05

    A novel and efficient copper-catalyzed decarboxylative cross-coupling of alkynyl acids for the stereoselective synthesis of E-alkenylphosphine oxides has been developed. In the presence of 10 mol % of CuCl without added ligand, base, and additive, various alkynyl acids reacted with H-phosphine oxides to afford E-alkenylphosphine oxides with operational simplicity, broad substrate scope, and the stereoselectivity for E-isomers.

  14. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  15. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  16. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  17. Oxidation of [1,12-14C]dodecanedioic acid by rat pancreatic islets.

    Science.gov (United States)

    Malaisse, W J; Greco, A V; Mingrone, G

    2000-10-01

    Several aliphatic dioic acids were recently reported to stimulate insulin release in isolated rat pancreatic islets incubated at close-to-physiological D-glucose concentrations. In order to gain insight into the mode of action of these acids in pancreatic islet B-cells, the oxidation of [1,12-14C]dodecanedioic acid (5.0 mM) was now measured in rat islets. Expressed as pmol of [1, 12-14C]dodecanedioic acid equivalent, the production of 14CO2 was close to 1.0 pmol/islet per 120 min, representing about 8% of that attributable to the oxidation of D-[U-14C]-glucose (8.3 mM). The dioic acid and the hexose failed to exert any significant reciprocal effect upon their respective oxidation rate. These findings support the view that the insulinotropic action of dodecanedioic acid, and presumably other aliphatic dioic acids, is causally linked to their capacity to act as nutrients in pancreatic islet cells.

  18. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine.

    Science.gov (United States)

    Koriem, Khaled M M; Soliman, Rowan E

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective.

  19. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Science.gov (United States)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  20. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  1. Arsine oxidation with heteropoly acid in the presence of halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Dorfman, Ya.A.; Aleshkova, M.M.; Doroshkevich, D.M.; Kel' man, I.V. (AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii)

    1984-12-01

    Kinetics and mechanism of arsine oxidation by phosphomolybdovanadium heteropoly acid are studied in the presense of halide ions as catalysts. It is established that intrasphere arsine oxidation in an intermediate V(5) complex with AsH/sub 3/ and halide-ion is a limiting stage of the proposed mechanism. The quantum-chemical calculation of the electronic structure of intermediate complexes, which supports the above mechanism is carried out. The method of theoretical estimation of the activation energy is proposed.

  2. Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature

    OpenAIRE

    Sweejiang Yoo; Xin Li; Yuan Wu; Weihua Liu; Xiaoli Wang; Wenhui Yi

    2014-01-01

    Reduced graphene oxide (rGO) based chemiresistor gas sensor has received much attention in gas sensing for high sensitivity, room temperature operation, and reversible. Here, for the first time, we present a promising chemiresistor for ammonia gas detection based on tannic acid (TA) functionalized and reduced graphene oxide (rGOTA functionalized). Green reductant of TA plays a major role in both reducing process and enhancing the gas sensing properties of rGOTA functionalized. Our results sho...

  3. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    Science.gov (United States)

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  4. The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation.

    Science.gov (United States)

    Su, Na; Chen, Xueying; Ren, Yuanhang; Yue, Bin; Wang, Han; Cai, Wenbin; He, Heyong

    2015-04-28

    Single crystalline palladium arrow-headed tripods prepared via a simple one-pot strategy exhibit high electro-activity in formic acid oxidation, which could be a promising anodic catalyst for direct formic acid fuel cells.

  5. Electrochemical oxidation of substituted benzylamines in aquo-acetic acid medium: substituent and solvent effects

    Indian Academy of Sciences (India)

    A Thirumoorthi; K P Elango

    2007-07-01

    Electrochemical oxidation of nine para- and meta-substituted benzylamines in varying mole fractions of acetic acid in water has been investigated in the presence of 0.1 M sulphuric acid as supporting electrolyte. The oxidation potentials correlate well with Hammett’s substituent constants affording negative reaction constants. The correlation of potential values with macroscopic solvent parameters is non-linear suggesting that the operation of both specific and non-specific solvent-solvent-solute interaction mechanisms. Multiple correlation analysis of the experimental data with Kamlet-Taft solvatochromic parameters is employed.

  6. Oxidation Effect on Tribological Pproperties of Rapeseed oil and Lard Mixtures Containing Monoglycerides and Fatty Acids

    Directory of Open Access Journals (Sweden)

    Violeta Makareviciene

    2012-10-01

    Full Text Available Vegetable oils and animal fats are increasingly popular base material to produce environmentally friendly lubricants. This is a renewable and easily biodegradable in the natural environment material. The main disadvantage of vegetable oils and animal fats as raw materials and its lubricants is pour oxidation stability. There are already a wide range of environmentally friendly lubricants in the market, while the variety of greases offer is not so high. This research aims to explore the properties of prepared compositions of lubricating greases produced from rapeseed oil and lard, modifying them with monoglycerides, stearic and oleic acids. The plastic properties (penetration and oxidation influence on tribological and corrosive properties of these compositions were studied. It was found that modifying rapeseed oil and lard with monoglycerides, oleic and stearic acids a few lubricating compositions of NLGI grades can be achieved: soft or very soft rapeseed oil based greases and medium or nearly hard consistency lard based compositions. The oxidation studies showed that it decreases the tribological properties of base and monoglycerides modified lubricants. Oxidation has greater negative impact on lard and lard based compositions. Oleic and stearic acids reduces or completely eliminates the negative influence of oxidation. Corrosion studies have shown that both fresh and oxidized lubricant compositions have no significant affect on copper strip corrosion.DOI: http://dx.doi.org/10.5755/j01.erem.61.3.1763

  7. Low ascorbic acid and increased oxidative stress in gulo(-/-) mice during development.

    Science.gov (United States)

    Harrison, Fiona E; Meredith, M Elizabeth; Dawes, Sean M; Saskowski, Jeanette L; May, James M

    2010-08-19

    Vitamin C (ascorbic acid, AA) depletion during prenatal and postnatal development can lead to oxidative stress in the developing brain and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/-) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/-) dams were mated with gulo(+/-) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and postnatal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On postnatal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo(-/-) mice and malondialdehyde (MDA) levels were significantly increased. In postnatal day 18 pups (P18) AA levels decreased further in gulo(-/-) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F(2)-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(-/-) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(-/-) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA.

  8. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    Science.gov (United States)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  9. Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Directory of Open Access Journals (Sweden)

    Weinberger Klaus M

    2009-01-01

    Full Text Available Abstract Background The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress. Results A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to

  10. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  11. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  12. Effect of acid oxidization of carbon nanotube electrode on the capacitances of double layer capacitors

    Institute of Scientific and Technical Information of China (English)

    LI; Chensha; WANG; Dazhi; LIANG; Tongxiang; WANG; Xiaofen

    2004-01-01

    Polarizable electrode of electric double layer capacitor was made from carbon nanotubes. The effect of acid oxidation of electrode on the specific capacitance was studied. Oxidation removed the redundant carbon, expanded the pore size and introduced some kinds of functional groups on the surface of CNTs. The specific capacit ance of the electrodes with organic electrolyte was increased from 21.4 to 49.6 F/gafter being oxidized at a volume ratio of H2SO4 to HNO3 of 3:1.

  13. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  14. Cu2+-Catalyzed Oscillatory Oxidation of Ascorbic Acid by O2 Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel heterogeneous oscillator, the Cu2+-catalyzed oscillatory oxidation of ascorbic acid (Vitamin C) in aqueous solution by O2 flow was reported. Both the potential oscillations on Pt-electrode corresponding to [Cu2+] and the absorbance oscillations at l=260 nm corresponding to [ascorbic acid] were observed. Oscillations in the completely homogeneous system were also observed. Effects of several factors on the oscillations were investigated.

  15. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    Science.gov (United States)

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  16. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  17. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  18. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats.

    Science.gov (United States)

    Yüce, Abdurrauf; Ateşşahin, Ahmet; Ceribaşi, Ali Osman; Aksakal, Mesut

    2007-11-01

    Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity, and several studies suggest that supplemental antioxidants can reduce cisplatin-induced hepatotoxicity. The present study was designed to determine the effects on the liver and heart oxidant/antioxidant system and the possible protective effects of ellagic acid on liver and heart toxicity induced by cisplatin. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The rats were killed at the end of the treatment period. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione-peroxidase (GSH-Px) and catalase (CAT) activities were determined in liver and heart tissue. While administration of cisplatin increased the MDA levels in liver and heart tissues, it decreased the GSH, GSH-Px and CAT in these samples when compared to the control group. The administration of ellagic acid to cisplatin-treated rats decreased the MDA levels, and increased GSH, GSH-Px and CAT in these samples. Cisplatin caused marked damages in the histopathological status of liver and heart tissues. These damages were ameliorated by ellagic acid administration. In conclusion, ellagic acid may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters.

  19. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.

    Science.gov (United States)

    Han, Hyoung Soon; Yun, Mira; Jeong, Haesang; Jeon, Seungwon

    2015-08-01

    The electrocatalytic activities of metal-decorated graphene oxide (GO) catalysts were investigated. Electrochemically reduced GO-S-(CH2)4-S-Pd [ERGO-S-(CH2)4-S-Pd] and GO-S-(CH2)4-S-PdAg alloy [ERGO-S-(CH2)4-S-PdAg] were obtained through the electrochemical reduction of GO-S-(CH2)4-S-Pd and GO-S-(CH2)4-S-PdAg in a pH 5 PBS solution. It was demonstrated that the application of ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg used in a modified GCE improves the electrocatalytic oxidation of formic acid. The addition of an Ag nanoparticle with a carbon chain-Pd in the electrode provides an electrode with very interesting properties for the electrocatalytic oxidation of formic acid. The ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg were characterized via X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg can be employed for the electrocatalytic oxidation of formic acid. The electrochemical behaviors of this electrode were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS).

  20. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  1. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    Science.gov (United States)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  2. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    Science.gov (United States)

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  3. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.

    Science.gov (United States)

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.

  4. Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats.

    Science.gov (United States)

    Ateşşahín, Ahmet; Ceríbaşi, Ali Osman; Yuce, Abdurrauf; Bulmus, Ozgür; Cikim, Gürkan

    2007-02-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with ellagic acid on cisplatin-induced nephrotoxicity using biochemical and histopatological approaches. Adult male Sprague-Dawley rats were randomly divided into four groups. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in the cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The effects of ellagic acid on cisplatin-induced nephrotoxicity were evaluated by plasma creatinine, urea, sodium and calcium concentrations; kidney tissue malondialdehyde, reduced glutathione (GSH), glutathione peroxidase (GSH peroxidase) and catalase activities and histopatological examinations. Administration of cisplatin to rats induced a marked renal failure, characterized by significant increases in plasma creatinine, urea and calcium concentrations. Cisplatin also induced oxidative stress, as indicated by increased kidney tissue concentrations of malondialdehyde, and reduced activities of GSH peroxidase and catalase. Furthermore, treatment with cisplatin caused a marked tubular necrosis, degeneration and desquamation, luminal cast formation, karyomegaly, tubular dilatation, interstitial mononuclear cell infiltration and inter-tubular haemorrhagia. Ellagic acid markedly reduced elevated plasma creatinine, urea and calcium levels and counteracted the deleterious effects of cisplatin on oxidative stress markers. In the same way, ellagic acid ameliorated cisplatin-induced pathological changes including tubular necrosis, degeneration, karyomegaly, tubular dilatation when compared to the cisplatin alone group. These results indicate that the antioxidant ellagic acid might have a protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat, but not enough to inhibit cisplatin-induced renal dysfunction.

  5. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  6. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata.

    Science.gov (United States)

    Pahan, K; Khan, M; Singh, I

    1996-05-01

    In humans the oxidation of phytanic acid is a peroxisomal function. To understand the possible mechanisms for the pathognomic accumulation of phytanic acid in plasma and body fluids of Refsum disease (RD) and rhizomelic chondrodysplasia punctata (RCDP), we investigated activities of various steps (activation, transport, and oxidation) in the metabolism of phytanic acid in peroxisomes isolated from cultured skin fibroblasts from control, RD, and RCDP subjects. Activation of phytanic acid was normal in peroxisomes from both RD and RCDP. Transport of phytanic acid or phytanoyl-CoA in the absence or presence of fatty acid activating cofactors (ATP, MgCl2, and CoASH) into peroxisomes isolated from RD and RCDP skin fibroblasts was also similar to that of peroxisomes from control fibroblasts. Defective oxidation of [(2,3)-3H]- or [1-14C]phytanic acid, or [1-14C]phytanoyl-CoA (substrate for the first step of alpha-oxidation) but normal oxidation of [1-14C] alpha-hydroxyphytanic acid (substrate for the second step of the alpha-oxidation pathway) in peroxisomes from RD clearly demonstrates that excessive accumulation of phytanic acid in plasma and body fluids of RD is due to the deficiency of phytanic acid alpha-hydroxylase in peroxisomes. However, in RCDP peroxisomes, in addition to deficient oxidation of [1-14C]phytanic acid or phytanoyl-CoA or [(2,3)-3H]phytanic acid, the oxidation of [1-14C] alpha-hydroxyphytanic acid was also deficient, indicating that in RCDP the activities both of alpha-hydroxylation of phytanic acid and decarboxylation of alpha-hydroxyphytanic acid are deficient. These observations indicate that peroxisomal membrane functions (phytanic acid activation and transport) in phytanic acid metabolism are normal in both RD and RCDP. The defect in RD is in the alpha-hydroxylation of phytanic acid; whereas in RCDP both alpha-hydroxylation of phytanic acid as well as decarboxylation of alpha-hydroxyphytanic acid are deficient.

  7. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Yokooji, Yuusuke; Sato, Takaaki; Fujiwara, Shinsuke; Imanaka, Tadayuki; Atomi, Haruyuki

    2013-05-01

    Amino acid catabolism in Thermococcales is presumed to proceed via three steps: oxidative deamination of amino acids by glutamate dehydrogenase (GDH) or aminotransferases, oxidative decarboxylation by 2-oxoacid:ferredoxin oxidoreductases (KOR), and hydrolysis of acyl-coenzyme A (CoA) by ADP-forming acyl-CoA synthetases (ACS). Here, we performed a genetic examination of enzymes involved in Glu catabolism in Thermococcus kodakarensis. Examination of amino acid dehydrogenase activities in cell extracts of T. kodakarensis KUW1 (ΔpyrF ΔtrpE) revealed high NADP-dependent GDH activity, along with lower levels of NAD-dependent activity. NADP-dependent activities toward Gln/Ala/Val/Cys and an NAD-dependent threonine dehydrogenase activity were also detected. In KGDH1, a gene disruption strain of T. kodakarensis GDH (Tk-GDH), only threonine dehydrogenase activity was detected, indicating that all other activities were dependent on Tk-GDH. KGDH1 could not grow in a medium in which growth was dependent on amino acid catabolism, implying that Tk-GDH is the only enzyme that can discharge the electrons (to NADP(+)/NAD(+)) released from amino acids in their oxidation to 2-oxoacids. In a medium containing excess pyruvate, KGDH1 displayed normal growth, but higher degrees of amino acid catabolism were observed compared to those for KUW1, suggesting that Tk-GDH functions to suppress amino acid oxidation and plays an anabolic role under this condition. We further constructed disruption strains of 2-oxoglutarate:ferredoxin oxidoreductase and succinyl-CoA synthetase. The two strains displayed growth defects in both media compared to KUW1. Succinate generation was not observed in these strains, indicating that the two enzymes are solely responsible for Glu catabolism among the multiple KOR and ACS enzymes in T. kodakarensis.

  8. Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Liyuan; Cheng; Hong; Liu; Yuming; Cui; Nianhua; Xue; Weiping; Ding

    2014-01-01

    Considering energy shortage, large molecules in corn cob and easy separation of solid catalysts, nano oxides are used to transform corn cob into useful chemicals. Because of the microcrystals, nano oxides offer enough accessible sites for cellulose, hemicellulose and monosaccharide from corn cob hydrolysis and oxidant. Chemical conversion of corn cob to organic acids is investigated over nano ceria, alumina, titania and zirconia under various atmospheres. Liquid products are mainly formic and acetic acids. A small amount of other compounds, such as D-xylose,D-glucose, arabinose and xylitol are also detected simultaneously. The yield of organic acids reaches 25%–29% over the nano oxide of ceria,zirconia and alumina with 3 h reaction time under 453 K and 1.2 MPa O2. The unique and fast conversion of corn cob is directly approached over the nano oxides. The results are comparative to those of biofermentation and offer an alternative method in chemically catalytic conversion of corn cob to useful chemicals in a one-pot chemical process.

  9. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro.

    Science.gov (United States)

    Kanski, J; Lauderback, C; Butterfield, D A

    2001-01-01

    The antioxidant properties of 5-aminosalicylic acid in vitro were evaluated in a synaptosomal membrane system prepared from gerbil cortical synaptosomes using EPR spin labeling and spectroscopic techniques. MAL-6 (2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl) and 5-NS (5-nitroxide stearate) spin labels were used to assess changes in protein oxidation and membrane lipid fluidity, respectively. Synaptosomal membranes were subjected to oxidative stress by incubation with 1 mM azo-bis(isobutyronitrile) (AIBN) or 1 mM 2,2'-azobis(amidino propane) dihydrochloride (AAPH) at 37 degrees C for 30 minutes. The EPR analyses of the samples showed significant oxidation of synaptosomal proteins and a decrease in membrane fluidity. 5-Aminosalicylic acid also was evaluated by means of FRAP (the ferric reducing ability of plasma) test as a potential antioxidant. 5-Aminosalicylic acid also showed protection against the oxidation in gerbil cortical synaptosomes system caused by AIBN and AAPH. These results are consistent with the notion of antioxidant protection against free radical induced oxidative stress in synaptosomal membrane system by this agent.

  10. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial

    Science.gov (United States)

    Amador-Licona, Norma; Díaz-Murillo, Teresa A.; Pereyra-Nobara, Texar A.; Guízar-Mendoza, Juan M.; Barbosa-Sabanero, Gloria; Orozco-Aviña, Gustavo; Moreno-Martínez, Sandra C.; Luna-Montalbán, Rafael; Vázquez-Valls, Eduardo

    2016-01-01

    HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART) were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA) or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals), and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55%) and AZT/3TC/EFV (15%) without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04), but oxidative stress markers were not different between groups. Trial Registration ClinicalTrials.gov NCT02041520 PMID:27015634

  11. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Norma Amador-Licona

    Full Text Available HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals, and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55% and AZT/3TC/EFV (15% without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04, but oxidative stress markers were not different between groups.

  12. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial.

    Science.gov (United States)

    Amador-Licona, Norma; Díaz-Murillo, Teresa A; Gabriel-Ortiz, Genaro; Pacheco-Moises, Fermín P; Pereyra-Nobara, Texar A; Guízar-Mendoza, Juan M; Barbosa-Sabanero, Gloria; Orozco-Aviña, Gustavo; Moreno-Martínez, Sandra C; Luna-Montalbán, Rafael; Vázquez-Valls, Eduardo

    2016-01-01

    HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART) were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA) or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals), and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55%) and AZT/3TC/EFV (15%) without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04), but oxidative stress markers were not different between groups.

  13. A Study on Side Reactions of Hydroxyethylation of 3-Nitro-4-chlorobenzenesulfinic Acid with Ethylene Oxide

    Institute of Scientific and Technical Information of China (English)

    Zhen Tang DONG; Zu Wang WU; Zhi Wei WANG; Yun De WANG; Yin Zhou YU

    2006-01-01

    The reaction of 3-nitro-4-chlorobenzenesulfinic acid and ethylene oxide to obtain 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene had been studied. Except hydroxyethylation on the sulfur atom of 3-nitro-4-chlorobenzenesulfinic acid to form the target product, 2-nitro-4-(β-hydroxyethylsulfonyl)chlorobenzene, there presented three kinds of side reactions: 1. Condensation and elimination of HCl to form biphenyl sulfone derivatives; 2. Addition to give bisulfonyl ethane derivative via vinyl sulfone; and 3. Hydroxylethylation on O-atom to produce hydroxylethylsulfinate due to the tautomerism of sulfinic acid.

  14. Effect of amino acid immobilization on the impedance of graphene oxide

    Science.gov (United States)

    Tran, Minh-Hai; Han, Jinwoo; Min, Byeong June; Lee, ChangWoo; Jang, Sei-Heon; Jeong, Hae Kyung

    2015-05-01

    A single residue, dipeptide, or tripeptide of alanine or histidine is covalently attached to graphene oxide (GO), and the effect of the amino acid immobilization on the impedance of GO is investigated using the impedance spectroscopy. The histidine of a tripeptide exhibits the lowest resistance compared to the single or dipeptide histidine in the KCl electrolyte, and the single alanine residue shows the lowest resistance in an acidic electrolyte compared to the dipeptide or tripeptide alanine. The peculiar behavior of the impedance could be explained by different net charges of the amino acids, chain length, and π-π stacking interaction.

  15. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor.

    Science.gov (United States)

    Li, Jiao; Li, Jianxin; Wang, Hong; Cheng, Bowen; He, Benqiao; Yan, Feng; Yang, Yang; Guo, Wenshan; Ngo, Huu Hao

    2013-05-18

    An electrocatalytic membrane reactor assembled using a nano-MnO2 loading microporous Ti membrane as an anode and a tubular stainless steel as a cathode was used to oxidize n-propanol to produce propionic acid. The high efficiency and selectivity obtained is related to the synergistic effect between the reaction and separation in the reactor.

  16. Vitamin E supplementation in elderly lowers the oxidation rate of linoleic acid in LDL.

    NARCIS (Netherlands)

    Waart, de F.; Moser, U.; Kok, F.J.

    1997-01-01

    .Oxidation of LDL–linoleic acid (LDL–LA), a major substrate for lipid peroxidation, may be counteracted by the antioxidant vitamin E. In a 3-month randomized double-blind placebo-controlled trial in 83 apparently healthy Dutch elderly, aged 67–85 years, the direct protective effect of 100 IU vitamin

  17. Synthesis and bioactivity of novel nitric oxide-releasing ursolic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Wen Qiu; Jia Tang; Zhi Feng Wang; Shu Ying He

    2011-01-01

    A series of furoxan-based novel nitric oxide-donating ursolic acid (UA) derivatives (7a-f) were synthesized, and their cytotoxic activities against HepG2 cells in vitro were evaluated by MTT method. It was found that 7a-d and 7f showed more potent cytotoxic activities than control 5-fluorouracil and UA.

  18. A highly enantioselective phase-transfer catalyzed epoxidation of enones with a mild oxidant, trichloroisocyanuric acid.

    Science.gov (United States)

    Ye, Jinxing; Wang, Yongcan; Liu, Renhua; Zhang, Guofu; Zhang, Qing; Chen, Jiping; Liang, Xinmiao

    2003-11-07

    The enantioselective epoxidation can be carried out using trichloroisocyanuric acid (TCCA) as oxidant in the presence of chiral quaternary ammonium salt as a phase-transfer catalyst; treatment of chalcone derivatives with TCCA under mild conditions afforded the corresponding epoxy ketones in good yields with moderate to excellent enantioselectivities of up to 96%.

  19. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  20. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  1. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    NARCIS (Netherlands)

    Corpeleijn, Eva; Hessvik, Nina P.; Bakke, Siril S.; Levin, Klaus; Blaak, Ellen E.; Thoresen, G. Hege; Gaster, Michael; Rustan, Arild C.

    2010-01-01

    Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299: E14-E22, 2010. First published May 4, 2010; doi:1

  2. Urinary markers of nucleic acid oxidation and cancer in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Kasper Broedbaek

    2015-04-01

    Conclusions: Urinary excretion of the nucleic acid oxidation markers 8-oxodG and 8-oxoGuo at the time of diagnosis was not associated with cancer overall in type 2 diabetes patients. For site-specific cancers, risk elevations were seen for breast cancer (8-oxodG. These findings should be examined in future and larger studies.

  3. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  4. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  5. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  6. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  7. Integrative device and process of oxidization, degassing, acidity adjustment of 1BP from APOR process

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Zheng, Weifang, E-mail: wfazh@ciae.ac.cn; Yan, Taihong; He, Hui; Li, Gaoliang; Chang, Shangwen; Li, Chuanbo; Yuan, Zhongwei

    2016-02-15

    Graphical abstract: Previous (left) and present (right) device of oxidation, degassing, acidity adjustment of 1BP. - Highlights: • We designed an integrative device and process. • The utilization efficiency of N{sub 2}O{sub 4} is increased significantly. • Our work results in considerable simplification of the device. • Process parameters are determined by experiments. - Abstract: Device and process of oxidization, degassing, acidity adjustment of 1BP (The Pu production feed from U/Pu separation section) from APOR process (Advanced Purex Process based on Organic Reductants) were improved through rational design and experiments. The device was simplified and the process parameters, such as feed position and flow ratio, were determined by experiments. Based on this new device and process, the reductants N,N-dimethylhydroxylamine (DMHAN) and methylhydrazine (MMH) in 1BP solution could be oxidized with much less N{sub 2}O{sub 4} consumption.

  8. Electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and 2,5-diformylfuran

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Cha, Hyun Gil

    2017-03-21

    Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.

  9. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    Directory of Open Access Journals (Sweden)

    Xiaoli An

    2013-01-01

    Full Text Available Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the film surfaces, resulting in that the PLA/PU/GO composite films show remarkably improved antibacterial activity compared with PLA/PU composite film. The inhibition efficiency is proportional to the amount of GO. Furthermore, PLA/PU/GO composite fibrous paper was fabricated using electrospinning and exhibited good biocompatibility. The addition of GO does not destroy normal cell’s proliferation and differentiation. PLA/PU/GO composites with good antibacterial activity and biocompatibility make it attractive for the environmental and clinical applications and also provide a candidate for future application of tissue engineering.

  10. Oxidation of dietary stearic, oleic, and linoleic acids in growing pigs follows a biphasic pattern.

    Science.gov (United States)

    Bruininx, Erik; van den Borne, Joost; van Heugten, Eric; van Milgen, Jaap; Verstegen, Martin; Gerrits, Walter

    2011-09-01

    We used the pig as a model to assess the effects of dietary fat content and composition on nutrient oxidation and energy partitioning in positive energy balance. Pigs weighing 25 kg were assigned to either: 1) a low fat-high starch diet, or 2) a high saturated-fat diet, or 3) a high unsaturated-fat diet. In the high-fat treatments, 20% starch was iso-energetically replaced by 10.8% lard or 10.2% soybean oil, respectively. For 7 d, pigs were fed twice daily at a rate of 1200 kJ digestible energy · kg(-0.75) · d(-1). Oral bolus doses of [U-(13)C] glucose, [U-(13)C] α-linoleate, [U-(13)C] stearate, and [U-(13)C] oleate were administered on d 1, 2, 4, and 6, respectively, and (13)CO(2) production was measured. Protein and fat deposition were measured for 7 d. Fractional oxidation of fatty acids from the low-fat diet was lower than from the high-fat diets. Within diets, the saturated [U-(13)C] stearate was oxidized less than the unsaturated [U-(13)C] oleate and [U-(13)C] linoleate. For the high unsaturated-fat diet, oxidation of [U-(13)C] oleate was higher than that of [U-(13)C] linoleate. In general, recovery of (13)CO(2) from labeled fatty acids rose within 2 h after ingestion but peaked around the next meal. This peak was induced by an increased energy expenditure that was likely related to increased eating activity. In conclusion, oxidation of dietary fatty acids in growing pigs depends on the inclusion level and composition of dietary fat. Moreover, our data suggest that the most recently ingested fatty acids are preferred substrates for oxidation when the direct supply of dietary nutrients has decreased and ATP requirements increase.

  11. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  12. Citrus Flavanones Affect Hepatic Fatty Acid Oxidation in Rats by Acting as Prooxidant Agents

    Directory of Open Access Journals (Sweden)

    Rodrigo Polimeni Constantin

    2013-01-01

    Full Text Available Citrus flavonoids have a wide range of biological activities and positive health effects on mammalian cells because of their antioxidant properties. However, they also act as prooxidants and thus may interfere with metabolic pathways. The purpose of this work was to evaluate the effects of three citrus flavanones, hesperidin, hesperetin, and naringenin, on several parameters linked to fatty acid oxidation in mitochondria, peroxisomes, and perfused livers of rats. When exogenous octanoate was used as substrate, hesperetin and naringenin reduced the mitochondrial NADH/NAD+ ratio and stimulated the citric acid cycle without significant changes on oxygen uptake or ketogenesis. When fatty acid oxidation from endogenous sources was evaluated, hesperetin and naringenin strongly reduced the mitochondrial NADH/NAD+ ratio. They also inhibited both oxygen uptake and ketogenesis and stimulated the citric acid cycle. Hesperidin, on the other hand, had little to no effect on these parameters. These results confirm the hypothesis that citrus flavanones are able to induce a more oxidised state in liver cells, altering parameters related to hepatic fatty acid oxidation. The prooxidant effect is most likely a consequence of the ability of these substances to oxidise NADH upon production of phenoxyl radicals in the presence of peroxidases and hydrogen peroxide.

  13. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    Science.gov (United States)

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  14. HPLC analysis of in vivo intestinal absorption and oxidative metabolism of salicylic acid in the rat.

    Science.gov (United States)

    Kuzma, Mónika; Nyúl, Eszter; Mayer, Mátyás; Fischer, Emil; Perjési, Pál

    2016-12-01

    In vivo absorption and oxidative metabolism of salicylic acid in rat small intestine was studied by luminal perfusion experiment. Perfusion through the lumen of proximal jejunum with isotonic medium containing 250 μm sodium salicylate was carried out. Absorption of salicylate was measured by a validated HPLC-DAD method which was evaluated for a number of validation characteristics (specificity, repeatability and intermediate precision, limit of detection, limit of quantification, linearity and accuracy). The method was linear over the concentration range 0.5-50 μg/mL. After liquid-liquid extraction of the perfusion samples oxidative biotransformation of salicylate was also investigated by HPLC-MS. The method was linear over the concentration range 0.25-5.0 μg/mL. Two hydroxylated metabolites of salicylic acid (2,5-dihydroxybenzoic acid and 2,3-dihydroxybenzoic acid) were detected and identified. The mean recovery of extraction was 72.4% for 2,3-DHB, 72.5% for 2,5-DHB and 50.1% for salicylic acid, respectively. The methods were successfully applied to investigate jejunal absorption and oxidative metabolism of sodium salicylate in experimental animals. The methods provide analytical background for further metabolic studies of salycilates under modified physiological conditions.

  15. Factors affecting the fatty acid composition and fat oxidative stability in pigs

    Directory of Open Access Journals (Sweden)

    Karel Vehovsky

    2015-03-01

    Full Text Available The aim of the study was to evaluate the effect of selected factors affecting fatty acids (FA composition in pig fat. In the experiment, the influence of nutrition, gender, carcass weight, lean meat proportion (LMP and intramuscular fat (IMF were monitored. The effect of diet, specifically the influence of added linseed or corn on the fatty acids composition in the backfat was studied in pigs. From the perspective of the required increase of polyunsaturated fatty acids (PUFA only the addition of the linseed proved to have a significant effect. Another evaluated aspect concerning the FA spectrum was the gender. While the backfat in barrows showed higher (P≤0.05 amount of monounsaturated fatty acids (MUFA, the backfat in gilts displayed a significantly higher proportion (P≤0.01 of the PUFA and total unsaturated fatty acids (UFA. A significant effect on the PUFA proportion has also been demonstrated for the lean meat proportion (LMP parameter, which therefore represents not only a qualitative carcass meat parameter but also plays an important role in relation to the FA composition in the fat in pigs. In connection to the FA proportion changes the study also monitored the fat oxidative stability with the use of the TBARS method. Concerning the oxidative stability the effects of nutrition, FA groups, gender, carcass weight and LMP were studied. The relationship between the above mentioned factors and oxidative stability was found to be insignificant.

  16. Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode.

    Science.gov (United States)

    Garcia-Segura, Sergi; Brillas, Enric

    2011-04-01

    Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe(2+) (AO-BDD-Fe(2+)) and under UVA irradiation (AO-BDD-Fe(2+)-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe(2+) and EF-BDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe(2+)-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH(4)(+) than NO(3)(-) ion, as well as volatile NO(x) species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe(2+)-UVA oxamic acid was more slowly degraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe(2+) contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe(2+) to Fe(3+). Low current densities and Fe(2+) contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe(2+)-UVA method.

  17. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    Science.gov (United States)

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  18. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Sumudu N. Warnakulasuriya

    2014-11-01

    Full Text Available Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G was esterified individually with six selected long chain fatty acids: stearic acid (STA, oleic acid (OLA, linoleic acid (LNA, α-linolenic acid (ALA, eicosapentaenoic acid (EPA and decosahexaenoic acid (DHA, using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL, in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  19. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    Science.gov (United States)

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-05

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes.

  20. Characterization of Humic Acid in the Chemical Oxidation Technology (II) - Characteristics by Ozonation -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Jung, Y.R. [Kangwon National University, Chunchon (Korea)

    2000-04-01

    In this paper, ozonation of humic acid in water was characterized using UV{sub 254} absorbance, TOC, Ultra Filtration and {sup 13}C-NMR. Also, carbonyl compounds in ozonated water were analyzed by GC/MS using PFBOA method. Ozonation by-products of water containing humic acid were determined as formaldehyde, acetaldehyde, acetone, glyoxal and methylglyoxal. Results of UV{sub 254} absorbance and TOC with ozonation time at humic acid 20, 100 ppm represent that decrease rate of 80% within ozonation time is 20 min and TOC removal rate of 40-50% within ozonation time is 30 min. Results for {sup 13}C-NMR and Ultra Filtration, humic acid of high molecular weight by ozonation are oxidated and decomposed so that it was conversed low molecular weight such as aldehydes, carboxylic acid. (author). 7 refs., 3 tabs., 9 figs.

  1. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.

    Science.gov (United States)

    Althoff, Frederik; Jugold, Alke; Keppler, Frank

    2010-06-01

    The possibility of methane formation in an oxidative environment has been intensely debated, especially since the discovery of methane generation by living plants. However, recent studies with animal tissue suggested that under specific conditions aerobic methane formation is also possible. Here, we investigated the generation of methane in an abiotic model system using bioavailable substances. We show formation of methane in a highly oxidative media, using ascorbic acid, ferrihydrite and hydrogen peroxide as reagents. Methane production was shown to be related to reagent ratio, reaction volume and pH. A 2:1 ratio of hydrogen peroxide to ascorbic acid, catalytic amounts of ferrihydrite and acidic conditions (pH 3) enhanced formation of methane. We further show that gaseous oxygen has a strong influence with higher levels found to inhibit methane formation. This study is a first step towards providing an insight for the reaction mechanism of methane formation that would be applicable to aerobic environments.

  2. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Science.gov (United States)

    Soares, Paula I. P.; Laia, César A. T.; Carvalho, Alexandra; Pereira, Laura C. J.; Coutinho, Joana T.; Ferreira, Isabel M. M.; Novo, Carlos M. M.; Borges, João Paulo

    2016-10-01

    Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of -120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  3. Effect of preparation conditions on selective oxidation of propane to acrylic acid

    Institute of Scientific and Technical Information of China (English)

    YU Zhen-xing; ZHENG Wei; XU Wen-long; ZHANG Yu-hang; FU Hong-ying; ZHANG Ping

    2009-01-01

    The effects of chemical composition and preparation conditions, especially calcination atmosphere and water content on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid were investigated. Among the catalysts studied, MO_(1.0)V_(0.3)Te_(0.23)Nb_(0.12)O_x catalyst calcined in inert atmosphere at 600 ℃ shows the best performance in terms of propane conversion and selectivity to acrylic acid. The results reveal that proper chemical composition, calcination atmosphere and water content affect greatly the catalysts in many ways including structure, chemical composition, which are related to their catalytic performances; and 51.0% propane conversion and 30.5% one-pass yield to acrylic acid can be achieved at the same time.

  4. In situ generated hypoiodous acid in an efficient and heterogeneous catalytic system for the homo-oxidative coupling of thiols

    Directory of Open Access Journals (Sweden)

    Ghorbani-Choghamarani Arash

    2013-01-01

    Full Text Available Supported hydrogen peroxide on polyvinylpolypyrrolidone (PVPH2O2, silica sulfuric acid (SiO2-OSO3H and catalytic amounts of potassium iodide (KI has been developed as a heterogeneous medium for the rapid oxidative coupling of thiols into symmetrical homodisulfides. This oxidizing system proceeds under extremely mild conditions and gives no other oxidized side products.

  5. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-07-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which no additional water is taken up. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  6. Amine-oxide hybrid materials for acid gas separations

    KAUST Repository

    Bollini, Praveen

    2011-01-01

    Organic-inorganic hybrid materials based on porous silica materials functionalized with amine-containing organic species are emerging as an important class of materials for the adsorptive separation of acid gases from dilute gas streams. In particular, these materials are being extensively studied for the adsorption of CO 2 from simulated flue gas streams, with an eye towards utilizing these materials as part of a post-combustion carbon capture process at large flue gas producing installations, such as coal-fired electricity-generating power plants. In this Application Article, the utilization of amine-modified organic-inorganic hybrid materials is discussed, focusing on important attributes of the materials, such as (i) CO 2 adsorption capacities, (ii) adsorption and desorption kinetics, and (iii) material stability, that will determine if these materials may one day be useful adsorbents in practical CO 2 capture applications. Specific research needs and limitations associated with the current body of work are identified. © 2011 The Royal Society of Chemistry.

  7. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-01-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which additional water is taken up more gradually. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the 'free' and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  8. A Study on Anti-oxidative Activity of Soybean Peptides with Linoleic Acid Peroxidation Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soybean bioactive peptides(SBPs) were prepared from the isolated soybean protein by proteolysis with an alkaline protease, alcalase, at 50 ℃ and pH = 8. 0. The dependence of hydrolysis time on hydrolysis degree and molecular weight distribution were examined. The hydrolysate was fractionated on a Sephadex G-25 column and the anti-oxidative activities of the fractions were detected by the method of pyrogallol auto-oxidation. The average chain length of soybean peptides that have anti-oxidative activity was estimated to be about 7. The anti-oxidative properties of the soybean peptide were also studied by using linoleic acid peroxidation systems. The optimal condition of the peroxidation system was set up, Vc/Cu2 + as the inducer at pH = 7.4 and 25 ℃. In addition, soybean peptides show higher antioxidative activity compared with GSH.

  9. Kinetics and Mechanism of the Oxidation of Menthol by Potassium Bromate in Acidic Solution

    Directory of Open Access Journals (Sweden)

    Ravikant na

    2014-06-01

    Full Text Available No suitable method is available for the estimation of menthol, hence in all kinetic results reported in this chapter, menthol was in excess over potassium bromate and the stoichiometry was also determined under the experimental conditions where menthol (substrate was in excess over potassium bromate (oxidant. Present study was focused on the analysis of kinetics and mechanism of oxidation of neomenthol by potassium bromate in acidic medium. For oxidizing neomenthol, potassium bromate stock solution (5.0×10─2 mol. dm─3 was prepared by dissolving exactly weighed quantity of potassium bromate in doubly distilled water. The suitable reaction mixtures were prepared and left at 313 K for over 24 hours to ensure complete oxidation of neomenthol. The unreacted potassium bromate was determined iodometrically and the results indicate that one mole of potassium bromate is consumed for every three moles of neomenthol and leads to the formation of menthone (ketone.

  10. The relationship between uric acid and its oxidative product allantoin: a potential indicator for the evaluation of oxidative stress in birds.

    Science.gov (United States)

    Tsahar, Ella; Arad, Zeev; Izhaki, Ido; Guglielmo, Christopher G

    2006-09-01

    Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.

  11. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  12. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  13. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  14. Oxidative stress and innate immunity status in chickens exposed to high dose of ascorbic acid.

    Science.gov (United States)

    Berzina, Nadezhda; Markovs, Jurijs; Dizhbite, Tatiana; Apsite, Mirdza; Vasilyeva, Svetlana; Basova, Nataliya; Smirnova, Galina; Isajevs, Sergejs

    2013-10-01

    The effects of high dose ascorbic acid (10 000 mg·kg(-1) in the diet) and the transition metal on the presence of oxidative stress in the internal organs of growing chicks, as well as on the innate immune system status, were investigated. Supplementation with a high dose of ascorbic acid had pro-inflammatory effects on the intestinal mucosa, and lysozyme levels were decreased significantly in all organs studied. High-dose ascorbic acid caused an imbalance between prooxidative and antioxidative activities and was associated with the generation of semiquinone radicals. We observed that ascorbic acid increased iron and cadmium absorption. When a high dose of ascorbic acid was applied, elevated kidney and intestinal mucosa iron concentrations were observed. The amount of free malondialdehyde in the above organs has increased as well. These data have important implications for the mechanism of the oxidative stress development under the influence of high dose of ascorbic acid, indicating the importance of the side reactions of the mitochondrial electron transport chain with the formation of semiquinone radicals and the role of transition metals in this process.

  15. [Diagnostic approach and treatment of inherited mitochondrial fatty acid oxidation disorders].

    Science.gov (United States)

    Peña Quintana, L; Sanjurjo Crespo, P

    2001-12-01

    Inherited mitochondrial fatty acid oxidation disorders are a complex set of genetically-based diseases in which up to 22 different entities are currently recognized. Their incidence is probably underestimated because a high level of diagnostic suspicion is required for their detection. Their clinical spectrum and prognosis are variable. In recent years knowledge of these diseases and improved treatment have reduced associated mortality. A common characteristic of all these diseases is hypoketotic hypoglycemia, although this is not constant and does not appear in the short-chain disorders and, sometimes, does not even appear in the medium-chain disorders. Cardiac or skeletal myopathy combined and/or hepatic involvement at periods of metabolic decompensation are typical, since these tissues depend on fatty acid oxidation. Diagnosis has been simplified by the study of acylcarnitines in blood, even in periods of metabolic stability. Determination of acylglycines, organic acids, carnitines, free fatty acids and 3-hydroxy-fatty acids, together with enzymic and genetic studies, complete the diagnosis. In certain circumstances, a provocation test should be carried out. Treatment basically consists of avoiding fasting, restricting fatty acid uptake and increasing carbohydrate uptake, depending on the type of metabolic disorder. Pharmacological treatment may also be added (carnitine, riboflavine or carbamylglutamate).

  16. HELLP Syndrome: Altered Hypoxic Response of the Fatty Acid Oxidation Regulator SIRT 4.

    Science.gov (United States)

    Sandvoß, Mareike; Potthast, Arne Björn; von Versen-Höynck, Frauke; Das, Anibh Martin

    2016-09-20

    The hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome is frequently observed in mothers whose offspring have long-chain fatty acid oxidation defects. We previously found that fatty acid oxidation is compromised not only in these inborn errors of metabolism but also in human umbilical vein endothelial cells (HUVECs) from all pregnancies complicated by the HELLP syndrome. Sirtuins are oxidized nicotinamide adenine dinucleotide (NAD(+))dependent deacetylases linked to the metabolic status of the cell. SIRT 4 is known to have regulatory functions in fatty acid oxidation. The HELLP syndrome is often associated with short-term hypoxia. We studied sirtuins (SIRT 1, SIRT 3, and SIRT 4) in HUVECs from pregnancies complicated by the HELLP syndrome and uncomplicated pregnancies exposed to hypoxia (n = 7 controls, 7 HELLP; 0, 10, 60, or 120 minutes of 2% O2). Protein levels of SIRT 4 were significantly higher in HUVECs from HELLP compared to control after 60 and 120 minutes of hypoxia. The NAD(+) levels increased in a time-dependent manner.

  17. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  18. Roles of Fatty Acid Oversupply and Impaired Oxidation in Lipid Accumulation in Tissues of Obese Rats

    Directory of Open Access Journals (Sweden)

    Nicholas D. Oakes

    2013-01-01

    Full Text Available To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA metabolism in obese (Obese and lean (Lean Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-3H]-(R-2-bromopalmitate (3H-R-BrP and [U-14C]-palmitate (14C-P FA tracers, respectively. Whole-body FA appearance (Ra was estimated from plasma 14C-P kinetics. Whole-body FA oxidation rate (Rox was assessed using 3H2O production from 3H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and Ra, associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, Rox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.

  19. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle.

    Science.gov (United States)

    Morash, Andrea J; Kotwica, Aleksandra O; Murray, Andrew J

    2013-09-01

    Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O₂) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO₂ production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.

  20. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    Science.gov (United States)

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (Pacid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  1. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula I.P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Laia, César A.T. [Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, Alexandra [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pereira, Laura C.J.; Coutinho, Joana T. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066 Bobadela LRS (Portugal); Ferreira, Isabel M.M., E-mail: imf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Novo, Carlos M.M. [Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa (Portugal); Borges, João Paulo, E-mail: jpb@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-10-15

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe{sub 3}O{sub 4}, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  2. Acid Separation, Catalytic Oxidation and Coagulation for ATC Waste Liquid Treatment

    Institute of Scientific and Technical Information of China (English)

    DING Xiaoling; JIA Chunning

    2005-01-01

    It is difficult to treat 2-amino-thiazoline-4-carboxylic acid (ATC) waste liquid effectively at present for its characteristics of high chemical oxygen demand (COD), high salinity and low biodegradability. In order to solve this problem, this paper presents several kinds of physical-chemical treatment unit techniques, including acid separation, catalytic oxidation and coagulation. First of all, acid separation was adopted to precipitate relevant organics at isoelectric point. When the temperature and pH value of acid separation were controlled at about 5 ℃ and 2.2 respectively, the COD removal rate could reach 27.6%. Secondly, oxidation was used to break chemical constitution of refractory organics. The optimal reaction parameters of catalytic oxidation should be 20 ℃, pH adjusted to 5.0 and [Fe2+] 300 mg/L. Then with 5% H 2O 2 added and after one-hour reaction, the COD removal rate could achieve about 52%. Finally, coagulation was adopted to remove a portion of refractory organics, and 15% polymeric molysite flocculant was the best for the coagulation, and the COD removal rate could reach about 15%. Therefore, the proposed feasible process of physical-chemical pretreatment for ATC waste liquid could have about 70% COD removed in total.

  3. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation.

    Science.gov (United States)

    Oexle, H; Gnaiger, E; Weiss, G

    1999-11-10

    Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

  4. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

    Directory of Open Access Journals (Sweden)

    Lee Uk

    2011-06-01

    Full Text Available Abstract Background Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD, natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract. Methods Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt] (ABTS and ferric reducing antioxidant power (FRAP assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide] (MTT and lactate dehydrogenase (LDH assays. Results This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g. Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated. Conclusion Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

  5. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability

    Directory of Open Access Journals (Sweden)

    Choi Yun-Jaie

    2008-06-01

    Full Text Available Abstract Conjugated linoleic acid (CLA is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA, 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca, formaldehyde protection (FP, lipid encapsulation (LE, and amide linkage (AL, and for oxidative stability such as green tea catechin (GTC, cyclodextrin (CD, arginine (Arg, amylase, and PEGylation are proposed.

  6. Physico-chemical modifications of conjugated linoleic acid for ruminal protection and oxidative stability.

    Science.gov (United States)

    Moon, Hyun-Seuk; Lee, Hong-Gu; Chung, Chung-Soo; Choi, Yun-Jaie; Cho, Chong-Su

    2008-06-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6]. Although ruminant milk and meat products represent the largest natural source of CLA and therefore, their concentration in ruminant lipids are of interest to human health, chemical or physical modifications of CLA should be needed as a means to enhance oxidative stability, to improve post-ruminal bioavailability, and to increase the clinical application. In fact, CLA are rapidly decomposed to form furan fatty acids when its are oxidized in air, and the effectiveness of dietary supplements of CLA may be related to the extent that their metabolisms by rumen bacteria are avoided. For these reasons, many scientists have examined the effect of manufacturing and protection on the stability of CLA in ruminants and food products. In this review, physico-chemical modifications of CLA for ruminal protection such as calcium salt (Ca), formaldehyde protection (FP), lipid encapsulation (LE), and amide linkage (AL), and for oxidative stability such as green tea catechin (GTC), cyclodextrin (CD), arginine (Arg), amylase, and PEGylation are proposed.

  7. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  8. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process.

    Science.gov (United States)

    Yang, Min; Xu, Aihua; Du, Hongzhang; Sun, Chenglin; Li, Can

    2007-01-02

    It has been found that salicylic acid can be removal effectively at the lower temperature of 140 degrees C on perovskite-type oxide LaFeO3 catalyst in the catalytic wet air oxidation (CWAO) process. Under the same condition, the activities for the CWAO of phenol, benzoic acid and sulfonic salicylic acid have been also investigated. The results indicated that, with compared to the very poor activities for phenol and benzoic acid, the activities for salicylic acid and sulfonic salicylic acid were very high, which are attributed to their same intramolecular H-bonding structures. With the role of hard acidity of intramolecular H-bonding, salicylic acid and sulfonic salicylic acid can be adsorbed effectively on the basic center of LaFeO3 catalyst and are easy to take place the total oxidation reaction. However, at temperatures higher than 140 degrees C, the intramolecular H-bonding structure of salicylic acid was destroyed and the activities at 160 and 180 degrees C decreased greatly, which confirms further the key role of intramolecular H-bonding in the CWAO. Moreover, the LaFeO3 catalyst also indicated a superior stability of activity and structure in CWAO of salicylic acid.

  9. Performance characteristics of lead oxides in pasted lead/acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, S.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Saba, A.E. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt)); Shenouda, A.Y. (Electrometallurgy Lab., Central Metallurgical Research and Development Inst., Cairo (Egypt))

    1993-10-15

    The performance characteristics of lead oxides used for the pasted type of lead/acid battery plate have been investigated. The [alpha]- and [beta]-PbO polymorphs have been prepared carefully and used for pasting model electrodes. The factors that may affect the electrical capacity of such electrodes have been studied. These are: the type of oxide; percentage of free lead; additives such as carboxymethyl cellulose, zeolite and graphite. Lead hydroxide has also been studied with special attention. Photomicrographs have been taken to examine the crystal forms that develop on the electrode surface. Finally, some industrial samples have been investigated. (orig.)

  10. Characterization of Bronze Surface Layer Formed by Microarc Oxidation Process in 12-Tungstophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Zoran Nedić

    2009-12-01

    Full Text Available This paper is a brief review of our recent research into novel uses for heteropoly compounds as precursors for thin films that can be used as catalysts and materials with good optical, conductive and other characteristics. In view of this, we have chosen thin film obtained with 12-tungsphosphoric acid on aluminum substrates. In all cases, a relatively new, microarc oxidation technique has been used to prepare oxide coatings on substrate surfaces. Advanced physicochemical methods, AFM and SEM-EDS, XRD, Raman and Micro-Raman, and luminescence spectroscopy, as the most powerful techniques, have been used for the characterization of new materials. Possible applications have been discussed as well.

  11. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  12. Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

    Directory of Open Access Journals (Sweden)

    Emmanuelle Sagols

    2011-01-01

    Full Text Available In dogs with heart failure, cell oxygenation and cellular metabolism do not work properly, leading to the production of a large amount of free radicals. In the organism, these free radicals are responsible of major cellular damages: this is oxidative stress. However, a suitable food intake plays an important role in limiting this phenomenon: on the one hand, the presence of essential fatty acids in the composition of membranes decreases sensitivity of cells to free radicals and constitutes a first protection against the oxidative stress; on the other hand, coenzyme Q10, vitamin E, and polyphenols are antioxidant molecules which can help cells to neutralize these free radicals.

  13. Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Priyamvada; Hemkar, Shalini; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-02-15

    The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

  14. α-Tocopherol/Gallic Acid Cooperation in the Protection of Galactolipids Against Ozone-Induced Oxidation.

    Science.gov (United States)

    Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria

    2016-04-01

    The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.

  15. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton.

    Science.gov (United States)

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric

    2016-12-01

    Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed.

  16. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  17. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Bryan R.; Vaughn, Steven F. [United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604 (United States)

    2010-04-15

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g{sup -1}. The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm{sup 2} s{sup -1} (40 C), and 14.6 h (110 C). The cold filter plugging and pour points were -15 C and -19 C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition. (author)

  18. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Science.gov (United States)

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  19. Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain.

    Science.gov (United States)

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2008-02-01

    Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.

  20. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    Directory of Open Access Journals (Sweden)

    BG Sarvari

    2015-12-01

    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  1. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2011-06-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008 proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM–10 mM was oxidized by OH radical. Products were analyzed by ion chromatography (IC, electrospray ionization mass spectrometry (ESI-MS, and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  2. 氧化油酸制备壬酸和壬二酸%Preparation of Pelargonic Acid and Azelaic Acid with Oxidation of Oleic Acid

    Institute of Scientific and Technical Information of China (English)

    孙元雪; 闫立东; 张美玲

    2012-01-01

    Using the industry oleic acid as raw materials and the united oxidation of ozone and hydroyen peroxide,azelaic acid and pelargonic were prepared.During the oxidation process of the ozone with hydrogen peroxide,major factors influencing the reaction such as temperature,catalyst and time were mainly studied.The final product was characterized by GC tracking the reaction process using IR spectroscopy,TG/DTA thermal analysis instrument and NMR,the yield of azelaic acid could be 51%,and the yield of pelargonic acid could be 50%.%以工业油酸为原料,采用臭氧和双氧水联合氧化法制备壬酸和壬二酸。在臭氧联合双氧水氧化过程中主要考察温度、催化剂、时间等因素对反应结果的影响。利用气相色谱跟踪反应进程,用红外光谱仪、热重/差热综合热分析仪、核磁共振仪对终产品进行表征,壬二酸收率可达51%,壬酸色谱收率可达50%。

  3. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  4. Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyung Suk; Kim, Jeong-Jin; Kim, Young-Hun [Andong National University, Andong (Korea, Republic of)

    2016-03-15

    The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa{sub 1} and pKa{sub 2} of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa{sub 2}. At a low pH, below pKa{sub 1}, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

  5. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    Science.gov (United States)

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  6. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    Science.gov (United States)

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-03

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles.

  7. Effect of Diluents on the Extraction of Oxalic Acid by Trialkylphosphine Oxide

    Institute of Scientific and Technical Information of China (English)

    李玉鑫; 王运东; 戴猷元

    2004-01-01

    Abstract In liquid-liquid solvent extraction processes, diluents have a strong influence on the extraction mechanism and efficiency. In this study, benzene, cyclohexane, trichloromethane, carbon tetrachloride, methyl isobutyl ketone (MIBK), butyl acetate, and 1-octanol were used as diluents in the extraction of oxalic acid by trialkylphosphine oxide (TRPO). The effects of extractant concentration, initial concentration of oxalic acid and diluent type on the extraction equilibrium partition coefficient are analyzed. The sequence of the extraction ability by different diluents is MIBK > butyl acetate > cyclohexane=benzene > carbon tetrachloride > 1-octanol > trichloromethane. Extraction mechanism was analyzed and extraction model parameters were evaluated.

  8. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    Science.gov (United States)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  9. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability.

  10. Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Tiedan Chen

    2014-01-01

    Full Text Available Graphene oxide (GO nanosheets were prepared by modified Hummers and Offeman methods. Furthermore, oleic acid (OA capped graphene oxide (OACGO nanosheets were prepared and characterized by means of Fourier transform-infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. At the same time, the friction and wear properties of OA capped graphite powder (OACG, OACGO, and oleic acid capped precipitate of graphite (OACPG as additives in poly-alpha-olefin (PAO were compared using four-ball tester and SRV-1 reciprocating ball-on-disc friction and wear tester. By the addition of OACGO to PAO, the antiwear ability was improved and the friction coefficient was decreased. Also, the tribological mechanism of the GO was investigated.

  11. Exacerbation of alcohol-induced oxidative stress in rats by polyunsaturated fatty acids and iron load

    Directory of Open Access Journals (Sweden)

    S N Patere

    2011-01-01

    Full Text Available The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography, polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron.

  12. On the activation energy of the formic acid oxidation reaction on platinum electrodes

    OpenAIRE

    Perales-Rondón, Juan V.; Herrero, Enrique; Feliu, Juan M

    2015-01-01

    A temperature dependent study on the formic acid oxidation reaction has been carried out in order to determine the activation energy of this reaction on different platinum single crystal electrodes, namely Pt(1 0 0), Pt(1 1 1), Pt(5 5 4) and Pt(5 4 4) surfaces. The chronoamperometric transients obtained with pulsed voltammetry have been analyzed to determine the current densities through the active intermediate and the CO formation rate. From the temperature dependency of those parameters, th...

  13. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  14. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain

    OpenAIRE

    Swathy, S. S.; Indira, M.

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The o...

  15. Ca2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures

    Directory of Open Access Journals (Sweden)

    Darrick Balu

    2016-03-01

    We did find a Ca2+ stimulation (using either caffeine or ionomycin of fatty acid oxidation. This was observed in the absence (but not the presence of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments. In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.

  16. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  17. A One-Bead-One-Catalyst Approach to Aspartic Acid-Based Oxidation Catalyst Discovery

    Science.gov (United States)

    Lichtor, Phillip A.; Miller, Scott J.

    2011-01-01

    We report an approach to the high-throughput screening of asymmetric oxidation catalysts. The strategy is based on application of the one-bead-one-compound library approach, wherein each of our catalyst candidates is based on a peptide scaffold. For this purpose we rely on a recently developed catalytic cycle that employs an acid-peracid shuttle. In order to implement our approach, we developed a compatible linker and demonstrated that the library format is amenable to screening and sequencing of catalysts employing partial Edman degradation and MALDI mass spectrometry analysis. The system was applied to the discovery (and re-discovery) of catalysts for the enantioselective oxidation of a cyclohexene derivative. The system is now poised for application to unprecedented substrate classes for asymmetric oxidation reactions. PMID:21417485

  18. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  19. Nordihydroguaiaretic acid attenuates the oxidative stress-induced decrease of CD33 expression in human monocytes.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Hernández-Sánchez, Fernando; Juarez-Figueroa, Ulises E; Gonzalez, Yolanda; Bobadilla, Karen; Torres, Martha

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H(2)O(2)) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H(2)O(2) in human MNs. It was also shown that NDGA (20  μ M) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H(2)O(2). These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  20. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    Science.gov (United States)

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  1. [Acute fatty liver in pregnancy: revealing fetal fatty acid oxidation disorders].

    Science.gov (United States)

    Lamireau, D; Feghali, H; Redonnet-Vernhet, I; Mesli, S; Carles, D; Brissaud, O

    2012-03-01

    Acute fatty liver of pregnancy (AFLP) and hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome are serious maternal illnesses occurring in the third trimester of pregnancy with significant perinatal and maternal mortality. AFLP may result from mitochondrial defects in the beta-oxidation of fatty acids, in particular a deficiency of the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) in the fetus. Clinical findings in AFLP vary and its diagnosis is complicated by a significant overlap in clinical and biochemical features with HELLP syndrome. We report the case of 2 siblings who died, the first one in the neonatal period of asphyxia with multivisceral presentation and the second one from sudden death at 7 months. Autopsy of the latter infant revealed hepatic steatosis associated with cardiomyopathy, which led to suspicion of a fatty acid oxidation deficiency. Mutation analysis demonstrated that both children were homozygous for the common mutation c.1528G>C and the parents were heterozygous for this same mutation. This case demonstrates the importance of screening mothers with acute fatty liver disease of pregnancy and their children at birth for a metabolic disease. This article proposes several metabolic tests for mother and child suspected of having beta-oxidation of a fatty acid disorder.

  2. Acrylic acid polymerization and its graft copolymerization to poly(ethylene oxide) by gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, A.

    1984-01-01

    Free radical initiated polymerization of acrylic acid was investigated in methanol-water solutions with and without poly(ethylene oxide) (PEO). The formation of poly(acrylic acid) (PAA) initiated both by gamma irradiation and water soluble azo initiators was found to follow classical free radical kinetics. A significant increase in the rate of the propagation step (together with the degree of polymerization) was observed as the water fraction of the medium increased. During homogeneous polymerization of acrylic acid in methanol-water solutions containing poly(ethylene oxide), PAA grafting efficiency was found to be 67% and independent of initiation rate and yield. A mechanism of grafting to poly(ethylene oxide) was proposed. Chain transfer to PEO (K/sub tr/ = 6.5 x 10/sup -5/) was found to be the dominant mechanism for graft formation. Drag reduction characteristics of these PEO-PAA graft copolymers were measured in dilute aqueous solutions as a function of Reynolds number and solution pH. PEO graft copolymers containing 45% by mole PAA graft had, in neutral and basic solutions, drag reduction characteristics equivalent on a mass basis to the initial PEO. However at low pH, drag reduction characteristics disappeared as the PEO-PAA coacervate formed.

  3. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  4. Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph W McFadden

    Full Text Available Modification of hypothalamic fatty acid (FA metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1 and fatty acid oxidation (FAOx, exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS, and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.

  5. Optical Basicity: A Practical Acid-Base Theory for Oxides and Oxyanions

    Science.gov (United States)

    Duffy, J. A.

    1996-12-01

    The optical basicity concept relies on the Lewis approach to acids and bases and was developed for dealing with chemical problems in non-aqueous, non-protonic media such as silicates, phosphates and borates which are important in glass making and (as slags) for refining steel. Basic oxides such as Na2O or CaO are ionic while SO3, P4O10 or SiO2 are covalent, and it is the magnitude of negative charge borne by the oxygen atoms or ions which governs the degree of acidity or basicity. The oxygen atoms of sulfates, phosphates or network systems such as silicates bear charges which are between those of their parent oxides. In principle, the negative charge can be estimated using the optical (ultraviolet) spectra of certain probe ions and is represented by the optical basicity value, Lambda. Optical basicity values, available for 16 oxides, increase from the acidic SO3 to the very basic Cs2O in a way which conforms with electronegativity and polarizability. The optical basicity concept also extends to fluorides and sulfides.

  6. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    Science.gov (United States)

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.

  7. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid.

    Science.gov (United States)

    Findlay, John A; Hamilton, David L; Ashford, Michael L J

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  8. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W; Nielsch, K; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2007-11-28

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H{sub 4}C{sub 3}O{sub 4}) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and {approx}100 mA cm{sup -2}. Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D{sub int}) for a given anodization potential (U) during malonic acid anodization.

  9. Oxidation of hydrogen peroxide by [NiIII(cyclam)]3+ in aqueous acidic media

    Indian Academy of Sciences (India)

    Sankaran Anuradha; Venkatapuram Ramanujam Vijayaraghavan

    2013-09-01

    The kinetics of oxidation of H2O2 by [NiIII(cyclam)]3+, [NiIIIL1], was studied in aqueous acidic media at 25°C and I = 0.5M (NaClO4). The [NiIIIL1] to [NiIIL1] reduction was found to be fast in the presence of Cu(II) ion than the oxidation of the cyclam ligand by ·OH. The rate constant showed an inverse acid dependence on H+ ion at the pH range 1-1.5. The presence of sulphate retards the reaction. Macrocylic ligand oxidation was followed spectrophotometrically by examining the oxidation of nickel(II) complexes of macrocyclic ligands such as 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane (L2), -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L3), rac-Me6[14]-4,11-dieneN4 (L4) by reaction with hydrogen peroxide. The rate constant for the cross reaction is discussed in terms of Marcus relationship.

  10. Biochemical competition makes fatty-acid β-oxidation vulnerable to substrate overload.

    Directory of Open Access Journals (Sweden)

    Karen van Eunen

    Full Text Available Fatty-acid metabolism plays a key role in acquired and inborn metabolic diseases. To obtain insight into the network dynamics of fatty-acid β-oxidation, we constructed a detailed computational model of the pathway and subjected it to a fat overload condition. The model contains reversible and saturable enzyme-kinetic equations and experimentally determined parameters for rat-liver enzymes. It was validated by adding palmitoyl CoA or palmitoyl carnitine to isolated rat-liver mitochondria: without refitting of measured parameters, the model correctly predicted the β-oxidation flux as well as the time profiles of most acyl-carnitine concentrations. Subsequently, we simulated the condition of obesity by increasing the palmitoyl-CoA concentration. At a high concentration of palmitoyl CoA the β-oxidation became overloaded: the flux dropped and metabolites accumulated. This behavior originated from the competition between acyl CoAs of different chain lengths for a set of acyl-CoA dehydrogenases with overlapping substrate specificity. This effectively induced competitive feedforward inhibition and thereby led to accumulation of CoA-ester intermediates and depletion of free CoA (CoASH. The mitochondrial [NAD⁺]/[NADH] ratio modulated the sensitivity to substrate overload, revealing a tight interplay between regulation of β-oxidation and mitochondrial respiration.

  11. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    Science.gov (United States)

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  12. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Science.gov (United States)

    To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems provide against oxidative stress, the addition of diamide or hydrogen peroxide were used concomitant with acid challenge at pH 2.5 to determine bacterial survival. Diamide and hydrogen peroxide both de...

  13. Protection of arsenic-induced testicular oxidative stress by arjunolic acid.

    Science.gov (United States)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-01-01

    Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO(2), at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.

  14. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    Science.gov (United States)

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  15. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H202/UV and 03

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2 O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants.

  16. Changes in coal structure accompanying the formation of regenerated humic acids during air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Calemma, V.; Iwanski, P.; Rausa, R.; Girardi, E. (Eniricerche S.p.A., Milan (Italy))

    1994-05-01

    Dry-phase oxidation of two subbituminous coals and a lignite was carried out in a fluidized bed reactor at 200[degree]C, at different oxygen partial pressures and reaction times up to 4 h. The formation and evolution of various oxygenated functional groups (ester, carboxyl, ketone and hydroxyl) was investigated by FT-i.r. spectroscopy using a curve-resolving procedure and acetylation of coal samples. The development of alkali solubility of the coal as a function of reaction time was studied and the average molecular weight of regenerated humic acids (RHA) extracted from the oxidized coal was determined. The lower molecular weight of RHA extracted from highly oxidized coal samples suggests that besides the build-up of various oxygenated functional groups, the development of alkali solubility also results from concomitant 'depolymerization' of the coal network. The latter may occur through oxidation of aliphatic cross-links and formation of ester groups hydrolysable in basic solution. The FT-i.r. results were correlated with the development of alkali solubility. Some oxidation pathways are proposed. 49 refs., 11 figs., 1 tab.

  17. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine.

    Science.gov (United States)

    Wang, Donglei; Xu, Fei; Hu, Jiajie; Lin, Meng

    2017-02-01

    An electrochemical sensor for determining dopamine was developed by modifying phytic acid/graphene oxide (PA/GO) nanocomposites onto a glassy carbon electrode (GCE). PA functionalized GO was prepared by an ultra-sonication method. Subsequently, the PA/GO nanocomposites were drop-casted on a glassy carbon substrate. The structural feature of the PA/GO modified GCE was confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The proposed electrochemical sensor was applied to detect various concentrations of DA by differential pulse voltammetry (DPV). The PA/GO/GCE was considered to be highly sensitive to DA in the range of 0.05-10μM. In addition, the PA/GO/GCE demonstrated high electrochemical selectivity toward DA in the presence of ascorbic acid (AA) and uric acid (UA). The prepared electrochemical DA sensor was applied for detection of DA in dopamine hydrochloride injection and spiked samples of human urine with satisfactory results.

  18. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.

    Science.gov (United States)

    Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2014-08-27

    Considerable work has been focused on developing replacements for ammonium perchlorate (AP), a primary choice for solid rocket and missile propellants, due to environmental concerns resulting from the release of perchlorate into groundwater systems [corrected]. Additionally, the generation of hydrochloric acid contributes to high concentrations of acid rain and to ozone layer depletion. En route to synthesizing salts that contain cationic FOX-7, a novel, high oxygen-containing oxidizer, tetranitroacetimidic acid (TNAA), has been synthesized and fully characterized. The properties of TNAA were found to be exceptional, with a calculated specific impulse exceeding that of AP, leading to its high potential as a replacement for AP. TNAA can be synthesized easily in a one-step process by the nitration of FOX-7 in high yield (>93%). The synthesis, properties, and chemical reactivity of TNAA have been examined.

  19. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  20. Electrochemical Oxidation and Determination of Oxalic Acid at an Exfoliated Graphite-Polystyrene Composite Electrode

    Directory of Open Access Journals (Sweden)

    Joop Schoonman

    2007-04-01

    Full Text Available An exfoliated graphite-polystyrene composite electrode was evaluated as analternative electrode in the oxidation and the determination of oxalic acid in 0.1 M Na2SO4supporting electrolyte. Using CV, LSV, CA procedures, linear dependences I vs. C wereobtained in the concentrations range of oxalic acid between 0.5 to 3 mM, with LOD =0.05mM, and recovery degree of 98%, without need of surface renewing between successiveruns. The accuracy of the methods was evaluated as excellent comparing the detection resultswith that obtained using conventional KMnO4 titration method. In addition, the apparentdiffusion coefficient of oxalic acid D was found to be around 2.89 · 10-8 cm2·s-1 by CA andCV.

  1. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  2. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    Science.gov (United States)

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

  3. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance.

    Science.gov (United States)

    Vergnes, Laurent; Chin, Robert; Young, Stephen G; Reue, Karen

    2011-01-07

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.

  4. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    Directory of Open Access Journals (Sweden)

    Ralf Gold

    2012-09-01

    Full Text Available Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS. Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2-related factor 2 (Nrf2. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE, an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE.

  5. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    Science.gov (United States)

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  6. Direct Oxidation of Ethene to Acetic Acid over Pd-H4SiW12O40-Based Catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@The direct oxidation of ethene to acetic acid has the advantages of abundant raw materials and low cost of equipment[1],hence the research for this process has been of much interest in industry application.

  7. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  8. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  9. Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties

    Energy Technology Data Exchange (ETDEWEB)

    Munirathinam, Balakrishnan, E-mail: blkrish88@gmail.com; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO{sub 2} nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5 h, 1 h, 2 h and 3 h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600 °C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10{sup 5}–10{sup 6} Ω cm{sup 2}) and lower passive current density (10{sup −7} A cm{sup −2}) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. - Highlights: • TiO{sub 2} nanotubes were synthesized in a citric acid and sodium fluoride environment. • Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. • TiO{sub 2} nanotube layer behaves as an n-type semiconductor. • Annealed TiO{sub 2} nanotubes had a higher impedance magnitude compared to as-formed nanotubes.

  10. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cult...

  11. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells

    OpenAIRE

    Xu, Q.; Chen, S. Y.; Deng,L.D.; Feng, L.P.; Huang,L.Z.; R. R. Yu

    2013-01-01

    Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were...

  12. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  13. Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles

    Science.gov (United States)

    Dave, Kashyap; Dhayal, Marshal

    2017-02-01

    A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.

  14. Identification of oxidation products of 5-aminosalicylic acid in faeces and the study of their formation in vitro

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.;

    1993-01-01

    The formation of three oxidant-derived products of 5-aminosalicylic acid (5-ASA) in vivo was demonstrated in patients with active ulcerative colitis as well as is healthy subjects. The products were isolated from faeces by preparative HPLC and their chemical structures were found to be oxidation...

  15. Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells

    NARCIS (Netherlands)

    Ishola, D. A.; Post, J. A.; van Timmeren, M. M.; Bakker, S. J. L.; Goldschmeding, R.; Koomans, H. A.; Braam, B.; Joles, J. A.

    2006-01-01

    Albumin induces oxidative stress and cytokine production in proximal tubular cells (PTECs). Albumin-bound fatty acids (FAs) enhance tubulopathic effects of albumin in vivo. We proposed that FA aggravation of albumin-induced oxidative stress in PTECs might be involved. We hypothesized that mitochondr

  16. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  17. Titanium dioxide-coated silica waveguides for the photocatalytic oxidation of formic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.W.; Tejedor-Tejedor, M.I.; Anderson, M.A. (Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program)

    1999-06-15

    Photooxidation of organic compounds on the surface of titanium dioxide (TiO[sub 2]) is a potential method of removing organic pollutants from water. By coating TiO[sub 2] on transparent substrates and illuminating the catalyst with internally reflected light, it may be possible to increase the amount of illuminated photocatalyst in a given reactor volume. Planar, silica internal reflection elements (IREs) were coated with thin, porous, nanoparticulate films of TiO[sub 2]. UV-visible internal reflection spectroscopy was performed in order to determine that visible and near-UV light propagated through the modified IREs in an attenuated total reflection (ATR) mode. The TiO[sub 2]-coated IREs were employed in a photocatalytic reactor, and their ability to oxidize formic acid was assessed. Apparent quantum yields and quantum efficiencies of formic acid oxidation as a function of catalyst film thickness and incident angles of internally propagation UV light (310--380 nm) were determined. Quantum efficiency was enhanced when UV light propagated through the TiO[sub 2]-coated waveguide in an ATR mode. Photocatalytic reactors based on waveguide-supported TiO[sub 2] films operating in an ATR mode may utilize light more effectively than reactors based on direct irradiance of TiO[sub 2] and could facilitate the scale-up of photocatalytic oxidation processes for commercial remediation applications.

  18. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  19. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides.

    Science.gov (United States)

    Chen, Wan-Ru; Huang, Ching-Hua

    2012-08-15

    Aromatic organoarsenicals roxarsone (ROX) and p-arsanilic acid (ASA) are common feed additives for livestock and could be released into the environment via animal manure and agricultural runoff. To evaluate their environmental fate, the adsorption behavior of ROX and ASA was investigated with two common soil metal oxides, goethite (FeOOH) and aluminum oxide (Al(2)O(3)), under different reactant loading, water pH and competing ion conditions. ROX and ASA exhibit essentially identical adsorption characteristics. FeOOH and Al(2)O(3) exhibit similar adsorption trends for both organoarsenicals; however, the adsorption efficiency on the surface site basis was about three times lower for Al(2)O(3) than for FeOOH. The adsorption reaction is favorable at neutral and acidic pH. Phosphate and natural organic matter significantly interfere with aromatic arsenical adsorption on both metal oxides, whereas sulfate and nitrate do not. Pre-adsorbed aromatic arsenicals can be quickly but not completely displaced by phosphate, indicating that ion exchange is not the only mechanism governing the adsorption process. The adsorption envelope was successfully modeled by a diffuse double layer surface complexation model, identifying the critical role of di-anionic organoarsenic species in the adsorption. Results of this research can help predict and control the mobility of aromatic arsenicals in the environment.

  20. Dye-sensitized photo-oxidation of amino acids in reversed micellar membrane mimetic system

    Institute of Scientific and Technical Information of China (English)

    刘剑波; 张复实; 赵瑜; 赵福群; 唐应武; 宋心琦

    1997-01-01

    The photochemistry of a novel photosensitizer H[TBC(O’Pr)4P(OH)],and the photo-oxidation of amino acids sensitized by H[TBC(OiPr)4P(OH)] have been investigated in the AOT/H2O/toluene reversed micellar system.Absorption and fluorescence measurements indicate that H[TBC(O’Pr)4P(OH)] can interact with the re versed micelles by adsorption to the micellar surface,resulting in the disaggregation of the sensitizer and the enhance ment of its photoactivity.In micellar solutions,H[TBC(O’Pr)4P(OH)] can efficiently photo-generate O2(Type Ⅱ mechanism) and O2(Type Ⅰ mechanism) as shown by stationary photolysis and ESR spin-trapping techniques Amino acids dissolved in water pools of reversed micelles can be photo-oxidized via Type Ⅱ mechanism as sensitized by H[TBC(O’Pr)4P(OH)].The photo-oxidation of tryptophan follows the first-order kinetics,while that of tyrosine is much slower.Kinetic studies of the photodynamic behavior in this microheterogeneous system shows that the micro-heterogeneity can alter the mechani

  1. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  2. Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Jayachamarajapura Pranesh Shubha

    2014-01-01

    Full Text Available Tetracaine hydrochloride (TCH is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

  3. Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine.

    Science.gov (United States)

    Ahmad, Saheem; Khan, Hamda; Shahab, Uzma; Rehman, Shahnawaz; Rafi, Zeeshan; Khan, Mohd Yasir; Ansari, Ahsanullah; Siddiqui, Zeba; Ashraf, Jalaluddin Mohammad; Abdullah, Saleh M S; Habib, Safia; Uddin, Moin

    2017-01-01

    The available data suggest that among cellular constituents, proteins are the major target for oxidation primarily because of their quantity and high rate of interactions with ROS. Proteins are susceptible to ROS modifications of amino acid side chains which alter protein structure. Among the amino acids, Cysteine (Cys) is more prone to oxidation by ROS because of its high nucleophilic property. The reactivity of Cys with ROS is due to the presence of thiol group. In the oxidised form, Cys forms disulfide bond, which are primary covalent cross-link found in proteins, and which stabilize the native conformation of a protein. Indirect evidence suggests that thiol modifications by ROS may be involved in neurodegenerative disorders, but the significance and precise extent of the contributions are poorly understood. Here, we review the role of oxidized Cys in different pathological consequences and its biochemistry may increase the research in the discovery of new therapies. The purpose of this review is to re-examine the role and biochemistry of oxidised Cys residues.

  4. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components.

    Science.gov (United States)

    Taniguchi, Yoshimasa; Matsukura, Yasuko; Taniguchi, Harumi; Koizumi, Hideki; Katayama, Mikio

    2015-01-01

    The bitter acids in hops (Humulus lupulus L.) and beer, such as α-, β-, and iso-α-acids, are known to affect beer quality and display various physiological effects. However, these compounds readily oxidize, and the effect of the oxides on the properties of beer or their potential health benefits are not well understood. In this study, we developed a simple preparative method for the bitter acid oxide fraction derived from hops and designated the constituents as matured hop bitter acids (MHBA). HPLC-PDA-ESI/HRMS and MS(2) revealed that MHBA are primarily composed of α-acid-derived oxides, which possess a common β-tricarbonyl moiety in their structures similar to α-, β-, and iso-α-acids. We also developed a quantitative analytical method of whole MHBA by HPLC, which showed high precision and reproducibility. Using our newly developed method, the concentration of whole MHBA in several commercial beers was evaluated. Our results will promote the study of bitter acid oxides.

  5. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  6. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  7. Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects

    Science.gov (United States)

    Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena; Hazen, Stanley L.; Klein, Samuel

    2014-01-01

    Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. PMID:24353177

  8. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    Science.gov (United States)

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  9. The oxidative stress, antioxidant profile and acid-base status in preterm and term canine neonates.

    Science.gov (United States)

    Vannucchi, C I; Kishi, D; Regazzi, F M; Silva, L C G; Veiga, G A L; Angrimani, D S R; Lucio, C F; Nichi, M

    2015-04-01

    During the initiation of neonatal pulmonary respiration, there is an exponential increase in reactive oxygen species that must be scavenged by antioxidant defences. However, neonate and preterm newborns are known to possess immature antioxidant mechanisms to neutralize these toxic effects. The purposes of this study were to compare the development of antioxidant system between preterm and term canine neonates and to evaluate the magnitude of acid-base balance during the initial 4 h of life. A prospective study was conducted involving 18 neonatal puppies assigned to Term Group (63 days of gestation; n = 5), Preterm-57 Group (57 days of gestation; n = 8) and Preterm-55 Group (55 days of gestation; n = 5). Neonates were physically examined through Apgar score and venous haemogasometry within 5 min, 2 and 4 h after birth. No difference on amniotic fluid and serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and the marker of oxidative stress (thiobarbituric acid reactive substances; TBARS) was verified. Irrespective of prematurity, all neonates presented low vitality, hypothermia, acidosis, hypoxaemia and hypercapnia at birth. However, term puppies clinically evolved more rapidly than preterm newborns. During the course of the study, premature neonates presented more severe complications, such as prolonged hypoxaemia and even death. In conclusion, premature puppies have no signs of immature enzymatic mechanisms for controlling oxidative stress, although SOD and GPx may participate in achieving acid-base balance. Aside from initial unremarkable symptoms, premature puppies should be carefully followed up, as they are at high risk of succumbing to odds of prematurity.

  10. Lysine requirements of pre-lay broiler breeder pullets: determination by indicator amino acid oxidation.

    Science.gov (United States)

    Coleman, Russell A; Bertolo, Robert F; Moehn, Soenke; Leslie, Michael A; Ball, Ronald O; Korver, Doug R

    2003-09-01

    The indicator amino acid oxidation (IAAO) method allows the determination of amino acid requirements under conditions of low growth rate as found in pre-laying broiler breeder pullets. Cobb 500 breeder pullets (20 wk old; 2290 +/- 280 g, n = 4) were adapted (6 d) to a pelleted, purified control diet containing all nutrients at >or=110% of NRC recommendations. After recovery from surgery for implantation of a jugular catheter, each bird was fed, in random order, test diets containing one of nine levels of lysine (0.48, 0.96, 1.92, 2.88, 3.84, 4.80, 7.68, 9.60 and 14.40 g/kg of diet). Indicator oxidation was determined during 4-h primed (74 kBq/kg body), constant infusions (44 kBq x h(-1). kg body(-1)) of L-[1-(14)C]phenylalanine. Using the breakpoint of a one-slope broken-line model, the lysine requirement was determined to be 4.88 +/- 0.96 g/kg of diet or 366 +/- 72 mg x hen(-1) x d(-1) with an upper 95% CI of 6.40 g/kg of diet or 480 mg x hen(-1) x d(-1). IAAO allows determination of individual bird amino acid requirements for specific ages and types of birds over short periods of time and enables more accurate broiler breeder pullet diet formulation.

  11. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    Science.gov (United States)

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  12. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    Directory of Open Access Journals (Sweden)

    Ningjian Liang

    2015-12-01

    Full Text Available Chlorogenic acids (CGAs are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1 the relative composition of different CGA isomers present in coffee beverages; (2 analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3 description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  13. Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Ebenezer Tunde Olayinka

    2014-01-01

    Full Text Available Chlorambucil (4-[4-[bis(2-chloroethylamino]phenyl]butanoic acid is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV, a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w., III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P<0.05 in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat.

  14. Calcination/acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst

    Institute of Scientific and Technical Information of China (English)

    YAO Zhongping; JIANG Yanli; JIANG Zhaohua; ZHU Hongkui; BAI Xuefeng

    2009-01-01

    The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) re-duction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and mtile TiO2 with a mi-cro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film cat.a/ysts. The removal rate of potassium chromate was related to the tech-nique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.

  15. Formation of Fe(0-Nanoparticles via Reduction of Fe(II Compounds by Amino Acids and Their Subsequent Oxidation to Iron Oxides

    Directory of Open Access Journals (Sweden)

    K. Klačanová

    2013-01-01

    Full Text Available Iron nanoparticles were prepared by the reduction of central Fe(II ion in the coordination compounds with amino acid ligands. The anion of the amino acid used as a ligand acted as the reducing agent. Conditions for the reduction were very mild; the temperature did not exceed 52°C, and the optimum pH was between 9.5 and 9.7. The metal iron precipitated as a mirror on the flask or as a colloid in water. Identification of the product was carried out by measuring UV/VIS spectra of the iron nanoparticles in water. The iron nanoparticles were oxidized by oxygen yielding a mixture of iron oxides. Oxidation of Fe(0 to Fe(II took several seconds under air. The size and properties of iron oxide nanoparticles were studied by UV/VIS, TEM investigation, RTG diffractometry, Mössbauer spectroscopy, magnetometry, thermogravimetry, and GC/MS.

  16. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    Science.gov (United States)

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  17. Serum free fatty acid levels in PCOS patients treated with glucophage, magnesium oxide and spironolactone.

    Science.gov (United States)

    Muneyyirci-Delale, Ozgul; Kaplan, Julie; Joulak, Ibrahim; Yang, Lianfu; Von Gizycki, Hans; Nacharaju, Vijaya L

    2013-05-01

    To assess the effect of glucophage, magnesium oxide and spironolactone in altering free fatty acids (FFAs), 36 PCOS women were randomly divided into three groups. Group 1 (n = 14) was treated with 500 mg glucophage po bid, group 2 (n = 10) was treated with 400 mg magnesium oxide po bid and group 3 (n = 12) was treated with 50 mg spironolactone po bid for 12 weeks. A glucose tolerance test with 75 g glucose load was performed before and after treatment, collecting blood at 0, 1 and 2 h for insulin, glucose, FFA and aldosterone. Amount of FFA before and after treatment were compared by repeated measure ANOVA and represented as area under the curve. FFA levels before treatment were 0.83 ± 0.23, 0.77 ± 0.15 and 0.85 ± 0.28 and after treatment were 0.77 ± 0.48, 0.71 ± 0.18 and 0.66 ± 0.25 for glucophage, magnesium oxide and spironolactone-treated patients, respectively. The FFA levels were unchanged in the groups treated with glucophage and magnesium oxide but were significantly (p < 0.03) decreased in the group treated with spironolactone. Since FFAs are known to be involved in the development of insulin resistance, these results suggest that spironolactone may be useful for lowering insulin resistance in PCOS patients.

  18. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.

    Science.gov (United States)

    Koul, Vatsala; Tripathi, Chandrakant; Adholeya, Alok; Kochar, Mandira

    2015-04-01

    Production of nitric oxide (NO) and the presence of NO metabolism genes, nitrous oxide reductase (nosZ), nitrous oxide reductase regulator (nosR) and nitric oxide reductase (norB) were identified in the plant-associated bacterium (PAB) Azospirillum brasilense SM. NO presence was confirmed in all overexpressing strains, while improvement in the plant growth response of these strains was mediated by increased NO and indole-3-acetic acid (IAA) levels in the strains. Electron microscopy showed random distribution to biofilm, with surface colonization of pleiomorphic Azospirilla. Quantitative IAA estimation highlighted a crucial role of nosR and norBC in regulating IAA biosynthesis. The NO quencher and donor reduced/blocked IAA biosynthesis by all strains, indicating their common regulatory role in IAA biosynthesis. Tryptophan (Trp) and l-Arginine (Arg) showed higher expression of NO genes tested, while in the case of ipdC, only Trp and IAA increased expression, while Arg had no significant effect. The highest nosR expression in SMnosR in the presence of IAA and Trp, along with its 2-fold IAA level, confirmed the relationship of nosR overexpression with Trp in increasing IAA. These results indicate a strong correlation between IAA and NO in A. brasilense SM and suggest the existence of cross-talk or shared signaling mechanisms in these two growth regulators.

  19. Microstructural characterization of oxide film formed on NiTi by anodization in acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, F.T. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)]. E-mail: apaftche@polyu.edu.hk; Shi, P. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Department of Materials and Chemical Engineering, Liaoning Institute of Technology, Jinzhou, Liaoning (China); Pang, G.K.H. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wong, M.H. [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Man, H.C. [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2007-07-12

    NiTi was galvanostatically anodized in acetic acid aiming at forming an anodic film for improving corrosion resistance. While the corrosion behavior of anodized NiTi in Hanks' solution was reported elsewhere [P. Shi, F.T. Cheng, H.C. Man, Mater. Lett., submitted for publication], the present work reports the microstructural characterization of the anodic film formed. Bright-field image of the sample cross-section captured by transmission electron microscopy (TEM) revealed an oxide film of about 20 nm thick, which was smooth and free of defects. The surface roughness R {sub a} of the film, determined by atomic force microscopy (AFM), was about 1.45 nm. Analysis by X-ray photoelectron spectroscopy (XPS) along the depth of the anodic film indicated that the oxidation state of Ti varied from +4 (corresponding to TiO{sub 2}) at the surface to lower oxidation states (corresponding to Ti suboxides) beneath. A small amount of Ni in the metallic and oxidized states was also present. The Ni/Ti atomic ratio was about 0.04 at the surface of the anodic film, which was much lower than the corresponding value of 0.30 for the mechanically polished samples. Selected-area diffraction (SAD) patterns and high-resolution TEM image of the anodic film showed that the film was amorphous.

  20. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  1. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    Science.gov (United States)

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  2. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo; Choi, Hyun Muk [Kyonggi University, Suwon (Korea, Republic of)

    2016-01-15

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  3. Fatty acid profile, color and lipid oxidation of organic fermented sausage during chilling storage as influenced by acid whey and probiotic strains addition

    Directory of Open Access Journals (Sweden)

    Karolina Maria Wójciak

    2015-02-01

    Full Text Available Organic fermented sausages typically spoil during long-term storage due to oxidative rancidity. The application of natural antioxidants to meat stuffing is a major practice intended to inhibit the oxidation process and color changes. This study aimed to assess the effect of two unusual starter cultures: three probiotic strains (Lactobacillus casei LOCK 0900, Lactobacillus casei LOCK 0908 and Lactobacillus paracasei LOCK 0919 and lactic acid bacteria from acid whey on model fermented sausage type products focusing on oxidative stability by measuring instrumental color (L*, a*, b* values, conjugated dienes (CD, TBARS immediately after 21 days of ripening (0 and after 90 and 180 days of refrigerated storage (4 ºC. Determination of fatty acid composition, in meat product was performed after ripening and after 180 days of storage. At the end of the storage period, the salted sausages were characterized by the same content of polyunsaturated fatty acids (PUFA compared to cured samples. The addition of acid whey and a mixture of probiotic strains to nitrite-free sausage formulation was barely able to protect lipids against oxidation in comparison to nitrite during vacuum storage. Surprisingly, the use of acid whey has an influence on the desired red-pinkish color of organic fermented sausage after ripening and after 180 days of storage period.

  4. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    Science.gov (United States)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  5. Intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid under different water quality and light conditions

    Institute of Scientific and Technical Information of China (English)

    WANG LiDong; ZHAO Yi; LI QiangWei; CHEN ZhouYan; LIU SongTao; MA YongLiang; HAO JiMing

    2009-01-01

    Oxidation of sulfite is an important process in wet flue gas desulfurization. Using highly purified water or distilled water as a reaction medium and a transparent or an opaque intermittent reaction apparatus, the intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid was investigated under four dif-ferent conditions. The reaction order of the reagents and the activation energy were obtained. The re-sults indicate that water quality and light have no obvious effects on the reaction order and activation energy, but have an influence on the reaction rate constant. The mechanism of the intrinsic reaction is proposed. The results derived with this mechanism are in good agreement with the experimental re-sults.

  6. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid.

    Science.gov (United States)

    Calderón Guzmán, David; Brizuela, Norma Osnaya; Ortíz Herrera, Maribel; Hernández García, Ernestina; Barragán Mejía, Gerardo; Juárez Olguín, Hugo; Valenzuela Peraza, Armando; Attilus, Jonas; Labra Ruíz, Norma

    2016-09-01

    The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA). To address this hypothesis, the levels of dopamine (DA) and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP), glutathione (GSH), calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  7. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid

    Directory of Open Access Journals (Sweden)

    Calderón Guzmán David

    2016-09-01

    Full Text Available The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA. To address this hypothesis, the levels of dopamine (DA and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP, glutathione (GSH, calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  8. Intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid under different water quality and light conditions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Oxidation of sulfite is an important process in wet flue gas desulfurization.Using highly purified water or distilled water as a reaction medium and a transparent or an opaque intermittent reaction apparatus,the intrinsic oxidation kinetics of sulfite catalyzed by peracetic acid was investigated under four dif-ferent conditions.The reaction order of the reagents and the activation energy were obtained.The re-sults indicate that water quality and light have no obvious effects on the reaction order and activation energy,but have an influence on the reaction rate constant.The mechanism of the intrinsic reaction is proposed.The results derived with this mechanism are in good agreement with the experimental re-sults.

  9. Hydroxycitric acid ameliorates inlfammation and oxidative stress in mouse models of multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Mahdi Goudarzvand; Shahin Khadem Azarian; Abbas Mirshaifey; Gholamreza Azizi; Sanaz Afraei; Somaye Yaslianifard; Saleh Ghiasy; Ghazal Sadri; Mustafa Kalvandi; Tina Alinia; Ali Mohebbi; Reza Yazdani

    2016-01-01

    Hydroxycitric acid (HCA) is derived primarily from the Garcinia plant and is widely used for its anti-in-lfammatory effects. Multiple sclerosis can cause an inlfammatory demyelination and axonal damage. In this study, to validate the hypothesis that HCA exhibits therapeutic effects on multiple sclerosis, we established female C57BL/6 mouse models of multiple sclerosis,i.e., experimental autoimmune encephalomyelitis, using Complete Freund’s Adjuvant (CFA) emulsion containing myelin oligodendrocyte glycoprotein (35–55). Treatment with HCA at 2 g/kg/d for 3 weeks obviously improved the symptoms of nerve injury of experimental autoimmune encephalomyelitis mice, decreased serum interleulin-6, tumor necrosis factor alpha, nitric oxide, and malondialdehyde levels, and increased superoxide dismutase and glutathione reduc-tase activities. hTese ifndings suggest that HCA exhibits neuroprotective effects on multiple sclerosis-caused nerve injury through ameliorating inlfammation and oxidative stress.

  10. Preparation and Properties of Chitosan-Graft Acid)/graphene Oxide Nanocompostie Hydrogels

    Science.gov (United States)

    Huang, Yiwan; Zeng, Ming; Xu, Qingyu; Fan, Liren

    2013-07-01

    A series of chitosan-graft-poly(acrylic acid)/graphene oxide nanocomposite hydrogels were synthesized by in situ radical polymerization. The effects of graphene oxide (GO) content on the chemical structures and morphologies of the hydrogels were investigated. Meanwhile, swelling properties, mechanical properties, as well as salt- and pH- sensitive behaviors were also evaluated. Due to the good interactions between GO and polymer chains, only a few GO loadings could affect the morphologies of the hydrogels significantly, resulting in the formation of porous network structure. Although the swelling ratios decreased with increasing the amount of GO sheets, the composite hydrogels showed a marked improvement of their mechanical strength. The composite hydrogels also exhibited salt- and pH- sensitive behaviors. Therefore, this study provided a novel strategy to fabricate the porous hydrogels that have the promising applications in biomedical area.

  11. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    , and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid...... morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death...

  12. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    NARCIS (Netherlands)

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  13. Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids

    NARCIS (Netherlands)

    Spannring, Peter; Bruijnincx, Pieter C. A.; Weckhuysen, Bert. M.; Klein Gebbink, Bert

    2014-01-01

    The oxidative cleavage of the C=C double bond in unsaturated fatty acids into aldehydes or carboxylic acids is a reaction of current interest in biomass valorization. The products of this reaction, which is currently being performed on an industrial scale by means of ozonolysis, can be applied for t

  14. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  15. A novel mechanism for poisoning of metal oxide SCR catalysts: base-acid explanation correlated with redox properties.

    Science.gov (United States)

    Chang, Huazhen; Li, Junhua; Su, Wenkang; Shao, Yuankai; Hao, Jiming

    2014-09-11

    A novel mechanism is proposed for the poisoning effect of acid gases and N2O formation on SCR catalysts involving base-acid properties correlated with redox ability of M-O or M-OH (M = Ce or V) of metal oxides and the strength of their basicity responsible for resistance to HCl and SO2 at medium and low temperatures.

  16. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moradmand Jalali, Hamed; Bashiri, Hadis, E-mail: hbashiri@kashanu.ac.ir; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO{sub 2}, ZnO and ZrO{sub 2}) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents. - Highlights: • The mechanism and kinetics of uric acid photo-oxidation by irradiation of sun care agents has been obtained by simulation. • The mechanism has been used for free radical production of TiO{sub 2} (rutile and anatase), ZnO and ZrO{sub 2}. • The ratios of photo-activity of ZnO to anastase, rutile and ZrO have been obtained. • By doubling the initial concentrations of mineral oxide, the rate of reaction was doubled. • The optimum ratio of initial concentration of mineral oxides to uric acid has been obtained.

  17. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    Science.gov (United States)

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  18. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats.

    Science.gov (United States)

    Ishizuka, Toshiaki; Niwa, Atsuko; Tabuchi, Masaki; Ooshima, Kana; Higashino, Hideaki

    2008-03-26

    Inflammatory processes may play a pivotal role in the pathogenesis of cerebrovascular injury in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Recent reports revealed that acetylsalicylic acid (aspirin) has anti-oxidative properties and elicits nitric oxide release by a direct activation of the endothelial NO synthase. The present study was designed to determine whether low-dose aspirin might prevent cerebrovascular injury in salt-loaded SHRSP by protecting oxidative damage. Nine-week-old SHRSP were fed a 0.4% NaCl or a 4% NaCl diet with or without treatment by naproxen (20 mg/kg/day), salicylic acid (5 mg/kg/day), or aspirin (5 mg/kg/day) for 5 weeks. Blood pressure, blood brain barrier impairment, mortality, and the parameters of cerebrovascular inflammation and damage were compared among them. High salt intake in SHRSP significantly increased blood brain barrier impairment and early mortality, which were suppressed by treatment with aspirin independent of changes in blood pressure. Salt loading significantly increased superoxide production in basilar arteries of SHRSP, which were significantly suppressed by treatment with aspirin. Salt loading also significantly decreased NOS activity in the basilar arteries of SHRSP, which were significantly improved by treatment with aspirin. At 5 weeks after salt loading, macrophage accumulation and matrix metalloproteinase-9 activity at the stroke-negative area in cerebral cortex of SHRSP were significantly reduced by treatment with aspirin. These results suggest that low-dose aspirin may exert protective effects against cerebrovascular inflammation and damage by salt loading through down-regulation of superoxide production and induction of nitric oxide synthesis.

  19. Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Ming; Tang, Wang-Rung; Wen, Ten-Chin [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101 (Taiwan)

    2007-02-10

    Polyaniline (PANI) can be doped with poly(styrene sulfonic acid) (PSS) via doping-dedoping-redoping process. The specific characteristics of PANI doped with PSS (PANI-PSS) were checked by UV-vis spectroscopy, cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). PANI-PSS was found to have spatial structure with minimum degradation products. Platinum can be potentiostatically deposited in a spatial layer of the PANI-PSS as evidenced by electron dispersive element analysis (EDS) and Auger electron spectroscopy (AES). The electrochemical measurements demonstrated that PANI-PSS-Pt exhibited a much higher electrocatalytic activity for methanol oxidation than PANI-Pt. (author)

  20. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  1. Oxidation of phenyl alanine by pyridinium chlorochromate in acidic DMF–water medium: A kinetic study

    Directory of Open Access Journals (Sweden)

    B.L. Hiran

    2016-11-01

    Full Text Available The kinetics of oxidation of phenyl alanine by pyridinium chlorochromate in DMF–water (70:30% mixture in presence of perchloric acid leads to the formation of corresponding aldehyde. The reaction is of first order each in [PCC], [HClO4] and [AA]. Michaelis–Menten type kinetics was observed with phenyl alanine. The reaction rates were determined at different temperatures [25, 30, 35, 40, 45, 50 °C] and the activation parameters were calculated. The reaction does not induce polymerization of acrylonitrile. With an increase in the amount of DMF in its aqueous mixture, the rate increases. A suitable mechanism for the reaction was postulated.

  2. Heteroaryl ethers by oxidative palladium catalysis of pyridotriazol-1-yloxy pyrimidines with arylboronic acids.

    Science.gov (United States)

    Bardhan, Sujata; Wacharasindhu, Sumrit; Wan, Zhao-Kui; Mansour, Tarek S

    2009-06-18

    The oxidative palladium-catalyzed cross-coupling of pyrimidines containing pyridotriazol-1-yloxy (OPt) as either a urea or an amide functional group with arylboronic acids in the presence of Cs(2)CO(3) in DME containing 0.6-1.0% H(2)O is described for the preparation of heteroaryl ethers. The bromo substitution in the case of 3-(5-bromo-pyrimidin-2-yloxy)-3H-[1,2,3]triazolo[4,5-b]pyridine 1 could serve as a handle for further elaborations such as Suzuki coupling for attaching varied aryl groups.

  3. The binding of phosphonic acids at aluminium oxide surfaces and correlation with passivation of aluminium flake.

    Science.gov (United States)

    Cooper, Rachel J; Camp, Philip J; Henderson, David K; Lovatt, Paul A; Nation, David A; Richards, Stuart; Tasker, Peter A

    2007-04-07

    Measurements of adsorption isotherms of a series of thirteen mono- and di-phosphonic acids have shown that these bind strongly to the surface of high surface area aluminium trihydroxide. The incorporation of such phosphonates into a suspension of aluminium flake in an aqueous medium, modelling the continuous phase of a water-based paint, greatly suppresses the evolution of hydrogen. Whilst strong binding of the phosphonate to aluminium oxides is an essential criterion for good passivation, other factors such as the hydrophobicity of the ligand are also important in suppressing hydrogen-evolution.

  4. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  5. Reduction of Copper Oxide by Formic Acid an ab-initio study

    CERN Document Server

    Schmeißer, Martin

    2012-01-01

    Four cluster models for a copper(I)oxide (111) surface have been designed, of which three were studied with respect to their applicability in density functional calculations in the general gradient approximation. Formic acid adsorption on these systems was modelled and yielded four different adsorption structures, of which two were found to have a high adsorption energy. The energetically most favourable adsorption structure was further investigated with respect to its decomposition and a few reactions with adsorbed H and OH species using synchronous transit methods to estimate reaction barriers and single point energy calculations for the reaction energy.

  6. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  7. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... preceded by an early RA-induced phosphorylation of p38 mitogen-activated protein kinase. UCP1 expression was not induced. CONCLUSION: The results indicate that RA directly favors remodeling of mature 3T3-L1 adipocytes in culture toward increased oxidative metabolism....

  8. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.

    Science.gov (United States)

    Lotfi, Samira; Boffito, Daria C; Patience, Gregory S

    2015-10-26

    Lignin is a complex polymer that is a potential feedstock for aromatic compounds and carboxylic acids by cleaving the β-O-4 and 5-5' linkages. In this work, a syringe pump atomizes an alkaline solution of lignin into a catalytic fluidized bed operating above 600 K. The vanadium heterogeneous catalysts convert all the lignin into carboxylic acids (up to 25 % selectivity), coke, carbon oxides, and hydrogen. Aluminum-vanadium-molybdenum mostly produced lactic acid (together with formic acid, acrylic acid, and maleic anhydride), whereas the vanadium pyrophosphate catalyst produced more maleic anhydride.

  9. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  10. Synthesis of o-Carboxyarylacrylic Acids by Room Temperature Oxidative Cleavage of Hydroxynaphthalenes and Higher Aromatics with Oxone.

    Science.gov (United States)

    Parida, Keshaba Nanda; Moorthy, Jarugu Narasimha

    2015-08-21

    A simple procedure for the synthesis of a variety of o-carboxyarylacrylic acids has been developed with Oxone (2KHSO5·KHSO4·K2SO4); the oxidation reaction involves the stirring of methoxy/hydroxy-substituted naphthalenes, phenanthrenes, anthracenes, etc. with Oxone in an acetonitrile-water mixture (1:1, v/v) at rt. Mechanistically, the reaction proceeds via initial oxidation of naphthalene to o-quinone, which undergoes cleavage to the corresponding o-carboxyarylacrylic acid. The higher aromatics are found to yield carboxymethyl lactones derived from the initially formed o-carboxyarylacrylic acids.

  11. Impact of iron and folic acid supplementation on oxidative stress during pregnancy.

    Science.gov (United States)

    Lymperaki, E; Tsikopoulos, A; Makedou, K; Paliogianni, E; Kiriazi, L; Charisi, C; Vagdatli, E

    2015-01-01

    The aim of the study was to assess serum total antioxidant capacity (TAC) and the impact of supplements on oxidative stress (OS) during pregnancy. Fifty volunteer pregnant women (21-40 years old), in the 12 ± 2 weeks' and 38 ± 2 weeks' gestation of pregnancy (study group), and 25 non-pregnant healthy women (control group) were enrolled. All pregnant women were divided into two age groups (A1: folic acid, B3: both and B4: none). Antioxidant activity was assayed using the TAC kit (Cayman Chemical Co.). Level of statistical significance was p pregnancy, especially with folic acid or no supplementation. In conclusion, pregnancy is associated with OS, which is promoted by the administration of iron supplementation.

  12. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  13. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ) in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)] anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25—40 ℃. The order of the redox reaction of lactic acid and DDA was found to be first-order. The rates increased with the increase in [OH-] and decreased with the increase in [tellurate]. No free radical was detected. In the view of this the dihydroxymonotelluratoargentate(Ⅲ) species(DMA) is assumed to be the active species. A plausible mechanism involving a two-electron transfer is proposed, and the rate equation derived from the mechanism can be used to explain all the experimental results. The activation parameters(25 ℃) and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  14. Kinetics and Mechanism of Oxidation of Lactic Acid by Dihydroxyditelluratoargentate(Ⅲ)in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    SHANJin-huan; WANGLi; LIUBao-sheng; SHENShi-gang

    2003-01-01

    The kinetics of the oxidation of lactic acid(Lac) by dihydroxyditelluratoargentate(Ⅲ)[abbreviated as DDA of Ag(Ⅲ)]anions was studied in an aqueous alkaline medium by conventional spectrophotometry in a temperature range of 25-40℃.The order of the redox reaction of lactic acid and DDA was found to be first-order.The rates increased with the increase in [OH-]and decreased with the increase in [tellurate].No free radical was detected.In the view of this the dihydroxymonotelluratoargentate(Ⅲ)species(DMA) is assumed to be the active species.A plausible mechanism involving a two-electron transfer is proposed,and the rate equation derived from the mechanism can be used to explain all the experimenttal results.The activation parameters(25℃)and the rate constants of the rate-determining step along with the preequilibrium constants at different temperatures were evaluated.

  15. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    Science.gov (United States)

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  16. Poly(acrylic acid)-grafted graphene oxide as an intracellular protein carrier.

    Science.gov (United States)

    Kavitha, Thangavelu; Kang, Inn-Kyu; Park, Soo-Young

    2014-01-14

    A pH-sensitive poly(acrylic acid)-grafted graphene oxide (GO-PAA) nanocarrier was synthesized by in situ atom transfer radical polymerization to allow the oral delivery of hydrophilic macromolecular proteins in their active forms to specific cells or organs. The synthesis, morphology, and physiochemical properties of GO-PAA were examined. A model protein, bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) (BSAFITC), was loaded onto GO-PAA through noncovalent interactions and its release was arrested at acidic pH similar to stomach, whereas at pH similar to intestine it was reduced, which paves way for site specific delivery without its degradation in the gastrointestinal tract. Confocal laser microscopy showed that the BSAFITC-loaded GO-PAA was internalized by KB cells by endocytosis and released into cytoplasm. Thus the GO-PAA as a transmembrane transporter is a new class of drug transporters with potential protein delivery applications.

  17. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    Science.gov (United States)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  18. Role of Bismuth Oxide in Bi-MCo2O4(M=Co,Ni,Cu,Zn) Catalysts for Wet Air Oxidation of Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    JIANG Peng-bo; CHENG Tie-xin; ZHUANG Hong; CUI Xiang-hao; BI Ying-li; ZHEN Kai-ji

    2004-01-01

    Two series of cobalt(Ⅲ)-containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD, TEM, ESR, UV-DRS and XPS, and the interaction between Co and Bi was studied as well. It has been found that nano-sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)-containing spinel are still maintained. The shift of the binding energy of Bi4f7/2 is related to the catalytic activity of these catalysts doped with bismuth oxide.

  19. Mechanistic chemistry of oxidation of balsalazide with acidic chloramine-T and bromamine-T: A comparative spectrophotometric kinetic study

    Indian Academy of Sciences (India)

    Puttaswamy; S Dakshayani

    2014-11-01

    Balsalazide (BSZ) belongs to a class of non-steroidal anti-inflammatory drugs. Kinetics and mechanism of oxidation of BSZ with sodium N-halo-p-toluenesulfonamides viz., chloramine-T(CAT) and bromamine-T(BAT) in HClO4 medium have been spectrophotometrically investigated (max =357nm) at 303 K. Under comparable experimental conditions, reactions with both the oxidants follow a first-order dependence of rate on [BSZ] and fractional-order dependence on each [oxidant] and [HClO4]. Activation parameters and reaction constants have been computed. 2-hydroxy-5-nitroso-benzoic acid and 3-(4-nitroso-benzoylamino)-propionic acid are identified as the oxidation products of BSZ with both CAT and BAT. The rate of oxidation of BSZ is about five-fold faster with BAT than with CAT. Plausible mechanism and related rate law have been deduced for the observed kinetics.

  20. Oxidation and etching behaviors of the InAs surface in various acidic and basic chemical solutions

    Science.gov (United States)

    Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-04-01

    Indium arsenide (InAs) is the candidate of choice as a new channel material for application in future technologies beyond the Si-based electronic devices because it has a much higher electron mobility than silicon. In this study, the oxidation and etching behaviors of InAs (100) in various acidic and basic solutions, such as HF, HCl, H2SO4, NaOH, KOH, and NH4OH, were investigated. In addition, the effect of pH on the oxidation and etching reactions taking place on the InAs surface was studied using solutions with a pH ranging from 1 to 13. It was observed that the oxidation of the InAs surface was hindered in acidic solutions, which was attributed to the dissolution of the oxidized surface layer. In particular, the treatment of the InAs surface using a strongly acidic solution with a pH of less than 3 produced an oxide-free surface due to the predominant etching of the InAs surface. The addition of H2O2 to the acidic solutions greatly increased the etching rate of the InAs surface, which suggests that the oxidation process is the rate-limiting step in the sequence of reactions that occur during the etching of the InAs surface in acidic solutions. The etching of InAs was suppressed in neutral solutions, which resulted in the formation of a relatively thicker oxide layer on the surface, and mild etching of the InAs surface took place in basic solutions. However, in basic solutions, the addition of H2O2 did not significantly contribute to the increase of the oxidation state of the InAs surface; thus, its effect on the etching rate of InAs was smaller than in acidic solutions.

  1. Preparation of Nicotinic Acid from Oxidation of 3-Picoline with Oxygen Under Catalysis of T(0-CI)PPMn

    Institute of Scientific and Technical Information of China (English)

    BAI Jin-quan; WANG Qi-chang; HU Yun; GUO Feng-yan

    2008-01-01

    The oxidation of 3-picoline to nicotinic acid took place efficiently in an ethanol solution with O2 as the oxidant under the catalysis of T(o-C1)PPMn at 40-150℃ and 0.5-3.0 MPa oxygen pressure.The influences of temperature,oxygen pressure,reaction time,concentration of 3-picoline,concentration of sodium hydroxide,and concentration of T(0-C1)PPMn catalyst,etc.on the production of nicotinic acid were investigated.The results show that T(0-C1)PPMn presented excellent catalytic activity in the oxidation of 3-picoline to nicotinic acid and the yield of nicotinic acid varied greatly with the reaction temperature,oxygen pressure,T(0-C1)PPMn concentration,etc.

  2. Oxidation process intensity in microsomal fraction of rat liver under conditions of different supplementation with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    O. V. Ketsa

    2014-02-01

    Full Text Available The effect of fat compositions with the varying ratio of polyunsaturated fatty acids (PUFAs of families ω-3 and ω-6 on oxidation process intensity in microsomal fraction of rat liver has been investigated. The aim of the study was to investigate the level of markers of oxidative modification of lipids and proteins in microsomal fraction of rat liver. Fat components in the experiment diets were presented by sunflower oil, soybean oil and fish oil. Rats were fed using one of the fillowing 5 diets for the period of 4 weeks: 1 AIN-93 diet with 7% sunflower oil and fish oil, with the inclusion of linoleic acid, eicosapentaenoic acid and docosahexaenoic acid in the ratio of ω-6:ω-3 – 7:1 (control diet; 2 AIN-93 diet with 7% soybean oil, with the inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1; 3 the diet containing only ω-6 PUFAs; 4 the diet containing only ω-3 PUFAs; 5 the diet without PUFAs. The fatty acid compositions of the diets were analysed by gas chromatography. We measured the primary and secondary lipoperoxidation products, proteins carbonyl derivatives and SH-groups of proteins. It was shown that inclusion of linoleic acid and α-linolenic acid in the ratio of 7:1 or ω-6 PUFAs into the animal diet increased lipid peroxidation in microsomal fraction of the rat liver as compared with the control group. Only ω-6 PUFAs increased the oxidative modification of proteins in microsomal fraction of the rat liver as compared with the control rat group. High dose of ω-3 PUFAs – eicosapentaenoic acid and docosahexaenoic acid had no influence on free radical oxidation of lipids and proteins. Using the diet without PUFAs increased oxidation process intensity in microsomal fraction of rat liver. According to our study, ω-6 PUFAs increased the oxidative modification of lipids and proteins in microsomal fraction of the rat liver. ω-3 PUFAs, in particular, eicosapentaenoic acid and docosahexaenoic acid, increased lipid and

  3. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    Science.gov (United States)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  4. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  5. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-05-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to

  6. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  7. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  8. New mathematical derivations for calculation of ATP yield due to the complete oxidation of different types of fatty acids.

    Science.gov (United States)

    Reddy, Banda Venkat; Prasad, Bommena Rajendra; Sinha, Sukesh Narayan; Ahmed, Noor

    2014-02-01

    During the complete oxidation of fatty acids, the electrons removed from fatty acids in different forms (FADH2 and NADH2) pass through the respiratory chain, driving the ATP synthesis. Generally, the ATP yield due to the complete oxidation of fatty acids is calculated by sum total the ATPs obtained due to the oxidation of FADH2 and NADH2 due to lack of any particular method. This calculation is simple for saturated even numbered fatty acids, but in the case of saturated and unsaturated odd numbered fatty acids the calculation of ATP yield is difficult and needs mathematical calculations due to some changes in their beta-oxidation pathway when compared to the pathway of saturated even numbered fatty acids. These calculations are made simple by our derivations and following formulae where we require only number of carbon atoms and double bonds present in a fatty acid. Our method is superior and easier in comparison to long mathematical calculations that are in the practice.

  9. Interrelated effects of dihomo-γ-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats.

    Science.gov (United States)

    Ide, Takashi; Ono, Yoshiko; Kawashima, Hiroshi; Kiso, Yoshinobu

    2012-12-14

    Interrelated effects of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined in rats. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin), containing 100 g/kg of maize oil or fungal oil rich in DGLA or ARA for 16 d. Among the groups fed sesamin-free diets, oils rich in DGLA or ARA, especially the latter, compared with maize oil strongly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin, irrespective of the type of fat, reduced the parameters of lipogenic enzymes except for malic enzyme. The type of dietary fat was rather irrelevant in affecting hepatic fatty acid oxidation among rats fed the sesamin-free diets. Sesamin increased the activities of enzymes involved in fatty acid oxidation in all groups of rats given different fats. The extent of the increase depended on the dietary fat type, and the values became much higher with a diet containing sesamin and oil rich in ARA in combination than with a diet containing lignan and maize oil. Analyses of mRNA levels revealed that the combination of sesamin and oil rich in ARA compared with the combination of lignan and maize oil markedly increased the gene expression of various peroxisomal fatty acid oxidation enzymes but not mitochondrial enzymes. The enhancement of sesamin action on hepatic fatty acid oxidation was also confirmed with oil rich in DGLA but to a lesser extent.

  10. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  11. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  12. Phylogenomic evidence for a myxococcal contribution to the mitochondrial fatty acid beta-oxidation.

    Directory of Open Access Journals (Sweden)

    Agatha Schlüter

    Full Text Available BACKGROUND: The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer. CONCLUSIONS/SIGNIFICANCE: Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to enter eukaryotes.

  13. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    Science.gov (United States)

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  14. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    Directory of Open Access Journals (Sweden)

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  15. Synthesis ofε-Caprolactone by Oxidation of Cyclohexanone with Monoperoxysuccinic Acid

    Institute of Scientific and Technical Information of China (English)

    陈建; 赵小双; 张光旭; 陈波; 蔡卫权

    2013-01-01

    In the absence of catalyst, 70%hydrogen peroxide was used to oxidize succinic anhydride to solid mo-noperoxysuccinic acid (PSA). Then PSA was applied to synthesis ofε-caprolactone (ε-CL) by oxidation of cyclo-hexanone in the heterogeneous system. In order to achieve material recycle, solid precipitated in the process of synthesizing ε-CL was dehydrated via reactive distillation followed by recrystallization to prepare succinic anhy-dride, which was characterized by IR (infrared spectra) and 1HNMR (1H nuclear magnetic resonance). Effects of molar ratio of PSA to cyclohexanone, acetic acid dosage, reaction temperature, reaction time on conversion of cyclohexanone, yield and selectivity ofε-CL were investigated respectively. The results indicated that conversion of cyclohexanone, yield and selectivity of ε-CL were upto 98.1%, 97.5% and 99.4% respectively under the optimal conditions. In addition, in the process of synthesizing succinic anhydride, the optimal yield of succinic anhydride reached 67.4%.

  16. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

    Science.gov (United States)

    Zhu, Xiali; Huang, Shengnan; Xie, Yingxia; Zhang, Huijuan; Hou, Lin; Zhang, Yingjie; Huang, Heqing; Shi, Jinjin; Wang, Lei; Zhang, Zhenzhong

    2014-01-01

    Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π- π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA-DTX-OSWNT-SLN was prepared following a microemulsion technique. The size and zeta potential of FA-DTX-OSWNT-SLN were 182.8 ± 2.8 nm and -34.59 ± 1.50 mV, respectively. TEM images indicated that FA-DTX-OSWNT-SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA-DTX-OSWNT-SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA-DTX-OSWNT-SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

  17. Urinary markers of nucleic acid oxidation in Danish overweight/obese children and youths

    DEFF Research Database (Denmark)

    Kloppenborg, Julie Tonsgaard; Fonvig, Cilius Esman; Johannesen, Jesper

    2016-01-01

    study we investigated the relationships between urinary markers of nucleic acid oxidation concentrations and the degree of obesity and glucose metabolism in overweight compared to lean children. 42 (24 girls) and 35 lean (19 girls) children and adolescents were recruited from the Registry of the Danish...... or glucose metabolism in lean and obese children. However, sub-analyses adjusted for age, sex and the degree of obesity showed positive associations between the two hour glucose (2 h glucose) and the urinary markers 8-oxoGuo (p=0.02, r(2)= 0.63) and 8-oxodG (p=0.046, r(2)= 0.48) and between the insulinogenic...... index and 8-oxoGuo (p=0.03, r(2)=0.60) in the 12 obese children exhibiting impaired glucose tolerance. Excretion of the urinary markers of nucleic acid oxidation and the degree of obesity or the glucose metabolism were not associated in this study. Nevertheless, obese children with impaired glucose...

  18. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Shen Shengrong

    2010-09-01

    Full Text Available Abstract Some polyunsaturated fatty acids (PUFAs, if not all, have been shown to have tumoricidal action, but their exact mechanism(s of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA inhibited tumor cell growth at high concentrations (above 300 μM; while low concentrations (100-200 μM promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS formation, malondialdehyde (MDA accumulation and superoxide dismutase (SOD activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO while the normal human umbilical vein endothelial cells (HUVEC were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC. LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction.

  19. [Photocatalytic Oxidation of p-arsanilic Acid by TiO2].

    Science.gov (United States)

    Xu, Wen-ze; Yang, Chun-feng; Li, Jing; Li, Jian-fei; Liu, Hui-fang; Hu, Cheng-zhi

    2016-01-15

    The p-arsanilic acid (ASA) is an important organoarsenical compound and its removal is more difficult compared to inorganic arsenic, however, little attention has been paid to the removal of ASA in aqueous environment. The influence of P25 on the adsorption of ASA, effect of P25 dosage, pH and illumination intensity on the photo-catalysis, the production analysis and main mechanism of photo-degradation were investigated in this study. The results showed that in the P25 catalysis process, simulated natural light could degrade ASA into As (V) by oxidation. The total As was reduced to about 0.34 mg x L(-1) within 0.5 h under the following condition: the initial concentration of ASA was 2 mg x L(-1) and the dosage of TiO2 was 1 g x L(-1). The result showed that the removal rate of ASA in acidic conditions was much higher than that in alkaline conditions. The optimal strength of light was 68.5 mW x Cm(-2). Hydroxide radical played a major role in photocatalytic oxidation of ASA by P25.

  20. Evaluation of the Protein Requirement in Chinese Young Adults Using the Indicator Amino Acid Oxidation Technique

    Institute of Scientific and Technical Information of China (English)

    LI Min; ZHANG Yu Hui; WANG Zhi Ling; GOU Ling Yan; LI Wei Dong; TIAN Yuan; HU Yi Chun; WANG Rui; PIAO Jian Hua; YANG Xiao Guang

    2013-01-01

    Objective To accurately calculate the protein requirements in Chinese young adults using the indicator amino acid oxidation technique. Methods Nine women and ten men received a restricted daily level of protein intake (0.75, 0.82, 0.89, 0.97, and 1.05 g/kg), along with L-[1-13C]-leucine. Subjects’ protein requirement was determined by a biphasic linear regression crossover analysis of F13CO2 data. In doing so, a breakpoint at the minimal rate of appearance of 13CO2 expiration specific to each level of dietary protein was identified. This trial was registered with the Chinese clinical trial registry as ChiCTR-ONC-11001407. Results The Estimated Average Requirement (EAR) and the Recommended Nutrient Intake (RNI) of protein for healthy Chinese young adults were determined to be 0.87 and 0.98 g/(kg·d), respectively, based on the indicator amino acid oxidation technique. Conclusion The EAR and RNI of mixed protein are 5% and 16% that are lower than the current proposed EAR and RNI (0.92 and 1.16 g/(kg·d), respectively), as determined by the nitrogen balance method. The respective EAR and RNI recommendations of 0.87 and 0.98 g/(kg·d) of mixed protein are estimated to be reasonable and suitable for Chinese young adults.

  1. 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma.

    Science.gov (United States)

    Raju, K Rama Satyanarayana; Kumar, M N Sathish; Gupta, Saurabh; Naga, Srinivas T; Shankar, Jaya K; Murthy, Vishakantha; Madhunapanthula, Subba Rao V; Mulukutla, Shashank; Ambhore, Nilesh S; Tummala, Shashank; Vishnuvarthan, V J; Azam, Afzal; Elango, Kannan

    2014-12-01

    Pro-inflammatory cytokines regulate the magnitude of allergic reactions during asthma. Tumor necrosis factor--alpha (TNF-α), interleukin-6 (IL-6) and interleukin-13 (IL-13) play a crucial role in aggravating the inflammatory conditions during allergic asthma. In addition, oxidative stress contributes to the pathogenesis of asthma by altering the physiological condition resulting in the development of status asthmaticus. Anti-inflammatory corticosteroids are being widely used for treating allergic asthma. In the present study 5-aminosalicylic acid (5-ASA), a salicylic acid derivative, was evaluated, in vivo for its potential to suppress TNF-α, IL-6 and IL-13 using ovalbumin (OVA) induced allergic asthma in Balb/C mice. Oral administration of 65, 130 and 195 mg/kg 5-ASA significantly reduced the OVA induced total and differential leucocyte count, TNF-α, IL-6, IL-13, nitrite, nitrate, MDA, MPO and TPL levels in the lung lavage samples. Collectively, these findings suggest that 5-ASA is a potent immunomodulator and suppresses key Th2 cytokines production and oxidative stress in OVA-induced asthma.

  2. Loss of Adipose Fatty Acid Oxidation Does Not Potentiate Obesity at Thermoneutrality

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-02-01

    Full Text Available Ambient temperature affects energy intake and expenditure to maintain homeostasis in a continuously fluctuating environment. Here, mice with an adipose-specific defect in fatty acid oxidation (Cpt2A−/− were subjected to varying temperatures to determine the role of adipose bioenergetics in environmental adaptation and body weight regulation. Microarray analysis of mice acclimatized to thermoneutrality revealed that Cpt2A−/− interscapular brown adipose tissue (BAT failed to induce the expression of thermogenic genes such as Ucp1 and Pgc1α in response to adrenergic stimulation, and increasing ambient temperature exacerbated these defects. Furthermore, thermoneutral housing induced mtDNA stress in Cpt2A−/− BAT and ultimately resulted in a loss of interscapular BAT. Although the loss of adipose fatty acid oxidation resulted in clear molecular, cellular, and physiologic deficits in BAT, body weight gain and glucose tolerance were similar in control and Cpt2A−/− mice in response to a high-fat diet, even when mice were housed at thermoneutrality.

  3. Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead

    Directory of Open Access Journals (Sweden)

    Mohammad Amani

    2010-01-01

    Full Text Available Background: Extended exposure to low levels of lead causes high blood pressure in human and laboratory animals. The mechanism is not completely recognized, but it is relatively implicated with generation of free radicals, oxidant agents such as ROS, and decrease of available nitric oxide (NO. In this study, we have demonstrated the effect of ascorbic acid as an antioxidant on nitric oxide metabolites and systolic blood pressure in rats exposed to low levels of lead. Materials and Methods: The adult male Wistar rats weighing 200-250 g were divided into four groups: control, lead acetate (receiving 100 ppm lead acetate in drinking water, lead acetate plus ascorbic acid (receiving 100 ppm lead acetate and 1 g/l ascorbic acid in drinking water, and ascorbic acid (receiving 1 g/l ascorbic acid in drinking water groups. The animals were anesthetized with ketamin/xylazine (50 and 7 mg/kg, respectively, ip and systolic blood pressure was then measured from the tail of the animals by a sphygmomanometer. Nitric oxide levels in serum were measured indirectly by evaluation of its stable metabolites (total nitrite and nitrate (NOc. Results: After 8 and 12 weeks, systolic blood pressure in the lead acetate group was significantly elevated compared to the control group. Ascorbic acid supplementation could prevent the systolic blood pressure rise in the lead acetate plus ascorbic acid group and there was no significant difference relative to the control group. The serum NOc levels in lead acetate group significantly decreased in relation to the control group, but this reduction was not significantly different between the lead acetate plus ascorbic acid group and the control group. Conclusion: Results of this study suggest that ascorbic acid as an antioxidant prevents the lead induced hypertension. This effect may be mediated by inhibition of NOc oxidation and thereby increasing availability of NO.

  4. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows.

    Science.gov (United States)

    Hanschke, N; Kankofer, M; Ruda, L; Höltershinken, M; Meyer, U; Frank, J; Dänicke, S; Rehage, J

    2016-10-01

    Dairy cows develop frequently negative energy balance around parturition and in early lactation, resulting in excessive mobilization of body fat and subsequently in increased risk of ketosis and other diseases. Dietary conjugated linoleic acid (CLA) supplements are used in dairy cows mainly for their depressing effect on milk fat content, but are also proposed to have antioxidative properties. As negative energy balance is associated with oxidative stress, which is also assumed to contribute to disease development, the present study was conducted to examine effects of CLA on oxidative and antioxidative status of lactating dairy cows. German Holstein cows (primiparous n=13, multiparous n=32) were divided into 3 dietary treatment groups receiving 100g/d of control fat supplement, containing 87% stearic acid (CON; n=14), 50g/d of control fat supplement and 50g/d of CLA supplement (CLA 50; n=15), or 100g/d of CLA supplement (CLA 100; n=16). The CLA supplement was lipid-encapsulated and contained 12% of trans-10,cis-12 CLA and cis-9,trans-11 CLA each. Supplementation took place between d1 and 182 postpartum; d 182 until 252 postpartum served as a depletion period. Blood was sampled at d -21, 1, 21, 70, 105, 140, 182, 224, and 252 relative to calving. The antioxidative status was determined using the ferric-reducing ability of plasma, α-tocopherol, α-tocopherol-to-cholesterol mass ratio, and retinol. For determination of oxidative status concentrations of hydroperoxides, thiobarbituric acid-reactive substances (TBARS), N'-formylkynurenine, and bityrosine were measured. Mixed models of fixed and random effects with repeated measures were used to evaluate period 1 (d -21 to 140) and 2 (d182-252) separately. Cows showed increased oxidative stress and lipid peroxidation during the periparturient period in terms of increased serum concentrations of hydroperoxides and TBARS, which decreased throughout lactation. During period 1, the supplemented cows had lower TBARS

  5. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    Science.gov (United States)

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  6. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts.

    Science.gov (United States)

    Fontanier, Virginie; Zalouk, Sofiane; Barbati, Stéphane

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 degrees C, 20 MPa, and reaction time 180 min. The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 +/- 4)% TOC removal and (78.4 +/- 13.2)% conversion of the initial organic-N into NH4(+)-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  7. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Norihiro; Sugimoto, Wataru [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Takasu, Yoshio [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)], E-mail: ytakasu@shinshu-u.ac.jp

    2008-12-30

    Two different forms of rutile-type iridium oxide catalysts were prepared: IrO{sub 2}-coated titanium plate electrocatalysts prepared by a dip-coating method (IrO{sub 2}/Ti) and iridium oxide nanoparticles (IrO{sub 2}) prepared by a wet method, the Adams fusion method. The catalytic behavior of the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H{sub 2}SO{sub 4} at 60 deg. C. Both catalysts were found to exhibit considerable activity for the ORR; however, the former oxide electrodes showed higher activity than the latter ones. All the IrO{sub 2}/Ti catalyst electrodes heat-treated at a temperature between 400 deg. C and 550 deg. C showed ca. 0.84 V (vs. RHE) of the onset potential for the ORR, E{sub ORR}, where the reduction current of oxygen had begun to be observed during the cathodic potential sweep of the test electrodes. It has been confirmed clearly that IrO{sub 2}, but neither metallic Ir nor the hydrated IrO{sub 2}, behaves as an active catalyst for the ORR in an acidic solution. It was also demonstrated that the enlargement of the surface area of the IrO{sub 2}/Ti with the help of lanthanum is effective for the enhancement of the catalytic activity in the reaction.

  8. Protective effect of alpha-lipoic acid on cypermethrin-induced oxidative stress in Wistar rats.

    Science.gov (United States)

    Mignini, F; Nasuti, C; Fedeli, D; Mattioli, L; Cosenza, M; Artico, M; Gabbianelli, R

    2013-01-01

    Cypermethrin (CY), a class II pyrethroid pesticide, is globally used to control insects in the household and in agriculture. Despite beneficial roles, its uncontrolled and repetitive application leads to unintended effects in non-target organisms. In light of the relevant anti-oxidant properties of alpha-lipoic acid (ALA), in the work described herein we tested the effect of a commercially available ALA formulation on cypermethrin CY)-induced oxidative stress in Wistar rats. The rats were orally administered with 53.14 mg/kg of ALA and 35.71 mg/kg of CY for 60 days. The treatment with CY did not induce changes in either locomotor activities or in body weight. Differences were observed on superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation that were re-established by ALA treatment at similar levels of the placebo group. Furthermore, ALA formulation increased glutathione (GSH) level and glutathione peroxidase (GPx) activity. Because of the widespread use of CY, higher amounts of pesticide residues are present in food, and a diet supplementation with ALA could be an active free radical scavenger protecting against diseases associated with oxidative stress.

  9. Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid

    Indian Academy of Sciences (India)

    Fereshteh Chekin; Samira Bagheri; Sharifah Bee Abd Hamid

    2015-12-01

    A simple approach for the preparation of gelatin functionalized reduced graphene oxide nanosheet (Gel-RGONS) by chemical reduction of graphene oxide (GO) using gelatin as both reducing agent and stabilizing agent in an aqueous solution was developed. The morphology and structure of the Gel-RGONS were examined by X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy and Raman spectroscopy. Gelatin acted as a functionalizing reagent to guarantee good dispersibility and stability of the r in distilled water. Moreover, a new electrochemical sensor was developed based on Gel-RGONS modified glassy carbon electrode (Gel-RGONS/GCE). Gel-r exhibits excellent electrocatalytic activity to gallic acid (GA) oxidation. The experimental conditions such as pH, adsorption time and scan rate were optimized for the determination of GA. Under optimum conditions, the sensor responded linearly to GA in the concentration of 1.0 × 10−6 to 1.1 × 10−4 M with detection limit of 4.7 × 10−7 M at 3 using linear sweep voltammetry (LSV). The method has been successfully applied to the determination of GA in sample of black tea.

  10. Protection of Salvianolic Acid B for Human Endothelial Cells Against Hydrogen Peroxide-Induced Oxidative Damage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jungang; ZHAO Guangrong; LIU Jinling; JI Xiangwu

    2009-01-01

    Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was evaluated with human endothelial cells under oxidative stress. Human endothelial cells were pretreated with Sal B for 12 h followed by hydrogen peroxide for another 12 h. Production of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and concentration of glu-tathione were measured: Protective effect of Sal B on the endothelial cells from hydrogen peroxide-induced damage ' was observed, and ROS production in the cells was found significantly inhibited. Sal B remarkably enhanced the activities of antioxidant enzymes SOD, CAT and GPX. Furthermore, Sal B up-regulated the intracellular glutathione concentration. The results indicate that Sal B protected endothelial cells from oxidative stress by improving the redox status of the cells through enhancing the antioxidant enzyme activities and increasing the reductive glutathione concentration after the oxidative challenge.

  11. Nordihydroguaiaretic acid attenuates potassium dichromate-induced oxidative stress and nephrotoxicity.

    Science.gov (United States)

    Yam-Canul, Paola; Chirino, Yolanda I; Sánchez-González, Dolores Javier; Martínez-Martínez, Claudia María; Cruz, Cristino; Villanueva, Cleva; Pedraza-Chaverri, José

    2008-03-01

    Larrea tridentata also known as Creosote bush, Larrea, chaparral, greasewood or gobernadora has been used in the folk medicine for the treatment of several illnesses. The primary product that is present at high concentrations in the leaves from this plant is nordihydroguaiaretic acid (NDGA) which is a powerful antioxidant. On the other hand, potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative stress. The aim of this work was to study the effect of NDGA on K(2)Cr(2)O(7)-induced nephrotoxicity and oxidative stress. Nephrotoxicity was induced by a single injection of K(2)Cr(2)O(7) (15 mg/Kg). A group of K(2)Cr(2)O(7)-treated rats was administered NDGA by mini osmotic pumps (17 mg/Kg/day). The results show that NDGA was able to ameliorate the structural and functional renal damage evaluated by histopathological analysis and by measuring proteinuria, urinary excretion of N-acetyl-beta-d-glucosaminidase, serum creatinine, and serum glutathione peroxidase activity. In addition, immunostaining of 4-hydroxy-2-nonenal and 3-nitrotyrosine, markers of oxidative and nitrosative stress, respectively, was ameliorated by the NDGA treatment. These data strongly suggest that the antioxidant properties of NDGA are involved in its renoprotective effect in K(2)Cr(2)O(7)-treated rats.

  12. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    Science.gov (United States)

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  13. Effects of Acetylsalicylic Acid Usage on Inflammatory and Oxidative Stress Markers in Hemodialysis Patients.

    Science.gov (United States)

    Maniglia, Fabíola Pansani; da Costa, José Abrão Cardeal

    2016-02-01

    The aims of this study were to determine the effects of acetylsalicylic acid (ASA) on inflammation and oxidative stress markers in hemodialysis (HD) patients and to examine the associations between these markers and the sociodemographic and clinical characteristics of participants. The study included 36 subjects who used 300 mg of ASA for 60 days. Inflammation and oxidative stress were assessed based on levels of biochemical markers. ASA usage promoted a decrease in high-sensitivity C-reactive protein (p = 0.01). The level of hydrogen peroxide increased after 30 days of use of ASA and subsequently decreased (p = 0.01). Reduced glutathione reduced at the end of the study (p < 0.01); the malondialdehyde level did not change and the levels of vitamins A and E were inverse to drug use (p = 0.01). ASA usage promoted reduced levels of inflammation, increased production of markers of oxidative stress, and reduced antioxidant defense.

  14. Photoinduced interactions between oxidized and reduced lipoic acid and riboflavin (vitamin B2).

    Science.gov (United States)

    Lu, Changyuan; Bucher, Götz; Sander, Wolfram

    2004-01-23

    As a powerful natural antioxidant, lipoic acid (LipSS) and its reduced form dihydrolipoic acid (DHLA) exert significant antioxidant activities in vivo and in vitro by deactivation of reactive oxygen and nitrogen species (ROS and RNS). In this study the riboflavin (RF, vitamin B2) sensitized UVA and visible-light irradiation of LipSS and DHLA was studied employing continuous irradiation, fluorescence spectroscopy, and laser flash photolysis (LFP). Our results indicate that LipSS and DHLA quench both the singlet state (1RF*) and the triplet state (3RF*) of RF by electron transfer to produce the riboflavin semiquinone radical (RFH.) and the radical cation of LipSS and DHLA, respectively. The radical cation of DHLA is rapidly deprotonated twice to yield a reducing species, the radical anion of LipSS (LipSS.-). When D2O was used as solvent, it was confirmed that the reaction of LipSS with 3RF* consists of a simple electron-transfer step, while loss of hydrogen occurs in the case of DHLA oxidation. Due to the strong absorption of RFH. and the riboflavin ground state, the absorption of the radical cation and the radical anion of LipSS can not be observed directly by LFP. N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and N,N,N',N'-tetramethyl benzidine (TMB) were added as probes to the system. In the case of LipSS, the addition resulted in the formation of the radical cation of TMPD or TMB by quenching of the LipSS radical cation. If DHLA is the reducing substrate, no formation of probe radical cation is observed. This confirms that LipSS.- is produced by riboflavin photosensitization, and that there is no oxidizing species produced after DHLA oxidization.

  15. Protective effect of ascorbic acid in experimental gastric cancer:reduction of oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Claudia P.M.S.Oliveira; Paulo Kassab; Fabio P.Lopasso; Heraldo P. Souza; Mariano Janiszewski; Francisco R. M. Laurindo; Kioshi Iriya; Antonio A.Laudanna

    2003-01-01

    AIM: Oxidative stress participates in the cell carcinogenesis by inducing DNA mutations. Our aim was to assess whether ascorbic acid, an antioxidant, could have a role in preventing ROS (Reactive Oxygen Species) generation in experimental gastric carcinoma in a rat model.METHODS: Experimental gastric cancer was induced in twelve Wistar male rats (weighting 250-350 g) by profound duodeno-gastric reflux throught split gastrojenunostomy. The rats were allocated to the following groups: Group Ⅰ (n=6)was the control; Group Ⅱ (n=6) which was mantained with daily intake of tape water with Vitamin C (30 mg/Kg). After 6 or 12 months, samples of gastric tumor or non tumor mucosa were taken from the anastomosis of both groups.Oxidative stress was measured by superoxide quantification through lucigenin-amplified chemiluminescence base and by staining with Nitrobluetetrazolium. The histopathologic confirmation of adenocarcinoma was made by eosinhemathoxilin method.RESULTS: The intestinal type of gastric adenocarcinoma was microscopically identified in all animals of group Ⅰwhereas only 3 rats of group Ⅱ showed an adenocarcinoma without macroscopic evidence of them. The cancers were located in the anastomosis in all cases. Basal luminescence from tumor gastric tissue generated 38.4±6.8 count per minute/mg/x106 (mean±SD) and 14.9±4.0 count per minute/mg/×106, respectively, in group Ⅰ and Ⅱ animals (P<0.05). The Nitrobluetetrazolium method showed intense staining in tumor tissues but not in non neoplasic mucosa.CONCLUSION: Experimental gastric tumors seem to produce more reactive oxygen species than non neoplasic gastric tissue. The reduction of oxidative stress and gastric tumor incidence in rats were induced by the intake of ascorbic acid. Therefore, it may have a role in the prevention of gastric carcinoma.

  16. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    Science.gov (United States)

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  17. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ferk, Franziska; Chakraborty, Asima [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Jaeger, Walter [Department of Clinical Pharmacy and Diagnostic, University of Vienna, Vienna (Austria); Kundi, Michael [Institute of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Bichler, Julia; Misik, Miroslav [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Department of Nutritional Sciences, University of Vienna, 1090 Vienna (Austria); Grasl-Kraupp, Bettina; Sagmeister, Sandra [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Haidinger, Gerald [Department of Epidemiology, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Hoelzl, Christine; Nersesyan, Armen [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Dusinska, Maria [Health Effect Laboratory, Center for Ecological Economics, Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Simic, Tatjana [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Knasmueller, Siegfried, E-mail: siegfried.knasmueller@meduniwien.ac.at [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria)

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-{pi}) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against {gamma}-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of

  18. Molybdatophosphoric acid as an efficient catalyst for the catalytic and chemoselective oxidation of sulfides to sulfoxides using urea hydrogen peroxide as a commercially available oxidant

    Directory of Open Access Journals (Sweden)

    ALIREZA HASANINEJAD

    2010-03-01

    Full Text Available An efficient procedure for the chemoselective oxidation of alkyl (aryl sulfides to the corresponding sulfoxides using urea hydrogen peroxide (UHP in the presence of a catalytic amount of molybdatophosphoric acid at room temperature is described. The advantages of described method are: generality, high yield and chemoselectivity, short reaction time, low cost and compliment with green chemistry protocols.

  19. Oleic acid-dependent modulation of Nitric oxide associated 1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis

    Science.gov (United States)

    The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF S...

  20. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    Science.gov (United States)

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  1. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    Science.gov (United States)

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  2. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    Science.gov (United States)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  3. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12 reduces oxidative stress markers in a rat model of pregnancy induced hypertension.

    Directory of Open Access Journals (Sweden)

    Nisha G Kemse

    Full Text Available OBJECTIVES: Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH. MATERIALS AND METHODS: Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids. L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day was used to induce hypertension during pregnancy. Blood Pressure (BP was recorded during pregnancy and dams were dissected at d20 of gestation. RESULTS: Animals from the PIH group demonstrated higher (p<0.01 for both systolic and diastolic BP; lower (p<0.01 pup weight; higher dam plasma homocysteine (p<0.05 and dam and offspring malondialdehyde (MDA (p<0.01, lower (p<0.05 placental and offspring liver DHA and higher (p<0.01 tumor necrosis factor-alpha (TNF-ά levels as compared to control. Individual micronutrient supplementation did not offer much benefit. In contrast, combined supplementation lowered systolic BP, homocysteine, MDA and placental TNF-ά levels in dams and liver MDA and protein carbonyl in the offspring as compared to PIH group. CONCLUSION: Key constituents of one carbon cycle (folic acid, vitamin B12 and DHA may play a role in reducing oxidative stress and inflammation in preeclampsia.

  4. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat

    Science.gov (United States)

    Karwowska, Małgorzata; Dolatowski, Zbigniew J.

    2017-01-01

    Objective This study evaluated the effect of acid whey and freeze-dried cranberries on the physicochemical characteristics, lipid oxidation and fatty acid composition of nitrite-free fermented sausage made from deer meat and pork fat. Antioxidant interactions between acid whey and cranberry compounds were also explored. Methods Four formulations of fermented venison sausage were prepared: F1 (control), F2 (with 5% liquid acid whey), F3 (with 0.06% of freeze-dried cranberries), and F4 (with 5% liquid acid whey and 0.06% of freeze-dried cranberries). Each sample was analyzed for pH, water activity (aw), heme iron content, 2-thiobarbituric acid reactive substances (TBARS) value and conjugated dienes at the end of the manufacturing process and at 30 and 90 days of refrigerated storage. Fatty acid composition was measured once at the end of the manufacturing process. Results At the end of ripening, all samples presented statistically different values for a pH range of 4.47 to pH 4.59. The sum of the unsaturated fatty acids was higher, while the conjugated diene and the TBARS values were lower in sausages with freeze-dried cranberries as compared to the control sausage. The highest content of heme iron (21.52 mg/kg) at day 90 was found in the sausage formulation with the addition of freeze-dried cranberries, which suggests that the addition of cranberries stabilized the porphyrin ring of the heme molecule during storage and thereby reduced the release of iron. The use of liquid acid whey in combination with cranberries appears to not be justified in view of the oxidative stability of the obtained products. Conclusion The results suggest that the application of freeze-dried cranberries can lower the intensity of oxidative changes during the storage of nitrite-free fermented sausage made from deer meat. PMID:27165018

  5. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  6. Oxidation of N-Nitrosoalkylamines by human cytochrome P450 2A6: sequential oxidation to aldehydes and carboxylic acids and analysis of reaction steps.

    Science.gov (United States)

    Chowdhury, Goutam; Calcutt, M Wade; Guengerich, F Peter

    2010-03-12

    Cytochrome P450 (P450) 2A6 activates nitrosamines, including N,N-dimethylnitrosamine (DMN) and N,N-diethylnitrosamine (DEN), to alkyl diazohydroxides (which are DNA-alkylating agents) and also aldehydes (HCHO from DMN and CH(3)CHO from DEN). The N-dealkylation of DMN had a high intrinsic kinetic deuterium isotope effect ((D)k(app) approximately 10), which was highly expressed in a variety of competitive and non-competitive experiments. The (D)k(app) for DEN was approximately 3 and not expressed in non-competitive experiments. DMN and DEN were also oxidized to HCO(2)H and CH(3)CO(2)H, respectively. In neither case was a lag observed, which was unexpected considering the k(cat) and K(m) parameters measured for oxidation of DMN and DEN to the aldehydes and for oxidation of the aldehydes to the carboxylic acids. Spectral analysis did not indicate strong affinity of the aldehydes for P450 2A6, but pulse-chase experiments showed only limited exchange with added (unlabeled) aldehydes in the oxidations of DMN and DEN to carboxylic acids. Substoichiometric kinetic bursts were observed in the pre-steady-state oxidations of DMN and DEN to aldehydes. A minimal kinetic model was developed that was consistent with all of the observed phenomena and involves a conformational change of P450 2A6 following substrate binding, equilibrium of the P450-substrate complex with a non-productive form, and oxidation of the aldehydes to carboxylic acids in a process that avoids relaxation of the conformation following the first oxidation (i.e. of DMN or DEN to an aldehyde).

  7. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  8. Mechanism of Oxidation of (p-Substituted Phenylthioacetic Acids with N-Bromophthalimide

    Directory of Open Access Journals (Sweden)

    N. M. I. Alhaji

    2011-01-01

    Full Text Available The kinetics of oxidation of (phenylthioacetic acid (PTAA by N-Bromophthalimide (NBP in acetonitrile-water solvent mixture at 298 K in the presence of perchloric acid has been followed potentiometrically. The reaction is first-order each in NBP and PTAA and inverse fractional-order in H+. Also, it has been found that the reaction rate is not affected by changes in ionic strength of the reaction medium or by the addition of chemicals such as phthalimide, acrylonitrile and potassium bromide. However, an increase in the water content of the solvent mixture causes an increase in the rate of reaction. These observations have been well analyzed in favour of a SN2-type mechanism, involving NBP itself as the reactive species. Effect of substituents on the reaction rate has been analysed by employing various (p-sustituted phenylthioacetic acids. The electron-releasing substituent in the phenyl ring of PTAA accelerates the reaction rate while the electron-withdrawing substituent retards the rate. The excellently linear Hammett plot yields a large negative ρ value, supporting the involvement a bromosulphonium ion intermediate in the rate-determining step.

  9. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20°C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43±0.20 M(-1) s(-1) and (6.55±0.33)×10(9) M(-1) s(-1), respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al(2)O(3) or MnO(x)/Al(2)O(3). The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  10. Thermal properties of poly(ethylene oxide)/lauric acid blends. A SSA-DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Pielichowski, Krzysztof; Flejtuch, Kinga [Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow (Poland)

    2006-03-15

    A series of poly(ethylene oxide) (PEO)/lauric acid blends with different compositions has been prepared and characterised by differential scanning calorimetry (DSC) in dynamic mode. It has been found that the enthalpy of melting and crystallisation reaches its highest value for PEO/lauric acid blend (1:1, w/w) which makes this system a promising candidate for thermal energy storage applications. Further studies by step-scan alternating (SSA)-DSC revealed that an increase of the temperature step causes that the average total heating rate is also increasing and the heat flow is characterised by higher values. Reversing component of the heat flow during melting reaches lowest values at highest step (step=1{sup o}) when the re-crystallisation of PEO is hindered. An increase of step generally leads to an increase of the number of non-equilibrium effects and facilitates the activation of kinetic non-reversing processes, hindering the overall crystallisation of PEO. For lauric acid, due to facile crystallisation and self-association, formation of ordered regular structures takes place faster and is influenced by non-reversing processes in higher proportion. (author)

  11. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant.

    Science.gov (United States)

    Hori, Hisao; Yamamoto, Ari; Hayakawa, Etsuko; Taniyasu, Sachi; Yamashita, Nobuyoshi; Kutsuna, Shuzo; Kiatagawa, Hiroshi; Arakawa, Ryuichi

    2005-04-01

    Photochemical decomposition of persistent perfluorocarboxylic acids (PFCAs) in water by use of persulfate ion (S2O8(2-)) was examined to develop a technique to neutralize stationary sources of PFCAs. Photolysis of S2O8(2-) produced highly oxidative sulfate radical anions (SO4-), which efficiently decomposed perfluorooctanoic acid (PFOA) and other PFCAs bearing C4-C8 perfluoroalkyl groups. The major products were F- and CO2; also, small amounts of PFCAs with shorter than initial chain lengths were detected in the reaction solution. PFOA at a concentration of 1.35 mM (typical of that in untreated wastewater after an emulsifying process in fluoropolymer manufacture) was completely decomposed by a photochemical system with 50 mM S2O8(2-) and 4 h of irradiation from a 200-W xenon-mercury lamp. The initial PFOA decomposition rate was 11 times higherthan with photolysis alone. All sulfur-containing species in the reaction solution were eventually transformed to sulfate ions by this method. This method was successfully applied to the decomposition of perfluorononanoic acid contained in a floor wax solution.

  12. Altered maternal thyroid function: Effect of L-carnitine supplementation on fetal and neonatal myocardial free fatty acid oxidation,in vitro

    OpenAIRE

    Kumar, Ratan

    1998-01-01

    Effect of L-carnitine supplementation on myocardial free fatty acid oxidation,in vitro, in offsprings born of hypothyroid and hyperthyroid mothers was studied in rats. L-carnitine supplementation stimulated myocardial fatty acid oxidation during gestational period in offspring born of control and hyperthyroid mothers. In contrast L-carnitine supplementation induced stimulation in myocardial fatty acid oxidation was very less in fetuses born of hypothyroid mothers. However, in neonates born of...

  13. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists.

    Directory of Open Access Journals (Sweden)

    Kylie R Dunning

    Full Text Available Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of ³H₂O from [³H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further

  14. Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance*

    OpenAIRE

    Vergnes, Laurent; Chin, Robert; Young, Stephen G.; Reue, Karen

    2010-01-01

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3−/− mice exhibit ...

  15. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  16. Origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid

    Institute of Scientific and Technical Information of China (English)

    Wang Liang-Yong; Liu Bo; Song Zhi-Tang; Liu Wei-Li; Feng Song-Lin; David Huang; S.V Babu

    2011-01-01

    We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid. The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing. By using zeta potential analyzer, particle size analyzer, horizon profilometer, thermogravimetric analysis and Fourier transform infrared spectroscopy, the pre-and the post-polished wafer surfaces as well as the pre-and the post-used ceria-based slurries are compared. Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.

  17. The oxidative degradation of barley β-glucan in the presence of ascorbic acid or hydrogen peroxide.

    Science.gov (United States)

    Mäkelä, Noora; Sontag-Strohm, Tuula; Maina, Ndegwa Henry

    2015-06-05

    Cereal β-glucans are polysaccharides with health benefits that have been linked to their ability to increase luminal viscosity. However, the functional properties of cereal β-glucans may be diminished by the susceptibility of this polysaccharide to oxidative degradation. In this study, barley β-glucan was oxidised with hydrogen peroxide or ascorbic acid and the oxidative degradation of β-glucan was investigated using both asymmetrical flow field-flow fractionation (AsFlFFF) with aqueous solvent and high performance size exclusion chromatography (HPSEC) with LiBr in DMSO as the solvent. Oxidation was shown to cause degradation of β-glucan, the reaction being faster when oxidised with hydrogen peroxide compared with ascorbic acid. Both HPSEC and AsFlFFF showed comparable results as long as aggregates (only observed in AsFlFFF) were not included in the integration. The compact aggregates observed in oxidised samples suggest oxidation driven interactions between β-glucan molecules.

  18. Study on the leaching behavior of galena concentrate in fluosilicic acid solution using hydrogen peroxide as oxidant

    Science.gov (United States)

    Anugrah, Rezky Iriansyah; Mubarok, M. Zaki; Amalia, Dessy

    2017-01-01

    Lead (Pb) extraction from galena through leaching has not been commercialized in Indonesia. Therefore, the study of leaching behavior of Bogor galena concentrate in fluosilicic acid (H2SiF6) solution with hydrogen peroxide (H2O2) as oxidant was studied. The study was focused to investigate the effect of dissolution parameters such as temperature, stirring speed, solid percentage, acid concentration and particle sizes of the feed. The added oxidant (H2O2) was kept constant at 9.80 M. The result of Pb extraction percentage without oxidant addition was only 58.28% while by using oxidant in the leaching process, Pb extraction as high as 99.26% was achieved when conducted at 97 °C in 2.25 hours (135 minutes) using -100+150 mesh of concentrate in 3.44 M of H2SiF6 with 12% of solid percentage.

  19. Oxidation of humic acids from an agricultural soil and a lignite deposit: Analysis of lipophilic and hydrophilic products

    Energy Technology Data Exchange (ETDEWEB)

    Allard, B.; Derenne, S. [BIOEMCO, Paris (France)

    2007-07-01

    The composition of humic acids (HAs) isolated from an agricultural soil and a lignite deposit was examined via H{sub 2}O{sub 2} and RuO{sub 4} oxidation. The oxidation digests were separated into lipophilic and hydrophilic components. Information with regard to the source, degree of humification and preservation of easily degradable constituents of the HAs was obtained and results were compared with those obtained earlier for base hydrolysates of solvent-extracted fractions. H{sub 2}O{sub 2} oxidation of both HAs afforded lipophilic fractions containing high molecular weight compounds. The composition of the base hydrolysates of the lipophilic fractions strongly differed with the origin of the HA. The lipophilic components of the soil HA derived mainly from the higher plant polyesters cutin and suberin. The lipophilic components of the lignite HA predominantly comprised long chain alkanoic acids and alkanols. The patterns for the hydrophilic components released upon H{sub 2}O{sub 2} oxidation were found to be identical irrespective of the origin of the HA. The hydrophilic fractions comprised aliphatic (poly)carboxylic acids related to carbohydrate moieties and benzene polycarboxylic acids. The relative abundance of benzene polycarboxylic acids increased with the degree of humification. For both HAs, RuO{sub 4} oxidation resulted in a lipophilic fraction containing low molecular weight products identical to those found in the base hydrolysate of the lipophilic fraction released upon H{sub 2}O{sub 2} oxidation. The hydrophilic components released upon RuO{sub 4} oxidation were independent of the HA origin and consisted mainly of monosaccharides and disubstituted aromatic compounds. In agreement with the greater aromaticity of lignite HA, the aromatic compound/carbohydrate ratio was higher for lignite HA than soil HA. The results show that the fused aromatic structures had a small size and that carbohydrates could escape degradation during the humification process.

  20. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules.

    Science.gov (United States)

    Du, Wen-Yuan; Xiao, Ying; Yao, Jian-Jing; Hao, Zhe; Zhao, Yu-Bin

    2017-01-01

    In the present study, we investigated the potential role of phenolic acids in initiating oxidative damage to microvascular endothelial cells and the underlying mechanism mediating the pro-oxidant action. Male Wistar rats received high doses of phenolic acid [caffeic acid (CA), salvianolic acid B (SAB), chlorogenic acid (ChA) or ferulic acid (FA)]. The creation of reactive oxygen species in mesenteric microcirculation endothelial cells and adherent leukocytes along with venules were assessed using intravital microscopy. The expression levels of NADPH oxidase subunits (Nox4 and p22(phox)) in terminal ileum tissues were determined by western blot analysis. Intravenous injection of high-dose ChA or CA (7 mg/kg) markedly increased the peroxide production in the venular walls and upregulated the protein expression levels of Nox4 and p22(phox) in the ileum tissues, while the same dose of CA and SAB made no difference within the observation period. No changes were observed in the number of leukocytes adhering to the venular walls. High-dose ChA and FA led to an imbalance between the oxidant and antioxidant mechanism by boosting the expression levels of NADPH oxidase. Thus, we clarified the rationale behind the adverse effects of a herbal injection containing high levels of phenolic acid compounds.

  1. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, Ana Cecilia [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Rico, Cyren M. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Medina-Velo, Illya A. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States)

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO{sub 2}, CA + nCeO{sub 2}) bulk cerium oxide (bCeO{sub 2}), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO{sub 2} increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO{sub 2} and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO{sub 2} at 250 mg/kg, but reduced by bCeO{sub 2} at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO{sub 2} increased Ce in roots by 10 and 7 times, compared to CA + nCeO{sub 2}, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO{sub 2} nor CA + nCeO{sub 2} affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO{sub 2} at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO{sub 2} at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO{sub 2} on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9

  2. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    Science.gov (United States)

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  3. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture

    OpenAIRE

    2000-01-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases reduced NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was me...

  4. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway

    Indian Academy of Sciences (India)

    Sourov Ghosh; C Retna Raj

    2015-05-01

    Synthesis of highly efficient functional electrocatalyst that favours the electrochemical oxidation of formic acid via CO-free dehydrogenation pathway is required for direct formic acid fuel cells. Traditional catalysts favour the dehydration pathway involving the generation of poisonous CO. Herein we demonstrate the superior electrocatalytic performance of Pt-Pd bimetallic nanoelectrocatalyst of ultralow Pt content and tuning the reaction pathway by controlling the Pt content. Bimetallic nanoparticles of Pt4Pd96, Pt7Pd93 and Pt47Pd53 compositions are synthesized by electrochemical co-deposition method in aqueous solution. The nanoparticles of ultralow Pt content, Pt4Pd96, favour the CO-free dehydrogenation pathway for formic acid oxidation with an onset potential of 0 V (SHE) whereas the Pt47Pd53 nanoparticles favour the dehydration pathway involving the formation of CO at high positive potential. The Pt content of the bimetallic nanoparticles actually controls the oxidation peak potential and catalytic activity. Significant negative shift (∼350 mV) in the oxidation peak potential and remarkable enhancement in the current density (2.6 times) are observed for Pt4Pd96 nanoparticles with respect to Pt47Pd53. The absence of three adjacent Pt and Pd atoms could be the reason for the suppression of CO pathway. The electrochemical impedance measurements indirectly support the CO-free pathway for the formic acid oxidation on Pt4Pd96 nanoparticles.

  5. Thyroid hormone reverses aging-induced myocardial fatty acid oxidation defects and improves the response to acutely increased afterload.

    Directory of Open Access Journals (Sweden)

    Dolena Ledee

    Full Text Available BACKGROUND: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. METHODS: Studies were performed on young (Young, 4-6 months and aged (Old, 22-24 months C57/BL6 mice at standard (50 mmHg and high afterload (80 mmHg. Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only. Function was measured in isolated working hearts along with substrate fractional contributions (Fc to the citric acid cycle (CAC using perfusate with (13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. RESULTS: Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. CONCLUSION: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  6. Improving oxidative stability of olive oil: Incorporation of Spirulina and evaluation of its synergism with citric acid

    Directory of Open Access Journals (Sweden)

    N. Alavi

    2017-03-01

    Full Text Available The effects of different Spirulina concentrations used alone and in combination with citric acid on the oxidative stability of olive oil were assessed. The amounts of primary and secondary oxidation products produced in Spirulina samples were lower than that of the control. The improved oxidative stability indices of Spirulina samples with and without citric acid were in the range of 85.20–94.47% and 258.10–260.21%, respectively. In comparison with the control, Spirulina samples manifested significantly higher carotenoid and chlorophyll contents at the beginning and end of the storage period. The presence of these bioactive compounds results from the presence of Spirulina in the medium and can thus retard the oxidation of olive oil. A higher oxidative stability was reached using BHT in comparison with Spirulina samples. Furthermore, no synergistic action was observed in possible connections between citric acid and Spirulina. In conclusion, Spirulina can enhance oxidative stability and improve the shelf life of olive oil.

  7. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    Science.gov (United States)

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  8. Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Directory of Open Access Journals (Sweden)

    Kenichi Shimizu

    2011-02-01

    Full Text Available Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  9. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability.

    Science.gov (United States)

    Kotosai, Mari; Shimada, Sachiko; Kanda, Mai; Matsuda, Namiko; Sekido, Keiko; Shimizu, Yoshibumi; Tokumura, Akira; Nakamura, Toshiyuki; Murota, Kaeko; Kawai, Yoshichika; Terao, Junji

    2013-06-01

    The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.

  10. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.

    Science.gov (United States)

    Galushko, A S; Schink, B

    2000-11-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.

  11. Effects of calcination temperature and acid-base properties on mixed potential ammonia sensors modified by metal oxides.

    Science.gov (United States)

    Satsuma, Atsushi; Katagiri, Makoto; Kakimoto, Shiro; Sugaya, Satoshi; Shimizu, Kenichi

    2011-01-01

    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO(3), Bi(2)O(3) and V(2)O(5), while the use of WO(3,) Nb(2)O(5) and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO(3) > Bi(2)O(3) > V(2)O(5), which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.

  12. Oxidation of hepatic carnitine palmitoyl transferase-I (CPT-I impairs fatty acid beta-oxidation in rats fed a methionine-choline deficient diet.

    Directory of Open Access Journals (Sweden)

    Gaetano Serviddio

    Full Text Available There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid β-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH. The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I, the rate-limiting enzyme of the mitochondrial fatty acid β-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD diet, administered for 4 weeks, was used to induce NASH in rats.We demonstrated that CPT-I activity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats.At the same time, the rate of total fatty acid oxidation to CO(2 and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed.

  13. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [The L.N. Gumilyov Eurasian National University, Satpayev str., 2, 010008 Astana (Kazakhstan); Institute of Nuclear Physics Republic of Kazakhstan, 050032, Ibragimov str., 1, Almaty (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpayev str., 2, 010008 Astana (Kazakhstan)

    2015-12-15

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H{sub 2}O{sub 2}/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV–vis, ATR-FTIR, XPS spectroscopies and by SEM.

  14. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in mild conditions (50-70 oC, РО2= 1 atm white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II chloride modified by humic (fulvo- acid to give mainly phosphoric acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final products, optimum conditions of new catalytic reaction of P4 oxidation by oxygen in water medium were defined by kinetics, volumometry, redox-potentiometry, 31Р{1Н} NMR spectroscopy and  titration. 

  15. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  16. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    Energy Technology Data Exchange (ETDEWEB)

    Hare, W.R.; Wahle, K.W. (Rowett Research Institute, Bucksburn, Aberdeen (England))

    1991-02-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation.

  17. Phosphonic acid functionalized asymmetric phthalocyanines: synthesis, modification of indium tin oxide, and charge transfer.

    Science.gov (United States)

    Polaske, Nathan W; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayunk; Oquendo, Luis E; Green, John T; Ratcliff, Erin L; Armstrong, Neal R; Saavedra, S Scott; McGrath, Dominic V

    2011-12-20

    Metalated and free-base A(3)B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  18. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A₃B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  19. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    Science.gov (United States)

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  20. Fuzzy Neural Network Model of 4-CBA Concentration for Industrial Purified Terephthalic Acid Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    刘瑞兰; 苏宏业; 牟盛静; 贾涛; 陈渭泉; 褚健

    2004-01-01

    A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.