Sample records for acid oxidase expression

  1. Identification, cloning, and expression of L-amino acid oxidase from marine Pseudoalteromonas sp. B3. (United States)

    Yu, Zhiliang; Zhou, Ning; Qiao, Hua; Qiu, Juanping


    L-amino acid oxidase (LAAO) is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3) was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genus Pseudoalteromonas. Therefore, it was designated as Pseudoalteromonas sp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, and NH4+ in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif and βαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed in E. coli BL21(DE3) using vectors, pET28b(+) and pET20b(+). However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.

  2. Identification, Cloning, and Expression of L-Amino Acid Oxidase from Marine Pseudoalteromonas sp. B3

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu


    Full Text Available L-amino acid oxidase (LAAO is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3 was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genus Pseudoalteromonas. Therefore, it was designated as Pseudoalteromonas sp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, and NH4+ in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif and βαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed in E. coli BL21(DE3 using vectors, pET28b(+ and pET20b(+. However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.

  3. Antibacterial efficacy of recombinant Siganus oramin L-amino acid oxidase expressed in Pichia pastoris. (United States)

    Li, Ruijun; Li, Anxing


    Siganus oraminl-amino acid oxidase is a novel natural protein (named SR-LAAO) isolated from serum of the rabbitfish (S. oramin), which showed antibacterial activity against both Gram-positive and Gram-negative bacteria and had a lethal effect on the parasites Cryptocaryon irritans, Trypanosoma brucei brucei and Ichthyophthirius multifiliis. In order to test whether recombinant SR-LAAO (rSR-LAAO) produced by the eukaryotic expression system also has antimicrobial activity, the yeast Pichia pastoris was used as the expression host to obtain rSR-LAAO in vitro. Crude rSR-LAAO produced by P. pastoris integrated with the SR-LAAO gene had antibacterial activity against both Gram-positive and Gram-negative bacteria as shown by inhibition zone assay of the antibacterial spectrum on agar plates. The average diameter of the inhibition zone of crude rSR-LAAO against the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae was 1.040 ± 0.045 cm and 1.209 ± 0.085 cm, respectively. For the Gram-negative bacteria Aeromonas sobria, Escherichia coli, Vibrio alginolyticus, Vibrio cholera and Photobacterium damselae subsp. piscicida, the average diameter of inhibition zone was 1.291 ± 0.089 cm, 0.943 ± 0.061 cm, 0.756 ± 0.057 cm, 0.834 ± 0.023 cm and 1.211 ± 0.026 cm, respectively. These results were obtained at the logarithmic growth phase of S. agalactiae and A. sobria cell suspensions after incubation with 0.5 mg/mL crude rSR-LAAO for 24 h. The final bacterial growth rate was decreased significantly. The relative inhibition rate can reach 50% compared to crude products from P. pastoris integrated with an empty vector at the same concentration of protein. The antimicrobial activity of crude rSR-LAAO was likely associated with H2O2 formation, because its inhibition zones were disturbed significantly by catalase. Scanning electron microscopy results showed crude rSR-LAAO-treated bacterial surfaces became rough and particles were attached, cell walls were

  4. Uric acid stimulates endothelin-1 gene expression associated with NADPH oxidase in human aortic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Hung-hsing CHAO; Ju-chi LIU; Jia-wei LIN; Cheng-hsien CHEN; Chieh-hsi WU; Tzu-hurng CHENG


    Aim: Recent experimental and human studies have shown that hyperuricemia is associated with hypertension and cardiovascular diseases. Elevated levels of endotheliu-1 (ET-1) has been regarded as one of the most powerful indepen-dent predictors of cardiovascular diseases. For investigating whether uric acidinduced vascular diseases are related to ET-1, the uric acid-induced ET-1 expression in human aortic smooth muscle cells (HASMC) was examined. Methods: Cultured HASMC treated with uric acid, cell proliferation and ET-1 expression were examined. Antioxidant pretreatments on uric acid-induced extracellular signal-regulated kinases (ERK) phosphorylation were carried out to elucidate the redox-sensitive pathway in proliferation and ET-1 gene expression. Results: Uric acid was found to increase HASMC proliferation, ET-1 expression and reactive oxygen species production. The ability of both N-acetylcysteine and apocynin (1-[4-hydroxy-3-methoxyphenyl]ethanone, a NADPH oxidase inhibitor) to inhibit uric acid-induced ET-1 secretion and cell proliferation suggested the involvement of intracellular redox pathways. Furthermore, apocynin, and p47phox small interfering RNA knockdown inhibited ET-1 secretion and cell proliferation induced by uric acid. Inhibition of ERK by U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene) significantly suppressed uric acid-induced ET-I expression, implicating this pathway in the response to uric acid. In addition, uric acid increased the transcription factor activator protein-1 (AP-1) medi-ated reporter activity, as well as the ERK phosphorylation. Mutational analysis of the ET-1 gene promoter showed that the AP-1 binding site was an important cis-element in uric acid-induced ET-1 gene expression. Conclusion: This is the first observation of ET-1 regulation by uric acid in HASMC, which implicates the important role of uric acid in the vascular changes associated with hypertension and vascular diseases.

  5. α-Lipoic Acid Inhibits Helicobacter pylori-Induced Oncogene Expression and Hyperproliferation by Suppressing the Activation of NADPH Oxidase in Gastric Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Eunyoung Byun


    Full Text Available Hyperproliferation and oncogene expression are observed in the mucosa of Helicobacter pylori- (H. pylori- infected patients with gastritis or adenocarcinoma. Expression of oncogenes such as β-catenin and c-myc is related to oxidative stress. α-Lipoic acid (α-LA, a naturally occurring thiol compound, acts as an antioxidant and has an anticancer effect. The aim of this study is to investigate the effect of α-LA on H. pylori-induced hyperproliferation and oncogene expression in gastric epithelial AGS cells by determining cell proliferation (viable cell numbers, thymidine incorporation, levels of reactive oxygen species (ROS, NADPH oxidase activation (enzyme activity, subcellular levels of NADPH oxidase subunits, activation of redox-sensitive transcription factors (NF-κB, AP-1, expression of oncogenes (β-catenin, c-myc, and nuclear localization of β-catenin. Furthermore, we examined whether NADPH oxidase mediates oncogene expression and hyperproliferation in H. pylori-infected AGS cells using treatment of diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase. As a result, α-LA inhibited the activation of NADPH oxidase and, thus, reduced ROS production, resulting in inhibition on activation of NF-κB and AP-1, induction of oncogenes, nuclear translocation of β-catenin, and hyperproliferation in H. pylori-infected AGS cells. DPI inhibited H. pylori-induced activation of NF-κB and AP-1, oncogene expression and hyperproliferation by reducing ROS levels in AGS cells. In conclusion, we propose that inhibiting NADPH oxidase by α-LA could prevent oncogene expression and hyperproliferation occurring in H. pylori-infected gastric epithelial cells.

  6. Expression of alternative oxidase in tomato

    Energy Technology Data Exchange (ETDEWEB)

    Kakefuda, M.; McIntosh, L. (Michigan State Univ., East Lansing (USA))


    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  7. Candida cloacae长链脂肪酸醇氧化酶基因的克隆与表达%Cloning and Expression of Long-chain Fatty-acid Alcohol Oxidase from Candida cloacae

    Institute of Scientific and Technical Information of China (English)

    葛正龙; AntoniR.SLABAS


    The cDNA encoding long-chain fatty-acid alcohol oxidase(FAO) was isolated by using RT-PCR method from Canbdida cloacae grown in a medium containing oleic acid.The cDNA of fatty-acid alcohol oxidase was cloned into expression plasmid pET176b under T7 promoter and then transformed into E.coli BL21/DE3.The molecular weight of the expressed protein was estimated to be approximately 64 kD by SDS-PAGE.The expressed protein had a specific catalytic activity of fatty-acid alcohol oxidase and its activity was 1090±116 U/ml medium.Northern blotting revealed that there was high expression of fao mRNA in Candida cloacae yeast grown in a medium containing oleic acid.

  8. The Influence of Co-Suppressing Tomato 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ⅰ on the Expression of Fruit Ripening-Related and Pathogenesis-Related Protein Genes

    Institute of Scientific and Technical Information of China (English)

    HU Zong-li; CHEN Xu-qing; CHEN Guo-ping; L(U) Li-juan; Grierson Donald


    The purpose of this study is to explore the influence of co-suppressing tomato ACC oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes, and on the biosynthesis of endogenous ethylene and storage ability of fruits. Specific fragments of several fruit ripening-related and pathogenesis-related protein genes from tomato (Lycopersicon esculentum) were cloned, such as the 1-aminocyclopropane-1-carboxylic acid oxidase 1 gene (LeACO1), 1-aminocyclopropane-1-carboxylic acid oxidase 3 gene (LeAC03), EIN3-binding F-box 1 gene (LeEBF1), pathogenesisrelated protein 1 gene (LePR1), pathogenesis-related protein 5 gene (LePR5), and pathogenesis-related protein osmotin precursor gene (LeNP24) by PCR or RT-PCR. Then these specific DNA fragments were used as probes to hybridize with the total RNAs extracted from the wild type tomato Ailsa Craig (AC++) and the LeACO1 co-suppression tomatoes (V1187 and T4B), respectively. At the same time, ethylene production measurement and storage experiment of tomato fruits were carried out. The hybridization results indicated that the expression of fruit ripening-related genes such as LeACO3 and LeEBF1, and pathogenesis-related protein genes such as LePR1, LePR5, and LeNP24, were reduced sharply, and the ethylene production in the fruits, wounded leaves decreased and the storage time of ripening fruits was prolonged, when the expression of LeACO1 gene in the transgenic tomato was suppressed. In the co-suppression tomatoes, the expression of fruit ripening-related and pathogenesis-related protein genes were restrained at different degrees, the biosynthesis of endogenous ethylene decreased and the storage ability of tomato fruits increased.

  9. RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit. (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom; Yeong, Wee Chien; Pillai, Vilasini


    The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  10. RNA Interference of 1-Aminocyclopropane-1-carboxylic Acid Oxidase (ACO1 and ACO2 Genes Expression Prolongs the Shelf Life of Eksotika (Carica papaya L. Papaya Fruit

    Directory of Open Access Journals (Sweden)

    Rogayah Sekeli


    Full Text Available The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6. Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.

  11. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  12. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells. (United States)

    Hong, Jie; Li, Dan; Cao, Weibiao


    Mechanisms of the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  13. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine. (United States)

    Gisby, Martin F; Mudd, Elisabeth A; Day, Anil


    Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. High-yield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding D-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of D-amino acids into plastids, which contain a target that is inhibited by D-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available D-amino acids, which are relatively nontoxic to animals and microbes, to either select against (D-valine) or for (D-alanine) cells containing transgenic plastids. Positive/negative selection with d-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential D-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop D-valine-based methods to manage the spread of transgenic plastids tagged with dao.

  14. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils. (United States)

    González-Mañán, Daniel; Tapia, Gladys; Gormaz, Juan Guillermo; D'Espessailles, Amanda; Espinosa, Alejandra; Masson, Lilia; Varela, Patricia; Valenzuela, Alfonso; Valenzuela, Rodrigo


    High dietary intake of n-6 fatty acids in relation to n-3 fatty acids may generate health disorders, such as cardiovascular and other chronic diseases. Fish consumption rich in n-3 fatty acids is low in Latin America, it being necessary to seek other alternatives to provide α-linolenic acid (ALA), precursor of n-3 LCPUFA (EPA and DHA). Two innovative oils were assayed, chia (Salvia hispanica) and rosa mosqueta (Rosa rubiginosa). This study evaluated hepatic bioconversion of ALA to EPA and DHA, expression of PPAR-α, acyl-Coenzyme A oxidase 1 (ACOX1) and carnitine acyltransferase I (CAT-I), and accumulation of EPA and DHA in plasma and adipose tissue in Sprague-Dawley rats. Three experimental groups were fed 21 days: sunflower oil (SFO, control); chia oil (CO); rosa mosqueta oil (RMO). Fatty acid composition of total lipids and phospholipids from plasma, hepatic and adipose tissue was assessed by gas-liquid chromatography and TLC. Expression of PPAR-α (RT-PCR) and ACOX1 and CAT-I (Western blot). CO and RMO increased plasma, hepatic and adipose tissue levels of ALA, EPA and DHA and decreased n-6:n-3 ratio compared to SFO (p < 0.05, One-way ANOVA and Newman-Keuls test). CO increased levels of ALA and EPA compared to RMO (p < 0.05). No significant differences were observed for DHA levels. CO also increased the expression of PPAR-α, ACOX1 and CAT-I. Only CAT-I levels were increased by RO. CO and RMO may be a nutritional alternative to provide ALA for its bioconversion to EPA and DHA, and to increase the expression of PPAR-α, ACOX1 and CAT-I, especially CO-oil.

  15. The pea gene NA encodes ent-kaurenoic acid oxidase. (United States)

    Davidson, Sandra E; Elliott, Robert C; Helliwell, Chris A; Poole, Andrew T; Reid, James B


    The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.

  16. L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. (United States)

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian


    L-Amino acid oxidases (LAAOs), which catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids and ammonia, are flavin adenine dinucleotide-containing homodimeric proteins. L-Amino acid oxidases are widely distributed in diverse organisms and have a range of properties. Because expressing LAAOs as recombinant proteins in heterologous hosts is difficult, their biotechnological applications have not been thoroughly advanced. LAAOs are thought to contribute to amino acid catabolism, enhance iron acquisition, display antimicrobial activity, and catalyze keto acid production, among other roles. Here, we review the types, properties, structures, biological functions, heterologous expression, and applications of LAAOs obtained from microbial sources. We expect this review to increase interest in LAAO studies.



    Joseph Baby; Rajan Sheeja S; M.V Jeevitha; S.U Ajisha


    L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has ...

  18. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris (United States)

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, François; Whittaker, James W.


    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4×104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions. PMID:17399681

  19. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves


    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  20. Involvement of Gluconic Acid and Glucose Oxidase in the Pathogenicity of Penicillium expansum in Apples. (United States)

    Hadas, Yoav; Goldberg, Israel; Pines, Ophry; Prusky, Dov


    ABSTRACT The contribution of gluconic acid secretion to the colonization of apple tissue by Penicillium expansum was analyzed by modulation (increase or decrease) of gluconic acid accumulation at the infection court. P. expansum isolates that express the most gox2 transcripts and concomitant glucose oxidase (GOX) activity and that secrete the most gluconic acid cause disease of apple at the fastest rate. Cultures grown under reduced oxygen concentration generated fewer gox2 transcripts, produced less gluconic acid, and led to a 15% reduction in disease. Furthermore, the detection of significantly high levels of transcripts of gox2 and GOX activity at the edge of the decaying tissue emphasize the involvement of GOX in tissue acidification of the decaying tissue. Taken together, these results emphasize the importance of GOX in the production of the gluconic acid that leads, in turn, to host tissue acidification. This acidification enhanced the expression of pectolytic enzymes and the establishment of conditions for necrotrophic development of P. expansum.

  1. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst

    Directory of Open Access Journals (Sweden)

    Speight Robert


    Full Text Available Abstract Background Trigonopsis variabilis D-amino acid oxidase (TvDAO is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. Results As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 × 103 U/g wet cell weight (wcw were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of ≥ 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain under conditions of D-methionine conversion using vigorous

  2. Process technology for the application of d-amino acid oxidases in pharmaceutical intermediate manufacturing

    DEFF Research Database (Denmark)

    Tindal, Stuart; Carr, Reuben; Archer, Ian V. J.


    Recent advances in biocatalysis have seen increased interest in the use of D-amino acid oxidase to synthesize optically pure amino acids. However, the creation of a genuine oxidase based platform technology will require suitable process technology as well as an understanding of the challenges and...

  3. Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus▿ (United States)

    Sánchez-Sutil, María Celestina; Gómez-Santos, Nuria; Moraleda-Muñoz, Aurelio; Martins, Lígia O.; Pérez, Juana; Muñoz-Dorado, José


    Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetative rods exhibit 15-fold-greater resistance against copper than developing cells. However, cells preadapted to this metal reach the same levels of resistance during both stages. Analysis of the M. xanthus genome reveals that many of the genes involved in copper resistance are redundant, three of which encode proteins of the multicopper oxidase family (MCO). Each MCO gene exhibits a different expression profile in response to external copper addition. Promoters of cuoA and cuoB respond to Cu(II) ions during growth and development; however, they show a 10-fold-increased copper sensitivity during development. The promoter of cuoC shows copper-independent induction upon starvation, but it is copper up-regulated during growth. Phenotypic analyses of deletion mutants reveal that CuoB is involved in the primary copper-adaptive response; CuoA and CuoC are necessary for the maintenance of copper tolerance; and CuoC is required for normal development. These roles seem to be carried out through cuprous oxidase activity. PMID:17483223

  4. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang [Michigan State Univ., East Lansing, MI (United States)] [and others


    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.

  5. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Gombert Andreas K


    Full Text Available Abstract Background In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e.g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.


    Directory of Open Access Journals (Sweden)

    Joseph Baby


    Full Text Available L-Amino acid oxidases are flavoenzymes which catalyze the stereospecific oxidative deamination of an L-amino acid substrate to a corresponding a-ketoacid with hydrogen peroxide and ammonia production. These enzymes, which are widely distributed in many different organisms, exhibit a marked affinity for hydrophobic amino acids, including phenylalanine, tryptophan, tyrosine, and leucine. Snake venom LAAO induces platelet aggregation and cytotoxicity in various cancer cell lines. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis and Gram-negative (Escherichia coli bacteria. Specific substrates for the isolated protein are L-phenylalanine, L-tryptophan, L-methionine and L-leucine. The enzyme is stable at low temperatures (−20 ºC, −70 ºC and loses its activity by heating at 70 ºC. These enzymes are postulated to be toxins that may be involved in the allergic inflammatory response and specifically associated with mammalian endothelial cells damage. However, in the last decade these enzymes have become an interesting subject for pharmacological, structural and molecular characterizations. Structural and functional investigations of these enzymes can contribute to the advancement of toxinology and to the elaboration of novel therapeutic agents.

  7. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius. (United States)

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S


    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  8. Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. (United States)

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Morris, Peter C; Keane, Mark A


    While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.

  9. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang


    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  10. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. (United States)

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr


    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  11. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase. (United States)

    Barawkar, Dinesh A; Bandyopadhyay, Anish; Deshpande, Anil; Koul, Summon; Kandalkar, Sachin; Patil, Pradeep; Khose, Goraksha; Vyas, Samir; Mone, Mahesh; Bhosale, Shubhangi; Singh, Umesh; De, Siddhartha; Meru, Ashwin; Gundu, Jayasagar; Chugh, Anita; Palle, Venkata P; Mookhtiar, Kasim A; Vacca, Joseph P; Chakravarty, Prasun K; Nargund, Ravi P; Wright, Samuel D; Roy, Sophie; Graziano, Michael P; Cully, Doris; Cai, Tian-Quan; Singh, Sheo B


    Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.

  12. Molecular characterization and expression pattern of tobacco (Nicotiana tabacum ascorbate oxidase gene

    Directory of Open Access Journals (Sweden)

    Zhihua Li


    Full Text Available The complete coding sequence of one tobacco (Nicotiana tabacum gene, ascorbate oxidase (AO, was isolated by the application of reverse transcription-polymerase chain reaction. The tobacco AO gene consists of a 1722-bp open reading frame and encodes a protein of 573 amino acids. Sequence comparison analysis revealed that the tobacco AO protein shares high homology with the AO proteins of Lycopersicon esculentum (89%, Populus trichocarpa (75%, soybean (74%, castor bean (73% and peach (73%. The prediction of transmembrane helices showed that tobacco AO might be a transmembrane protein. The expression profile was studied and the results indicated that the tobacco AO gene was diversely expressed in different tobacco tissues, including leaves, stem, roots and flowers. Our experiment laid the grounds for further research on this tobacco gene.

  13. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules. (United States)

    Du, Wen-Yuan; Xiao, Ying; Yao, Jian-Jing; Hao, Zhe; Zhao, Yu-Bin


    In the present study, we investigated the potential role of phenolic acids in initiating oxidative damage to microvascular endothelial cells and the underlying mechanism mediating the pro-oxidant action. Male Wistar rats received high doses of phenolic acid [caffeic acid (CA), salvianolic acid B (SAB), chlorogenic acid (ChA) or ferulic acid (FA)]. The creation of reactive oxygen species in mesenteric microcirculation endothelial cells and adherent leukocytes along with venules were assessed using intravital microscopy. The expression levels of NADPH oxidase subunits (Nox4 and p22(phox)) in terminal ileum tissues were determined by western blot analysis. Intravenous injection of high-dose ChA or CA (7 mg/kg) markedly increased the peroxide production in the venular walls and upregulated the protein expression levels of Nox4 and p22(phox) in the ileum tissues, while the same dose of CA and SAB made no difference within the observation period. No changes were observed in the number of leukocytes adhering to the venular walls. High-dose ChA and FA led to an imbalance between the oxidant and antioxidant mechanism by boosting the expression levels of NADPH oxidase. Thus, we clarified the rationale behind the adverse effects of a herbal injection containing high levels of phenolic acid compounds.

  14. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui


    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  15. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia. (United States)

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang


    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  16. Purine-induced expression of urate oxidase and enzyme activity in Atlantic salmon (Salmo salar). Cloning of urate oxidase liver cDNA from three teleost species and the African lungfish Protopterus annectens. (United States)

    Andersen, Øivind; Aas, Turid S; Skugor, Stanko; Takle, Harald; van Nes, Solveig; Grisdale-Helland, Barbara; Helland, Ståle J; Terjesen, Bendik F


    The peroxisomal enzyme urate oxidase plays a pivotal role in the degradation of purines in both prokaryotes and eukaryotes. However, knowledge about the purine-induced expression of the encoding gene is lacking in vertebrates. These are the first published sequences of fish urate oxidase, which were predicted from PCR amplified liver cDNAs of Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and African lungfish (Protopterus annectens). Sequence alignment of different vertebrate urate oxidases revealed amino acid substitutions of putative functional importance in the enzyme of chicken and lungfish. In the adult salmon, expression of urate oxidase mRNA predominated in liver, but was also identified in several nonhepatic organs including brain, but not in skeletal muscle and kidney. Juvenile salmon fed diets containing bacterial protein meal (BPM) rich in nucleic acids showed a significant increase in liver urate oxidase enzyme activity, and urea concentrations in plasma, muscle and liver were elevated. Whereas salmon fed the 18% BPM diet showed a nonsignificant increase in liver mRNA levels of urate oxidase compared with the 0% BPM-fed fish, no further increase in mRNA levels was found in fish receiving 36% BPM. The discrepancy between urate oxidase mRNA and enzyme activity was explained by rapid mRNA degradation or alternatively, post-translational control of the activity. Although variable plasma and liver levels of urate were detected, the substrate increased only slightly in 36% BPM-fed fish, indicating that the uricolytic pathway of Atlantic salmon is intimately regulated to handle high dietary purine levels.

  17. Phytanic acid alpha-oxidase deficiency (Refsum disease) presenting in infancy. (United States)

    Herbert, M A; Clayton, P T


    This report describes a patient with high serum phytanic acid concentration due to phytanic acid alpha-oxidase deficiency (classical Refsum disease). He presented unusually early, hypotonia and developmental delay being apparent by 7 months. A generalized peroxisomal disorder (so-called 'infantile Refsum disease') was excluded by analyses of pristanic acid, very long-chain fatty acids, bile acids and plasmalogen synthesis. The early presentation raises the possibility of in utero exposure to phytanate.

  18. Cloning and characterization of the gene for L-amino acid oxidase in hybrid tilapia. (United States)

    Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua


    Tilapia is the common name for a group of cichlid fishes. Identification of DNA markers significantly associated with important traits in candidate genes may speed up genetic improvement. L-Amino acid oxidase (LAO) plays a crucial role in the innate immune defences of animals. Previously, whether LAO variants were associated with economic traits had not been studied in fish. We characterized the cDNA sequence of the LAO gene of hybrid tilapia (Oreochromis spp.). Its ORF was 1536 bp, encoding a flavoenzyme of 511 amino acids. This gene consisted of seven exons and six introns. Its expression was detected in the intestine, blood, kidney, skin, liver. It was highly expressed in the intestine. After a challenge with a bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the liver, intestine and spleen (P tilapia. The investigation of relationship between polymorphism of LAO gene and disease resistance and growth in tilapia showed that one SNP was associated significantly with body length. Further experiments on whether SNPs in the LAO gene are associated with growth in tilapia and other populations could be useful in understanding more functions of the LAO gene.

  19. Antibacterial properties of the mammalian L-amino acid oxidase IL4I1.

    Directory of Open Access Journals (Sweden)

    Marie-Line Puiffe

    Full Text Available L-amino acid oxidases (LAAO are flavoproteins that catalyze the oxidative deamination of L-amino acids to a keto-acid along with the production of H₂O₂ and ammonia. Interleukin 4 induced gene 1 (IL4I1 is a secreted LAAO expressed by macrophages and dendritic cells stimulated by microbial derived products or interferons, which is endowed with immunoregulatory properties. It is the first LAAO described in mammalian innate immune cells. In this work, we show that this enzyme blocks the in vitro and in vivo growth of Gram negative and Gram positive bacteria. This antibiotic effect is primarily mediated by H₂O₂ production but is amplified by basification of the medium due to the accumulation of ammonia. The depletion of phenylalanine (the primary amino acid catabolized by IL4I1 may also participate in the in vivo inhibition of staphylococci growth. Thus, IL4I1 plays a distinct role compared to other antibacterial enzymes produced by mononuclear phagocytes.

  20. Hippocampal mitochondrial cytochrome C oxidase activity and gene expression in a rat model of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Yingli Zhang; Mingming Zhao; Yu Wang; Ming Ma; Xinquan Gu; Xia Cao


    The present study established a rat model of chronic cerebral ischemia using bilateral common carotid artery permanent ligation to analyze cytochrome C oxidase activity and mRNA expression in hippocampal mitochondria.Results showed significantly decreased cytochrome C oxidase activity and cytochrome C oxidase II mRNA expression with prolonged ischemia time.Further analysis revealed five mitochondrial cytochrome C oxidase II gene mutations, two newly generated mutations, and four absent mutational sites at 1 month after cerebral ischemia, as well as three mitochondrial cytochrome C oxidase III gene mutations, including two newly generating mutations, and one disappeared mutational site at 1 month after cerebral ischemia.Results demonstrated that decreased cytochrome C oxidase gene expression and mutations, as well as decreased cytochrome C oxidase activity, resulting in energy dysmetabolism, which has been shown to be involved in the pathological process of ischemic brain injury.

  1. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming


    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5.

  2. Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant. (United States)

    Fiedurek, J; Gromada, A; Pielecki, J


    The production of gluconic acid, extracellular glucose oxidase and catalase in submerged culture by a number of biochemical mutants has been evaluated. Optimization of stirrer speed, time cultivation and buffering action of some chemicals on glucose oxidase, catalase and gluconic acid production by the most active mutant, AM-11, grown in a 3-L glass bioreactor was investigated. Three hundred rpm appeared to be optimum to ensure good growth and best glucose oxidase production, but gluconic acid or catalase activity obtained maximal value at 500 or 900 rpm, respectively. Significant increase of dissolved oxygen concentration in culture (16-21%) and extracellular catalase activity were obtained when the traditional aeration was employed together with automatic dosed hydrogen peroxide.

  3. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais. (United States)

    Hou, Chang-Liang; Wang, Jing-Bo; Wu, Hua; Liu, Jia-Yu; Ma, Zhi-Qing; Feng, Jun-Tao; Zhang, Xing


    Cytochrome c oxidase subunit II (COX II) containing a dual core CuA active site is one of the core subunits of mitochondrial Cytochrome c oxidase (Cco), which plays a significant role in the physiological process. In this report, the full-length cDNA of COXII gene was cloned from Sitophilus zeamais, which had an open reading frame (ORF) of 684 bp encoding 227 amino acids residues. The predicted COXII protein had a molecular mass of 26.2 kDa with pI value of 6.37. multiple sequence alignment and phylogenetic analysis indicated that Sitophilus zeamais COXII had high sequence identity with the COXII of other insect species. The gene was subcloned into the expression vector pET-32a, and induced by isopropyl β-d-thiogalactopyranoside (IPTG) in E. coli Transetta (DE3) expression system. Finally the recombinant COXII with 6-His tag was purified using affinity chromatography with Ni(2+)-NTA agarose. Western Blotting (WB) showed the recombinant protein was about 44 kD, and the concentration of fusion protein was 50 μg/mL. UV-spectrophotometer and infrared spectrometer analysis showed that recombinant COXII could catalyze the oxidation of substrate Cytochrome C (Cyt c), and influenced by allyl isothiocyanate (AITC). By using molecular docking method, It was found that a sulfur atom of AITC structure could form a length of 2.9 Å hydrogen bond with Leu-31. These results suggested that tag-free COXII was functional and one of the action sites of AITC, which will be helpful to carry out a point mutation in binding sites for the future research.

  4. Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Arge mone mexicana and Berberis wilsoniae in insect cells. (United States)

    Gesell, Andreas; Chávez, Maria Luisa Díaz; Kramell, Robert; Piotrowski, Markus; Macheroux, Peter; Kutchan, Toni M


    Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC, was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.

  5. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines

    Directory of Open Access Journals (Sweden)

    Cristiane Tavares


    Full Text Available ABSTRACT BACKGROUND: Myeloproliferative neoplasms are Philadelphia chromosome-negative diseases characterized by hyperproliferation of mature myeloid cells, associated or not with the Janus kinase 2 tyrosine kinase mutation, JAK2V617F. As there is no curative therapy, researchers have been investigating new drugs to treat myeloproliferative neoplasms, including l-amino acid oxidase from Calloselasma rhodostoma snake venom (CR-LAAO, which is a toxin capable of eliciting apoptosis in several tumor cell lines. OBJECTIVE: To evaluate the effects of l-amino acid oxidase from C. rhodostoma snake venom in the apoptotic machinery of JAK2-mutated cell lines. METHODS: The HEL 92.1.7 and SET-2 cell lines were cultured with l-amino acid oxidase and catalase for 12 h at 37 °C in 5% carbon dioxide. The cell viability was assessed by the multi-table tournament method, the level of apoptosis was measured by flow cytometry, and the expression of cysteine-dependent aspartate-specific proteases and cleaved Poly(ADP-ribose polymerase were analyzed by Western blotting. RESULTS: l-Amino acid oxidase from C. rhodostoma snake venom was cytotoxic to HEL 92.1.7 and SET-2 cells (50% inhibitory concentration = 0.15 µg/mL and 1.5 µg/mL, respectively and induced apoptosis in a concentration-dependent manner. Cell treatment with catalase mitigated the l-amino acid oxidase toxicity, indicating that hydrogen peroxide is a key component of its cytotoxic effect.The activated caspases 3 and 8 expression and cleaved PARP in HEL 92.1.7 and SET-2 cells confirmed the apoptosis activation by CR-LAAO. CONCLUSIONS: l-Amino acid oxidase from C. rhodostoma snake venom is a potential antineoplastic agent against HEL 92.1.7 and SET-2 JAK2V617F-positive cells as it activates the extrinsic apoptosis pathway.

  6. Comparison of polyphenol oxidase expression in glandular trichomes of solanum and lycopersicon species. (United States)

    Yu, H; Kowalski, S P; Steffens, J C


    Tetralobulate glandular trichomes are present on the foliage of many solanaceous species. Resistance of many of these species to insects is conditioned by the ability of trichomes to rupture upon contact and to rapidly polymerize their contents, resulting in entrapment of insects in hardened trichome exudate. In the wild potato, Solanum berthaultii, polymerization of trichome exudate is initiated by a soluble M(r) 59,000 polyphenol oxidase (PPO), which is a dominant protein constituent of the organ. PPOs, although ubiquitous in angiosperms, typically display great heterogeneity in molecular weight and are found at low levels in plant cells. Because of the unusually high accumulation and tissue-specific expression of the M(r) 59,000 PPO in S. berthaultii glandular trichomes, we analyzed trichome proteins of a number of Lycopersicon and Solanum species to assess the extent to which possession of the M(r) 59,000 PPO is conserved. Trichomes were collected manually and examined for PPO activity, immuno-cross-reactivity with S. berthaultiiM(r) 59,000 PPO, and protein content. In addition, N-terminal amino acid sequences were obtained for five trichome PPOs. All species analyzed possessed trichome PPOs similar in structure and level of expression to that of S. berthaultii. The relationship between sequences and structures of these conserved PPOs and the variable PPOs of leaf is discussed.

  7. D-Amino acid oxidase and presence of D-proline in Xenopus laevis. (United States)

    Soma, Hiroki; Furuya, Ryuji; Kaneko, Ryo; Tsukamoto, Ayaka; Shirasu, Kazumitsu; Tanigawa, Minoru; Nagata, Yoko


    We purified D-amino acid oxidase (EC, DAO) from Xenopus laevis tadpoles. The optimal temperature and pH for enzyme activity were 35-40 °C and 8.3-9.0, respectively, depending on the substrate amino acids available to the enzyme; the highest activity was observed with D-proline followed by D-phenylalanine. Activity was significantly inhibited by p-hydroxymercuribenzoate, but only moderately by p-chloromercuribenzoate or benzoate. Enzyme activity was increased until the final tadpole stage, but was reduced to one-third in the adult and was localized primarily in the kidney. The tadpoles contained high concentrations of D-proline close to the final developmental stage and nearly no D-amino acids were detected in the adult frog, indicating that D-amino acid oxidase functions in metamorphosis.

  8. Molecular characterization and expression of a novel alcohol oxidase from Aspergillus terreus MTCC6324.

    Directory of Open Access Journals (Sweden)

    Mitun Chakraborty

    Full Text Available The alcohol oxidase (AOx cDNA from Aspergillus terreus MTCC6324 with an open reading frame (ORF of 2001 bp was constructed from n-hexadecane induced cells and expressed in Escherichia coli with a yield of ∼4.2 mg protein g-1 wet cell. The deduced amino acid sequences of recombinant rAOx showed maximum structural homology with the chain B of aryl AOx from Pleurotus eryngii. A functionally active AOx was achieved by incubating the apo-AOx with flavin adenine dinucleotide (FAD for ∼80 h at 16°C and pH 9.0. The isoelectric point and mass of the apo-AOx were found to be 6.5±0.1 and ∼74 kDa, respectively. Circular dichroism data of the rAOx confirmed its ordered structure. Docking studies with an ab-initio protein model demonstrated the presence of a conserved FAD binding domain with an active substrate binding site. The rAOx was specific for aryl alcohols and the order of its substrate preference was 4-methoxybenzyl alcohol >3-methoxybenzyl alcohol>3, 4-dimethoxybenzyl alcohol > benzyl alcohol. A significantly high aggregation to ∼1000 nm (diameter and catalytic efficiency (kcat/Km of 7829.5 min-1 mM-1 for 4-methoxybenzyl alcohol was also demonstrated for rAOx. The results infer the novelty of the AOx and its potential biocatalytic application.

  9. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Kimleang Khun


    Full Text Available In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF response of L-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards L-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  10. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang


    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  11. High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. (United States)

    Gao, Zhaowei; Li, Zhuofu; Zhang, Yuhong; Huang, Huoqing; Li, Mu; Zhou, Liwei; Tang, Yunming; Yao, Bin; Zhang, Wei


    The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35-40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml(-1) (2.5 g protein l(-1)) in a 3 l fermentor--410% higher than GOD-w (148 U ml(-1)), and thus is a low-cost alternative for the bread baking industry.

  12. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  13. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. (United States)

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael


    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  14. Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. (United States)

    Singtripop, Tippawan; Saeangsakda, Manasawan; Tatun, Nujira; Kaneko, Yu; Sakurai, Sho


    The moth Omphisa fuscidentalis (Lepidoptera, Pyralidae) is a univoltine insect with a larval diapause period lasting up to 9 months. We studied changes in O(2) consumption in conjunction with cytochrome c oxidase activity and cytochrome c oxidase subunit I (cox1) gene expression. O(2) consumption changed within a day, showing a supradian rhythm with a ca.12-h cycle at 25 degrees C. During the first two-thirds of the diapause period, from October to March, O(2) consumption was constant until January and then increased by March. Topical application of methoprene, a juvenile hormone analog (JHA), to diapausing larvae terminated the diapause and was associated with an increase in O(2) consumption rate at diapause termination. In JHA-treated larvae, cytochrome c oxidase activity in fat bodies was high at the beginning of the prepupal period and highest at pupation. cox1 expression in fat bodies displayed a transient peak 8 days after JHA application and peaked in the prepupal period. Taken together, our results show that the break of diapause by JHA is associated with the activation of cox1, bringing about an increase in cytochrome c oxidase activity, followed by an increase in O(2) consumption rate.

  15. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)


    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  16. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities. (United States)

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke


    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  17. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor. (United States)

    Toguchi, Shohei; Hirose, Tomoyasu; Yorita, Kazuko; Fukui, Kiyoshi; Sharpless, K Barry; Ōmura, Satoshi; Sunazuka, Toshiaki


    In situ click chemistry is a target-guided synthesis approach for discovering novel lead compounds by assembling organic azides and alkynes into triazoles inside the affinity site of target biogenic molecules such as proteins. We report in situ click chemistry screening with human D-amino acid oxidase (hDAO), which led to the identification of a more potent hDAO inhibitor. The hDAO inhibitors have chemotherapeutic potential as antipsychotic agents. The new inhibitor displayed competitive inhibition of hDAO and showed significantly increased inhibitory activity against hDAO compared with that of an anchor molecule of in situ click chemistry.

  18. A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization. (United States)

    Ou, Qian; Liu, Yao; Deng, Jie; Chen, Gao; Yang, Ying; Shen, Peihong; Wu, Bo; Jiang, Chengjian


    A novel D-amino acid oxidase (DAAO) gene designated as daoE was cloned by the sequence-based screening of a plasmid metagenomic library of uncultured microorganisms from contaminated agricultural soil. The deduced amino acid sequence comparison and phylogenetic analysis indicated that daoE and other putative DAAOs are closely related. The putative DAAO gene was subcloned into a pETBlue-2 vector and overexpressed in Escherichia coli Tunner(DE3)pLacI. The recombinant protein was purified to homogeneity. The maximum activity of DaoE protein occurred at pH 8.0 and 37 °C. DaoE recombinant protein had an apparent K m of 2.96 mM, V max of 0.018 mM/min, k cat of 10.9/min, and k cat/K m of 1.16 × 10(4)/mol/min. The identification of this novel DAAO gene demonstrated the importance of metagenomic libraries in exploring new D-amino acid oxidases from environmental microorganisms to optimize their applications.

  19. Expression of NADPH oxidase (NOX 5 in rabbit corneal stromal cells.

    Directory of Open Access Journals (Sweden)

    Farhan Rizvi

    Full Text Available PURPOSE: To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC. NADPH oxidases (NOXes are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands. METHODS: Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5. RESULTS: NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region. CONCLUSIONS: The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification.

  20. Purification of an L-amino acid oxidase from Bungarus caeruleus (Indian krait venom

    Directory of Open Access Journals (Sweden)

    SS More


    Full Text Available Snake venoms are rich in enzymes such as phospholipase A2, proteolytic enzymes, hyaluronidases and phosphodiesterases, which are well characterized. However, L-amino acid oxidase (LAO EC. from snake venoms has not been extensively studied. A novel L-amino acid oxidase from Bungarus caeruleus venom was purified to homogeneity using a combination of ion-exchange by DEAE-cellulose chromatography and gel filtration on Sephadex® G-100 column. The purified monomer of LAO showed a molecular mass of 55 ±1 kDa estimated by SDS-PAGE. The specific activity of purified LAO was 6,230 ± 178 U/min/mg, versus 230 ± 3.0 U/min/mg for the whole desiccated venom, suggesting a 27-fold purification with a 25% yield. Optimal pH and temperature for maximum purified enzyme activity were 6.5 and 37ºC, respectively. Platelet aggregation studies show that purified LAO inhibited ADP-induced platelet aggregation dose-dependently at 0.01 to 0.1 µM with 50% inhibitory concentration (IC50 of 0.04 µM, whereas at a 0.08 µM concentration it did not induce appreciable aggregation on normal platelet-rich plasma (PRP. The purified protein catalyzed oxidative deamination of L-amino acids while the most specific substrate was L-leucine. The purified LAO oxidizes only L-forms, but not D-forms of amino acids, to produce H2O2. The enzyme is important for the purification and determination of certain amino acids and for the preparation of α-keto acids.

  1. Nuclear expression of lysyl oxidase enzyme is an independent prognostic factor in rectal cancer patients

    DEFF Research Database (Denmark)

    Liu, Na; Cox, Thomas R; Cui, Weiyingqi;


    Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we anal...... the nucleus of colon cancer cell lines by confocal microscopy and Western blot. Our results show a powerful link between nuclear LOX expression in tumours and patient survival, and offer a promising prognostic biomarker for rectal cancer patients....

  2. Use of Glucose Oxidase in a Membrane Reactor for Gluconic Acid Production (United States)

    Das Neves, Luiz Carlos Martins; Vitolo, Michele

    This article aims at the evaluation of the catalytic performance of glucose oxidase (GO) (EC. for the glucose/gluconic acid conversion in the ultrafiltration cell type membrane reactor (MB-CSTR). The reactor was coupled with a Millipore ultrafiltration-membrane (cutoff of 100 kDa) and operated for 24 h under agitation of 100 rpm, pH 5.5, and 30°C. The experimental conditions varied were the glucose concentration (2.5, 5.0, 10.0, 20.0, and 40.0 mM), the feeding rate (0.5, 1.0, 3.0, and 6.0/h), dissolved oxygen (8.0 and 16.0 mg/L), GO concentration (2.5, 5.0, 10.0, and 20.0 UGO/mL), and the glucose oxidase/catalase activity ratio (UGO/UCAT)(1∶0, 1∶10, 1∶20, and 1∶30). A conversion yield of 80% and specific reaction rate of 40×10-4 mmol/h·UGO were attained when the process was carried out under the following conditions: D=3.0/h, dissolved oxygen=16.0 mg/L, [G]=40 mM, and (UGO/UCAT)=1∶20. A simplified model for explaining the inhibition of GO activity by hydrogen peroxide, formed during the glucose/gluconic acid conversion, was presented.


    Institute of Scientific and Technical Information of China (English)

    WANG Lingzhi; JIANG Yingyan; ZHANG Changde; HUANG Dexiu


    This study is concerned with chitosan-polyacrylic acid complex as a carrier to immobilize glucose oxidase (GOD) and cellulase. The optimum temperature of the immobilized GOD (IG) was determined to be 60 ℃ which is higher than that of the native GOD about 40 ℃ . The optimum temperature of the immobilized cellulase (IC) was determined to be about 30 ℃ higher than that of native cellulase. Both of the optimum pH of IG and IC shifted one pH unit to acid. Immobilized enzyme may be used in more wide pH range. Their storage life are much longer compared with their native states. Both of them can be reused at least 12 times.

  4. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. (United States)

    Koechler, Sandrine; Arsène-Ploetze, Florence; Brochier-Armanet, Céline; Goulhen-Chollet, Florence; Heinrich-Salmeron, Audrey; Jost, Bernard; Lièvremont, Didier; Philipps, Muriel; Plewniak, Frédéric; Bertin, Philippe N; Lett, Marie-Claire


    Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].

  5. Cloning, Expression and Characterization of Recombinant, NADH Oxidase from Giardia lamblia. (United States)

    Castillo-Villanueva, Adriana; Méndez, Sara Teresa; Torres-Arroyo, Angélica; Reyes-Vivas, Horacio; Oria-Hernández, Jesús


    The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.

  6. [Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid]. (United States)

    Niu, Panqing; Zhang, Zhenyu; Liu, Liming


    We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.

  7. Evaluation of different expression systems for the heterologous expression of pyranose 2-oxidase from Trametes multicolor in E. coli

    Directory of Open Access Journals (Sweden)

    Ludwig Roland


    Full Text Available Abstract The heterologous production of the industrially relevant fungal enzyme pyranose 2-oxidase in the prokaryotic host E. coli was investigated using 3 different expression systems, i.e. the well-studied T7 RNA polymerase based pET21d+, the L-arabinose inducible pBAD and the pCOLD system. Preliminary experiments were done in shaking flasks at 25°C and optimized induction conditions to compare the productivity levels of the different expression systems. The pET21d+ and the pCOLD system gave 29 U/L·h and 14 U/L·h of active pyranose 2-oxidase, respectively, whereas the pBAD system only produced 6 U/L·h. Process conditions for batch fermentations were optimized for the pET21d+ and the pCOLD systems in order to reduce the formation of inactive inclusion bodies. The highest productivity rate with the pET21d+ expression system in batch fermentations was determined at 25°C with 32 U/L·h. The pCOLD system showed the highest productivity rate (19 U/L·h at 25°C and induction from the start of the cultivation. Using the pCOLD system in a fed batch fermentation at 25°C with a specific growth rate of μ = 0.15 h-1resulted in the highest productivity rate of active pyranose oxidase with 206 U/L·h.

  8. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity. (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi


    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  9. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). (United States)

    Agostinelli, Enzo; Vianello, Fabio; Magliulo, Giuseppe; Thomas, Thresia; Thomas, T J


    Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other

  10. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing

    Directory of Open Access Journals (Sweden)

    A.E. El Hakim


    Full Text Available Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The tryptic peptides of the two isoforms share high sequence homology with other snake venom l-amino acid oxidases. The optimal pH and temperature values of Cc-LAAOI and Cc-LAAOII were 7.8, 50 °C and 7, 60 °C, respectively. The two isoenzymes were thermally stable up to 70 °C. The Km and Vmax values were 0.67 mM, 0.135 μmol/min for LAAOI and 0.82 mM, 0.087 μmol/min for LAAOII. Both isoenzymes displayed high catalytic preference to long-chain, hydrophobic and aromatic amino acids. The Mn2+ ion markedly increased the LAAO activity for both purified isoforms, while Na+, K+, Ca2+, Mg2+ and Ba2+ ions showed a non-significant increase in the enzymatic activity of both isoforms. Furthermore, Zn2+, Ni2+, Co2+, Cu2+ and AL3+ ions markedly inhibited the LAAOI and LAAOII activities. l-Cysteine and reduced glutathione completely inhibited the LAAO activity of both isoenzymes, whereas, β-mercaptoethanol, O-phenanthroline and PMSF completely inhibited the enzymatic activity of LAAOII. Furthermore, iodoacitic acid inhibited the enzymatic activity of LAAOII by 46% and had no effect on the LAAOI activity.

  11. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. (United States)

    Boban, Milojkovic; Kocic, Gordana; Radenkovic, Sonja; Pavlovic, Radmila; Cvetkovic, Tatjana; Deljanin-Ilic, Marina; Ilic, Stevan; Bobana, Milojkovic D; Djindjic, Boris; Stojanovic, Dijana; Sokolovic, Dusan; Jevtovic-Stoimenov, Tatjana


    Purine nucleotide liberation and their metabolic rate of interconversion may be important in the development of hypertension and its renal consequences. In the present study, blood triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) breakdown pathway was evaluated in relation to uric acid concentration and xanthine dehydrogenase/xanthine oxidase (XDH/XO) in patients with essential hypertension, patients with chronic renal diseases on dialysis, and control individuals. The pattern of nucleotide catabolism was significantly shifted toward catabolic compounds, including ADP, AMP, and uric acid in patients on dialysis program. A significant fall of ATP was more expressed in a group of patients on dialysis program, compared with the control value (p<0.001), while ADP and AMP were significantly increased in both groups of patients compared with control healthy individuals (p<0.001), together with their final degradation product, uric acid (p<0.001). The index of ATP/ADP and ATP/uric acid showed gradual significant fall in both the groups, compared with the control value (p<0.001), near five times in a group on dialysis. Total XOD was up-regulated significantly in a group with essential hypertension, more than in a group on dialysis. The activity of XO, which dominantly contributes reactive oxygen species (ROS) production, significantly increased in dialysis group, more than in a group with essential hypertension. In conclusion, the examination of the role of circulating purine nucleotides and uric acid in pathogenesis of hypertension and possible development of renal disease, together with XO role in ROS production, may help in modulating their liberation and ROS production in slowing progression from hypertension to renal failure.

  12. Fabrication of enzyme reactor utilizing magnetic porous polymer membrane for screening D-Amino acid oxidase inhibitors. (United States)

    Jiang, Jun Fang; Qiao, Juan; Mu, Xiao Yu; Moon, Myeong Hee; Qi, Li


    In this work, a unique D-amino acid oxidase reactor for enhanced enzymolysis efficiency is presented. A kind of magnetic polymer matrices, composed of iron oxide nanoparticles and porous polymer membrane (poly styrene-co-maleic anhydride), was prepared. With covalent bonding D-Amino acid oxidase on the surface of the matrices and characterization of scanning electron microscope and vibrating sample magnetometer, it demonstrated that the membrane enzyme reactor was successfully constructed. The enzymolysis efficiency of the enzyme reactor was evaluated and the apparent Michaelis-Menten constants of D-Amino acid oxidase were determined (Km was 1.10mM, Vmax was 23.8mMmin(-1)) by a chiral ligand exchange capillary electrophoresis protocol with methionine as the substrate. The results indicated that the enzyme reactor could exhibit good stability and excellent reusability. Importantly, because the enzyme and the substrate could be confined into the pores of the matrices, the enzyme reactor displayed the improved enzymolysis efficiency due to the confinement effect. Further, the prepared enzyme reactor was applied for D-Amino acid oxidase inhibitors screening. It has displayed that the proposed protocol could pave a new way for fabrication of novel porous polymer membrane based enzyme reactors to screen enzyme inhibitors.

  13. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Ji Xiao-Jun


    Full Text Available Abstract Background Acetoin is an important bio-based platform chemical. However, it is usually existed as a minor byproduct of 2,3-butanediol fermentation in bacteria. Results The present study reports introducing an exogenous NAD+ regeneration sysytem into a 2,3-butanediol producing strain Klebsiella pneumoniae to increse the accumulation of acetoin. Batch fermentation suggested that heterologous expression of the NADH oxidase in K. pneumoniae resulted in large decreases in the intracellular NADH concentration (1.4 fold and NADH/NAD+ ratio (2.0 fold. Metabolic flux analysis revealed that fluxes to acetoin and acetic acid were enhanced, whereas, production of lactic acid and ethanol were decreased, with the accumualation of 2,3-butanediol nearly unaltered. By fed-batch culture of the recombinant, the highest reported acetoin production level (25.9 g/L by Klebsiella species was obtained. Conclusions The present study indicates that microbial production of acetoin could be improved by decreasing the intracellular NADH/NAD+ ratio in K. pneumoniae. It demonstrated that the cofactor engineering method, which is by manipulating the level of intracellular cofactors to redirect cellular metabolism, could be employed to achieve a high efficiency of producing the NAD+-dependent microbial metabolite.

  14. Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury. (United States)

    Raimbault, Astrid-Kim; Marie-Alphonsine, Paul-Alex; Horry, Jean-Pierre; Francois-Haugrin, Madlyn; Romuald, Karell; Soler, Alain


    Pineapple internal browning (IB) is a chilling injury that produces enzymatic browning associated with flesh translucency. Pineapple biodiversity allowed the investigation of how polyphenol oxidase (PPO) and peroxidase (POD) activities with their different isoforms are involved in the IB mechanism. Fruits of four varieties that expressed IB symptoms differently, Smooth Cayenne (SCay) and the hybrids MD2, Flhoran 41 (Flh 41), and Flhoran 53 (Flh 53), were stressed by cold. The susceptible varieties showed classical brown spots but different patterns of IB, whereas MD2 and controls showed no IB. Enzymatic activities were measured on fruit protein extracts and PPO and POD isoforms separated on mini-gels (PhastSystem). Only PPO activity was significantly enhanced in the presence of IB. Up to six PPO isoforms were identified in the susceptible varieties. PPO was barely detectable in the nonsusceptible variety MD2 and in controls. The number of PPO isoforms and the total PPO activity after chilling are varietal characteristics.

  15. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. (United States)

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra


    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.

  16. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems. (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre


    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.

  17. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid. (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao


    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.

  18. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata


    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Polive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases.

  19. Cytochrome oxidase and ascorbic acid in the normal and regenerating tail of the scincid lizard, Mabuya carinata. A histophysiological study. (United States)

    Ramachandran, A V; Radhakrishnan, N; Shah, R V


    The concentration of ascorbic acid (AA) and the histochemical distribution of this vitamin together with cytochrome oxidase have been investigated in the normal and regenerating tail of the Scincid lizard, Mabuya carinata. An interesting aspect of this investigation is the observation of a total lack of cytochrome oxidase in both the normal and regenerating tail of the lizard, except for the differentiating phase. On the other hand, AA has been found to be present in the normal and regenerating tail with above normal levels during wound healing (twofold) and differentiation (fivefold). In the light of the poor cytochrome oxidase activity, the higher content of AA noted during regeneration has been construed to play a possible role in the respiratory mechanics of the regenerating lizard tail. Further, the importance of AA in cellular metabolism and the wound healing and differentiative processes have also been discussed.

  20. 果糖氨基酸氧化酶的原核表达及在糖化血红蛋白检测中的初步应用%Prokaryotic expression of fructosyl amino acid oxidase and preliminary application in determining glycosylated hemoglobin

    Institute of Scientific and Technical Information of China (English)

    李礼; 姜旭淦; 吴亮; 鞠爱萍; 沈进; 陈盛霞


    To express fructosyl amino acid oxidase (FAOX) in prokaryocytes for establishing an enzymatic method to determine glycosylated hemoglobin Ale (HbAlc) and evaluate its methodology. Methods The recombinant plasmid pET32a( + )/ FAOX was constructed and transformed into E. coli Rosetta ( DE3 ) to obtain recombinant FAOX after expression and purification. The glycated hexapeptides was used as substrate to determine the activity of recombinant FAOX. The enzymatic method for determination of HbAlc was established and its methodology was evaluated. Results The recombinant FAOX was highly expressed in E. coli Rosetta (DE3). The relative molecular weight of FAOX was about 65 000 as shown on SDS-PAGE and its specific activity was 22 U/mg. The coefficients of variation ( CV) for within-run, between-run and inter-day assay of the enzymatic method in determining HbAlc were all less than 5%. The recovery rates of HbAlc at low value (5.1%) and high value (15. 8% ) were 98.1% and 98.9% respectively. No interference of total bilirubin ( <220 μmol/L) , triglyceride ( < 10. 8 mmol/L) and vitamin C ( <500 mg/L) on the determination was observed. The results of the enzymatic method showed close correlation with those of HPLC assay and HA-8160 automated glycated hemoglobin analyzer. Conclusion FAOX could be highly expressed in E. coli Rosetta (DE3). The enzymatic method developed in this study should be satisfied for clinical requirements in HbAlc determination.%目的 原核表达果糖氨基酸氧化酶(FAOX),建立检测糖化血红蛋白A1c(HbA1c)的酶法并作初步评价.方法 构建重组质粒pET32a(+)/FAOX,转化大肠埃希菌Rosetta(DE3),获得重组FAOX;以糖基化六肽为底物检测酶活性;初步建立检测HbA1c的酶法并进行方法学评价.结果 重组FAOX在Rosetta(DE3)中高效表达,SDS-PAGE电泳分析显示其相对分子质量(Mr)约65 000;酶比活性为22 U/mg;建立的检测HbA1c酶法的批内、批间、日间CV均<5%;低值(5.1

  1. Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity.

    Directory of Open Access Journals (Sweden)

    Martin Mahro

    Full Text Available In order to elucidate factors that determine substrate specificity and activity of mammalian molybdo-flavoproteins we performed site directed mutagenesis of mouse aldehyde oxidase 3 (mAOX3. The sequence alignment of different aldehyde oxidase (AOX isoforms identified variations in the active site of mAOX3 in comparison to other AOX proteins and xanthine oxidoreductases (XOR. Based on the structural alignment of mAOX3 and bovine XOR, differences in amino acid residues involved in substrate binding in XORs in comparison to AOXs were identified. We exchanged several residues in the active site to the ones found in other AOX homologues in mouse or to residues present in bovine XOR in order to examine their influence on substrate selectivity and catalytic activity. Additionally we analyzed the influence of the [2Fe-2S] domains of mAOX3 on its kinetic properties and cofactor saturation. We applied UV-VIS and EPR monitored redox-titrations to determine the redox potentials of wild type mAOX3 and mAOX3 variants containing the iron-sulfur centers of mAOX1. In addition, a combination of molecular docking and molecular dynamic simulations (MD was used to investigate factors that modulate the substrate specificity and activity of wild type and AOX variants. The successful conversion of an AOX enzyme to an XOR enzyme was achieved exchanging eight residues in the active site of mAOX3. It was observed that the absence of the K889H exchange substantially decreased the activity of the enzyme towards all substrates analyzed, revealing that this residue has an important role in catalysis.

  2. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice

    Directory of Open Access Journals (Sweden)

    Mawsheng Chern


    Full Text Available Glycolate oxidase (GLO is a key enzyme in photorespiration, catalyzing the oxidation of glycolate to glyoxylate. Arabidopsis GLO is required for nonhost defense responses to Pseudomonas syringae and for tobacco Pto/AvrPto-mediated defense responses. We previously described identification of rice GLO1 that interacts with a glutaredoxin protein, which in turn interacts with TGA transcription factors. TGA transcription factors are well known to participate in NPR1/NH1-mediated defense signaling, which is crucial to systemic acquired resistance in plants. Here we demonstrate that reduction of rice GLO1 expression leads to enhanced resistance to Xanthomonas oryzae pv oryzae (Xoo. Constitutive silencing of GLO1 leads to programmed cell death, resulting in a lesion-mimic phenotype and lethality or reduced plant growth and development, consistent with previous reports. Inducible silencing of GLO1, employing a dexamethasone-GVG (Gal4 DNA binding domain-VP16 activation domain-glucocorticoid receptor fusion inducible system, alleviates these detrimental effects. Silencing of GLO1 results in enhanced resistance to Xoo, increased expression of defense regulators NH1, NH3, and WRKY45, and activation of PR1 expression.

  3. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone

    DEFF Research Database (Denmark)

    Sanmartin, Maite; Drogoudi, Pavlina D.; Lyons, Tom


    Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC. were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O3). Three homozygous transgenic lines, chosen on the basis...... of a preliminary screen of AO activity in the leaves of 29 lines, revealed up to a 380-fold increase in AO activity, with expression predominantly associated with leaf cell walls. Overexpression of AO resulted in no change in the total ascorbate content recovered in apoplast washing fluid, but the redox state...... of ascorbate was reduced from 30% in wild-type leaves to below the threshold for detection in transgenic plants. Levels of ascorbic acid and glutathione in the symplast were not affected by AO overexpression, but the redox state of ascorbate was reduced, while that of glutathione was increased. AO...

  4. Effects of ursolic acid on NADPH oxidase subunit p47Phox expression and ERK1/2 pathway activation in rat hepatic stellate cells%熊果酸对活化型肝星状细胞NADPH氧化酶亚基p47Phox表达及ERK1/2信号通路活化的影响

    Institute of Scientific and Technical Information of China (English)

    张新华; 何文华; 朱萱; 李弼民; 张焜和; 陈璐; 施凤


    目的 研究熊果酸(ursolic acid,UA)对瘦素诱导的大鼠肝星状细胞(HSC-T6) NADPH氧化酶(NOX)亚基p47Phox表达及ERK1/2信号通路活化的影响,并观察I 型胶原合成及细胞增殖情况.方法 将培养激活的HSC-T6细胞株分为6组:正常对照组,不加任何药物;瘦素组,给予重组大鼠瘦素(100 ng/ml)刺激细胞;各干预组分别给予UA (50 μmol/L)、JAK抑制剂AG490 (50 μmol/L)、NOX抑制剂DPI (20μmol/L)、ERK抑制剂PD98059(30 μmol/L)预处理30 min,再加入瘦素刺激不同时间.采用蛋白质印迹分析检测细胞膜移位的p47Phox蛋白、细胞总p47Phox蛋白和磷酸化的ERK1/2(p-ERK1/2)蛋白表达;采用RT-PCR法检测 I型胶原mRNA的表达;采用MTT法检测细胞增殖.结果 瘦素刺激HSC-T6细胞30 min后细胞膜p47Phox蛋白表达较正常对照组增高(P<0.01),细胞内p-ERK1/2蛋白表达也随之增高(P<0.05);UA、AG490、DPI、PD98059干预后抑制了p47Phox蛋白向细胞膜移位以及细胞内ERK1/2蛋白磷酸化.瘦素刺激HSO-T6细胞12h后I 型胶原的mRNA表达较正常对照组升高(P<0.01),UA、AG490、DPI及PD98059干预组I 型胶原mRNA的表达均低于瘦素组(P均<0.01).瘦素刺激HSC-T6细胞12、24、48 h后细胞增殖率高于正常对照组(P均<0.01);UA、AG490、DPI及PD98059干预不同时间点的细胞增殖率均低于瘦素组(P均<0.01),UA的抑制细胞增殖作用弱于DPI(P<0.01).结论 UA能抑制瘦素诱导的HSC-T6细胞增殖及I 型胶原表达,机制可能与抑制NOX亚基p47Phox向细胞膜移位及下游信号通路ERK1/2的激活有关.%Objective To investigate the effects of ursolic acid CUA) on leptin-induced NADPH oxidase (NOX) subunits p47phox expression and ERKi/2 pathway activation of rat hepatic stellate cells (HSOT6), and to observe the cells proliferation and collagen I synthesis. Methods Culture-activated HSC-T6 cells were divided into six groups: normal control group received no treatment; leptin

  5. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors. (United States)

    Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G


    Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.

  6. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides. (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes


    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  7. COPPER AMINE OXIDASE1 (CuA01)of Arabidopsis thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

    Institute of Scientific and Technical Information of China (English)

    Rinukshi Wimalasekera; Corina Villar; Tahmina Begum; Günther F. E. Scherer


    Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO)play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASE1 (CuA01), of Arabidopsis was tested for its role in stress responses using the knockouts cuaol.1 and cuaol-2. PA-induced and ABA-induced NO production investigated by fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in HO increases, cuaol-1 and cuaol-2 showed less sensitivity to exogenous ABA supplementation during ger-mination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA treatment,expression levels of the stress-responsive genes RD29A and ADH1 were significantly lower in the knockouts. These obser-vations characterize cuaol-1 and cuaol-2 as ABA-insensitive mutants. Taken together, our findings extend the ABA signal transduction network to include CuAO1 as one potential contributor to enhanced NO production by ABA.

  8. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. (United States)

    Guan, Qi; Cheng, Zengjin; Ma, Xiaoxue; Wang, Lijie; Feng, Dongjie; Cui, Yuanhang; Bao, Kai; Wu, Lan; Zhang, Weige


    A series of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid derivatives (8a-f, 9a-m) were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Structure-activity relationship analyses have also been presented. Most of the target compounds exhibited potency levels in the nanomolar range. Compound 9e emerged as the most potent xanthine oxidase inhibitor (IC50 = 5.5 nM) in comparison to febuxostat (IC50 = 18.6 nM). Steady-state kinetics measurements with the bovine milk enzyme indicated a mixed type inhibition with Ki and Ki' values of 0.9 and 2.3 nM, respectively. A molecular modeling study on compounds 9e was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid scaffold.

  9. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats (United States)

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A.; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S.


    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense. PMID:27847553

  10. Study of the effects of salicylic acid on soybean mitochondrial lipids and respiratory properties using the alternative oxidase as a stress-reporter protein. (United States)

    Matos, Ana Rita; Mendes, Ana Teresa; Scotti-Campos, Paula; Arrabaça, João Daniel


    Biotic and abiotic stresses can lead to modifications in the lipid composition of cell membranes. Although mitochondria appear to be implicated in stress responses, little is known about the membrane lipid changes that occur in these organelles in plants. Besides cytochrome c oxidase, plant mitochondria have an alternative oxidase (AOX) that accepts electrons directly from ubiquinol, dissipating energy as heat. AOX upregulation occurs under a variety of stresses and its induction by salicylic acid (SA) has been observed in different plant species. AOX was also suggested to be used as a functional marker for cell reprogramming under stress. In the present study, we have used etiolated soybean (Glycine max (L.) Merr. cv Cresir) seedlings to study the effects of SA treatment on the lipid composition and the respiratory properties of hypocotyl mitochondria. AOX expression was studied in detail, as a reporter protein, to evaluate whether modifications in mitochondrial energy metabolism were occurring. In mitochondria extracted from SA-treated seedlings, AOX capacity and protein contents increased. Both AOX1 and AOX2b transcripts accumulated in response to SA, but with different kinetics. A reduction in external NADH oxidation capacity was observed, whereas succinate respiration remained unchanged. The phospholipid composition of mitochondria remained similar in control and SA-treated plants, but a reduction in the relative amount of linolenic acid was observed in phosphatidylcholine, phosphatidylethanolamine and cardiolipin. The possible causes of the fatty acid modifications observed, and the implications for mitochondrial metabolism are discussed.


    NARCIS (Netherlands)



    The relationship between the relative amounts of nuclear and mitochondrial genes for cytochrome-c oxidase subunits and their transcripts and cytochrome-c oxidase activity was investigated in several human tissues and cell lines to get more insight into the regulation of the expression of this mitoch

  12. Human retina-specific amine oxidase: genomic structure of the gene (AOC2), alternatively spliced variant, and mRNA expression in retina. (United States)

    Imamura, Y; Noda, S; Mashima, Y; Kudoh, J; Oguchi, Y; Shimizu, N


    Previously, we reported the isolation of cDNA for human retina-specific amine oxidase (RAO) and the expression of RAO exclusively in retina. Bacterial artificial chromosome clones containing the human RAO gene (AOC2) were mapped to human chromosome 17q21 (Imamura et al., 1997, Genomics 40: 277-283). Here, we report the complete genomic structure of the RAO gene, including 5' flanking sequence, and mRNA expression in retina. The human RAO gene spans 6 kb and is composed of four exons corresponding to the amino acid sequence 1-530, 530-598, 598-641, and 642-729 separated by three introns of 3000, 310, and 351 bp. Screening of a human retina cDNA library revealed the existence of an alternatively spliced cDNA variant with an additional 81 bp at the end of exon 2. The sizes of exons and the locations of exon/intron boundaries in the human RAO gene showed remarkable similarity to those of the human kidney diamine oxidase gene (AOC1). In situ hybridization revealed that mRNA coding for RAO is expressed preferentially in the ganglion cell layer of the mouse retina. We designed four sets of PCR primers to amplify four exons, which will be valuable for analyzing mutations in patients with ocular diseases affecting the retinal ganglion cell layer.

  13. L-氨基酸氧化酶的研究进展%Advances in L-amino Acid Oxidase

    Institute of Scientific and Technical Information of China (English)

    余志良; 周宁; 乔华


    L-amino acid oxidase is dimeric flavoprotein,and each subunit contains a non-covalently bound FAD molecule as cofactor.It is able to catalyze the stereospecific oxidative deamination of L-amino acids to the corresponding a-imino acids which are then hydrolyzed to corresponding a-keto acids with release of NH4 + ,along with two electrons transferring from the amino acid to the flavin cofactor which subsequently reduces molecular oxygen to H2O2.This enzyme is widely distributed in nature.So far snake venom LAAO is the best characterized member of this enzyme family.Recently,non-snake venom LAAOs have increasingly been found.Current researches show that different LAAOs have different physiological properties,including substrate specificity,pIvalue,and storage stability.Little is known about its structure,but the structures of both snake venom and non-snake venom LAAOs indicate that it all consists of FAD-binding domain,substrate-binding domain and helical domain.LAAO has various biological functions which are found to be probably related to the produced-H2O2.Probably due to post-translational modification of LAAO,only some heterologous expression systems have been reported hitherto.%L-氨基酸氧化酶(L-amino acid oxidase,LAAO)能特异性催化L-氨基酸氧化脱氨,生成α-酮酸、氨和H2O2.该酶分布较广,其中蛇毒源LAAO是该类酶中研究最为深入的一类,近年来,越来越多的非蛇毒源LAAO被发现和报道,现对蛇毒源和非蛇毒源LAAO的研究进展进行了综述.现有研究表明,不同物种来源的LAAO,其底物选择性、等电点、稳定性等理化性质不尽相同;虽对其结构的研究还较少,但现有的研究表明蛇毒源和非蛇毒源LAAO的结构都含有FAD结合结构域、底物结构域和螺旋结构域;研究已发现不同来源的LAAO体外具有多种不同的生物学功能,而这些生物学功能多数是由于其产物H2O2作用的结果;对LAAO异源表达的

  14. L-amino acid oxidase from Naja atra venom activates and binds to human platelets

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Shaowen Zhu; Jianbo Wu; Wanyu Wang; Qiumin Lu; Kenneth J.Clemetson


    An L-amino acid oxidase (LAAO),NA-LAAO,was purified from the venom of Naja atra.Its N-terminal sequence shows great similarity with LAAOs from other snake venoms.NALAAO dose-dependently induced aggregation of washed human platelets.However,it had no activity on platelets in platelet-rich plasma.A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide,whereas hydrogen peroxide itself had little activation effect on platelets.NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase,spleen tyrosine kinase,and phospholipase C γ2.Unlike convulxin,Fc receptor γ chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO activated platelets,suggesting an activation mechanism different from the glycoprotein VI pathway.Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO.NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots.Furthermore,affinity chromatography of platelet proteins on an NA-LAAO Sepharose 4B column isolated a few platelet membrane proteins,suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.

  15. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. (United States)

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J


    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  16. The C-Terminal Region of G72 Increases D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Sunny Li-Yun Chang


    Full Text Available The schizophrenia-related protein G72 plays a unique role in the regulation of D-amino acid oxidase (DAO in great apes. Several psychiatric diseases, including schizophrenia and bipolar disorder, are linked to overexpression of DAO and G72. Whether G72 plays a positive or negative regulatory role in DAO activity, however, has been controversial. Exploring the molecular basis of the relationship between G72 and DAO is thus important to understand how G72 regulates DAO activity. We performed yeast two-hybrid experiments and determined enzymatic activity to identify potential sites in G72 involved in binding DAO. Our results demonstrate that residues 123–153 and 138–153 in the long isoform of G72 bind to DAO and enhance its activity by 22% and 32%, respectively. A docking exercise indicated that these G72 peptides can interact with loops in DAO that abut the entrance of the tunnel that substrate and cofactor must traverse to reach the active site. We propose that a unique gating mechanism underlies the ability of G72 to increase the activity of DAO. Because upregulation of DAO activity decreases d-serine levels, which may lead to psychiatric abnormalities, our results suggest a molecular mechanism involving interaction between DAO and the C-terminal region of G72 that can regulate N-methyl-d-aspartate receptor-mediated neurotransmission.

  17. Behavioral characterization of a mutant mouse strain lacking D-amino acid oxidase activity. (United States)

    Zhang, Min; Ballard, Michael E; Basso, Ana M; Bratcher, Natalie; Browman, Kaitlin E; Curzon, Pete; Konno, Ryuichi; Meyer, Axel H; Rueter, Lynne E


    D-amino acid oxidase (DAO), an enzyme that degrades d-serine, has been suggested as a susceptibility factor for schizophrenia. Here we sought to understand more about the behavioral consequence of lacking DAO and the potential therapeutic implication of DAO inhibition by characterizing a mouse strain (ddY/DAO(-)) lacking DAO activity. We found that the mutant mice showed enhanced prepulse inhibition responses (PPI). Intriguingly, DAO-/- mice had increased sensitivity to the PPI-disruptive effect induced by the competitive NMDA antagonist, SDZ 220-581. In the 24-h inhibitory avoidance test, DAO-/- mice were not different from DAO+/+ mice during the recall. In Barnes Maze, we found that DAO-/- mice had a shortened latency to enter the escape tunnel. Interestingly, although these mice were hypoactive when tested in a protected open field, they showed a profound increase of activity on the edge of the unprotected open field of the Barnes Maze even with the escape tunnel removed. This increased edge activity does not appear to be related to a reduced level of anxiety given that there were no significant genotype effects on the measures of anxiety-like behaviors in two standard animal models of anxiety, elevated plus maze and novelty suppressed feeding. Our data suggest that DAO-/- mice might have altered functioning of NMDARs. However, these results provide only modest support for manipulations of DAO activity as a potential therapeutic approach to treat schizophrenia.

  18. Expression of ACC Oxidase Gene from Sugarcane Induced by Hormones and Environmental Force

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-qin; YANG Li-tao; WANG Zi-zhang; WEI Yu-tuo; HE Long-fei; LI Yang-rui


    In the present study, a full-length cDNA encoding 1-aminocyclopropane-1-carboxylic acid oxidase gene has been cloned from sugarcane (named GZ-ACO). Two primers were designed for coding the ORF in the full-length cDNA of GZ-ACO gene from sugarcane. PCR amplification was performed with sugarcane DNA template, and a fragment of 1 104 bp (GZ34)was obtained. GZ34 was labeled with [α-32p] dCTP as the probe and used for hybridization after cloning and sequencing.Southern blotting analysis indicated that there were at least three other sequences, which weakly hybridized with the GZ34. Northern analysis showed that GZ34 was strongly induced by treatment with IAA, BA, ethephon, LiC1 and cold stress, respectively. As a contrast, the mRNA for ACO gene was at lower levels for both the light-grown and dark-grown plants without additional treatment. There were two transcripts in the dark-grown plants and three transcripts in the treatments with IAA, BA and cold stress, but there was only one transcript in ethephon treatment. It showed that GZ-ACO might be a gene connected with ethylene formation and take part in response to the induction of plant hormone and environmental stress.

  19. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. (United States)

    Bongers, Kale S; Fox, Daniel K; Kunkel, Steven D; Stebounova, Larissa V; Murry, Daryl J; Pufall, Miles A; Ebert, Scott M; Dyle, Michael C; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M


    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy.

  20. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.

    Directory of Open Access Journals (Sweden)

    Mareike E Dirks-Hofmeister

    Full Text Available Polyphenol oxidases (PPOs, EC are type-3 copper proteins that enzymatically convert diphenolic compounds into their corresponding quinones. Although there is significant interest in these enzymes because of their role in food deterioration, the lack of a suitable expression system for the production of soluble and active plant PPOs has prevented detailed investigations of their structure and activity. Recently we developed a bacterial expression system that was sufficient for the production of PPO isoenzymes from dandelion (Taraxacum officinale. The system comprised the Escherichia coli Rosetta 2 (DE3 [pLysSRARE2] strain combined with the pET-22b(+-vector cultivated in auto-induction medium at a constant low temperature (26 °C. Here we describe important parameters that enhance the production of active PPOs using dandelion PPO-2 for proof of concept. Low-temperature cultivation was essential for optimal yields, and the provision of CuCl2 in the growth medium was necessary to produce an active enzyme. By increasing the copper concentration in the production medium to 0.2 mM, the yield in terms of PPO activity per mol purified protein was improved 2.7-fold achieving a v(max of 0.48 ± 0.1 µkat per mg purified PPO-2 for 4-methylcatechol used as a substrate. This is likely to reflect the replacement of an inactive apo-form of the enzyme with a correctly-folded, copper-containing counterpart. We demonstrated the transferability of the method by successfully expressing a PPO from tomato (Solanum lycopersicum showing that our optimized system is suitable for the analysis of further plant PPOs. Our new system therefore provides greater opportunities for the future of research into this economically-important class of enzymes.

  1. Effect of polivalent bothropic antivenom on phospholipase A2, L-Amino acid oxidase and hyaluronidase from peruvian snake venom


    Mendoza, Julio Cesar; Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. Biólogo.; Lazo, Fanny; Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. biólogo, magíster en Biotecnología.; Yarlequé, Liliana; Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. Obstetriz.; Ruiz, Nora Cecilia; Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. Biólogo.; Yarlequé, Armando; Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima, Perú. Biólogo.; Pessah, Silvia; Centro Nacional de Productos Biológicos, Instituto Nacional de Salud. Lima, Perú. Médico.; Flores, Vicky; Centro Nacional de Productos Biológicos, Instituto Nacional de Salud. Lima, Perú. Químico farmaceútico.; Bonilla, César; Centro Nacional de Productos Biológicos, Instituto Nacional de Salud. Lima, Perú. Biólogo.


    Bothrops sp. snakes causing the largest number of cases of ophidism in Peru, their venom contain several enzymes related to poison spreading, miotoxic and platelet aggregation disturbances. Objectives. The inhibiting capacity of liquid polivalent bothropic antivenom from Instituto Nacional de Salud (INS) has been evaluated on phospholipase A2 (PLA2), L amino acid oxidase (LAO) and hyaluronidase activities using B. atrox, B. barnetti, B. brazili and B. pictus venoms. Material and methods. In e...

  2. Mutations affecting the expression of the MOX gene encoding peroxisomal methanol oxidase in Hansenula polymorpha. (United States)

    Vallini, V; Berardi, E; Strabbioli, R


    In this study, aimed at identifying genetic factors acting positively upon the MOX gene, we report the isolation and characterisation of several methanol utilisation-defective (Mut-) mutants of Hansenula polymorpha. These fall into 12 complementation groups, eight of which show significant reductions in alcohol (methanol) oxidase activity in methanol. Three of these groups, identifying the MUT3, MUT5 and MUT10 loci, exhibit extremely low levels of MOX promoter activity, not only in methanol medium, but also during growth in glycerol or methylamine. We suggest that these loci play a significant role in the derepression of the MOX gene expression. One of these genes (MUT10) also seems to be involved in the utilisation of carbon sources other than methanol, and it is apparent that the same gene plays some role in the biogenesis or in the enlargement of the peroxisome. Three other genes (MUT7, MUT8 and MUT9) appear to be involved in peroxisome biogenesis, whereas most other mutants harbour lesions that leave the peroxisome biogenesis and proliferation unaffected.

  3. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)


    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  4. The antiviral drug acyclovir is a slow-binding inhibitor of (D)-amino acid oxidase. (United States)

    Katane, Masumi; Matsuda, Satsuki; Saitoh, Yasuaki; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi


    d-Amino acid oxidase (DAO) is a degradative enzyme that is stereospecific for d-amino acids, including d-serine and d-alanine, which are believed to be coagonists of the N-methyl-d-aspartate (NMDA) receptor. To identify a new class of DAO inhibitor(s) that can be used to elucidate the molecular details of the active site environment of DAO, manifold biologically active compounds of microbial origin and pre-existing drugs were screened for their ability to inhibit DAO activity, and several compounds were identified as candidates. One of these compounds, acyclovir (ACV), a well-known antiviral drug used for the treatment of herpesvirus infections, was characterized and evaluated as a novel DAO inhibitor in vitro. Analysis showed that ACV acts on DAO as a reversible slow-binding inhibitor, and interestingly, the time required to achieve equilibrium between DAO, ACV, and the DAO/ACV complex was highly dependent on temperature. The binding mechanism of ACV to DAO was investigated in detail by several approaches, including kinetic analysis, structural modeling of DAO complexed with ACV, and site-specific mutagenesis of an active site residue postulated to be involved in the binding of ACV. The results confirm that ACV is a novel, active site-directed inhibitor of DAO that can be a valuable tool for investigating the structure-function relationships of DAO, including the molecular details of the active site environment of DAO. In particular, it appears that ACV can serve as an active site probe to study the structural basis of temperature-induced conformational changes of DAO.

  5. Haplotypes of the D-Amino Acid Oxidase Gene Are Significantly Associated with Schizophrenia and Its Neurocognitive Deficits.

    Directory of Open Access Journals (Sweden)

    Yu-Li Liu

    Full Text Available D-amino acid oxidase (DAO has been reported to be associated with schizophrenia. This study aimed to search for genetic variants associated with this gene. The genomic regions of all exons, highly conserved regions of introns, and promoters of this gene were sequenced. Potentially meaningful single-nucleotide polymorphisms (SNPs obtained from direct sequencing were selected for genotyping in 600 controls and 912 patients with schizophrenia and in a replicated sample consisting of 388 patients with schizophrenia. Genetic associations were examined using single-locus and haplotype association analyses. In single-locus analyses, the frequency of the C allele of a novel SNP rs55944529 located at intron 8 was found to be significantly higher in the original large patient sample (p = 0.016. This allele was associated with a higher level of DAO mRNA expression in the Epstein-Barr virus-transformed lymphocytes. The haplotype distribution of a haplotype block composed of rs11114083-rs2070586-rs2070587-rs55944529 across intron 1 and intron 8 was significantly different between the patients and controls and the haplotype frequencies of AAGC were significantly higher in patients, in both the original (corrected p < 0.0001 and replicated samples (corrected p = 0.0003. The CGTC haplotype was specifically associated with the subgroup with deficits in sustained attention and executive function and the AAGC haplotype was associated with the subgroup without such deficits. The DAO gene was a susceptibility gene for schizophrenia and the genomic region between intron 1 and intron 8 may harbor functional genetic variants, which may influence the mRNA expression of DAO and neurocognitive functions in schizophrenia.

  6. The oxidation of dicarboxylic acid CoA esters via peroxisomal fatty acyl-CoA oxidase. (United States)

    Poosch, M S; Yamazaki, R K


    Evidence supporting a common peroxisomal beta-oxidation pathway for the coenzyme A thioesters of medium-chain-length dicarboxylic acids (DCn-CoA) and monocarboxylic acids (MCn-CoA) has been obtained. Using the mono-CoA esters of dodecanedioic acid (DC12-CoA) and lauroyl-CoA (MC12-CoA) as substrates, parallel inductions of activities and parallel increases in specific activities during purification of peroxisomal fatty acyl-CoA oxidase (EC from rat liver after di(2-ethylhexyl)phthalate treatment were seen. The purified enzyme was used for antiserum production in rabbits; antiserum specificity was verified by immunoblot analysis. Coincident losses of oxidase activities with MC12-CoA and DC12-CoA were found in immunotitration experiments with rat liver homogenates, supporting the hypothesis that peroxisomal fatty acyl-CoA oxidase is solely responsible for the oxidation of medium-chain length dicarboxylic acid substrates. Kinetic studies with purified enzyme using the mono-CoA esters of sebacic (DC10-CoA), suberic (DC8-CoA), and adipic (DC6-CoA) acids along with DC12-CoA revealed substrate inhibition. Although these substrates exhibited similar calculated Vmax values, with decreasing chain length, the combination of increasing Km values and decreasing substrate inhibition constant (Ki) caused the maximum obtainable velocity to decrease. These studies offer an explanation for the previously observed limit of the ability of peroxisomes to chain-shorten dicarboxylates and increased urinary excretion of adipic acid when peroxisomal oxidation of dicarboxylic acids is enhanced.

  7. Molecular cloning and sequence analysis of a PVGOX gene encoding glucose oxidase in Penicillium viticola F1 strain and it's expression quantitation. (United States)

    Khan, Ibrar; Qayyum, Sadia; Ahmed, Shehzad; Niaz, Zeeshan; Fatima, Nighat; Chi, Zhen-Ming


    The PVGOX gene (accession number: KT452630) was isolated from genomic DNA of the marine fungi Penicillium viticola F1 by Genome Walking and their expression analysis was done by Fluorescent RT-PCR. An open reading frame of 1806bp encoding a 601 amino acid protein (isoelectric point: 5.01) with a calculated molecular weight of 65,535.4 was characterized. The deduced protein showed 75%, 71%, 69% and 64% identity to those deduced from the glucose oxidase (GOX) genes from different fungal strains including; Talaromyces variabilis, Beauveria bassiana, Aspergillus terreus, and Aspergillus niger, respectively. The promoter of the gene (intronless) had two TATA boxes around the base pair number -88 and -94 and as well as a CAAT box at -100. However, the terminator of the PVGOX gene does not contain any polyadenylation site (AATAAA). The protein deduced from the PVGOX gene had a signal peptide containing 17 amino acids, three cysteine residues and six potential N-linked glycosylation sites, among them, -N-K-T-Y- at 41 amino acid, -N-R-S-L- at 113 amino acid, -N-G-T-I- at 192 amino acid, -N-T-T-A at 215 amino acid, -N-F-T-E at 373 amino acid and -N-V-T-A- at 408 amino acid were the most possible N-glycosylation sites. Furthermore, the relative transcription level of the PVGOX gene was also stimulated in the presence of 4% (w/v) of calcium carbonate and 0.5 % (v/v) of CSL in the production medium compared with that of the PVGOX gene when the fungal strain F1 was grown in the absence of calcium carbonate and CSL in the production medium, suggesting that under the optimal conditions, the expression of the PVGOX gene responsible for gluconic acid biosynthesis was enhanced, leading to increased gluconic acid production. Therefore, the highly glycosylated oxidase enzyme produced by P. viticola F1 strain might be a good producer in the fermentation process for the industrial level production of gluconic acid.

  8. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity (United States)

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.


    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  9. Expression, purification and characterization of the soluble CUA domain of cytochrome c oxidase of Paracoccus versutus

    Institute of Scientific and Technical Information of China (English)


    The key subunit Ⅱ of cytochrome c oxidase (CcO) contains a soluble binuclear copper center (CuA) do main. The CuA domain of Paracoccus versutus was cloned,expressed, purified and characterized. The gene encoding the CuA domain in pET11d vector was expressed in E. coli BL21(DE3). The results showed that the CuA domain was ex pressed mostly in inclusion bodies and the CuA domain pro tein synthesized in E. coli cells represents approximately 10percent of the total cellular proteins. Dissolved in urea, dia lyzed and recombined with Cu+/Cu2+ and purified by the Q-sepharose fast flow anion-exchange column and Sephadex G-75 gel filtration column, the soluble purple-colored protein,which shows a single band in electrophoresis, was obtained.The UV-visible absorption spectrum of CuA domain showed that there are intense band at 478 mn and a shoulder peak at 530 nm, and two weak bands at 360 and 806 nm respectively,which can be assigned to the charge transfer and the interac tions of obitals of Cu-S and Cu-Cu in the mixed-valence binuclear metal center (Cu2S2R2). The far-UV CD spectrum indicated that this domain is predominantly in β-sheet structure. The fluorescence spectra showed that its maximal excitation wavelength and maximal emission wavelength are at 280 and 345 nm, respectively.

  10. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse


    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  11. Thermal stability of ascorbic acid and ascorbic acid oxidase in african cowpea leaves ( Vigna unguiculata ) of different maturities. (United States)

    Wawire, Michael; Oey, Indrawati; Mathooko, Francis; Njoroge, Charles; Shitanda, Douglas; Hendrickx, Marc


    Cowpea, an African leafy vegetable ( Vigna unguiculata ), contains a high level of vitamin C. The leaves harvested at 4-9 weeks are highly prone to vitamin C losses during handling and processing. Therefore, the purpose of this research was to study the effect of thermal treatment on the stability of ascorbic acid oxidase (AAO), total vitamin C content (l-ascorbic acid, l-AA), and dehydroascorbic acid (DHAA) and l-AA/DHAA ratio in cowpea leaves harvested at different maturities (4, 6, and 8 weeks old). The results showed that AAO activity, total vitamin C content, and l-AA/DHAA ratio in cowpea leaves increased with increasing maturity (up to 8 weeks). Eight-week-old leaves were the best source of total vitamin C and showed a high ratio of l-AA/DHAA (4:1). Thermal inactivation of AAO followed first-order reaction kinetics. Heating at temperatures above 90 °C for short times resulted in a complete AAO inactivation, resulting in a protective effect of l-AA toward enzyme-catalyzed oxidation. Total vitamin C in young leaves (harvested at 4 and 6 weeks) was predominantly in the form of DHAA, and therefore temperature treatment at 30-90 °C for 10 min decreased the total vitamin C content, whereas total vitamin C in 8-week-old cowpea leaves was more than 80% in the form of l-AA, so that a high retention of the total vitamin C can be obtained even after heating and/or reheating (30-90 °C for 10 min) before consumption. The results indicated that the stability of total vitamin C in situ was strongly dependent on the plant maturity stage and the processing conditions applied.

  12. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain. (United States)

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J


    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  13. alpha,omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. (United States)

    Smit, Martha S; Mokgoro, Masego M; Setati, Evodia; Nicaud, Jean-Marc


    alpha,omega-Dicarboxylic acid accumulation from alkanes and alkane degradation intermediates was investigated using Yarrowia lipolytica wild type strain W29 as well as a double, a triple and a quadruple POX-deleted strains. Six genes, POX1 through POX6, encode six acyl-CoA oxidase isozymes in Y. lipolytica. All the strains accumulated dodecanedioic acid (5-20 mg ml(-1)) from the diterminal functionalised 1,12-dodecane diol and 12-hydroxdodecanoic acid. The quadruple-deleted strain was the only strain that was able to accumulate dioic acids from C16 alkanol and monocarboxylic acid as well as from C12, C14 and C16 alkanes (maximum 8 mg ml(-1) from dodecane).

  14. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims

    Directory of Open Access Journals (Sweden)

    A Sanchez-Bahillo


    Full Text Available A Sanchez-Bahillo1, V Bautista-Hernandez1, Carlos Barcia Gonzalez1, R Bañon2, A Luna2, EC Hirsch3, Maria-Trinidad Herrero11Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; 2Department of Legal Medicine, Department of Human Anatomy, School of Medicine, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; 3INSERM U679 Hôpital de la Salpêtrière, Boulevard de l’Hôpital, Paris, FranceAbstract: Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH mRNA in the noradrenergic neurons of the Locus Coeruleus (LC. These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of

  15. Elevated expression levels of lysyl oxidases protect against aortic aneurysm progression in Marfan syndrome. (United States)

    Busnadiego, O; Gorbenko Del Blanco, D; González-Santamaría, J; Habashi, J P; Calderon, J F; Sandoval, P; Bedja, D; Guinea-Viniegra, J; Lopez-Cabrera, M; Rosell-Garcia, T; Snabel, J M; Hanemaaijer, R; Forteza, A; Dietz, H C; Egea, G; Rodriguez-Pascual, F


    Patients with Marfan syndrome (MFS) are at high risk of life-threatening aortic dissections. The condition is caused by mutations in the gene encoding fibrillin-1, an essential component in the formation of elastic fibers. While experimental findings in animal models of the disease have shown the involvement of transforming growth factor-β (TGF-β)- and angiotensin II-dependent pathways, alterations in the vascular extracellular matrix (ECM) may also play a role in the onset and progression of the aortic disease. Lysyl oxidases (LOX) are extracellular enzymes, which initiates the formation of covalent cross-linking of collagens and elastin, thereby contributing to the maturation of the ECM. Here we have explored the role of LOX in the formation of aortic aneurysms in MFS. We show that aortic tissue from MFS patients and MFS mouse model (Fbn1(C1039G/+)) displayed enhanced expression of the members of the LOX family, LOX and LOX-like 1 (LOXL1), and this is associated with the formation of mature collagen fibers. Administration of a LOX inhibitor for 8weeks blocked collagen accumulation and aggravated elastic fiber impairment, and these effects correlated with the induction of a strong and rapidly progressing aortic dilatation, and with premature death in the more severe MFS mouse model, Fbn1(mgR/mgR), without any significant effect on wild type animals. This detrimental effect occurred preferentially in the ascending portion of the aorta, with little or no involvement of the aortic root, and was associated to an overactivation of both canonical and non-canonical TGF-β signaling pathways. The blockade of angiotensin II type I receptor with losartan restored TGF-β signaling activation, normalized elastic fiber impairment and prevented the aortic dilatation induced by LOX inhibition in Fbn1(C1039G/+) mice. Our data indicate that LOX enzymes and LOX-mediated collagen accumulation play a critical protective role in aneurysm formation in MFS.

  16. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat. (United States)

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa


    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  17. The sense and antisense expression of gibberellin 20-oxidase gene (rga5) in rice and its effects on GA1 level and agronomic traits

    Institute of Scientific and Technical Information of China (English)


    A gibberellin 20-oxidase gene rga5 was isolated by PCR from genomic DNA of rice (Oryza sativa ssp indica) cultivars 'Aizizhan' and 'Nante'. Compared with the reported OsGA20ox, the rga5 was partial-frame-shifted with 11 different amino acids. Then the rga5 with CaMV 35S promotor and NOS terminator was inserted into the polylinker site of pCambia1301 to construct sense and antisense gene expressing vectors pSrga5 and pArga5. The transgenic plants were obtained by biolistic bombardment with pSrga5 or pArga5. The transgenic rice plants showed that the over- expression and antisense-expression of rga5 have remarkable effects on the biological characters of rice. The sense transgenic plants showed heightening with longer spike, more seed-bearing and unaffected flowering, whereas antisense transgenic plants showed dwarfing, early-flowering with slender stem, dark leaf color, shorter leaf and shorter spike. The PCR amplification and Southern blot hybridization showed that the rga5 has been integrated into the transgenic rice genome and the transcription of rga5 was identified by Northern blot hybridization. In the sense transgenic plants the GA1 content increased of about 50%, however, the antisense transgenic rice decreased of 90% approximately compared with control plant 'Zhonghua 8'. These results demonstrated that the rga5 is a functional gene encoding gibberellin 20-oxidase in rice. Over-expressing rga5 significantly increases the endogenous GA1 level and plant height of rice, whereas the expression of antisense rga5 decreases the GA1 level and plant height of rice dramatically.

  18. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity. (United States)

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G


    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  19. Engineering the properties of D-amino acid oxidases by a rational and a directed evolution approach. (United States)

    Pollegioni, Loredano; Sacchi, Silvia; Caldinelli, Laura; Boselli, Angelo; Pilone, Mirella S; Piubelli, Luciano; Molla, Gianluca


    D-amino acid oxidase (DAAO) is a FAD-containing flavoprotein that dehydrogenates the D-isomer of amino acids to the corresponding imino acids, coupled with the reduction of FAD. The cofactor then reoxidizes on molecular oxygen and the imino acid hydrolyzes spontaneously to the alpha-keto acid and ammonia. In vitro DAAO displays broad substrate specificity, acting on several neutral and basic D-amino acids: the most efficient substrates are amino acids with hydrophobic side chains. D-aspartic acid and D-glutamic acid are not substrates for DAAO. Through the years, it has been the subject of a number of structural, functional and kinetic investigations. The most recent advances are represented by site-directed mutagenesis studies and resolution of the 3D-structure of the enzymes from pig, human and yeast. The two approaches have given us a deeper understanding of the structure-function relationships and promoted a number of investigations aimed at the modulating the protein properties. By a rational and/or a directed evolution approach, DAAO variants with altered substrate specificity (e.g., active on acidic or on all D-amino acids), increased stability (e.g., stable up to 60 degrees C), modified interaction with the flavin cofactor, and altered oligomeric state were produced. The aim of this paper is to provide an overview of the most recent research on the engineering of DAAOs to illustrate their new intriguing properties, which also have enabled us to pursue new biotechnological applications.

  20. Caracterização imunoquímica da ACC (ácido 1-carboxílico-1-aminociclopropano oxidase em frutos climatéricos Immunochemical characterization of ACC (1-aminocyclopropane-1-carboxilic acid oxidase in climacteric fruits

    Directory of Open Access Journals (Sweden)

    Ana Lúcia CHAVES


    Full Text Available Com o objetivo de caracterizar, por via imunoquímica, a enzima ACC (ácido 1-carboxílico-1-aminociclopropano oxidase em frutos climatéricos, foram preparados anticorpos policlonais específicos para esta proteína. Utilizou-se, como antígeno, uma proteína recombinante, produzida em Escherichia coli K38/pGP1,2, contendo o vetor de expressão pT7-7A4 no qual foi inserido um clone de DNA da ACC oxidase. A especificidade dos anticorpos foi demonstrada pela técnica de "Western blot", a partir de extratos protéicos de maçãs e tomates em diferentes estágios de maturação. Verificou-se que o aumento da produção de etileno, quando os frutos passaram do estágio pré-climatérico para o climatérico, está diretamente correlacionada com o aumento da síntese da ACC oxidase. Em estágios de maturação mais avançados houve uma redução da produção de etileno e da atividade ACC oxidase, mas esta proteína continuava presente. Quando o "Western blot" foi realizado com tomates transgênicos, onde a produção de etileno e a síntese da ACC oxidase foram inibidos em mais de 95%, nenhuma reação imunoquímica foi detectada. O conjunto de resultados obtidos indica que os anticorpos detectam especificamente ACC oxidase.Polyclonal antibodies were prepared to characterize the enzyme ACC (1-aminocyclopropane-1-carboxilic acid oxidase from climateric fruits. The antigen was a recombinant protein obtained from an Escherichia coli K38/pGP1,2, which contained the expression vector pT7-7A4 with one ACC oxidase DNA clone inserted. Antibody specificity was demonstrated by the Western blot technique with protein extracts from apples and tomatoes in different maturation stages. It was observed that the increase in ethylene production which happened when the fruits changed from pre-climateric to climateric stage is directly correlated with an increase in ACC oxidase syntesis. In more advanced maturation stages there was a reduction in ethylene production and

  1. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation. (United States)

    Zhang, Litao; Liu, Jianguo


    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells.

  2. Dynamics of indole-3-acetic acid oxidase activity in suspension culture of sunflower crown-gall

    Directory of Open Access Journals (Sweden)

    Zofia Chirek


    Full Text Available IAA oxidase activity was determined in several growth phases of a suspension culture of sunflower crown-gall. During the short phase of intensive growth (zero passage - PO a negative correlation was noted between enzymatic activity and the rate of growth. IAA oxidase activity increased to a certain level is not a factor limiting cell division. For protraction of the phase of intensive growth (first passage - P1, however, a decrease in the activity of this enzyme seems indispensable. IAA oxidase activity in the tested culture is under the control of inhibitors present in the cells and medium. High enzyme inhibition was observed in PO cells during the phase, of intensive growth and in P1 at the beginning and in the middle part of this phase. These results suggest' that the -auxin level determined in earlier studies in sunflower crown-gall culture is controlled by the IAA oxidase set. During the long phase of intensive growth (P1 this control is of negative feedback type.

  3. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels (United States)

    Polyphenol oxidase (PPO, EC 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. Minimization of PPO activity has proven difficult because bread wheat is genetically complex, composed of the genomes of three grass species. The PPO-A1 and PPO-D1 genes, on chromosomes 2A and...

  4. Over-expression of polyphenol oxidase gene in strawberry fruit delays the fungus infection process (United States)

    Polyphenols are secondary metabolites widely present in plants and beneficial to human health. In this study, the changes of polyphenol contents during strawberry fruit development as well as changes of polyphenol oxidase (PPO) was analyzed. The polyphenol content showed declining trend during fruit...

  5. Cloning and expression of DNA encoding a ripening from a polypeptide having sulfhydryl oxidase activity.

    NARCIS (Netherlands)

    Maat, J.; Musters, W.; Stam, H.; Schaap, P.J.; Vondervoort, van de P.J.J.; Visser, J.; Verbakel, J.M.A.


    The invention relates to recombinant DNA technology for the production of an enzyme having sulfhydryl oxidase ("SOX") activity. This SOX-enzyme can be used where the oxidation of free sulfhydryl groups (thio compounds) to the corresponding disulfides is desirable. SOX enzyme may be used for treatmen

  6. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats. (United States)

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; zhao, Yan; Yang, Shucai; Sun, Changhao


    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation.

  7. Effects of Enhanced UV-B Radiation on the Activity and Expression of Alternative Oxidase in Red Kidney Bean Leaves

    Institute of Scientific and Technical Information of China (English)

    Ming-Guang Zhao; Ying-Gao Liu; Li-Xin Zhang; Lin Zheng; Yu-Rong Bi


    An increase in ultraviolet (UV) B radiation on the earth's surface is a feature of current global climate changes. It has been reported that alternative oxidase (AOX) may have a protective role against oxidative stress induced by environmental stresses, such as UV-B. To better understand the characteristic tolerance of plants to UV-B radiation, the effects of enhanced UV-B radiation on the activity and expression of AOX in red kidney bean (Phaseolus vulgaris) leaves were investigated in the present study. The results show that the total respiration rate and AOX activity in red kidney bean leaves increased significantly during treatment with enhanced UV-B. However, cytochrome oxidase (COX) activity did not change at 24 h of UV-B treatment, before dropping rapidly. Both alternative pathway content and alternative pathway activity were increased in the presence of exogenous H2O2. Immunoblotting analysis with anti-AOX monoclonal antibody revealed that expression of the AOX protein increased in red kidney bean leaves under enhanced UV-B radiation, reaching a peak at 72increase in AOX activity in red kidney bean leaves under enhanced UV-B radiation was mainly due to H2O2-induced AOX expression.

  8. Expression of the secreted FAD-dependent sulfydryl oxidase (QSOX) in the guinea pig central nervous system. (United States)

    Amiot, C; Musard, J F; Hadjiyiassemis, M; Jouvenot, M; Fellmann, D; Risold, P Y; Adami, P


    cpQSOx1 is a member of the QSOx family of proteins, expressed in the guinea pig (Cavia porcellus) and ortholog of the rat rQSOx1. In this study, in vitro experiments were conducted and showed that, as other member of this family, cpQSOx1 has a sulfydryl oxidase activity, and is a secreted protein. Then, the expression of this enzyme was researched in the guinea pig brain, as very little information exists yet on the expression of QSOx family members in the central nervous system. By immunohistochemistry, RT-PCR and in situ hybridization, cpQSOx1 is synthesized by neurons throughout the whole guinea pig central nervous system. Reticular structures as the basal forebrain, reticular thalamic nucleus and reticular nuclei of the brainstem contained the densest labeling. These results are discussed in terms of putative roles of this protein in synaptic strengthening and in redox activities.

  9. The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)


    Amino acid ionic liquids(AAILs) have attracted much attention due to their special chemical and physical properties,especially their outstanding biocompatibility and truly green aspect.In this work,a novel electrochemical biosensing platform based on AAILs/carbon nanotubes(CNTs) composite was fabricated.AAILs were used as a novel solvent for glucose oxidase(GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes(CNTs) modified glassy carbon(GC) electrode into AAILs containing GOD.The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry.The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen.Due to the synergic effect of AAILs and CNTs,the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM(S/N = 3).Furthermore,the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid.Therefore,AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third-generation enzyme sensors.

  10. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. (United States)

    Campillo-Brocal, Jonatan C; Lucas-Elío, Patricia; Sanchez-Amat, Antonio


    Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.

  11. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Jonatan C. Campillo-Brocal


    Full Text Available Amino acid oxidases (AAOs catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.

  12. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.


    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further purified to a final homogeneity (by the criteria of isoelectric focusing and SDS-PAGE) using techniques of low pressure chromatography followed by two FPLC steps. The purified yellow enzyme showed visible absorption maxima of a flavoprotein at 380 and 450 nm: the presence of FAD as the cofactor...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...

  13. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization (United States)

    Afshari, Esmail; Mazinani, Saeedeh; Ranaei-Siadat, Seyed-Omid; Ghomi, Hamid


    Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO2, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  14. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[b]furan derivatives based on salvianolic acid C. (United States)

    Tang, Hong-Jin; Zhang, Xiao-Wei; Yang, Lin; Li, Wei; Li, Jia-Huang; Wang, Jin-Xin; Chen, Jun


    Xanthine oxidase (XO) is the key enzyme in humans which is related to a variety of diseases such as gout, hyperuricemia and cardiovascular diseases. In this work, a series of 2-arylbenzo[b]furan derivatives were synthesized based on salvianolic acid C, and they were evaluated for xanthine oxidase inhibitory and antioxidant activities. Compounds 5b, 6a, 6e and 6f showed potent xanthine oxidase inhibitory activities with IC50 values ranging from 3.99 to 6.36 μM, which were comparable with that of allopurinol. Lineweaver-Burk plots analysis revealed that the representative derivative 6e could bind to either xanthine oxidase or the xanthine oxidase-xanthine complex, which exhibited a mixed-type competitive mechanism. A DPPH radical scavenging assay showed most of the hydroxyl-functionalized 2-arylbenzo[b]furan derivatives possessed the potent antioxidant activity, which was further validated on LPS-stimulated RAW 264.7 macrophages model. The structure-activity relationships were preliminary analyzed and indicated that the structural skeleton of 2-arylbenzo[b]furan and phenolic hydroxyl groups played an important role in maintaining xanthine oxidase inhibitory effect and antioxidant property for the series of derivatives. Meanwhile, molecular docking studies were performed to further confirm the structure-activity relationships and investigate the proposed binding mechanisms of compounds 5d, 6d and 10d binding to the protein.

  15. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. (United States)

    Cruz, A G; Castro, W F; Faria, J A F; Lollo, P C B; Amaya-Farfán, J; Freitas, M Q; Rodrigues, D; Oliveira, C A F; Godoy, H T


    We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive postacidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

  16. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. (United States)

    Barad, Shiri; Horowitz, Sigal Brown; Moscovitz, Oren; Lichter, Amnon; Sherman, Amir; Prusky, Dov


    Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest maceration of fruit through secretion of total, d-gluconic acid (GLA). Two P. expansum glucose oxidase (GOX)-encoding genes, GOX1 and GOX2, were analyzed. GOX activity and GLA accumulation were strongly related to GOX2 expression, which increased with pH to a maximum at pH 7.0, whereas GOX1 was expressed at pH 4.0, where no GOX activity or extracellular GLA were detected. This differential expression was also observed at the leading edge of the decaying tissue, where GOX2 expression was dominant. The roles of the GOX genes in pathogenicity were further studied through i) development of P. expansum goxRNAi mutants exhibiting differential downregulation of GOX2, ii) heterologous expression of the P. expansum GOX2 gene in the nondeciduous fruit-pathogen P. chrysogenum, and iii) modulation of GLA production by FeSO(4) chelation. Interestingly, in P. expansum, pH and GLA production elicited opposite effects on germination and biomass accumulation: 26% of spores germinated at pH 7.0 when GOX activity and GLA were highest whereas, in P. chrysogenum at the same pH, when GLA did not accumulate, 72% of spores germinated. Moreover, heterologous expression of P. expansum GOX2 in P. chrysogenum resulted in enhanced GLA production and reduced germination, suggesting negative regulation of spore germination and GLA production. These results demonstrate that pH modulation, mediated by GLA accumulation, is an important factor in generating the initial signal or signals for fungal development leading to host-tissue colonization by P. expansum.

  17. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingbing [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); College of Food Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 (China); Mu, Xiaoyu [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)


    Highlights: • Novel amino acid ionic liquids with pyridinium as cations and L-lysine as anion were synthesized. • These synthesized AAILs have been explored as the ligands coordinated with Zn(II) in CLE-CE system. • The developed CLE-CE method could be used for the enantioseparation of Dns-D, L-amino acids. • The kinetic contents of L-amino acid oxidase were investigated with the proposed CLE-CE system. - Abstract: New kinds of amino acid ionic liquids (AAILs) with pyridinium as cations and L-lysine (L-Lys) as anion have been developed as the available chiral ligands coordinated with Zn(II) in chiral ligand-exchange capillary electrophoresis (CLE-CE). Four kinds of AAILs, including [1-ethylpyridinium][L-lysine], 1-butylpyridinium][L-lysine], [1-hexylpyridinium][L-lysine] and 1-[octylpyridinium][L-lysine], were successfully synthesized and characterized by nuclear magnetic resonance and mass spectrometry. Compared with other AAILs, the best chiral separation of Dns-D, L-amino acids could be achieved when [1-ethylpyridinium][L-lysine] was chosen as the chiral ligand. It has been found that after investigating the influence of key factors on the separation efficiency, such as pH of buffer solution, the ratio of Zn(II) to ligand and complex concentration, eight pairs of Dns-D, L-AAs enantiomers could be baseline separated and three pairs were partly separated under the optimum conditions. The proposed CLE-CE method also exhibited favorable quantitative analysis property of Dns-D, L-Met with good linearity (r{sup 2} = 0.998) and favorable repeatability (RSD ≤ 1.5%). Furthermore, the CLE-CE system was applied in investigating the kinetic contents of L-amino acid oxidase, which implied that the proposed system has the potential in studying the enzymatic reaction mechanism.

  18. Dysbindin and d-amino-acid-oxidase gene polymorphisms associated with positive and negative symptoms in schizophrenia

    DEFF Research Database (Denmark)

    Wirgenes, Katrine V; Djurovic, Srdjan; Agartz, Ingrid;


    BACKGROUND: Schizophrenia is a genetically complex disorder with an unknown pathophysiology. Several genes implicated in glutamate metabolism have been associated with the disorder. Recent studies of polymorphisms in the dystrobrevin-binding protein 1 gene (DTNBP1; dysbindin) and D......-amino-acid-oxidase (DAO) gene, both involved in glutamate receptor function, reported associations with negative symptoms and with anxiety and depression, respectively, when measured with the Positive and Negative Syndrome Scale (PANSS). METHODS: In the present study, the suggested association between dysbindin and DAO...... single nucleotide polymorphisms (SNPs) and PANSS scores was analyzed in 155 Norwegian schizophrenia patients. RESULTS: There was a significant association between the dysbindin SNP rs3213207 and severity of both negative symptoms and total symptom load, as well as between the DAO SNP rs2070587 and total...

  19. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase. (United States)

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie


    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO.

  20. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  1. The antioxidant activity of soursop decreases the expression of a member of the NADPH oxidase family. (United States)

    Zamudio-Cuevas, Y; Díaz-Sobac, R; Vázquez-Luna, A; Landa-Solís, C; Cruz-Ramos, M; Santamaría-Olmedo, M; Martínez-Flores, K; Fuentes-Gómez, A J; López-Reyes, A


    Cellular oxidative stress produced by an increase in free radicals is one of the factors that promote the development of chronic degenerative diseases; therefore, consuming natural antioxidants helps minimize their negative effects. This study evaluated the cytotoxicity of the soursop extract (Annona muricata), its cytoprotective capacity against oxidative stress induced by hydrogen peroxide, the inhibitory potential of reactive oxygen species (ROS), the molecular mechanism of its antioxidant action, and its capacity to repair cellular damage in the fibroblast cell line. The soursop extract proved not to be cytotoxic in fibroblast cultures and showed cytoprotective capacity against hydrogen peroxide-induced stress; in cell culture it reduced the generation of ROS significantly by inhibiting a sub-unit of the NADPH oxidase enzyme (p47phox). The soursop extract can prevent damage caused by cellular oxidants.

  2. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. (United States)

    Manea, Adrian; Manea, Simona-Adriana; Gan, Ana Maria; Constantin, Alina; Fenyo, Ioana Madalina; Raicu, Monica; Muresian, Horia; Simionescu, Maya


    Monocytes (Mon) and Mon-derived macrophages (Mac) orchestrate important oxidative and inflammatory reactions in atherosclerosis by secreting reactive oxygen species (ROS) due, in large part, to the upregulated NADPH oxidases (Nox). The Nox enzymes have been extensively investigated in human Mon and Mac. However, the expression and functional significance of the Nox5 subtypes is not known. We aimed at elucidating whether Nox5 is expressed in human Mon and Mac, and examine its potential role in atherosclerosis. Human monocytic THP-1 cell line and CD14(+) Mon were employed to search for Nox5 expression. RT-PCR, Western blot, lucigenin-enhanced chemiluminescence and dihydroethidium assays were utilized to examine Nox5 in these cells. We found that Nox5 transcription variants and proteins are constitutively expressed in THP-1 cells and primary CD14(+) Mon. Silencing of Nox5 protein expression by siRNA reduced the Ca(2+)-dependent Nox activity and the formation of ROS in Mac induced by A23187, a selective Ca(2+) ionophore. Exposure of Mac to increasing concentrations of IFNγ (5-100 ng/ml) or oxidized LDL (5-100 μg/ml) resulted in a dose-dependent increase in Nox5 protein expression and elevation in intracellular Ca(2+) concentration. Immunohistochemical staining revealed that Nox5 is present in CD68(+) Mac-rich area within human carotid artery atherosclerotic plaques. To the best of our knowledge, this is the first evidence that Nox5 is constitutively expressed in human Mon. Induction of Nox5 expression in IFNγ- and oxidized LDL-exposed Mac and the presence of Nox5 in Mac-rich atheroma are indicative of the implication of Nox5 in atherogenesis.

  3. Simultaneous determination of D-amino acids by the coupling method of D-amino acid oxidase with high-performance liquid chromatography. (United States)

    Kato, Shiro; Kito, Yukihiko; Hemmi, Hisashi; Yoshimura, Tohru


    An enzymatic assay system of D-amino acids was established using the D-amino acid oxidase of Schizosaccharomyces pombe. In this method, the enzyme converts the D-amino acids to the corresponding α-keto acids, which are then reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) in an organic solvent. The resultant fluorescent compounds are separated and quantified by high-performance liquid chromatography (HPLC). Use of an organic solvent following the α-keto acid modification with DMB prevents the non-enzymatic deamination of L-amino acids, which are generally present at much higher concentrations than D-amino acids in biological samples. With this method, D-Glu, D-Asn, D-Gln, D-Ala, D-Val, D-Leu, D-Phe, and D-Ile can be quantified in the order of micromolar, and other D-amino acids except D-Asp can be assayed within a sensitivity range of 50-100 μM. The established enzymatic method was used to analyze the d-amino acid contents in human urine. The concentration of D-Ser obtained using this enzymatic method (223 μM) was in good agreement with that obtained using the conventional HPLC method (198 μM). The enzymatic method also demonstrated that the human urine contained 5.45 μM of d-Ala and 0.91 μM of D-Asn. Both D-amino acids were difficult to be identified using the conventional method, because the large signals from L-amino acids masked those from d-amino acids. The enzymatic method that we have developed can circumvent this problem.

  4. Chemotherapy-induced monoamine oxidase expression in prostate carcinoma functions as a cytoprotective resistance enzyme and associates with clinical outcomes.

    Directory of Open Access Journals (Sweden)

    Ryan R Gordon

    Full Text Available To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA. In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes.

  5. Cloning and expression of zebrafish genes encoding the heme synthesis enzymes uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO). (United States)

    Hanaoka, Ryuki; Dawid, Igor B; Kawahara, Atsuo


    Heme is synthesized from glycine and succinyl CoA by eight heme synthesis enzymes. Although genetic defects in any of these enzymes are known to cause severe human blood diseases, their developmental expression in mammals is unknown. In this paper, we report two zebrafish heme synthesis enzymes, uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO) that are well conserved in comparison to their human counterparts. Both UROS and PPO formed pairs of bilateral stripes in the lateral plate mesoderm at the 15-somite stage. At 24 h post-fertilization (hpf), UROS and PPO were predominantly expressed in the intermediate cell mass (ICM) that is the major site of primitive hematopoiesis. The expression of UROS and PPO was drastically suppressed in the bloodless mutants cloche and vlad tepes/gata 1 from 15-somite to 24hpf stages, indicating that both cloche and vlad tepes/gata 1 are required for the induction and maintenance of UROS and PPO expression in the ICM.

  6. Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. (United States)

    Desgagné-Penix, Isabel; Sponsel, Valerie M


    Bioactive gibberellins (GAs) affect many biological processes including germination, stem growth, transition to flowering, and fruit development. The location, timing, and level of bioactive GA are finely tuned to ensure that optimal growth and development occur. The balance between GA biosynthesis and deactivation is controlled by external factors such as light and by internal factors that include auxin. The role of auxin transport inhibitors (ATIs) and auxins on GA homeostasis in intact light-grown Arabidopsis thaliana (L.) Heynh. seedlings was investigated. Two ATIs, 1-N-naphthylthalamic acid (NPA) and 1-naphthoxyacetic acid (NOA) caused elevated expression of the GA biosynthetic enzyme AtGA20-oxidase1 (AtGA20ox1) in shoot but not in root tissues, and only at certain developmental stages. It was investigated whether enhanced AtGA20ox1 gene expression was a consequence of altered flow through the GA biosynthetic pathway, or was due to impaired GA signalling that can lead to enhanced AtGA20ox1 expression and accumulation of a DELLA protein, Repressor of ga1-3 (RGA). Both ATIs promoted accumulation of GFP-fused RGA in shoots and roots, and this increase was counteracted by the application of GA(4). These results suggest that in ATI-treated seedlings the impediment to DELLA protein degradation may be a deficiency of bioactive GA at sites of GA response. It is proposed that the four different levels of AtGA20ox1 regulation observed here are imposed in a strict hierarchy: spatial (organ-, tissue-, cell-specific) > developmental > metabolic > auxin regulation. Thus results show that, in intact auxin- and auxin transport inhibitor-treated light-grown Arabidopsis seedlings, three other levels of regulation supersede the effects of auxin on AtGA20ox1.

  7. Gene engineered construction of urate oxidase highly-expressing Lactococcus lactis%高产尿酸氧化酶乳酸工程菌的构建

    Institute of Scientific and Technical Information of China (English)

    张彦新; 曾雪芳; 刘芳; 蒋云生


    promote nisA amplification system to increase urate oxidase activity.Methods According to the urate oxidase gene sequence (Uricase,E12709) of Candida utilis retrieved in GenBank,PCR was used to amplify the Uricase sequence with predesigned primers.The amplified gene fragment was cloned into plasmids PNZ8048 and PMG36e to form the the recombinant plasmids PNZ8048-U and PMG36e-U,which were then transformed into L.lactis NZ9000 and finally we obtained two genetically-engineered strains,L.lactis NZ9000-PNZ8048-U and L.lactis NZ9000-PMG36e-U.SDS-PAGE was used to detect the urate oxidase and its activity in the lysate of recombinant bacteria.The uric acid degradation by the strains in serum from patients with hyperuricemia was measured.Results The recombinant plasmids PNZ8048-U and PMG36e-U were identified by enzyme digestion and sequencing,showing a 0.9 kb urate oxidase gene fragment identical to the GenBank data.Both of the recombinant strains,L.lactis NZ9000-PNZ8048-U and L.lactis NZ9000-PMG36e-U,expressed a recombinant protein (relative molecular mass 34 000)which was consistent with the theoretical molecular weight of the putative 303 amino acids of urate oxidase gene sequence.In-vitro measurement showed that the urate oxidase activity of L.Lactis NZ9000-PNZ8048-U was (1.92±0.14) u/ml,compared with (0.55±0.05) u/ml for Candida utilis and (0.29±0.06) u/ml for L.Lactis NZ9000-PMG36e-U.The serum uric acid levels of patients with hyperuricemia were (620.0 ±58.7) μmol/L in samples added with normal saline,(321.0 ± 46.2) μmol/L in samples added with L.lactis NZ9000-PNZ8048-U,(568.0 ± 47.3) μmol/L in samples added with L.lactis NZ9000-PMG36e-U,and (406.0 ±42.4) μmol/L in samples added with Candida utilis.There was a statistical difference in the serum uric acid level between the samples added with bacteria and those in the negative control group (all P<0.05).Conclusion A genetically engineered strain L.lactis NZ9000-PNZ8048-U was successfully constructed in this

  8. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells. (United States)

    Mishra, Nawneet; Timilsina, Uddhav; Ghimire, Dibya; Dubey, Ravi C; Gaur, Ritu


    Mitochondrial Dysfunction has been implicated in multiple human diseases, including cancer. Among all cancer, lung cancer is the most common type of cancer worldwide with low survival rates. Mammals possess multiple subunits of the mitochondrial enzyme Cytochrome C oxidase (COX). The COX subunits are expressed in a tissue specific manner and have been implicated in cancer cell metabolism although their molecular and regulatory mechanisms are not clearly understood. In this study, we aimed at identifying novel gene signatures in lung cancer. We performed extensive analysis of seven different Gene Expression Omnibus (GEO) datasets pertaining to different stages of lung adenocarcinoma and identified that multiple subunits of COX genes are differentially expressed in these patients. Amongst all COX genes, the expression of COX7A1 gene was observed to be highly down regulated in these patients. In order to validate the GEO datasets, we looked at the expression of multiple COX genes using quantitative real time PCR (qPCR) using human lung adenocarcinoma cell line A549. Our results confirmed that COX 7A1 gene expression was indeed highly reduced in these cells. Overexpression of COX7A1 in human lung cancer cells led to inhibition of cell proliferation and increase in cell death via apoptosis. These results indicated that low level of COX7A1 gene expression is essential to regulate cell viability and inhibit cell death in lung adenocarcinoma. Our study has identified COX7A1 as a novel gene that might play a crucial role in the etiology of lung adenocarcinoma and can serve as a biomarker for lung cancer disease progression.

  9. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. (United States)

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu


    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.

  10. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. (United States)

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina


    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM.

  11. An aryl-alcohol oxidase of Pleurotus sapidus: heterologous expression, characterization, and application in a 2-enzyme system. (United States)

    Galperin, Ilya; Javeed, Aysha; Luig, Hanno; Lochnit, Günter; Rühl, Martin


    Aryl-alcohol oxidases (AAOs) are enzymes supporting the degradation of lignin by fungal derived class II peroxidases produced by white-rot fungi. AAOs are able to generate H2O2 as a by-product via oxidation of an aryl-alcohol into its correspondent aldehyde. In this study, an AAO was heterologously expressed in a basidiomycete host for the first time. The gene for an AAO of the white-rot fungus Pleurotus sapidus, a close relative to the oyster mushroom Pleurotus ostreatus, was cloned into an expression vector and put under control of the promotor of the glyceraldehyde-3-phosphate dehydrogenase gene 2 (gpdII) of the button mushroom Agaricus bisporus. The expression vector was transformed into the model basidiomycete Coprinopsis cinerea, and several positive transformants were obtained. The best producing transformants were grown in shake-flasks and in a stirred tank reactor reaching enzymatic activities of up to 125 U L(-1) using veratryl alcohol as a substrate. The purified AAO was biochemically characterized and compared to the previously described native and recombinant AAOs from other Pleurotus species. In addition, a two-enzyme system comprising a dye-decolorizing peroxidase (DyP) from Mycetinis scorodonius and the P. sapidus AAO was successfully employed to bleach the anthraquinone dye Reactive Blue 5.

  12. Effect of GLP-1 on the expression of NADPH oxidase subunits in the kidney of type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jin-jin LIU


    Full Text Available Objective To observe the effect of exenatide, a glucagon-like peptide-1 (GLP-1 receptor agonist, on the expression of NADPH oxidase subunits NOX4 and p22phox and connective tissue growth factor (CTGF in the kidney of streptozotocin (STZ-induced type 1 diabetic rats, and explore the protective effects and mechanisms of exenatide on the kidney of diabetic rats. Methods Thirty male Sprague-Dawley (SD rats were divided into control group (group A, n=7 and diabetic model group (n=23. Type 1 diabetic model was reproduced by intraperitoneal injection of streptozotocin. It was successful in 19 rats. Diabetic rats were randomly divided into diabetic control group (group B, n=10 and diabetic with treatment of exenatide group (group C, n=9. Rats in group C were injected subcutaneously with exenatide in dose of 5μg/kg twice daily. Rats in group A and B were given equivalent volume of normal saline by subcutaneous injection. All rats were sacrificed after eight weeks. The mRNA expression of renal p22phox and NOX4 were detected by real-time fluorescence quantitative PCR. The protein expression of CTGF was detected by immunohistochemical staining. Results The levels of blood glucose, lipids, creatinine, and urea nitrogen, the albumin excretion rate, kidney index, the mRNA expressions of renal NOX4 and p22phox, and the protein expression of renal CTGF were significantly increased in group B compared with that in group A (P0.05. Conclusion Exenatide can decrease the expressions of renal NOX4, p22phox and CTGF, decline the index of urinary protein, and alleviate the kidney hypertrophy in type 1 diabetic rats, implying that exenatide exerted a protective effect on the kidney.

  13. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells. (United States)

    Zong, Wen; Jiang, Yan; Zhao, Jing; Zhang, Jian; Gao, Jian-gang


    The lysyl oxidase (LOX) family encodes the copper-dependent amine oxidases that play a key role in determining the tensile strength and structural integrity of connective tissues by catalyzing the crosslinking of elastin or collagen. Estrogen may upregulate the expression of LOX and lysyl oxidase-like 1 (LOXL1) in the vagina. The objective of this study was to determine the effect of estrogen on the expression of all LOX family genes in the urogenital tissues of accelerated ovarian aging mice and human Ishikawa cells. Mice and Ishikawa cells treated with estradiol (E2) showed increased expression of LOX family genes and transforming growth factor β1 (TGF-β1). Ishikawa cells treated with TGF-β1 also showed increased expression of LOX family genes. The Ishikawa cells were then treated with either E2 plus the TGF-β receptor (TGFBR) inhibitor SB431542 or E2 alone. The expression of LOX family genes induced by E2 was reduced in the Ishikawa cells treated with TGFBR inhibitor. Our results showed that E2 increased the expression of the LOX family genes, and suggest that this induction may be mediated by the TGF-β signal pathway. E2 may play a role in regulating the expression of LOX family genes.

  14. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.


    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.

  15. A facile and effective immobilization of glucose oxidase on tannic acid modified CoFe2O4 magnetic nanoparticles. (United States)

    Altun, Seher; Çakıroğlu, Bekir; Özacar, Münteha; Özacar, Mahmut


    This article presents a study of glucose oxidase (GOx) immobilization by employing tannic acid (TA) modified-CoFe2O4 (CFO) magnetic nanoparticles which demonstrates novel aspect for enzyme immobilization. By using the strong protein and tannic acid binding, GOx immobilization was carried out via physical adsorption in a simpler way compared with the other immobilization methods which require various chemicals and complicated procedures which is difficult, expensive, time-consuming, and destructive to the enzyme structure. CFO was synthesized by hydrothermal synthesis and modified with TA to immobilize GOx. The immobilized GOx demonstrated maximum catalytic activity at pH 6.5 and 45 °C. The samples were characterized by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, and fourier transform infrared spectroscopy (FTIR), all of which confirm the surface modification of CFO and GOx immobilization. Also, field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) were performed to demonstrate the surface morphology and chemical structure of samples. According to the Lineweaver-Burk plot, GOx possessed lower affinity to glucose after immobilization, and the Michelis-Menten constant (KM) of immobilized and free GOx were found to be 50.05 mM and 28.00 mM, respectively. The immobilized GOx showed excellent reusability, and even after 8 consecutive activity assay runs, the immobilized GOx maintained ca. 60% of its initial activity.

  16. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). (United States)

    Vanlerberghe, G. C.; Day, D. A.; Wiskich, J. T.; Vanlerberghe, A. E.; McIntosh, L.


    Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.

  17. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K


    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.

  18. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities. (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji


    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  19. NADH oxidase-dependent CD39 expression by CD8(+) T cells modulates interferon gamma responses via generation of adenosine. (United States)

    Bai, Aiping; Moss, Alan; Rothweiler, Sonja; Longhi, Maria Serena; Wu, Yan; Junger, Wolfgang G; Robson, Simon C


    Interferon gamma (IFNγ)-producing CD8(+) T cells (Tc1) play important roles in immunological disease. We now report that CD3/CD28-mediated stimulation of CD8(+) T cells to generate Tc1 cells, not only increases IFNγ production but also boosts the generation of reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH oxidases or knockdown of gp91phox in CD8(+) T cells abrogates ROS generation, which in turn modulates JNK and NFκB signalling with decreases in both IFNγ levels and CD39 expression. CD39(+)CD8(+) T cells substantially inhibit IFNγ production by CD39(-)CD8(+) T cells via the paracrine generation of adenosine, which is operational via adenosine type 2A receptors. Increases in numbers of CD39(+)CD8(+) T cells and associated enhancements in ROS signal transduction are noted in cells from patients with Crohn's disease. Our findings provide insights into Tc1-mediated IFNγ responses and ROS generation and link these pathways to CD39/adenosine-mediated effects in immunological disease.

  20. Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa. (United States)

    Nicolia, A; Ferradini, N; Molla, G; Biagetti, E; Pollegioni, L; Veronesi, F; Rosellini, D


    The main strategy for resistance to the herbicide glyphosate in plants is the overexpression of an herbicide insensitive, bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). A glyphosate resistance strategy based on the ability to degrade the herbicide can be useful to reduce glyphosate phytotoxicity to the crops. Here we present the characterization of glyphosate resistance in transgenic alfalfa (Medicago sativa L.) expressing a plant-optimized variant of glycine oxidase (GO) from Bacillus subtilis, evolved in vitro by a protein engineering approach to efficiently degrade glyphosate. Two constructs were used, one with (GO(TP+)) and one without (GO(TP-)) the pea rbcS plastid transit peptide. Molecular and biochemical analyses confirmed the stable integration of the transgene and the correct localization of the plastid-imported GO protein. Transgenic alfalfa plants were tested for glyphosate resistance both in vitro and in vivo. Two GO(TP+) lines showed moderate resistance to the herbicide in both conditions. Optimization of expression of this GO variant may allow to attain sufficient field resistance to glyphosate herbicides, thus providing a resistance strategy based on herbicide degradation.

  1. Activity of indolyl-3-acetic acid oxidase and peroxidase in roots of carrot infested with Meloidogyne hapla Chiuu.

    Directory of Open Access Journals (Sweden)

    Krystyna M. Janas


    Full Text Available IAA-oxidase and peroxidase activity was measured in storage and side roots of healthy and M. hapla infested carrots of two sultivars. Cultivar 'Perfekcja' is sensitive whereas cv. 'Slendero' is tolerant to the northern root-knot ne-matode. 3-, 4-, and 5-month-old plants were subjected to analyses. In M. hapla infested plants of both cultivars IAA-oxidase inhibitors accumulated. Kinetics of IAA oxidation in vivo were the same in healthy and infested plants. IAA-oxidase activity in vitro was inhibited in crude extracts of the infested tissues, the inhibition being prevented by PVP. Peroxidase activity increased in secondary phloem and decreased in galled side roots of both cultivars when compared with healthy controls. In galled side roots of the youngest 3-month-old plants peroxidase activity was not decreased. IAA-oxidase inhibitors accumulated in the infested roots.It is concluded that M. hapla has no direct effect on IAA-oxidase. Degree of tolerance to nematodes is correlated with the ratio of IAA-oxidase inhibitors to IAA-oxidase rather than with the absolute activity of IAA-oxidase.

  2. ANNALS EXPRESS: Caeruloplasmin oxidase activity- measurement in serum by use of o- dianisidine dihydrochloride on a microplate reader. (United States)

    Stepien, Karolina Maria; Guy, Mark


    Background The enzymatic method of caeruloplasmin measurement is based on copper-dependent oxidase activity. The advantage of the oxidase determination is that it has a much lower detection limit compared to immunoassay-based methods. It has found its application in both the diagnosis of Wilson's disease and also in the monitoring of patients' response to treatment.

  3. Indispensable but insufficient role of renal D-amino acid oxidase in chiral inversion of NG-nitro-D-arginine. (United States)

    Xin, Yan-Fei; Li, Xin; Hao, Bin; Gong, Nian; Sun, Wen-Qiang; Konno, Ryuichi; Wang, Yong-Xiang


    Unidirectionally chiral inversion of N(G)-nitro-D-arginine (D-NNA) to its L-enantiomer (L-NNA) occurred in rats, and it was blocked markedly (ca. 80%) by renal vascular ligation, and entirely (100%) by the D-amino acid oxidase (DAO) inhibitor sodium benzoate, suggesting that renal DAO is essential for the inversion. However, the doses of sodium benzoate administrated were extremely high (e.g., 400 mg/kg) due to its low potency. It is thus possible that sodium benzoate-mediated blockade of D-NNA inversion might be due to its nonspecific (or non-DAO-related) effects. In addition, after D-NNA was incubated with the pure enzyme of DAO in vitro without tissue homogenates, L-NNA was not produced, even though D-NNA was disposed. We propose that this occurred because D-NNA was first converted to its corresponding alpha-keto acid by DAO and then to L-NNA by transaminase(s); however, there was no direct evidence for this process. The goal of this study is to further elucidate the process of D-NNA chiral inversion both in vivo and in in vitro tissue homogenates by comparing mutant ddY/DAO(-/-) mice that lack DAO activity entirely compared to normal ddY/DAO(+/+) mice and Swiss mice. Furthermore, the ability to produce L-NNA from D-NNA-corresponding alpha-keto acids (N(G)-nitroguanidino-2-oxopentanoic acid) produced by porcine kidney-derived DAO (pkDAO) was also studied in the DAO inhibitor-pretreated rats. We found that D-NNA chiral inversion occurred in Swiss mice and ddY/DAO(+/+) mice both in vivo and in in vitro kidney homogenates, but not in ddY/DAO(-/-) mice, correlated to their DAO activities. The alpha-keto acid (N(G)-nitro-guanidino-2-oxopentanoic acid) from D-NNA was able to produce L-NNA, and subsequent vasoconstriction and pressor responses. These results indicate that the role of renal DAO is indispensible but insufficient for chiral inversion of D-NNA and other neutral and polar D-amino acids, and unidentified aminotransferase(s) are involved in a subsequent

  4. Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer

    Directory of Open Access Journals (Sweden)

    Patani Neill


    Full Text Available Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90 interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1 and Her-2/neu (ERBB2 stability. LOX (lysyl-oxidase serves intracellular roles and catalyses the cross-linking of extracellular matrix (ECM collagens and elastin. LOX expression is altered in human malignancies and their peri-tumoral stroma. However, paradoxical roles are reported. In this study, the level of mRNA expression of CHIP and LOX were assessed in normal and malignant breast tissue and correlated with clinico-pathological parameters. Materials and Methods: Breast cancer (BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription; transcript levels were determined using real-time quantitative PCR and normalized against CK-19. Transcript levels were analyzed against TNM stage, nodal involvement, tumor grade and clinical outcome over a ten-year follow-up period. Results: CHIP expression decreased with increasing Nottingham Prognostic Index (NPI: NPI-1 vs. NPI-3 (12.2 vs. 0.2, P = 0.0264, NPI-2 vs. NPI-3 (3 vs. 0.2, P = 0.0275. CHIP expression decreased with increasing TNM stage: TNM-1 vs. TNM-2 (12 vs. 0, P = 0.0639, TNM-1 vs. TNM-2-4 (12 vs. 0, P = 0.0434. Lower transcript levels were associated with increasing tumor grade: grade 1 vs. grade 3 (17.7 vs. 0.3, P = 0.0266, grade 2 vs. grade 3 (5 vs. 0.3, P = 0.0454. The overall survival (OS for tumors classified as ′low-level expression′, was poorer than those with ′high-level expression′ (118.1 vs. 152.3 months, P = 0.039. LOX expression decreased with increasing NPI: NPI-1 vs. NPI-2 (3 vs. 0, P = 0.0301 and TNM stage: TNM-1 = 3854639, TNM-2 = 908900, TNM-3 = 329, TNM-4 = 1.232 (P = NS. Conclusion: CHIP

  5. Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Atlung, Tove


    The expression and transcriptional regulation of the Escherichia coli cyx-appA operon and the appY gene has been investigated during different environmental conditions using single copy transcriptional lacZ fusions. The cyx-appA operon encodes acid phosphatase and a putative cytochrome oxidase.......ArcA and AppY activated transcription of the cyx-appA operon during entry into stationary phase and under anaerobic growth conditions. The expression of the cyx-appA operon was affected by the anaerobic energy metabolism.The presence of the electron acceptors nitrate and fumarate repressed the expression...... in this paper indicate a clear difference in the regulation of the cyx-appA operon compared to the cyd operon, encoding the cytochrome d oxidase complex. The results suggest that cytochrome x oxidase has a function at even more oxygen limiting conditions than cytochrome d oxidase. The expression of the appY...

  6. Purification and antibacterial activities of an L-amino acid oxidase from king cobra (Ophiophagus hannah venom

    Directory of Open Access Journals (Sweden)

    CS Phua


    Full Text Available Some constituents of snake venom have been found to display a variety of biological activities. The antibacterial property of snake venom, in particular, has gathered increasing scientific interest due to antibiotic resistance. In the present study, king cobra venom was screened against three strains of Staphylococcus aureus [including methicillin-resistant Staphylococcus aureus (MRSA], three other species of gram-positive bacteria and six gram-negative bacteria. King cobra venom was active against all the 12 bacteria tested, and was most effective against Staphylococcus spp. (S. aureus and S. epidermidis. Subsequently, an antibacterial protein from king cobra venom was purified by gel filtration, anion exchange and heparin chromatography. Mass spectrometry analysis confirmed that the protein was king cobra L-amino acid oxidase (Oh-LAAO. SDS-PAGE showed that the protein has an estimated molecular weight of 68 kDa and 70 kDa under reducing and non-reducing conditions, respectively. The minimum inhibitory concentrations (MIC of Oh-LAAO for all the 12 bacteria were obtained using radial diffusion assay method. Oh-LAAO had the lowest MIC value of 7.5 µg/mL against S. aureus ATCC 25923 and ATCC 29213, MRSA ATCC 43300, and S. epidermidis ATCC 12228. Therefore, the LAAO enzyme from king cobra venom may be useful as an antimicrobial agent.

  7. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. (United States)

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K


    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  8. Transcriptional and Posttranscriptional Inhibition of Lysyl Oxidase Expression by Cigarette Smoke Condensate in Cultured Rat Fetal Lung Fibroblasts (United States)

    Gao, Song; Chen, Keyang; Zhao, Yinzhi; Rich, Celeste B.; Chen, Lijun; Li, Sandy J.; Toselli, Paul; Stone, Phillip; Li, Wande


    Lysyl oxidase (LO) catalyzes crosslinking of collagen and elastin essential for maintaining the structural integrity of the lung extracellular matrix (ECM). To understand mechanisms of cigarette smoke (CS)-induced emphysema, we investigated effects of cigarette smoke condensate (CSC), the particulate matter of CS, on LO mRNA expression in cultured rat fetal lung fibroblasts (RFL6). Exposure of RFL6 cells to 0–120 μg CSC/ml for 24 h induced a dose-dependent inhibition of LO steady-state mRNAs, for example, reducing transcript levels to below 10% of the control in cells incubated with 80–120 μg CSC/ml. Nuclear run-on assays indicated a marked reduction in LO relative transcriptional rates amounting to 27.7% of the control in cells treated with 120 μg CSC/ml. The actinomycin D-chase assay showed that CSC enhanced the instability of LO transcripts. The t1/2 for LO mRNA decay was decreased from 24 h in the control to 4.5 h in cells treated with 120 μg CSC/ml. Moreover, 80–120 μg CSC/ml also inhibited LO promoter activity as revealed by suppression of reporter gene expression in cells transfected with LO promoter-luciferase vectors. Thus, inhibition of LO transcription initiation and enhancement of LO mRNA instability both contributed to downregulation of LO steady-state mRNA in CSC-treated cells. Note that inhibition of LO mRNA expression by CSC was closely accompanied by markedly decreased levels of transcripts of collagen type I and tropoelastin, two substrates of LO. Thus, transcriptional perturbation of LO and its substrates may be a critical mechanism for ECM damage in CS-induced emphysema. PMID:15933228

  9. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)


    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  10. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance

    Directory of Open Access Journals (Sweden)

    Ma Hao


    Full Text Available Abstract Background Tomato spotted wilt virus (TSWV has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX in tomato and petunia is related to TSWV resistance. Results The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. Conclusion In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  11. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. (United States)

    Sasabe, Jumpei; Miyoshi, Yurika; Rakoff-Nahoum, Seth; Zhang, Ting; Mita, Masashi; Davis, Brigid M; Hamase, Kenji; Waldor, Matthew K


    L-Amino acids are the building blocks for proteins synthesized in ribosomes in all kingdoms of life, but d-amino acids (d-aa) have important non-ribosome-based functions(1). Mammals synthesize d-Ser and d-Asp, primarily in the central nervous system, where d-Ser is critical for neurotransmission(2). Bacteria synthesize a largely distinct set of d-aa, which become integral components of the cell wall and are also released as free d-aa(3,4). However, the impact of free microbial d-aa on host physiology at the host-microbial interface has not been explored. Here, we show that the mouse intestine is rich in free d-aa that are derived from the microbiota. Furthermore, the microbiota induces production of d-amino acid oxidase (DAO) by intestinal epithelial cells, including goblet cells, which secrete the enzyme into the lumen. Oxidative deamination of intestinal d-aa by DAO, which yields the antimicrobial product H2O2, protects the mucosal surface in the small intestine from the cholera pathogen. DAO also modifies the composition of the microbiota and is associated with microbial induction of intestinal sIgA. Collectively, these results identify d-aa and DAO as previously unrecognized mediators of microbe-host interplay and homeostasis on the epithelial surface of the small intestine.

  12. Functional expression of the Acanthamoeba castellanii alternative oxidase in Escherichia coli; regulation of the activity and evidence for Acaox gene function. (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa


    To evidence Acanthamoeba castellanii alternative oxidase (AcAOX) gene product function, we studied alterations in the levels of mRNA and protein and AcAOX activity during growth in amoeba batch culture. Moreover, heterologous expression of AcAOX in AOX-deficient Escherichia coli confirmed by the protein immunodetection and functional studies was performed. Despite the presence of native bo and bd quinol oxidases in E. coli membrane, from which the latter is known to be cyanide-resistant, functional expression of AcAOX in E. coli conferred cyanide-resistant benzohydroxamate-sensitive respiration on the bacteria. Moreover, AcAOX activity in transformed bacteria was stimulated by GMP and inhibited by ATP, indicating that AcAOX is regulated by mutual exclusion of purine nucleotides, which was previously demonstrated in the mitochondria of A. castellanii.

  13. Heterologous expression of the glucose oxidase gene in Trichoderma atroviride leads enhanced ability to attack phytopathogenic fungi and induction of plant systemic disease resistance

    Institute of Scientific and Technical Information of China (English)

    Robert L Mach; Brunner Kurt; Matteo Lorito; Susanne Zeilinger; Rosalia Ciliento; Sheridan Woo


    @@ A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain Pl. goxA expression occurred immediately after contact with the plant pathogen,and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum.

  14. Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients (United States)

    Nucci, Laura A.; Santos, Sidnéia S.; Brunialti, Milena K. C.; Sharma, Narendra Kumar; Machado, Flavia R.; Assunção, Murillo; de Azevedo, Luciano C. P.


    Background and objectives Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients. Materials and methods Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0), and after 7 days (D7, N = 10) of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant. Results Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients. Conclusion Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by

  15. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Pedersen, G


    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells.......Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  16. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    Directory of Open Access Journals (Sweden)

    Yushi Ishibashi

    Full Text Available Reactive oxygen species (ROS promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA / abscisic acid (ABA metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI, an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  17. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination. (United States)

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari


    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  18. Siganus oramin recombinant L-amino acid oxidase is lethal to Cryptocaryon irritans. (United States)

    Li, Ruijun; Dan, Xueming; Li, Anxing


    A novel antimicrobial and antiparasitic protein (APP/SR-LAAO) isolated from serum of the rabbitfish (Siganus oramin) was confirmed to be lethal to Cryptocaryon irritans, an important marine parasitic ciliate that causes marine white spot disease in a variety of wild and cultured fish. In this study, a recombinant SR-LAAO (rSR-LAAO) was expressed on a large scale in Escherichia coli Rosetta-gami™(DE3)pLysS cells. rSR-LAAO was expressed as an inactive form in the inclusion bodies. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that after purification, refolding and ultrafiltration, rSR-LAAO had a significantly cytotoxic effect on C. irritans theronts. Using light microscopy, scanning electron microscopy and fluorescence microscopy, we found that theronts rapidly became weakly motile, cilia became detached, cells became rounded, membranes eventually lysed in different cell positions and cytoplasmic contents leaked out of the cell. These results suggested the recombinant SR-LAAO was significantly lethal to C. irritans and the death process of the parasite incubated with rSR-LAAO was remarkably similar compared to the SR-LAAO group as reported earlier.

  19. Mechanism-based pharmacokinetic-pharmacodynamic modeling of salvianolic acid A effects on plasma xanthine oxidase activity and uric acid levels in acute myocardial infarction rats. (United States)

    Wang, Haidong; Li, Xi; Zhang, Wenting; Liu, Yao; Wang, Shijun; Liu, Xiaoquan; He, Hua


    1. Salvianolic acid A (SalA) was found to attenuate plasma uric acid (UA) concentration and xanthine oxidase (XO) activity in acute myocardial infraction (AMI) rats, which was characterized with developed mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model. 2. AMI was induced in rats by coronary artery ligation. Surviving AMI rats received a single intravenous dose of 5 mg/kg of SalA and normal saline. The plasma SalA concentrations were determined by HPLC-MS/MS method. The plasma UA concentrations were determined by HPLC method and plasma XO activity were measured spectrophotometrically. An integrated mathematical model characterized the relationship between plasma UA and SalA. 3. Pharmacokinetics was described using two-compartment model for SalA with linear metabolic process. In post-AMI rats, XO activity and UA concentrations were increased, while SalA dosing palliated this increase. These effects were well captured by using two series of transduction models, simulating the delay of inhibition on XO driven by SalA and UA elevation resulted from the multiple factors, respectively. 4. The effect was well described by the developed PK-PD model, indicating that SalA can exert cardiovascular protective effects by decreasing elevated plasma UA levels induced by AMI.

  20. Alignment of the amino terminal amino acid sequence of human cytochrome c oxidase subunits I and II with the sequence of their putative mRNAs.


    CHOMYN, A.; Hunkapiller, M W; Attardi, G


    Thirteen of the first fifteen amino acids from the NH2-terminus of the primary sequence of human cytochrome c oxidase subunit I and eleven of the first twelve amino acids of subunit II have been identified by microsequencing procedures. These sequences have been compared with the recently determined 5'-end proximal sequences of the HeLa cell mitochondrial mRNAs and unambiguously aligned with two of them. This alignment has allowed the identification of the putative mRNA for subunit I, and has...

  1. Evidence that d-cysteine protects mice from gastric damage via hydrogen sulfide produced by d-amino acid oxidase. (United States)

    Souza, Luan Kelves M; Araújo, Thiago S L; Sousa, Nayara A; Sousa, Francisca Beatriz M; Nogueira, Kerolayne M; Nicolau, Lucas A D; Medeiros, Jand Venes R


    Hydrogen sulfide (H2S) is a signaling molecule in the gastrointestinal tract. H2S production can derive from d-cysteine via various pathways, thus pointing to a new therapeutic approach: delivery of H2S to specific tissues. This study was designed to evaluate the concentration and effects of H2S (generated by d-amino acid oxidase [DAO] from d-cysteine) in the gastric mucosa and the protective effects against ethanol-induced lesions in mice. Mice were treated with l-cysteine or d-cysteine (100 mg/kg per os). Other groups received oral l-propargylglycine (cystathionine γ-lyase inhibitor, 100 mg/kg) or indole-2-carboxylate (DAO inhibitor), and 30 min later, received d- or l-cysteine. After 30 min, 50% ethanol (2.5 mL/kg, per os) was administered. After 1 h, the mice were euthanized and their stomachs excised and analyzed. Pretreatment with either l-cysteine or d-cysteine significantly reduced ethanol-induced lesions. Pretreatment of d-cysteine- or l-cysteine-treated groups with indole-2-carboxylate reversed the gastroprotective effects of d-cysteine but not l-cysteine. Histological analysis revealed that pretreatment with d-cysteine decreased hemorrhagic damage, edema, and the loss of the epithelium, whereas the administration of indole-2-carboxylate reversed these effects. d-Cysteine also reduced malondialdehyde levels but maintained the levels of reduced glutathione. Furthermore, pretreatment with d-cysteine increased the synthesis of H2S. Thus, an H2S-generating pathway (involving d-cysteine and DAO) is present in the gastric mucosa and protects this tissue from ethanol-induced damage by decreasing direct oxidative damage.

  2. D-Amino-Acid Oxidase Inhibition Increases D-Serine Plasma Levels in Mouse But not in Monkey or Dog. (United States)

    Rojas, Camilo; Alt, Jesse; Ator, Nancy A; Thomas, Ajit G; Wu, Ying; Hin, Niyada; Wozniak, Krystyna; Ferraris, Dana; Rais, Rana; Tsukamoto, Takashi; Slusher, Barbara S


    D-serine has been shown to improve positive, negative, and cognitive symptoms when used as add-on therapy for the treatment of schizophrenia. However, D-serine has to be administered at high doses to observe clinical effects. This is thought to be due to D-serine undergoing oxidation by D-amino-acid oxidase (DAAO) before it reaches the brain. Consequently, co-administration of D-serine with a DAAO inhibitor could be a way to lower the D-serine dose required to treat schizophrenia. Early studies in rodents to evaluate this hypothesis showed that concomitant administration of structurally distinct DAAO inhibitors with D-serine enhanced plasma and brain D-serine levels in rodents compared with administration of D-serine alone. In the present work we used three potent DAAO inhibitors and confirmed previous results in mice. In a follow-up effort, we evaluated plasma D-serine levels in monkeys after oral administration of D-serine in the presence or absence of these DAAO inhibitors. Even though the compounds reached steady state plasma concentrations exceeding their Ki values by >60-fold, plasma D-serine levels remained the same as those in the absence of DAAO inhibitors. Similar results were obtained with dogs. In summary, in contrast to rodents, DAAO inhibition in monkeys and dogs did not influence the exposure to exogenously administered D-serine. Results could be due to differences in D-serine metabolism and/or clearance mechanisms and suggest that the role of DAAO in the metabolism of D-serine is different across species. These data provide caution regarding the utility of DAAO inhibition for patients with schizophrenia.

  3. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  4. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. (United States)

    Velada, Isabel; Cardoso, Hélia G; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit


    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  5. Alternative oxidase gene family in Hypericum perforatum L.: characterization and expression at the post-germinative phase

    Directory of Open Access Journals (Sweden)

    Isabel Velada


    Full Text Available Alternative oxidase (AOX protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356. High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA and the HpCAT1, were evaluated during the post-germinative development. The gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 and HpH2A as the most suitable RGs according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other species transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other species transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in Hypericum, in order to explore their

  6. Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase (United States)

    Velada, Isabel; Cardoso, Hélia G.; Ragonezi, Carla; Nogales, Amaia; Ferreira, Alexandre; Valadas, Vera; Arnholdt-Schmitt, Birgit


    Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to

  7. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. (United States)

    Liu, Taibo; Kim, Dong Wook; Niitsu, Masaru; Maeda, Shunsuke; Watanabe, Masao; Kamio, Yoshiyuki; Berberich, Thomas; Kusano, Tomonobu


    Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.

  8. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model (United States)

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.


    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  9. The activity of ascorbic acid and catechol oxidase, the rate of photosynthesis and respiration as related to plant organs, stage of development and copper supply

    Directory of Open Access Journals (Sweden)

    St. Łyszcz


    Full Text Available Some experiments were performed to investigate the physiological role of copper in oat and sunflower and to recognize some effects of copper deficiency. Oat and sunflower plants were grown in pots on a peat soil under copper deficiency conditions (–Cu or with the optimal copper supply (+Cu. In plants the following measurements were carried out: 1 the activity of ascorbic acid oxidase (AAO and of catechol oxidase (PPO in different plant organs and at different stages of plant development, 2 the activity and the rate of photosynthesis, 3 the activity of RuDP-carboxylase, 4 the intensity of plant respiration. The activity of AAO and of PPO, and also the rate and the activity of photosynthesis were significantly lower under conditions of copper deficiency. The activity of both discussed oxidases depended on: 1 the plant species, 2 plant organs, 3 stage of plant development. Copper deficiency caused decrease of the respiration intensity of sunflower leaves but it increased to some extent the respiration of oat tops. Obtained results are consistent with the earlier suggestion of the authors that the PPO activity in sunflower leaves could be a sensitive indicator of copper supply of the plants, farther experiments are in progress.

  10. Role of the Molybdoflavoenzyme Aldehyde Oxidase Homolog 2 in the Biosynthesis of Retinoic Acid: Generation and Characterization of a Knockout Mouse▿ † (United States)

    Terao, Mineko; Kurosaki, Mami; Barzago, Maria Monica; Fratelli, Maddalena; Bagnati, Renzo; Bastone, Antonio; Giudice, Chiara; Scanziani, Eugenio; Mancuso, Alessandra; Tiveron, Cecilia; Garattini, Enrico


    The mouse aldehyde oxidase AOH2 (aldehyde oxidase homolog 2) is a molybdoflavoenzyme. Harderian glands are the richest source of AOH2, although the protein is detectable also in sebaceous glands, epidermis, and other keratinized epithelia. The levels of AOH2 in the Harderian gland and skin are controlled by genetic background, being maximal in CD1 and C57BL/6 and minimal in DBA/2, CBA, and 129/Sv strains. Testosterone is a negative regulator of AOH2 in Harderian glands. Purified AOH2 oxidizes retinaldehyde into retinoic acid, while it is devoid of pyridoxal-oxidizing activity. Aoh2−/− mice, the first aldehyde oxidase knockout animals ever generated, are viable and fertile. The data obtained for this knockout model indicate a significant role of AOH2 in the local synthesis and biodisposition of endogenous retinoids in the Harderian gland and skin. The Harderian gland's transcriptome of knockout mice demonstrates overall downregulation of direct retinoid-dependent genes as well as perturbations in pathways controlling lipid homeostasis and cellular secretion, particularly in sexually immature animals. The skin of knockout mice is characterized by thickening of the epidermis in basal conditions and after UV light exposure. This has correlates in the corresponding transcriptome, which shows enrichment and overall upregulation of genes involved in hypertrophic responses. PMID:18981221

  11. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions. (United States)

    Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd


    Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc.

  12. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase.

    Directory of Open Access Journals (Sweden)

    Julia Marín-Navarro

    Full Text Available Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M generates a sulfur-pi interaction and the other (Q90R/Y509E introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described.

  13. Phenolic profiles and polyphenol oxidase (PPO) gene expression of red clover (Trifolium pratense) selected for decreased postharvest browning (United States)

    Red clover (Trifolium pratense L.) is a legume forage abundant in phenolic compounds. It tends to brown when cut for hay, due to oxidation of phenolic compounds catalyzed by polyphenol oxidase (PPO), and subsequent binding to proteins. Selecting for a greener hay may provide information about the re...

  14. Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer. (United States)

    Rossi, Giacomo; Cerquetella, Matteo; Pengo, Graziano; Mari, Subeide; Balint, Emilia; Bassotti, Gabrio; Manolescu, Nicolae


    We compared the immunohistochemical expression of putrescine (PUT), spermine (SPM), ornithine decarboxylase (ODC), and diamine oxidase (DAO) in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis) or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia.

  15. Immunohistochemical Expression of Ornithine Decarboxylase, Diamine Oxidase, Putrescine, and Spermine in Normal Canine Enterocolic Mucosa, in Chronic Colitis, and in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Giacomo Rossi


    Full Text Available We compared the immunohistochemical expression of putrescine (PUT, spermine (SPM, ornithine decarboxylase (ODC, and diamine oxidase (DAO in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia.

  16. Multiple amine oxidases in cucumber seedlings. (United States)

    Percival, F W; Purves, W K


    Cell-free extracts of cucumber (Cucumis sativus L. cv. National Pickling) seedlings were found to have amine oxidase activity when assayed with tryptamine as a substrate. Studies of the effect of lowered pH on the extract indicated that this activity was heterogeneous, and three amine oxidases could be separated by ion exchange chromatography. The partially purified enzymes were tested for their activities with several substrates and for their sensitivities to various amine oxidase inhibitors. One of the enzymes may be a monoamine oxidase, although it is inhibited by some diamine oxidase inhibitors. The other two enzymes have properties more characteristic of the diamine oxidases. The possible relationship of the amine oxidases to indoleacetic acid biosynthesis in cucumber seedlings is discussed.

  17. Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidase-dependent mechanism. (United States)

    Shenkar, R; Abraham, E


    Hemorrhage rapidly increases plasma xanthine oxidase levels as well as the expression of proinflammatory and immunoregulatory cytokines in the lungs. To determine the role of circulating xanthine oxidase (XO), as well as other plasma factors, in affecting pulmonary cytokine expression, we conducted studies in which plasma from hemorrhaged mice was transferred into unhemorrhaged recipient mice. Administration of posthemorrhage plasma to recipient mice increased the levels of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta 1 (TGF-beta 1) in lung mononuclear cells. No enhancement of mRNA levels for these cytokines was found in the lungs of mice given allopurinol-treated posthemorrhage plasma or fed a tungsten-enriched, XO-depleting diet prior to transfer of posthemorrhage plasma. Among the nuclear transcriptional regulatory factors examined, only the cyclic AMP response-element binding protein (CREB) was activated in nuclear extracts from lung mononuclear cells of mice that were given posthemorrhage plasma. No activation of nuclear factor-kappa B (NF-kappa B), nuclear factor interleukin 6 (NF-IL6), activating protein-1 (AP-1), or serum protein-1 (SP-1) was found. These results suggest that the mechanism for hemorrhage-induced increases in pulmonary cytokine expression is by activation of the enhancer CREB through a tissue XO-dependent pathway initiated by plasma-borne mediators.

  18. Expression of gp91phox and p22phox, catalytic subunits of NADPH oxidase, on microglia in Nasu-Hakola disease brains (United States)

    Satoh, Jun-ichi; Kino, Yoshihiro; Yanaizu, Motoaki; Tosaki, Youhei; Sakai, Kenji; Ishida, Tusyoshi; Saito, Yuko


    Summary The superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex of phagocytes (phox) plays a key role in production of reactive oxygen species (ROS) by microglia. The catalytic subunits of the NADPH oxidase are composed of p22phox and gp91phox. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2. Pathologically, the brains of NHD patients exhibit extensive demyelination designated leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and remarkable activation of microglia predominantly in the white matter of frontal and temporal lobes. However, a pathological role of the gp91phox-p22phox complex in generation of leukoencephalopathy in NHD remains unknown. We clarified the expression of gp91phox and p22phox in the white matter of the frontal cortex derived from five NHD and eight control subjects. We identified the expression of p22phox and gp91phox immunoreactivity almost exclusively on microglia. Microglia overexpressed gp91phox in NHD brains and p22phox in myotonic dystrophy (MD) brains, when compared with non-neurological control (NC) brains. These results suggest that the enhanced expression of gp91phox by microglia might contribute to overproduction of ROS highly toxic to myelinating oligodendrocytes, resulting in oligodendrocyte cell death that induces leukoencephalopathy in NHD brains. PMID:27904823

  19. Studies on the relationship between cyanide-resistant respi-ration and expression of alternative oxidase in mung bean using antibodies prepared by synthetic polypeptide

    Institute of Scientific and Technical Information of China (English)

    LI; Chijun; (


    [1]Liang, Z., Liang, H. G., The respiratory metabolism of plants, in Plant Physiology and Molecular Biology (eds. Yu, S. W., Tang, Z. C.) (in Chinese), 2nd ed., Beijing: Science Press, 1998, 344-365.[2]Lü, C. S., Liang, H. G., Induced respiration in melon fruits, Scientia Sinica, 1963, 12(4): 616.[3]Liang, H. G., Lü, C. S., A comparative study of CN-resistant respiration in different cultures of tobacco callus, Plant Physiol., 1984, 75: 876.[4]Elthon, T. E., McIntosh, L., Identification of the alternative terminal oxidase of higher plant mitochondria, Proc. Natl. Acad. Sci. USA, 1987, 84: 8399.[5]Elthon, T. E., Nickels, R. L., McIntosh, L., Monoclonal antibodies to the alternative oxidase of higher plant mitochondria, Plant Physiol., 1989, 89: 1311.[6]Liang, W. S., Liang, H. G., Progress of the alternative oxidase, Chinese Bulletin of Botany (in Chinese), 1997, 14(2): 9.[7]Liang, W. S., Liang, H. G., Induction of alternative oxidase expression by endogenous ethylene in aging potato slices, Acta Phytophysiol. Sin. (in Chinese), 1999, 25(2): 205.[8]He, J. X., Wei, Z. Q., Liang, H. G., Effects of water stress on development, and operation and gene expression of cyanide-resistant respiratory pathway in wheat, Science in China, Ser. C, 1999, 42(3): 300.[9]McIntosh, L., Molecular biology of the alternative oxidase, Plant Physiol., 1994, 105: 781.[10] Wang, J., Zhang, L. X., Liu, Z. L. et al., A possible calcium binding site in D1 protein: A fluorescence and FTIR study of the interaction between lanthanides and a synthetic peptide, Photosynthesis Research, 1995, 44: 297.[11] Li, X. P., Du, L. F., Liang, H. G. et al., Preparation and identification of antidodecapeptide of polypeptide D1 or photosys-tem II reaction center, Prog. Biochem. Biophys. (in Chinese), 1997, 24(3): 283.[12] Wen, J. Q., Liang, H. G., Studies on energy status and mitochondria respiration during growth and senescence of mung bean cotyledons, Physiol

  20. Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI). (United States)

    Romo-Rodríguez, Pamela; Acevedo-Aguilar, Francisco Javier; Lopez-Torres, Adolfo; Wrobel, Kazimierz; Wrobel, Katarzyna; Gutiérrez-Corona, J Félix


    The Cr(VI) reducing capability of growing cells of the environmental A. tubingensis Ed8 strain is remarkably efficient compared to reference strains A. niger FGSC322 and A. tubingensis NRRL593. Extracellular glucose oxidase (GOX) activity levels were clearly higher in colonies developed in solid medium and in concentrated extracts of the spent medium of liquid cultures of the Ed8 strain in comparison with the reference strains. In addition, concentrated extracts of the spent medium of A. tubingensis Ed8, but not those of the reference strains, exhibited the ability to reduce Cr(VI). In line with this observation, it was found that A. niger purified GOX is capable of mediating the conversion of Cr(VI) to Cr(III) in a reaction dependent on the presence of glucose that is stimulated by organic acids. Furthermore, it was found that a decrease in Cr(VI) may occur in the absence of the GOX enzyme, as long as the reaction products gluconolactone and hydrogen peroxide are present; this conversion of Cr(VI) is stimulated by organic acids in a reaction that generates hydroxyl radicals, which may involve the formation of an intermediate peroxichromate(V) complex. These findings indicated that fungal glucose oxidase acts an indirect chromate reductase through the formation of Cr(VI) reducing molecules, which interact cooperatively with other fungal metabolites in the biotransformation of Cr(VI).

  1. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tempone, A.G.; Lourenco, C.O.; Spencer, P.J.; Rogero, J.R.; Nascimento, N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia; Andrade Junior, H.F. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Inst. de Medicina Tropical


    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a {sup 60} Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author) 13 refs., 3 figs.

  2. Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa. (United States)

    Hirai, Takehiro; Osamura, Tatsuya; Ishii, Masaharu; Arai, Hiroyuki


    The ubiquitous opportunistic human pathogen Pseudomonas aeruginosa has five terminal oxidases for aerobic respiration and uses them under different growth conditions. Two of them are cbb3-type cytochrome c oxidases encoded by the gene clusters ccoN1O1Q1P1 and ccoN2O2Q2P2, which are the main terminal oxidases under high- and low-oxygen conditions, respectively. P. aeruginosa also has two orphan gene clusters, ccoN3Q3 and ccoN4Q4, encoding the core catalytic CcoN isosubunits, but the roles of these genes have not been clarified. We found that 16 active cbb3 isoforms could be produced by combinations of four CcoN, two CcoO, and two CcoP isosubunits. The CcoN3- or CcoN4-containing isoforms were produced in the WT cell membrane in response to nitrite and cyanide, respectively. The strains carrying these isoforms were more resistant to nitrite or cyanide under low-oxygen conditions. These results indicate that P. aeruginosa gains resistance to respiratory inhibitors using multiple cbb3 isoforms with different features, which are produced through exchanges of multiple core catalytic isosubunits.

  3. The serum of rabbitfish (Siganus oramin) has antimicrobial activity to some pathogenic organisms and a novel serum L-amino acid oxidase is isolated. (United States)

    Wang, Fanghua; Li, Ruijun; Xie, Mingquan; Li, Anxing


    The serum of rabbitfish (Siganus oramin) has been confirmed previously to have killing effect to Cryptocaryon irritans, an important marine ciliate protozoan that causes a disease referred to as "marine white spot disease". Herein, we find the serum of the rabbitfish also shows antibacterial activity against both gram-positive and gram-negative bacteria and has killing effect on two other parasites: Trypanosoma brucei brucei, Ichthyophthirius multifiliis. Results of scanning electron microscopy indicated that after treating with rabbitfish serum, the surface of the Staphylococcus aureus was wrinkled and pores were formed on the surface of Escherichia coli. Serum of the rabbitfish possesses a strong killing effect to Ichthyophthirius multifiliis in vitro, causing a similar effect as to C. irritans. The serum of rabbitfish also showed strong killing effect to T. b. brucei in vitro, with the minimus trypanocidal titre (MTT) only to be 1.5% in 1 h. Results of laser confocal fluorescence microscopy indicated that rabbitfish serum could also induce cell rupture of T. b. brucei. A novel antimicrobial protein (SR-LAAO) was isolated from the serum of rabbitfish by using ultrafiltration, reversed phase high performance liquid chromatography (RP-HPLC) and Native polyacrylamide gel electrophoresis (Native-PAGE). Results of gel overlay assay showed that the protein could act alone to inhibit the growth of S. aureus and E. coli. Results of western blot and automated Edman degradation showed that it was the same as the antiparasitic protein (APP) reported before to have killing effect on C. irritans. Full length cDNA sequence of the SR-LAAO was cloned. BLAST research suggested that the cDNA of SR-LAAO has a close similarity with a number of L-amino acid oxidases (LAAOs) and possesses two conserved motifs that exist in LAAOs. Combined, these results demonstrate that this protein which has antimicrobial activity to some pathogenic organisms was a novel LAAO found in the serum of

  4. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.


    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  5. Coordinate induction of hepatic fatty acyl-CoA oxidase and P4504A1 in rat after activation of the peroxisome proliferator-activated receptor (PPAR) by sulphur-substituted fatty acid analogues. (United States)

    Demoz, A; Vaagenes, H; Aarsaether, N; Hvattum, E; Skorve, J; Göttlicher, M; Lillehaug, J R; Gibson, G G; Gustafsson, J A; Hood, S


    1. In the liver of rat fed a single dose of 3-thia fatty acids, 3-dithiahexadecanedioic acid (3-thiadicarboxylic acid) and tetradecylthioacetic acid, steady-state levels of P4504A1 and fatty acyl-CoA oxidase mRNAs increased in parallel. The increases were significant 8 h after administration, reaching a maximum after 12 h and decreased from 12 to 24 h after administration. 2. The corresponding enzyme activities of P4504A1 and fatty acyl-CoA oxidase were also induced in a parallel manner by the 3-thia fatty acids. The enzyme activities were significantly increased 12 h after administration and increased further after 24 h. This may reflect a possible effect of the 3-thia fatty acids not only on mRNA levels, but also on the translation and degradation rate of the two enzymes. 3. Repeated administration of 3-thia fatty acids resulted in an increase of the specific P4504A1 protein accompanied with an increased lauric acid hydroxylase activity. The correlation between induction of P4504A1 and fatty acyl-CoA oxidase mRNAs and their enzyme activities may reflect a coordinated rather than a causative induction mechanism, and that these genes respond to a common signal. This suggests that the increased P450 activity may not be responsible or be a prerequisite for fatty acyl-CoA oxidase induction. 4. Since the peroxisome proliferator-activated receptor (PPAR) plays a role in mediating the induction of fatty acyl-CoA oxidase, we analysed the activation of PPAR by fatty acids and sulphur-substituted analogues utilizing a chimera between the N-terminal and DNA-binding domain of the glucocorticoid receptor and the putative ligand-binding domain of PPAR. Arachidonic acid activated this chimeric receptor in Chinese hamster ovary cells. Inhibitors of P450 did not affect the activation of PPAR by arachidonic acid. Furthermore, dicarboxylic acids including 1,12-dodecanedioic acid or 1,16-hexadecanedioic acid only weakly activated the chimera. 3-Thidicarboxylic acid, however, was a

  6. Identification of DNA-binding proteins that interact with the 5'-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry. (United States)

    Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi


    D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression.

  7. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. (United States)

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M


    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato.

  8. Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid β-oxidation be regulated by estrogen signaling? (United States)

    Madureira, Tânia Vieira; Castro, L Filipe C; Rocha, Eduardo


    Acyl-coenzyme A oxidases 1 (Acox1) and 3 (Acox3) are key enzymes in the regulation of lipid homeostasis. Endogenous and exogenous factors can disrupt their normal expression/activity. This study presents for the first time the isolation and characterization of Acox1 and Acox3 in brown trout (Salmo trutta f. fario). Additionally, as previous data point to the existence of a cross-talk between two nuclear receptors, namely peroxisome proliferator-activated receptors and estrogen receptors, it was here evaluated after in vitro exposures of trout hepatocytes the interference caused by ethynylestradiol in the mRNA levels of an inducible (by peroxisome proliferators) and a non-inducible oxidase. The isolated Acox1 and Acox3 show high levels of sequence conservation compared to those of other teleosts. Additionally, it was found that Acox1 has two alternative splicing isoforms, corresponding to 3I and 3II isoforms of exon 3 splicing variants. Both isoforms display tissue specificity, with Acox1-3II presenting a more ubiquitous expression in comparison with Acox1-3I. Acox3 was expressed in almost all brown trout tissues. According to real-time PCR data, the highest estrogenic stimulus was able to cause a down-regulation of Acox1 and an up-regulation of Acox3. So, for Acox1 we found a negative association between an estrogenic input and a directly activated PPARα target gene. In conclusion, changes in hormonal estrogenic stimulus may impact the mobilization of hepatic lipids to the gonads, with ultimate consequences in reproduction. Further studies using in vivo assays will be fundamental to clarify these issues.

  9. Purification and partial characterization of an L-amino acid oxidase from bushmaster snake (Surucucu Pico de Jaca) Lachesis muta muta venom. (United States)

    Sánchez, E O; Magalhães, A


    1. L-amino acid oxidase (L-AO) from the venom of Lachesis muta muta was purified 72 times (38%) by gel filtration on Sephadex G-100, followed by ion exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl S-300. 2. The protein was shown to be homogeneous by polyacrylamide gel electrophoresis at pH 8.5, immunoelectrophoresis, immunodiffusion and isoelectric focusing. Its specific activity was 44.4 units/mg protein, using 7.5 mM L-leucine as substrate and O-dianisidine as electron donor, at pH 7.6 and 25 degrees C. The increase in absorbance at 436 nm was recorded. 3. The enzyme was characterized as a glycoprotein with an S20,w = 6.72, MW = 138,000 and pI = 5.2. It presented maxima at 389 and 460 nm and contained 2 mol of FAD per mole protein.

  10. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread. (United States)

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane


    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  11. Highly expressed N1-acetylpolyamine oxidase detoxifies polyamine analogue N1-cyclopropylmethyl-N11-ethylnorspermine in human lung cancer cell line A549

    Institute of Scientific and Technical Information of China (English)

    HAN Yu; REN Yu-san; CAO Chun-yu; REN Dong-ming; ZHOU Yong-qin; WANG Yan-lin


    Background The critical roles of polyamines in cell growth and differentiation have made polyamine metabolic pathway a promising target for antitumor therapy. Recent studies have demonstrated in vitro that some antitumor polyamine analogues could be used as substrates and oxidized by purified recombinant human N1-acetylpolyamine oxidase (APAO, an enzyme that catabolizes natural polyamines), indicating a potential role of APAO in determining the sensitivity of cancer cells to specific antitumor analogues. This study evaluated, in vivo, the effect of APAO on cytotoxicity of antitumor polyamine analogue, N1-cyclopropylmethyI-N11-ethylnorspermine (CPENS) and its mechanism when highly expressed in human lung cancer line A549.Methods A clone with high expression of APAO was obtained by transfecting A549 lung cancer cell line with pcDNA3.1/APAO plasmid and selecting with quantitative realtime PCR and APAO activity assay. Cell proliferation was determined by MTT method and apoptosis related events were evaluated by DNA fragmentation, sub-G1/flow cytometric assay, western blotting (for cytochrome C and Bax) and colorimetric assay (for casapse-3 activity). Results A clone highly expressing APAO was obtained. High expression of APAO in A549 cells inhibited accumulation of CPENS, decreased their sensitivity to the toxicity of CPENS and prevented CPENS induced apoptosis. Conclusion These results indicate a new drug resisting, mechanism in the tumor cells. High expression of APAO can greatly decrease the sensitivity of tumor cells to the specific polyamine analogues by detoxitying those analogues and prevent analogue induced apoptosis.

  12. The terminal oxidases of Paracoccus denitrificans


    de Gier, Jan-Willem L.; Lübben, Mathias; Reijnders, Willem N.M.; Tipker, Corinne A.; Slotboom, Dirk-Jan; Van Spanning, Rob J. M.; Stouthamer, Adriaan H.; van der Oost, John


    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (ΔctaDI, ΔctaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. This protohaem...

  13. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Colin J., E-mail:; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia); Carr, Paul D.; Ollis, David L. [Research School of Chemistry, Australian National University, ACT 0200 (Australia); Russell, Robyn J.; Oakeshott, John G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia)


    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation.

  14. The C-terminal region controls correct folding of genus Trametes pyranose 2-oxidases. (United States)

    Maresová, Helena; Palyzová, Andrea; Kyslík, Pavel


    The pyranose 2-oxidases from Trametes ochracea and Trametes pubescens share markedly similar amino acid sequences with identity of 93.4%. When expressed from the recombinant plasmids based on the same vector in the Escherichia coli host strain BL21(DE3) at higher growth temperatures, they differ strikingly in the formation of the inclusion bodies. Upon overexpression in the cultures performed at 28 degrees C, the specific activity of pyranose 2-oxidase from T. pubescens was eight times higher than that from T. ochracea: 93% of pyranose 2-oxidase from T. ochracea and only 15% of that from T. pubescens was present in the form of inclusion bodies. To ascertain the cause of this difference, both cloned genes were shuffled. Site-directed recombination of p2o cDNAs revealed that DNA constructs ending with 3' end of p2o cDNA from T. pubescens code for proteins that are folded into an active form to the greater extent, regardless of the gene expression level. "In silicio" analysis of physico-chemical properties of the protein sequences of pyranose 2-oxidases revealed that the sequence of amino acid residues 368-430, constituting the small, head domain of pyranose 2-oxidase from T. pubescens, affects positively the enzyme folding at higher cultivation temperatures. The domain differs in six amino acid residues from that of T. ochracea.

  15. Cloning and Expression of an Alternative Oxidase Gene from Lycopersicon esculentum%番茄交替氧化酶基因的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    宋从凤; Broth wayne; 王金生; 胡晋生


    A full-length cDNA gene (LeAoxlau) was isolated from a cDNA library made from ripening fruit probing with alternative oxidase (AOX) gene fragments, obtained by degenerate primer PCR. Sequence analysis showed that LeAoxlau was 1 418 bp long and contained a 1 077-bp open reading frame encoding a about 40 kD precursor protein which is processed to a mature protein of 32 kD. Southern blot analysis suggested LeAoxlau is present as a single copy in the genome of tomato. RT-PCR analysis indicated LeAoxlau was expressed in roots, stems, leaves and cotyledons of tomato plants. A recombinant construct containing the open reading frame sequence of the LeAoxlau was transformed into Escherichia coli to express the alternative oxidase precursor protein.%利用简并PCR扩增产物做探针筛选番茄cDNA基因文库获得一个全长交替氧化酶cDNA基因LeAoxlau.经序列分析得出,该基因全长1 418bp,编码区序列长1 077 bp,编码约40 kD的前体蛋白.该蛋白在转运到线粒体时被加工成32kD的成熟蛋白.Southern印迹杂交分析结果显示该基因以单拷贝形式存在于番茄的基因组中RT-PCR显示,该基因在在番茄植株的根、茎、叶和子叶中表达.重组表达实验表明该基因能在大肠杆菌中表达.

  16. A high-performance liquid chromatography assay with a triazole-bonded column for evaluation of d-amino acid oxidase activity. (United States)

    Iwasaki, Megumi; Kashiwaguma, Yoshiyuki; Nagashima, Chihiro; Izumi, Mao; Uekusa, Ayano; Iwasa, Sumiko; Onozato, Mayu; Ichiba, Hideaki; Fukushima, Takeshi


    Elution profiles of kynurenic acid (KYNA) and 7-chlorokynurenic acid (Cl-KYNA) were examined by high-performance liquid chromatography (HPLC) using a triazole-bonded stationary phase column (Cosmosil® HILIC) under isocratic elution of a mobile phase consisting of CH3 CN-aqueous 10 mm ammonium formate between pH 3.0 and 6.0. The capacity factors of KYNA and Cl-KYNA varied with both the CH3 CN content and the pH of the mobile phase. The elution order of KYNA and Cl-KYNA was reversed between the CH3 CN- and H2 O-rich mobile phases, suggesting that hydrophilic interactions and anion-exchange interactions caused retention of KYNA and Cl-KYNA in the CH3 CN- and H2 O-rich mobile phases, respectively. The present HPLC method using a triazole-bonded column and fluorescence detection (excitation 250 nm, emission 398 nm) was applied to monitor in vitro production of KYNA from d-kynurenine (d-KYN) by d-amino acid oxidase (DAO) using Cl-KYNA as an internal standard. A single KYNA peak was clearly observed after enzymatic reaction of d-KYN with DAO. Production of KYNA from d-KYN was suppressed by the addition of commercial DAO inhibitors. The present HPLC method can be used to evaluate DAO activity and DAO inhibitory effects in candidate drugs for the treatment of schizophrenia.

  17. Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Guo Zhixin


    Full Text Available Abstract Background Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2 and nicotinamide adenine dinucleotide phosphate (NADPH oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1 in aorta in type 2 diabetic rats. Methods Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ. Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4, monocyte chemoattractant protein-1(MCP-1 and connective tissue growth factor (CTGFin the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-κB in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d by gavage for 12 weeks. Results Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P Conclusions Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-κB in the abdominal aorta in diabetic rats.

  18. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). (United States)

    Wang, Wei; Liu, Ji-Hong


    Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future.

  19. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina. (United States)

    Tomita, Hiroshi; Tabata, Kitako; Takahashi, Maki; Nishiyama, Fumiaki; Sugano, Eriko


    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65 depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light.

  20. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang


    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  1. Isolation of Rhizobium phaseoli Tn5-induced mutants with altered expression of cytochrome terminal oxidases o and aa3. (United States)

    Soberón, M; Membrillo-Hernández, J; Aguilar, G R; Sánchez, F


    Two Rhizobium phaseoli mutants affected in cytochrome expression were obtained by Tn5-mob mutagenesis of the wild-type strain (CE3). Mutant strain CFN031 expressed sevenfold less cytochrome o in culture, expressed cytochrome aa3 under microaerophilic culture conditions, in contrast to strain CE3, and was affected in its vegetative growth properties and proliferation inside plant host cells. Mutant CFN037 expressed cytochrome aa3 under microaerophilic culture conditions, while bacteroid development and nitrogen fixation occurred earlier than in strain CE3. Images FIG. 2 PMID:2155209

  2. Sesamin ameliorates arterial dysfunction in spontaneously hypertensive rats via downregulation of NADPH oxidase subunits and upregulation of eNOS expression

    Institute of Scientific and Technical Information of China (English)

    Jun-xiu ZHANG; Jie-ren YANG; Guo-xiang CHEN; Li-juan TANG; Wen-xing LI; Hui YANG; Xiang KONG


    Aim:Sesamin is one of the major lignans in sesame seeds with antihyperlipidemic,antioxidative and antihypertensive activities.The aim of this study was to examine the effects of sesamin on arterial function in spontaneously hypertensive rats (SHRs).Methods:SHRs were orally administered sesamin (40,80 and 160 mg·kg-1·d-1) for 16 weeks.After the rats were killed,thoracic aortas were dissected out.The vasorelaxation responses of aortic rings to ACh and nitroprusside were measured.The expression of eNOS and NADPH oxidase subunits p4Tphox and p22phox in aortas were detected using Western blotting and immunohistochemistry.Aortic nitrotyrosine was measured with ELISA.The total antioxidant capacity (T-AOC) and MDA levels in aortas were also determined.Results:The aortic rings of SHRs showed significantly smaller ACh-induced and nitroprusside-induced relaxation than those of control rats.Treatment of SHRs with sesamin increased both the endothelium-dependent and endothelium-independent relaxation of aortic rings in a dose-dependent manner.In aortas of SHRs,the level of T-AOC and the expression of nitrotyrosine,p22phox and p47phox proteins were markedly increased,while the level of MDA and the expression of eNOS protein were significantly decreased.Treatment of SHRs with sesamin dose-dependently reversed these biochemical and molecular abnormalities in aortas.Conclusion:Long-term treatment with sesamin improves arterial function in SHR through the upregulation of eNOS expression and downregulation of p22phox and p47phox expression.

  3. Pioglitazone inhibits the expression of nicotinamide adenine dinucleotide phosphate oxidase and p38 mitogen-activated protein kinase in rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shan; YE Shan-dong; SUN Wen-jia; HU Yuan-yuan


    Background Oxidative Stress and p38 mitogen-activated protein kinase (p38MAPK) play a vital role in renal fibrosis.Pioglitazone can protect kidney but the underlying mechanisms are less clear.The purpose of this study was to investigate the effect of pioglitazone on oxidative stress and whether the severity of oxidative stress was associated with the phosphorylation level of p38MAPK.Methods Rat mesangial cells were cultured and randomly assigned to control group,high glucose group and pioglitazone group.After 48-hour exposure,the supernatants and ceils were collected.The protein levels of p22phox,p47phox,phosphorylated p38MAPK,total p38MAPK were measured by Western blotting.The gene expressions of p22phox,p47phox were detected by RT-PCR.The levels of intracellular reactive oxygen species (ROS) were determined by flow cytometry.The levels of superoxide dismutase (SOD) and maleic dialdehyde (MDA) in the supernatant were determined respectively.Results Compared with the control group,the expression levels of p22phox,p47phox,phospho-p38 and ROS significantly increased,activity of SOD decreased in high glucose group,while the level of MDA greatly increased (P <0.01).Pioglitazone significantly suppressed p22phox,p47phox expressions and oxidative stress induced by high glucose.The expressions of p22phox,p47phox,phospho-p38MAPK and ROS generation were markedly reduced after pioglitazone treatment (P <0.05).The activity of SOD in the the supernatant increased (P <0.05),while the level of MDA decreased greatly by pioglitazone (P <0.05).The level of oxidative stress was associated with the phosphorylation level of p38MAPK (P <0.01).Conclusion Pioglitazone can inhibit oxidative stress through suppressing NADPH oxidase expression and p38MAPK phosphorylation.

  4. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. (United States)

    Costa, José Hélio; Mota, Erika Freitas; Cambursano, Mariana Virginia; Lauxmann, Martin Alexander; de Oliveira, Luciana Maia Nogueira; Silva Lima, Maria da Guia; Orellano, Elena Graciela; Fernandes de Melo, Dirce


    Cowpea (Vigna unguiculata) alternative oxidase is encoded by a small multigene family (Aox1, 2a and 2b) that is orthologous to the soybean Aox family. Like most of the identified Aox genes in plants, VuAox1 and VuAox2 consist of 4 exons interrupted by 3 introns. Alignment of the orthologous Aox genes revealed high identity of exons and intron variability, which is more prevalent in Aox1. In order to determine Aox gene expression in V. unguiculata, a steady-state analysis of transcripts involved in seed development (flowers, pods and dry seeds) and germination (soaked seeds) was performed and systemic co-expression of VuAox1 and VuAox2b was observed during germination. The analysis of Aox transcripts in leaves from seedlings under different stress conditions (cold, PEG, salicylate and H2O2 revealed stress-induced co-expression of both VuAox genes. Transcripts of VuAox2a and 2b were detected in all control seedlings, which was not the case for VuAox1 mRNA. Estimation of the primary transcript lengths of V. unguiculata and soybean Aox genes showed an intron length reduction for VuAox1 and 2b, suggesting that the two genes have converged in transcribed sequence length. Indeed, a bioinformatics analysis of VuAox1 and 2b promoters revealed a conserved region related to a cis-element that is responsive to oxidative stress. Taken together, the data provide evidence for co-expression of Aox1 and Aox2b in response to stress and also during the early phase of seed germination. The dual nature of VuAox2b expression (constitutive and induced) suggests that the constitutive Aox2b gene of V. unguiculata has acquired inducible regulatory elements.

  5. Rat pristanoyl-CoA oxidase. cDNA cloning and recognition of its C-terminal (SQL) by the peroxisomal-targeting signal 1 receptor. (United States)

    Vanhooren, J C; Fransen, M; de Béthune, B; Baumgart, E; Baes, M; Torrekens, S; Van Leuven, F; Mannaerts, G P; Van Veldhoven, P P


    The composite pristanoyl-CoA oxidase cDNA sequence, derived from two overlapping clones from a rat liver cDNA library and a 5'-RACE (rapid amplification of cDNA ends) PCR fragment, consisted of 2600 bases and contained an open reading frame of 2100 bases, encoding a protein of 700 amino acids with a calculated molecular mass of 78445 Da. This value is somewhat larger than the reported molecular mass of 70 kDa as determined earlier by SDS-gel electrophoresis. The amino acid identity with rat palmitoyl-CoA oxidase was rather low (28%) and barely higher than that with the yeast acyl-CoA oxidases (20%), suggesting that the palmitoyl-CoA oxidase/pristanoyl-CoA oxidase duplication occurred early in evolution. The carboxy-terminal tripeptide of pristanoyl-CoA oxidase was SQL. In vitro studies with the bacterially expressed human peroxisomal-targeting signal-1 import receptor indicated that SQL functions as a peroxisome-targeting signal. Northern analysis of tissues from control and clofibrate treated rats demonstrated that the pristanoyl-CoA oxidase gene is transcribed in liver and extrahepatic tissues and that transcription is not enhanced by treatment of rats with peroxisome proliferators. No mRNA could be detected by northern analysis of human tissues, suggesting that the human pristanoyl-CoA oxidase gene, if present, is only poorly or not transcribed.

  6. Reduction of NADH oxidase, NO synthase, TNFα, and IL-1β mRNA expression levels on lipopolysacharide-stimulated murine macrophages by Zataria Multiflora

    Directory of Open Access Journals (Sweden)

    Parastoo Karimian


    Full Text Available Zataria multiflora (ZM is a thyme-like aromatic plant in the Lamiaceae family that grows in central and southern Iran. ZM is extensively used as a flavor ingredient in a wide variety of foods and is used as part of popular traditional folk remedies. In the present study, ZM essential oil (ZMO was obtained from ZM leaves via hydro-distillation and then analyzed by GC-MS (gas chromatography-mass spectrometry. The anti-inflammatory activity of ZMO was determined via measures of NADH oxidase (NOX, inducible nitric oxide synthase (iNOS, tumor necrosis factor (TNF-α, and interleukin (IL-1β mRNA expression in lipopolysaccharide-stimulated murine macrophages using real-time polymerase chain reaction (PCR. GC-MS analysis indicated that the main components in the ZMO were carvacrol (29.4%, thymol (25.7%, p-cymene (11.2%, linalool (9.3%, and γ-terpinene (8.0%. ZMO significantly reduced NOX, iNOS, TNFα, and IL-1β mRNA expression in cells at concentrations of 0.1-1 μg/mL, indicating a capacity for this product to potentially modulate/diminish immune responses. ZMO has anti-oxidant and anti-inflammatory properties and could be potentially used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and a number of inflammatory conditions associated with stress.

  7. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. (United States)

    Richter, Carolin; Dirks, Mareike E; Gronover, Christian Schulze; Prüfer, Dirk; Moerschbacher, Bruno M


    Dandelion (Taraxacum officinale) possesses an unusually high degree of disease resistance. As this plant exhibits high polyphenol oxidase (PPO) activity and PPO have been implicated in resistance against pests and pathogens, we analyzed the potential involvement of five PPO isoenzymes in the resistance of dandelion against Botrytis cinerea and Pseudomonas syringae pv. tomato. Only one PPO (ppo-2) was induced during infection, and ppo-2 promoter and β-glucuronidase marker gene fusions revealed strong induction of the gene surrounding lesions induced by B. cinerea. Specific RNAi silencing reduced ppo-2 expression only, and concomitantly increased plant susceptibility to P. syringae pv. tomato. At 4 days postinoculation, P. syringae pv. tomato populations were strongly increased in the ppo-2 RNAi lines compared with wild-type plants. When the dandelion ppo-2 gene was expressed in Arabidopsis thaliana, a plant having no PPO gene, active protein was formed and protein extracts of the transgenic plants exhibited substrate-dependent antimicrobial activity against P. syringae pv. tomato. These results clearly indicate a strong contribution of a specific, single PPO isoform to disease resistance. Therefore, we propose that specific PPO isoenzymes be included in a new family of pathogenesis-related (PR) proteins.

  8. Polyphenols and inhibitors of indoIyl-3-acetic acid oxidase in carrot roots infested with northern root-knot nematode

    Directory of Open Access Journals (Sweden)

    Krystyna M. Janas


    Full Text Available It is suggested that IAA-oxidase inhibitors accumulate in plants infested by the nematodes. This leads to local accumulation of active auxins and causes proliferation of tissues near the place of nematode infection. T e carrot cv. Slendero seems to be less sensitive to nematode as the inhibitors of IAA-oxidase do not accumulate at early stages of infection.

  9. MiR-29b inhibits collagen maturation in hepatic stellate cells through down-regulating the expression of HSP47 and lysyl oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei; Ghazwani, Mohammed; Li, Jiang [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Sun, Ming; Stolz, Donna B. [Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 (United States); He, Fengtian [Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038 (China); Fan, Jie [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Xie, Wen [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Li, Song, E-mail: [Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261 (United States)


    Highlights: • Enhanced HSP47 and LOX expression is associated with decreased miR-29b level in liver fibrosis. • miR-29b down-regulates HSP47 and LOX expression. • The suppression of HSP47 and LOX by miR-29b is mediated by putative sites at their 3′-UTRs. • miR-29b inhibits extracellular LOX activity and collagen maturation. - Abstract: Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl{sub 4}-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.

  10. A Simple Enzymatic Method for Production of a Wide Variety of D-Amino Acids Using L-Amino Acid Oxidase from Rhodococcus sp. AIU Z-35-1

    Directory of Open Access Journals (Sweden)

    Kimiyasu Isobe


    Full Text Available A simple enzymatic method for production of a wide variety of D-amino acids was developed by kinetic resolution of DL-amino acids using L-amino acid oxidase (L-AAO with broad substrate specificity from Rhodococcus sp. AIU Z-35-1. The optimum pH of the L-AAO reaction was classified into three groups depending on the L-amino acids as substrate, and their respective activities between pH 5.5 and 8.5 accounted for more than 60% of the optimum activity. The enzyme was stable in the range from pH 6.0 to 8.0, and approximately 80% of the enzyme activity remained after incubation at 40∘C for 60 min at pH 7.0. D-Amino acids such as D-citrulline, D-glutamine, D-homoserine or D-arginine, which are not produced by D-aminoacylases or D-hydantoinases, were produced from the racemic mixture within a 24-hr reaction at 30∘C and pH 7.0. Thus, the present method using L-AAO was versatile for production of a wide variety of D-amino acids.

  11. In vitro binding of Sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy. (United States)

    Cantoro, Renata; Crocco, Carlos Daniel; Benech-Arnold, Roberto Luis; Rodríguez, María Verónica


    The precise adjustment of the timing of dormancy release according to final grain usage is still a challenge for many cereal crops. Grain sorghum [Sorghum bicolor (L.) Moench] shows wide intraspecific variability in dormancy level and susceptibility to pre-harvest sprouting (PHS). Both embryo sensitivity to abscisic acid (ABA) and gibberellin (GA) metabolism play an important role in the expression of dormancy of the developing sorghum grain. In previous works, it was shown that, simultaneously with a greater embryo sensitivity to ABA and higher expression of SbABA-INSENSITIVE 4 (SbABI4) and SbABA-INSENSITIVE 5 (SbABI5), dormant grains accumulate less active GA4 due to a more active GA catabolism. In this work, it is demonstrated that the ABA signalling components SbABI4 and SbABI5 interact in vitro with a fragment of the SbGA 2-OXIDASE 3 (SbGA2ox3) promoter containing an ABA-responsive complex (ABRC). Both transcription factors were able to bind the promoter, although not simultaneously, suggesting that they might compete for the same cis-acting regulatory sequences. A biological role for these interactions in the expression of dormancy of sorghum grains is proposed: either SbABI4 and/or SbABI5 activate transcription of the SbGA2ox3 gene in vivo and promote SbGA2ox3 protein accumulation; this would result in active degradation of GA4, thus preventing germination of dormant grains. A comparative analysis of the 5'-regulatory region of GA2oxs from both monocots and dicots is also presented; conservation of the ABRC in closely related GA2oxs from Brachypodium distachyon and rice suggest that these species might share the same regulatory mechanism as proposed for grain sorghum.

  12. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. (United States)

    Perz-Edwards, A; Hardison, N L; Linney, E


    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  13. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa). (United States)

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin


    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.

  14. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells (United States)

    Ammam, Malika; Fransaer, Jan


    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Electrochemical Impedance Spectroscopy (EIS). The data from FT-IR illustrated deposition of ATS, PDA and GOx on the surface of gold electrode. The latter has been confirmed by EIS which showed that the electron transfer resistance of the electrode increases after adsorption of each supplementary layer. Linear sweep voltammetry (LSV) in phosphate buffer solution containing 5 mM glucose displayed that compared to Au/ATS/GOx, oxidation of glucose at Au/ATS/PDA/GOx electrode starts 461 mV earlier. This gain in potential is attributed to presence of PDA in the constructed Au/ATS/PDA/GOx electrode, which plays some sort of electron mediator for glucose oxidation. The Au/ATS/PDA/GOx electrode was stabilized by an outer layer of polystyrene sulfonate (PSS) and was connected to a Pt electrode as cathode and the non-compartmentalized cell was studied under air in phosphate buffer solution pH 7.4 containing 10 mM glucose. Under these conditions, the maximum power density reaches 0.25 μW mm-2 (25 μW cm-2) for the deposited GOx layer that has an estimated surface coverage of ∼70% of a monolayer.

  15. Expression of the genes dual oxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease

    DEFF Research Database (Denmark)

    Csillag, C.; Nielsen, O.H.; Vainer, Ben


    OBJECTIVE: A global gene expression profile of non-inflamed colonic mucosal cells from patients with Crohn's disease (CD) and of colonic mucosal cells from controls was performed. MATERIAL AND METHODS: Tissue specimens from macroscopically non-inflamed descending colon were obtained colonoscopica......OBJECTIVE: A global gene expression profile of non-inflamed colonic mucosal cells from patients with Crohn's disease (CD) and of colonic mucosal cells from controls was performed. MATERIAL AND METHODS: Tissue specimens from macroscopically non-inflamed descending colon were obtained...

  16. Honeybee glucose oxidase--its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. (United States)

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj


    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  17. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. (United States)

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P


    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  18. Status and Advances of Researches on GA 20-oxidases

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Chen Xiaoyang; Li Hui; Guo Hai


    GA 20-oxidase, the most important limiting enzyme, can catalyze a series of oxidization of GA biosynthesis pathwayfrom GA12 to GA9 and from GA53 to GA20 in the higher plants. This paper reviews the studies on the characters of GA 20-oxidase,the gene and the protein of GA 20-oxidase and the regulation of GA 20-oxidase gene expression in recent years. At the same time,the prospects for the gene transformation of GA 20-oxidase in agriculture, forestry and horticulture are also discussed.

  19. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. (United States)

    Pritchett, David; Taylor, Amy M; Barkus, Christopher; Engle, Sandra J; Brandon, Nicholas J; Sharp, Trevor; Foster, Russell G; Harrison, Paul J; Peirson, Stuart N; Bannerman, David M


    A common strategy when searching for cognitive-enhancing drugs has been to target the N-methyl-d-aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D-amino acid oxidase (DAO) degrades neutral D-amino acids such as D-serine, the primary endogenous co-agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long-term potentiation and facilitated water maze acquisition of ddY/Dao(-) mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao(-/-) ) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao(-/-) mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao(-/-) mice exhibited normal performance in two alternative assays of long-term spatial memory: the appetitive and aversive Y-maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long-term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.

  20. Differential expression of serotonin, tryptophan hydroxylase and monoamine oxidase A in the mammary gland of the Myotis velifer bat.

    Directory of Open Access Journals (Sweden)

    Cristián Vela Hinojosa

    Full Text Available The mammary gland has long drawn the attention of the scientific community due to the limited knowledge of some fundamental aspects involved in the control of its function. Myotis velifer, a microchiropteran species, provides an interesting model to study some of the regulatory factors involved in the control of the mammary gland cycle. Having an asynchronous, monoestrous reproductive pattern, female M. velifer bats undergo drastic morphological changes of the breast during the reproductive cycle. Current research on non-chiropteran mammals indicates that serotonin (5-HT plays a major role in the intraluminal volume homeostasis of the mammary gland during lactation; however, an analysis of both the expression and localization of the main components of the serotonergic system in the bat mammary gland is lacking. Thus, the objectives of the present study were: to describe the gross and histological anatomy of the mammary gland of M. velifer to establish the lactation period for this species; to analyze the distribution and expression of the main serotonergic components in the mammary tissues of these bats under the physiological conditions of lactation, involution and the resting phase; and to provide information on the involvement of 5-HT in the regulation of the physiological function of this organ. To assess the expression and localization of serotonergic components, multiple immunofluorescence, Western blot and HPLC methods were used. 5-HT and the enzyme that catalyzes its synthesis (TPH were located in both myoepithelial and luminal epithelial cells, while the enzyme responsible for the catabolism of this neurohormone (MAO A was found in luminal epithelial cells as well as in secreted products. We also found an increased expression of serotonergic components during lactation, indicating that elements of the serotonergic system may play an important role in lactation in this species of bat in a way similar to that of other mammal species.

  1. Expression of fatty acid synthase in nonalcoholic fatty liver disease. (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus


    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  2. Expression of heteromeric amino acid transporters along the murine intestine. (United States)

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois


    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  3. The effect of high polyphenol oxidase grass silage on metabolism of polyunsaturated fatty acids and nitrogen across the rumen of beef steers. (United States)

    Lee, M R F; Theobald, V J; Gordon, N; Leyland, M; Tweed, J K S; Fychan, R; Scollan, N D


    Polyphenol oxidase (PPO) activity in red clover (Trifolium pratense) has been reported to reduce both proteolysis and lipolysis, resulting in greater N use efficiency and protection of PUFA across the rumen. Although high levels of PPO have been reported in grasses such as cocksfoot (orchard grass; Dactylis glomerata), no in vivo research has determined whether grass PPO elicits the same response as red clover PPO. To test the hypothesis that silage ensiled from grass with high levels of PPO protects N and PUFA across the rumen, 6 steers with ruminal and duodenal cannulas were offered cocksfoot silage (CO; high-PPO grass), perennial ryegrass silage (PR; Lolium perenne; low-PPO grass), or red clover silage (RC; high-PPO control) at 16 g DM/kg BW daily with the experiment consisting of two 3 × 3 Latin squares with 21-d periods, consisting of 12 d of diet adaptation, 6 d of duodenal marker infusion, 2 d of duodenal sampling, and 1 d of ruminal sampling. All silages were well preserved, with DM of 34.4, 55.3, and 45.4% for CO, PR, and RC. Activity of PPO in silages was low due to deactivation but was greater in CO than either PR or RC (0.15 vs. 0.05 and 0.08 μkatal/g DM). Protein-bound phenol (mg/g DM) as a measure of the degree of oxidation and an indication of PPO protection was greatest for RC (15.9) but comparable for PR (10.1) and CO (12.2). Biohydrogenation of C18 PUFA was significantly lower on RC compared to the 2 grass silages with CO greater than PR. Despite lower levels of total fatty acid intake and subsequent duodenal flow, CO resulted in greater levels of phytanic acid and total branched and odd chain fatty acids in duodenal digesta than RC or PR. Ruminal ammonia concentration was greatest for RC, with no difference between the grasses. Duodenal flow of microbial N and efficiency of microbial protein synthesis were lowest for CO and comparable for RC and PR. The CO (high-grass PPO) did not result in elevated levels of C18 PUFA escaping the rumen or

  4. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner


    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  5. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. (United States)

    Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi


    The major l-amino acid oxidase (LAAO, EC of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.

  6. Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and delta-gluconolactone production. (United States)

    Bucko, Marek; Gemeiner, Peter; Vikartovská, Alica; Mislovicová, Danica; Lacík, Igor; Tkác, Ján


    A novel encapsulated oxidative biocatalyst comprising glucose oxidase (GOD) coencapsulated with oxygen carriers within polyelectrolyte complex capsules was developed for the production of D-gluconic acid and delta-gluconolactone. The capsules containing immobilized GOD were produced by polyelectrolyte complexation with sodium alginate (SA) and cellulose sulfate (CS) as polyanions, poly(methylene-co-guanidine) (PMCG) as the polycation, CaCl(2) as the gelling agent and NaCl as the antigelling agent (GOD-SA-CS/PMCG capsules). Poly(dimethylsiloxane) (PDMS) and an emulsion of n-dodecane (DOD) or perfluorodecaline (PFD) with PDMS were used as the oxygen carriers and MnO(2) was used as a hydrogen peroxide decomposition catalyst. Water-soluble PDMS was found to act as both an oxygen carrier and an emulsifier of water-insoluble DOD and PFD. Stable microcapsules could be produced with concentrations of up to 4% (w/w) of PDMS, 10% (w/w) of DOD and PFD, and 25% (w/w) of MnO(2) in the polyanion solution of SA and CS. Roughly a two-fold increase in the GOD activity from 21.0+/-1.1 to 38.4+/-2.0 U*g(-1) and product space-time yields (STY) from 44.3+/-2.0 to 83.4+/-3.4 g*H*day(-1) could be achieved utilizing coencapsulated oxygen carriers compared to GOD encapsulated in the absence of oxygen carriers. This enhanced production does not significantly depend on the selected oxygen carrier under the conditions used in this study.

  7. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). (United States)

    Leong, Sze Ying; Oey, Indrawati


    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment.

  8. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion. (United States)

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia


    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  9. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. (United States)

    Jeon, Hyung-Woo; Cho, Jin-Seong; Park, Eung-Jun; Han, Kyung-Hwan; Choi, Young-Im; Ko, Jae-Heung


    Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)-preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20-oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX-specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild-type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue-specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.

  10. Cloning and Expression Analysis of ent-kaurene Oxidase Gene CKO in Cucumber%黄瓜贝壳杉烯氧化酶基因CKO的克隆及其表达分析

    Institute of Scientific and Technical Information of China (English)

    胡宏敏; 蒋芳玲; 曹雪; 吴震; 王广龙


    With homologous cloning and RACE technology, ent-Kaurene oxidase (KO), a key enzyme in the pathway of gibberellins biosynthesis, was cloned from the shoot tip of' Deltastal' ( Cucumis sativus L. ) and named CKO (GenBank accession number: JN792591 ) . The full eDNA was 1 895 bp in length with an open reading frame (ORF) encoding a protein of 519 amino acids. The protein molecular weight and isoelectric point were predicted to be 59.211 kD and 8.45 respectively. Amino acids homology analysis indicated that the sequence had 84% similarity with that of Momordica charantia. Sequence analysis showed that CKO belonged to cytochrome P450 superfamily and contained cysteine hemeiron ligand signature (FXXGXRXCXG) and transmembrane region. The fluorescent quantitative RT-PCR result showed that the expression level of CKO was the highest in leggy seedling under shading treatment, being 5.18 times of the normal one. While the expression of CKO significantly reduced after spraying paclobutrazol at shading.%以‘戴多星’黄瓜为试材,应用同源克隆和RACE技术从茎尖中得到赤霉素合成的关键酶——贝壳杉烯氧化酶(KO)基因cDNA全长序列,命名为CKO,GenBank登录号为JN792591,其长度为l895bp,开放阅读框(ORF)编码519个氨基酸,相对分子量为59.211kD,等电点(PI)8.45。氨基酸同源性分析发现,CKO与苦瓜的KO同源性最高,达84%:序列结构分析表明,CKO属于细胞色素超家族P450系,具有细胞色素P450的血红素结构域FXXGXRXCXG和跨膜结构域。实时荧光定量分析表明,CKO在遮荫的徒长苗中表达量最高,是正常苗的5.18倍,在遮阴条件下喷施多效唑可降低期表达。

  11. Differential expression of cholangiocyte and ileal bile acid transporters following bile acid supplementation and depletion

    Institute of Scientific and Technical Information of China (English)

    N. Sertac Kip; Konstantinos N. Lazaridis; Anatoliy I. Masyuk; Patrick L. Splinter; Robert C. Huebert; Nicholas F. LaRusso


    AIM: We have previously demonstrated that cholangiocytes,the epithelial cells lining intrahepatic bile ducts, encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport.Cholangiocytes possess ASBT, an apical sodium-dependent bile acid transporter to take up bile acids, and t-ASBT, a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids. Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids,the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains unclear. Thus, we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pairfed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets, were assessed by both quantitative RNase protection assays and quantitative immunoblotting. The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets.Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C, TCA and CY fed rats.RESULTS: In cholangiocytes, both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet. In contrast,message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet. In the ileum, TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet, while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet. As anticipated from alterations in cholangiocyte ASBT expression, the uptake of

  12. Amyloid-β peptide binds to cytochrome C oxidase subunit 1. (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar


    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  13. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  14. Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment (United States)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  15. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase. (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin


    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  16. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats

    Directory of Open Access Journals (Sweden)

    Qiong N. Zhu


    Full Text Available Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats.Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD 10, 14 and 19, and postnatal days (PND 1, 7, 14 and 21. Total bile acids were determined by the enzymatic method, total RNA was isolated and subjected to real time RT-PCR analysis. Liver protein was extracted for western-blot analysis.Results. Under physiological conditions hepatic bile acids were not elevated during pregnancy but increased during lactation in rats. Bile acid synthesis rate-limiting enzyme Cyp7a1 was unchanged on gestational days, but increased on PND14 and 21 at mRNA and protein levels. Expression of Cyp8b1, Cyp27a1 and Cyp7b1 was also higher during lactation. The mRNA levels of small heterodimer partner (SHP and protein levels of farnesoid X receptor (FXR were increased during pregnancy and lactation. Bile acid transporters Ntcp, Bsep, Mrp3 and Mrp4 were lower at gestation, but increased during lactation. Hepatic Oatp transporters were decreased during pregnancy and lactation.Conclusion. Hepatic bile acid homeostasis is maintained during normal pregnancy in rats, probably through the FXR-SHP regulation. The expression of bile acid synthesis genes and liver bile acid accumulation were increased during lactation, together with increased expression of bile acid efflux transporter Bsep, Mrp3 and Mrp4.

  17. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. (United States)

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A


    Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits

  18. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression. (United States)

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R


    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  19. Purification, partial characterization, crystallization and structural determination of AHP-LAAO, a novel L-amino-acid oxidase with cell apoptosis-inducing activity from Agkistrodon halys pallas venom. (United States)

    Zhang, Hongmin; Teng, Maikun; Niu, Liwen; Wang, Yubao; Wang, Yuzhen; Liu, Qun; Huang, Qingqiu; Hao, Quan; Dong, Yuhui; Liu, Peng


    A snake-venom protein named AHP-LAAO has been purified from Agkistrodon halys pallas venom using four-stage chromatography. AHP-LAAO is a novel member of the snake-venom L-amino-acid oxidase family. Its amino-acid sequence shows high homology to other members of this family. For L-leucine, the values of k(cat) and K(M) are 31.1 s(-1) and 0.25 mM, respectively. The molecular weight of AHP-LAAO is about 60.7 kDa as determined by MALDI-TOF mass spectrometry. AHP-LAAO can also induce apoptosis of cultured Hela cells. Two sets of diffraction data with similar resolution limits (about 2.5 A) were collected independently at MacCHESS (Cornell High Energy Synchrotron Source, USA) and IHEP (Institute of High Energy Physics, Beijing, China). The crystals belong to space group I2(1)3, with unit-cell parameter a = 169.31 A, corresponding to one molecule in the asymmetric unit and a volume-to-weight ratio of 3.33 A(3) Da(-1). The final structural model is similar to that of L-amino-acid oxidase from Calloselasma rhodostoma venom.

  20. The chemistry of escapin: identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. (United States)

    Kamio, Michiya; Ko, Ko-Chun; Zheng, Shilong; Wang, Binghe; Collins, Stacy L; Gadda, Giovanni; Tai, Phang C; Derby, Charles D


    Escapin is an L-amino acid oxidase in the ink of a marine snail, the sea hare Aplysia californica, which oxidizes L-lysine (1) to produce a mixture of chemicals which is antipredatory and antimicrobial. The goal of our study was to determine the identity and relative abundance of the constituents of this mixture, using molecules generated enzymatically with escapin and also using products of organic syntheses. We examined this mixture under the natural range of pH values for ink-from approximately 5 at full strength to approximately 8 when fully diluted in sea water. The enzymatic reaction likely forms an equilibrium mixture containing the linear form alpha-keto-epsilon-aminocaproic acid (2), the cyclic imine Delta(1)-piperidine-2-carboxylic acid (3), the cyclic enamine Delta(2)-piperidine-2-carboxylic acid (4), possibly the linear enol 6-amino-2-hydroxy-hex-2-enoic acid (7), the alpha-dihydroxy acid 6-amino-2,2-dihydroxy-hexanoic acid (8), and the cyclic aminol 2-hydroxy-piperidine-2-carboxylic acid (9). Using NMR and mass spectroscopy, we show that 3 is the major component of this enzymatic product at any pH, but at more basic conditions, the equilibrium shifts to produce relatively more 4, and at acidic conditions, the equilibrium shifts to produce relatively more 2, 7, and/or 9. Studies of escapin's enzyme kinetics demonstrate that because of the high concentrations of escapin and L-lysine in the ink secretion, millimolar concentrations of 3, H(2)O(2), and ammonia are produced, and also lower concentrations of 2, 4, 7, and 9 as a result. We also show that reactions of this mixture with H(2)O(2) produce delta-aminovaleric acid (5) and delta-valerolactam (6), with 6 being the dominant component under the naturally acidic conditions of ink. Thus, the product of escapin's action on L-lysine contains an equilibrium mixture that is more complex than previously known for any L-amino acid oxidase.

  1. Expression of retinoic acid receptors in human endometrial carcinoma. (United States)

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo


    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  2. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li


    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  3. Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. (United States)

    García-Martínez, J L; López-Diaz, I; Sánchez-Beltrán, M J; Phillips, A L; Ward, D A; Gaskin, P; Hedden, P


    PCR was used with degenerate primers based on conserved amino acid sequences in gibberellin (GA) 20-oxidases to isolate cDNA clones for these enzymes from young seeds of pea (Pisum sativum) and developing embryos of French bean (Phaseolus vulgaris). One GA 20-oxidase cDNA (Ps27-12) was obtained from pea and three (Pv 15-11, Pv73-1 and Pv85-26) from bean. Their identities were confirmed by demonstrating that fusion proteins expressed in Escherichia coli exhibited GA 20-oxidase activity, converting [14C]GA12 to [14C]GA9. The intermediates in this three-step reaction, GA15 and GA24, were also identified as products. The expression proteins from three of the clones (Ps27-12, Pv15-11 and Pv73-1) were also shown to convert GA53 to GA20, as effectively as they did GA12. On the basis of transcript levels measured by northern blot analysis, the pea GA 20-oxidase gene is most highly expressed in young leaves, fully expanded internodes, very young seeds (until 4 days after anthesis) and expanding pods (from 3 days after anthesis at least until day 6). Expression in pods from 3-day-old unpollinated ovaries is higher than in those from pollinated ovaries. Treatment of unpollinated ovaries with GA3 to induce parthenocarpic fruit-set severely reduced the amount of GA 20-oxidase mRNA, whereas treatment with 2,4-D, although inducing fruit-set, did not reduce the levels of these transcripts. Plant decapitation above an unpollinated ovary resulted in very high levels of GA 20-oxidase mRNA in the pod. The three GA 20-oxidase genes from French bean showed very different patterns of expression: Pv 15-1 was expressed in the roots, young leaves, and developing seeds, but most highly in immature cotyledons, while Pv73-1 has a similar expression pattern to Ps27-12, with transcripts found only in young seeds and young leaves, where it was particularly abundant. Transcripts corresponding to Pv85-26 were detected in developing seeds, and just traces in the young leaves. Southern blot analysis

  4. Clematichinenoside inhibits VCAM-1 and ICAM-1 expression in TNF-α-treated endothelial cells via NADPH oxidase-dependent IκB kinase/NF-κB pathway. (United States)

    Yan, Simin; Zhang, Xu; Zheng, Haili; Hu, Danhong; Zhang, Yongtian; Guan, Qinghua; Liu, Lifang; Ding, Qilong; Li, Yunman


    Proinflammatory cytokine TNF-α-induced adhesion of leukocytes to endothelial cells plays a critical role in the early stage of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Thus, compounds that mediate intracellular redox status and regulate transcription factors are of great therapeutic interest. Clematichinenoside (AR), a triterpene saponin isolated from the root of Clematis chinensis Osbeck, was previously demonstrated to have anti-inflammatory and antioxidative properties. However, little is known about the exact mechanism underlying these actions. Thus we performed a detailed study on its effect on leukocytes-endothelial cells adhesion with TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) and cell-free systems. First, we found that AR reduced TNF-α-induced VCAM-1 and ICAM-1 expression and their promoter activity, inhibited translocation of p65 and phosphorylation of IκBα, suppressed IκB kinase-β (IKK-β) activity, lowered O2(∙-) and H2O2 levels, tackled p47(phox) translocation, and decreased NOX4 NADPH oxidase expression. Second, we showed that AR exhibited no direct free radical scavenging ability in cell-free systems at concentrations that were used in intact cells. Besides, AR had no direct effect on the activity of IKK-β that was extracted from TNF-α-stimulated HUVECs. We also found that p47 translocation, NOX4 expression, and reactive oxygen species (ROS) levels were up-regulated before IκB phosphorylation in TNF-α-induced HUVECs. Moreover, TNF-α-enhanced IKK-β activity was also inhibited by (polyethylene glycol) PEG-catalase, N-acetylcysteine (NAC), and vitamin E. In conclusion, these results suggest that AR reduces VCAM-1 and ICAM-1 expression through NADPH oxidase-dependent IKK/NF-κB pathways in TNF-α-induced HUVECs, which finally suppress monocyte-HUVECs adhesion. This compound is potentially beneficial for early-stage atherosclerosis.

  5. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio


    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  6. Functional characterization of ent-kaurene oxidase, MtKO, from Montanoa tomentosa (Zoapatle

    Directory of Open Access Journals (Sweden)

    Villa-Ruano Nemesio


    Full Text Available Kaurene oxidases are P450 proteins that catalyze the conversion of ent-kaurene into kaurenoic acid, the final enzymatic product with a wide range of pharmacological properties. We describe the functional characterization of an ent-kaurene oxidase (EC isolated from Montanoa tomentosa after heterologous expression in Saccharomyces cerevisiae, as well as the detection of the enzymatic activity in the plant itself. In the presence of NADPH and FAD, the microsomal fraction from transformed INVSc1 cells, ent-kaurene produced ent-kaurenoic acid, which was confirmed by GC-MS analyses. The kinetic parameters for ent-kaurene using 0.5 mg of microsomal protein were Km app= 80.63±1.2 μM and V max app= 31.80±1.8 μmol-1mg-1h-1. Optimal temperature and pH were 30°C and 7.6, respectively. Similar kinetic parameters were observed when leaf microsomes from M. tomentosa were assayed under the same conditions as for yeast microsomes. This result strongly suggests that ent-kaurene oxidase activity is present in leaf microsomes. The enzymatic activity was competitively inhibited by paclobutrazol, with IC50=43.9 μM, implying that MtKO is resistant to inhibition by azolic-type compounds. This study confirmed the biochemical detection of ent-kaurene oxidase activity in the plant, and the heterologous functionality of a cDNA with an ent-kaurene oxidase identity from M. tomentosa (zoapatle.

  7. Jasmonic acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity and Gene Expression in Glycine max under Nickel Toxicity

    Directory of Open Access Journals (Sweden)

    Geetika eSirhindi


    Full Text Available In present study, we evaluated the effects of Jasmonic acid (JA on physio-biochemical attributes, antioxidant enzyme activity and gene expression in soybean (Glycine max L. plants subjected to nickel (Ni stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23%, 38.31% and 39.21% respectively over the control. However, application of JA was found to improve the chlorophyll content and growth of Ni-stressed seedlings in terms of root and shoot length. Plants supplemented with Jasmonate restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein and total soluble sugar (TSS by 33.09%, 51.26%, 22.58% and 49.15% respectively under Ni toxicity as compared to control. Supplementation of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2 by 68.49%, lipid peroxidation (MDA by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and ascorbate peroxidase (APX increases by 40.04%, 28.22%, 48.53% and 56.79% respectively over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62%, CAT by 15.25%, POD by 58.33% and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes and osmoprotectants, antioxidant enzyme activity and gene expression.

  8. Spectrophotometric Assay of Immobilized Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Nojan Noorbehesht


    Full Text Available Enzyme results in change the substrate of product. Each enzyme may act on specific substrates, resulting in product or different products. The enzyme glucose oxidase (GOX is a bio catalyst. It accelerates the process of transforming glucose into hydrogen peroxide (H2O2 . These enzymes are used in the chemical industry, food industry, cosmetics and kits for diagnosis of glucose. There are many researches about immobilizations of Glucose Oxide to increase specifications such as repeated use, recovery, stability, shelf life and other features In this work, glucose oxidase enzyme using covalent bonding is placed on the carrier of carbon nanotubes. In this study, multi-walled carbon nanotubes have been used as adsorbents. Also, carbon nanotubes have been functionalized by sulfuric acid and nitric acid with a high concentration. Glucose oxidase is a biological biocatalyst enzyme. It accelerates changing glucose to H2O2. This enzyme is used in the chemical industry, food industry, cosmetics and glucose diagnostic kits. For example, as a result of ongoing research working focuses on the development of glucose biosensors, GOX in practice as standard enzyme has been revealed for immobilization of oxidative enzyme.GOX correct fixation on the MWNTs carrier is a way to reuse enzyme and miniature of biosensor devices and structures. In this study, a spectrophotometer was used to determine the absorbance of the enzyme glucose oxidase (GOX to review its activities after stabilizing the carbon nanotubes.

  9. Involvement of NADPH oxidase NtrbohD in the rapid production of H2O2 induced by ABA in cultured tobacco cell line BY-2

    Institute of Scientific and Technical Information of China (English)

    Fushun Hao; Jinguang Zhang; Zhonglian Yu; Jia Chen


    The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from super-oxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coincided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pronouncedly inhibited by two NADPH oxidase inhibitors, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of H2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in suspension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.

  10. Urate Oxidase Knockdown Decreases Oxidative Stress in a Murine Hepatic Cell Line

    Directory of Open Access Journals (Sweden)

    Beth M. Cleveland


    Full Text Available Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B. Urate oxidase mRNA was reduced 66% (p < 0.05 compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI or 3-morpholinosydnonimine hydrochloride (SIN-1. Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05 in the electron spin resonance (ESR signal after being exposed to Cr(VI and displayed less DNA fragmentation (p < 0.05 following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05, but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.

  11. High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1, 2, 3-thiadiazole. Implications for inhibitor specificity and drug design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-wei; Vignaud, Caroline; Jaafar, Adil; Lévy, Bernard; Guéritte, Françoise; Guénard, Daniel; Lederer, Florence; Mathews, F. Scott (CNRS-UMR); (WU-MED)


    Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent L-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b{sub 2} (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC{sub 50} in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 {angstrom} resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the {approx}100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest.

  12. Complex modulation of androgen responsive gene expression by methoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Stanley Kerri A


    Full Text Available Abstract Background Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA, the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. Methods A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. Results MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. Conclusions These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model.

  13. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial (United States)


    expression and fatty acid synthesis. Research in normal cells has demonstrated that dietary supplementation with polyunsaturated fatty acids ( PUFA ...particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate Cancer...Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  14. Reduction in Activity/Gene Expression of Anthocyanin Degradation Enzymes in Lychee Pericarp is Responsible for the Color Protection of the Fruit by Heat and Acid Treatment

    Institute of Scientific and Technical Information of China (English)

    FANG Fang; ZHANG Zhao-qi; ZHANG Xue-lian; WU Zhen-xian; YIN Hui-fang; PANG Xue-qun


    Heat and acid treatments were reported to be a promising substitute for SO2 fumigation in color protection of postharvest lychee (Litchi chinensis Sonn.) fruits, but the mechanism was not clear. In the present study, hot water (70°C) dipping followed by immersion in 2%HCl (heat-acid) substantially protected the red color of the fruit during storage at 25°C and inhibited anthocyanin degradation while hot water dipping alone (heat) led to rapidly browning and about 90%loss in anthocyanin content. The pH values in the pericarp of the heat-acid treated fruit dropped to 3.2, while the values maintained around 5.0 in the heat-treated and control fruit. No significantly different pH values were detected among the arils of heat-acid, heat treated and control fruit. Heat-acid treatment dramatically reduced the activities of anthocyanin degradation enzyme (ADE), peroxidase (POD) and polyphenol oxidase in the pericarp. A marked reduction in LcPOD gene expression was also detected in heat-acid treated fruit, in contrast, induction was found in heat treated fruit. The pericarp of heat-acid treated fruit exhibited significantly lower respiration rate but faster water loss than that of the untreated or heat treated fruit. Taken together, heat treatment triggered quick browning and anthocyanin loss in lychee fruit, while heat-acid treatment protected the fruit color by a great reduction in the activities/gene expression of anthocyanin degradation enzymes and acidification of lychee pericarp.

  15. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J


    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  16. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease

    NARCIS (Netherlands)

    Kamphuis, W.; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M


    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of ast

  17. Influence of acid and bile acid on ERK activity, PPARY expression and cell proliferation in normal human esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ru Jiang; Jun Gong; Zhen-Ni Zhang; Zhe Qiao


    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor Y (PPARy) in normal human esophageal epithelial cells in vitro.METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0-6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively.Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARy protein were determined by the immunoblotting technique.RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio,S phase of the cell cycle (P<0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P<0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P<0.05)and phosphorylated ERK1/2 expression. On the contrary,deoxycholic acid (DCA) exposure (>20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P<0.05). There was no expression of PPARY in normal human esophageal epithelial cells.CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway.

  18. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. (United States)

    Li, Mai; Zhang, Xiujun; Agrawal, Arpita; San, Ka-Yiu


    Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115

  19. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa


    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  20. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Taro, E-mail:; Yoshinaga, Mariko


    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  1. Monitoring Gene Expression In Vivo with Nucleic Acid Molecular Switches

    Energy Technology Data Exchange (ETDEWEB)

    David C. Ward; Patricia Bray-Ward


    The overall objectives of this project were (1) to develop allosteric ribozymes capable of acting as molecular switches for monitoring the levels of both wild-type and mutant mRNA species in living cells and whole animals and (2) to develop highly efficient reagents to deliver nucleic acid molecular switches into living cells, tissues and animals with the ultimate goal of expression profiling specific mRNAs of diagnostic or prognostic value within tumors in animals. During the past year, we have moved our laboratory to Nevada and in the moving process we have lost electronic and paper copies of prior progress reports concerning the construction and biological properties of the molecular switches. Since there was minimal progress during the last year on molecular switches, we are relying on past project reports to provide a summary of our data on this facet of the grant. Here we are summarizing the work done on the delivery reagents and their application to inducing mutations in living cells, which will include work done during the no cost extension.

  2. 家蚕磷酸吡哆醇氧化酶基因的表达谱分析%Expression profiling of pyridoxine 5’-phosphate oxidase gene in Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    葛俊楠; 张剑韵; 黄龙全


    [Aim] The expression profile of gene encoding pyridoxine phosphate oxidase (PNPO) , which is a key enzyme related to VB6 metabolism, was analyzed in different developmental stages and tissues of the 5th instar larvae of Bombyx mori. [ Methods ] The recombinant plasmid pET-22b ( + ) -PNPO was transformed to Escherichia coli Rosetta for induction, expression and purification of PNPO, and then the polyclonal antibody was prepared. The expression profile of PNPO gene was analyzed by Real-time PCR and Western blot, respectively. [ Results ] The highest translation level of PNPO gene was found in the 5th instar larvae. The transcription level in tissues of 5th instar larvae was in sequence of testis > head > tnidgut > Malpighian tubules > ovary > cuticle > fat body > silk glands. However, the highest translation level was found in testis, and then was in head, midgut, and malpighian tubules, respectively. [ Conclusion ] The expression profile PNPO gene in B. Mori has been defined by this study.%目的 了解家蚕Bombyx mori维生素B6关键代谢酶磷酸吡哆醇氧化酶(pyridoxine-5'-phosphate oxidase,PNPO)基因在家蚕不同发育阶段及5龄幼虫不同组织中的表达差异.方法 将家蚕PNPO基因的重组表达质粒pET-22b(+)-PNPO转化入大肠杆菌Escherichia coli Rosetta中诱导表达,纯化蛋白制备多克隆抗体.分别采用荧光定量PCR和Western blot方法对家蚕PNPO基因进行了转录水平和翻译水平的表达分析.结果 在家蚕发育水平上,5龄幼虫的PNPO翻译量为最高.PNPO基因在5龄幼虫各组织中的转录水平由高到低依次为精巢、头、中肠、马氏管、卵巢、表皮、脂肪体、丝腺;翻译量也以精巢为最高,其次是头、中肠和马氏管.结论 明确了PNPO在家蚕各发育阶段及5龄幼虫各组织中的表达情况.

  3. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Faccio Greta


    Full Text Available Abstract Background Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. Results In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Conclusions Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  4. Activation of hepatic lipase expression by oleic acid: possible involvement of USF1.

    NARCIS (Netherlands)

    D. van Deursen (Diederik); M. van Leeuwen (Marije); D. Akdogan (Deniz); H. Adams (Hadie); H. Jansen (Hans); A.J.M. Verhoeven (Adrie)


    textabstractPolyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element binding proteins (SREBPs), but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplemen

  5. Reduced Expression of Lipoic Acid Synthase Accelerates Diabetic Nephropathy


    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo


    Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic ...

  6. Controlled Gene Expression Systems for Lactic Acid Bacteria : Transferable Nisin-Inducible Expression Cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp.

    NARCIS (Netherlands)

    Kleerebezem, Michiel; Beerthuyzen, Marke M.; Vaughan, Elaine E.; Vos, Willem M. de; Kuipers, Oscar P.


    A transferable dual-plasmid inducible gene expression system for use in lactic acid bacteria that is based on the autoregulatory properties of the antimicrobial peptide nisin produced by Lactococcus lactis was developed. Introduction of the two plasmids allowed nisin-inducible gene expression in Lac

  7. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    Directory of Open Access Journals (Sweden)

    Lei Anping


    Full Text Available Abstract Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP, 3-ketoacyl-ACP-synthase (KAS, and acyl-ACP thioesterase (FATA gene expression had significant correlations with monounsaturated FA (MUFA synthesis and polyunsaturated FA (PUFA synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  8. 乳糖诱导重组大肠杆菌表达胆固醇氧化酶的研究%Expression Cholesterol Oxidase Gene in Recombinant Escherichia coli Using Lactose as Inducer

    Institute of Scientific and Technical Information of China (English)

    李闯; 孙艳; 张玲; 杨海麟; 王武


    Lactose was used to induce cholesterol oxidase (COD) expression in Escherichia coli BL21 (DE3) in this manuscript. Effect of different nutrient and environmental conditions,including media ingredients, lactose concentration, lactose addition time, and the culture temperature on COD expression were carefully investigated. Under the optimum induced conditions, the maximal activity of COD reached at 15.2 U/mL. The results confirmed that lactose could be used as an inducer in the fermentation process.%采用乳糖诱导胆固醇氧化酶(COD)基因在大肠杆菌BL21(DE3)中表达,研究了培养基成分、乳糖浓度、诱导时间和诱导温度对胆固醇氧化酶表达的影响.结果显示,在对诱导条件进行优化控制的前提下,胆固醇氧化酶酶活达到15.2 U/mL.研究结果为乳糖作为诱导剂最终应用于重组基因工程药物的工业化生产提供了有益的参考和借鉴.

  9. 5-Caffeoylquinic acid and caffeic acid orally administered suppresses P-selectin expression on mouse platelets (United States)

    Caffeic acid and 5-caffeoylquinic acid are a naturally occurring phenolic acid and its ester found in human diets. In this paper, potential effects of caffeic acid and 5-caffeoylquinic acid found in coffee and other plant sources on platelet activation were studied via investigating P-selectin expre...

  10. Acyl-CoA oxidase complexes control the chemical message produced by Caenorhabditis elegans. (United States)

    Zhang, Xinxing; Feng, Likui; Chinta, Satya; Singh, Prashant; Wang, Yuting; Nunnery, Joshawna K; Butcher, Rebecca A


    Caenorhabditis elegans uses ascaroside pheromones to induce development of the stress-resistant dauer larval stage and to coordinate various behaviors. Peroxisomal β-oxidation cycles are required for the biosynthesis of the fatty acid-derived side chains of the ascarosides. Here we show that three acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, form different protein homo- and heterodimers with distinct substrate preferences. Mutations in the acyl-CoA oxidase genes acox-1, -2, and -3 led to specific defects in ascaroside production. When the acyl-CoA oxidases were expressed alone or in pairs and purified, the resulting acyl-CoA oxidase homo- and heterodimers displayed different side-chain length preferences in an in vitro activity assay. Specifically, an ACOX-1 homodimer controls the production of ascarosides with side chains with nine or fewer carbons, an ACOX-1/ACOX-3 heterodimer controls the production of those with side chains with seven or fewer carbons, and an ACOX-2 homodimer controls the production of those with ω-side chains with less than five carbons. Our results support a biosynthetic model in which β-oxidation enzymes act directly on the CoA-thioesters of ascaroside biosynthetic precursors. Furthermore, we identify environmental conditions, including high temperature and low food availability, that induce the expression of acox-2 and/or acox-3 and lead to corresponding changes in ascaroside production. Thus, our work uncovers an important mechanism by which C. elegans increases the production of the most potent dauer pheromones, those with the shortest side chains, under specific environmental conditions.

  11. Characterization of polyphenol oxidase from plants

    Institute of Scientific and Technical Information of China (English)

    LEI Dongfeng; FENG Yi; JIANG Dazong


    Polyphenol oxidase (PPO) which can mediate browning reaction is a bifunctional copper-containing enzyme encoded by plant nucleolus gene. It usually leads to excessive browning reaction which reduces the coercial profits of fruits and vegetables. In this paper, PPO genes and enzymes in plants are characterized systematically, and the latest progress is reviewed. Some clonings of PPOs genes are reported; the specific temporal and spatial expression pattern of PPOs genes is described; the model of the structure of the precursor form of catechol oxidase is introduced; the possible functions of PPOs in defending against pathogen, wounding, surrounding stress and other inducing factors are demonstrated; the induction and activation of latent PPOs in some plants is elucidated; the scheme of browning inhibition by L-cysteine is clarified; the mechanism of suicide inhibition of latent PPO and kinetic synergism are established. Furthermore, the area for future study is also discussed.

  12. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast. (United States)

    Reinhold, Robert; Bareth, Bettina; Balleininger, Martina; Wissel, Mirjam; Rehling, Peter; Mick, David U


    Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1.

  13. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E


    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference"...

  14. Action of Bothrops moojeni venom and its L-amino acid oxidase fraction, treated with {sup 60}Co gamma rays, in Leishmania spp; Acao do veneno de Bothrops moojeni e sua fracao L-aminoacido oxidase, submetida ao tratamento com raios gama de {sup 60}Co, em Leishmania spp

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Andre Gustavo Tempone


    Bothrops moojeni venom showed an anti leishmania activity in vitro, as determined by a cell viability assay using the reduction of MTT. After venom purification, by chromatography techniques, the fractions with anti leishmania and L-amino acid oxidase activities, eluted in the same positions. The molecular weight of the enzyme was estimated to be 140 kDa by molecular exclusion chromatography, and 69 kDa, by SDS-PAGE, migrating as a single band, with an isoelectric point of 4.8 as determined by isoelectric focusing. The purified LAO from B. moojeni venom, 135-fold more active than crude venom, showed homo dimeric constitution, and was active against Leishmania spp from the New World, with an effective concentration against L(L). amazonensis of 1.80 {mu}g/ml (EC{sub 50}), L.(V.) panamensis (0.78 |{mu}g/ml) and L.(L.) chagasi (0.63 ({mu}g/ml). Ultrastructural studies of promastigotes affected by LAO demonstrated cell death, with edema in several organelles such as mitochondria and nuclear membrane, before cell disruption and necrosis. The action of LAO was demonstrated to be hydrogen peroxide-dependent. Studies with LLCMK-2 cells, treated with LAO, showed a toxic effect, with an EC{sub 50} of 11|{mu}g/ml. Irradiation of LAO with 6{sup 0C}o gamma rays, did not affect its whole oxidative activity, neither detoxified the enzyme. Amastigotes treated with LAO were not affected by its hydrogen peroxide, otherwise, the exogenous product, killed amastigotes with an EC{sub 50} of 0.67mM. These data could be of help in the development of alternative therapeutic approaches to the treatment of leishmaniasis. (author)

  15. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. (United States)

    Aseervatham, G Smilin Bell; Suryakala, U; Doulethunisha; Sundaram, S; Bose, P Chandra; Sivasudha, T


    The present study was aimed to evaluate the effect of apigenin 8-C-glucoside (Vitexin) and chlorogenic acid on epileptic mice induced by pilocarpine and explored its possible mechanisms. Intraperitonial administration of pilocarpine (85mg/kg) induced seizure in mice was assessed by behavior observations, which is significantly (p>0.05) reduced by apigenin 8-C-glucoside (AP8CG) (10mg/kg) and chlorogenic acid (CA) (5mg/kg), similar to diazepam. Seizure was accompanied by an imbalance in the levels of Gamma-aminobutyric acid (GABA) and glutamate in the pilocarpine administered group. Moreover, convulsion along with reduced acetylcholinesterase, increased monoamine oxidase and oxidative stress was observed in epileptic mice brain. AP8CG and CA significantly restored back to normal levels even at lower doses. Further, increased lipid peroxidation and nitrite content was also significantly attenuated by AP8CG and CA. However, CA was found to be more effective when compared to AP8CG. In addition, the mRNA expression of N-methyl-d-aspartate receptor (NMDAR), mGluR1 and mGlu5 was significantly (P≤0.05) inhibited by AP8CG and CA in a lower dose. The mRNA expression of GRIK1 did not differ significantly in any of the group and showed a similar pattern of expression. Our result shows that AP8CG and CA selectively inhibit NMDAR, mGluR1 and mGlu5 expression. Modification in the provoked NMDAR calcium response coupled with neuronal death. Hence, these findings underline that the polyphenolics, AP8CG and CA have exerted antiepileptic and neuroprotective activity by suppressing glutamate receptors.

  16. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song


    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  17. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells. (United States)

    Lampen, A; Meyer, S; Nau, H


    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  18. Expression of Genes Involved in Iron and Sulfur Respiration in a Novel Thermophilic Crenarchaeon Isolated from Acid-Sulfate-Chloride Geothermal Systems (United States)

    Kozubal, M.; Macur, R.; Inskeep, W. P.


    Acidic geothermal springs within Yellowstone National Park (YNP) provide an excellent opportunity to study microbial populations and their relationship with geochemical processes such as redox cycling and biomineralization of iron. Fourteen acid-sulfate-chloride (ASC) and acid-sulfate (AS) geothermal springs located in (YNP) have been extensively characterized for aqueous chemistry, solid phase mineral deposition and microbial diversity and distribution. The oxidation of Fe(II) with oxygen as an electron acceptor is exergonic under these conditions, consequently, Fe(II) may be an important electron donor driving primary production in ASC and AS habitats, and products of biomineralization (e.g. Fe[III]-oxides of varying crystallinity and structure, as well as jarosite in some cases) are common in the outflow channels of these environments. Recently, we isolated a novel Metallosphaera-like microorganism (Metallosphaera strain MK1) from an ASC spring in Norris Geyser Basin, YNP. Clone libraries (16S rRNA gene) from multiple sites suggest that microorganisms closely related to strain MK1 (between 98-100 percent similarity) dominate many spring locations between 55-80 C. The in situ abiotic oxidation rate of Fe(II) has been shown to be very slow in these systems and Metallosphaera strain MK1 has been directly implicated in biotic Fe(II) oxidation. Metallosphaera strain MK1 has been submitted for full genome sequencing and is yielding gene sequences related to the terminal oxidases SOXABC and SOXM super-complex. In addition, sequences from a recently characterized terminal oxidase FOX complex involved in Fe(II) and pyrite oxidation from Sulfolobus metallicus have been found in Metallosphaera strain MK1. A protein complex analogous to Metallosphaera sedula has been identified in strain MK1 and this complex has also been expressed in cells grown on pyrite and Fe(II). Other sequences identified in Metallosphaera strain MK1 that are involved in respiration are the TQO

  19. Cloning, expression, and biochemical characterization of a novel NADP(+)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. (United States)

    Bakonyi, Daniel; Hummel, Werner


    A gene encoding a novel 7α-specific NADP(+)-dependent hydroxysteroid dehydrogenase from Clostridium difficile was cloned and heterologously expressed in Escherichia coli. The enzyme was purified using an N-terminal hexa-his-tag and biochemically characterized. The optimum temperature is at 60°C, but the enzyme is inactivated at this temperature with a half-life time of 5min. Contrary to other known 7α-HSDHs, for example from Clostridium sardiniense or E. coli, the enzyme from C. difficile does not display a substrate inhibition. In order to demonstrate the applicability of this enzyme, a small-scale biotransformation of the bile acid chenodeoxycholic acid (CDCA) into 7-ketolithocholic acid (7-KLCA) was carried out with simultaneous regeneration of NADP(+) using an NADPH oxidase that resulted in a complete conversion (<99%). Furthermore, by a structure-based site-directed mutagenesis, cofactor specificity of the 7α-HSDH from Clostridium difficile was altered to accept NAD(H). This mutant was biochemically characterized and compared to the wild-type.

  20. Cloning and characterization of an up-regulated GA 20-oxidase gene in hybrid maize

    Institute of Scientific and Technical Information of China (English)

    Jinkun Du; Yingyin Yao; Zhongfu Ni; Qixin Sun


    Previous studies revealed that GA content and metabolism are positively correlated with a faster shoot growth rate of hybrid, and recently, genes participating in both GA biosynthesis and GA response pathways were also found to be differentially expressed between wheat hybrid and its parental inbreds. In this study, an up-regulated GA 20-oxidase gene in a maize hybrid, designated ZmGA20, was cloned. ZmGA20 contains an open reading frame (ORF) encoding 391 amino acid residues. BLASTX searches in GenBank revealed that the ZmGA20 is homologous to the sequences of GA20ox proteins from different species, and analysis also indicated that ZmGA20 had typical features of GA 20-oxidase proteins, including a "LPWKET" sequence. Semi-quantitative RT-PCR analysis showed that ZmGA20 was expressed in different tissues and/or organs. The expression level of ZmGA20 in the hybrid was higher than that in two parents (in roots, leaves, stems and embryo, and ears). The abundance of ZmGA20 transcript was equal to that of the highly expressed parents, which provided molecular evidence for the observed GA content heterosis in maize hybrids.

  1. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression. (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto


    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  2. Regulation of hepatic gene expression by saturated fatty acids. (United States)

    Vallim, T; Salter, A M


    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  3. AB154. Testosterone improves erectile function through regulation of nicotinamide adenine dinucleotide phosphate-oxidase and cyclooxygenase-2 expression in castrated rats (United States)

    Li, Rui; Wang, Tao; Yang, Jun; Zhang, Yan; Niu, Yonghua; Wang, Shaogang; Ye, Zhangqun; Rao, Ke; Liu, Jihong


    Objective Testosterone significantly improves hypogonadal-related erectile dysfunction (ED). However, the molecular mechanisms are poorly understood. The purpose of this study was to explore the effect and mechanism of testosterone in castrated rats. Methods Forty male Sprague-Dawley rats were randomized to 4 groups (control, sham-operated, castration and castration-with-testosterone-replacement). After 2 months, reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was tested by recording intracavernosal pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by Western blot. Results Castration reduced erectile function, and testosterone restored it. The concentrations of testosterone, cyclic guanosine mono-phosphate (cGMP) and cyclic adenosine monophosphate (cAMP) were lower in castrated rats than in controls, and testosterone restored these decreases (each P<0.05). The expression levels of cyclooxygenase-2 (COX-2), prostacyclin synthase (PTGIS or PGIS), endothelial nitric oxide synthase (eNOS) and phospho-eNOS were reduced in castrated rats compared with controls. The expression levels were significantly elevated in rats treated with testosterone (each P<0.05). The expression levels of p40phox and p67phox were increased in castrated rats, and testosterone significantly reduced these increases (each P<0.05). ROS production was markedly enhanced in castrated rats, and testosterone administration reversed this effect (P<0.05). Conclusions Testosterone can ameliorate ED after castration by reducing ROS production and increasing activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.

  4. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid

    DEFF Research Database (Denmark)

    Westergaard, M; Henningsen, J; Svendsen, M L


    using a combination of reverse transcriptase polymerase chain reaction, Northern and Western blotting, and immunohistochemistry. PPARdelta was the predominant PPAR subtype in human keratinocytes and highly expressed in basal cells and suprabasal cells. Induction of PPARalpha and PPARgamma expression...... nuclear receptor corepressor and silence mediator for retinoid and thyroid hormone receptors. We critically evaluated the effects of selective PPAR ligands and a synthetic fatty acid analog, tetradecylthioacetic acid. Tetradecylthioacetic acid activated all human PPAR subtypes in the ranking order...... a dose-dependent induction was observed with L165041. Simultaneous addition of L165041 and BRL49653 synergistically induced strong involucrin expression. Additionally, L165041 potently induced CD36 mRNA expression. Administration of tetradecylthioacetic acid resulted in a dramatic decrease...

  5. Expression of human acidic fibroblast growth factor in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    YU Ying; CAI Shaoxi; Harald G. WERIRICH; XIA Yuxian


    Pichia pastoris expression system is similar to that of the mammal cell in modification of expressed protein, including refolding and glycosylation. A human aFGF gene was cloned into the intracellular expression vector pPIC9K. The Pichia pastoriS KM71 strain was transformed with the recombined expression plasmid. Transgenic expression was observed after screening the transformants with G418. The expression and secretion of recombinant human aFGF (rhaFGF) into the culture medium were testified by ELISA assay. The yield peaked after two days of induction and was approximately 10 mg.L-1 in shake-flask fermentation medium. The recombinant proteins were purified by the combination of heparin-Sepharose affinity chromatography and gel filtration chromatography. Two proteins with relative molecular masses (Mr) of 17 000 and 35 000 were purified as a single band in SDS-PAGE, whose biological activities were determined by MTT assay. It is found that the protein with Mr of 1 7 000 is nonglycosylated haFGF, and that with Mr of 35 000 is glycosylated haFGF; and the latter has a lower biological activity than the former.

  6. Analytical Expressions Pertaining to the Concentration of Substrates and Product in Phenol-Polyphenol Oxidase System Immobilized in Laponite Hydrogels: A Reciprocal Competitive Inhibition Process

    Directory of Open Access Journals (Sweden)

    K. Indira


    Full Text Available Theoretical analysis corresponding to the diffusion and kinetics of substrate and product in an amperometric biosensor is developed and reported in this paper. The nonlinear coupled system of diffusion equations was analytically solved by Homotopy perturbation method. Herein, we report the approximate analytical expressions pertaining to substrate concentration, product concentration, and current response for all possible values of diffusion and kinetic parameters. The numerical solution of this problem is also reported using Scilab/Matlab program. Also, we found excellent agreement between the analytical results and numerical results upon comparison.

  7. 37% Phosphoric Acid Induced Stronger Matrix Metalloproteinase-8 Expression of the Dental Pulp than 19% Ethylene Diamine Tetraacetic Acid

    Directory of Open Access Journals (Sweden)

    Nadie Fatimatuzzahro


    Full Text Available Etching agents such as ethylene diamine tetraacetic acid (EDTA and phosphoric acid which are widely used in adhesive restoration system aimed to increase for retention of restorative materials, may act a chemical irritant that induce inflammation of dental pulp. Inflammation is a body response against irritant and infectious agents. Matrix metalloproteinase-8, the major collagenolytic enzyme, degrades collagen type 1. This enzyme is expressed in low level in normal condition, however, the expression will increase during inflammation. The purpose of the present research was to study the effect of 19% EDTA and 37% phosphoric acid application as an etching agents on the MMP-8 expression of dental pulp. Forty-five male Sprague Dawley rats were divided into 3 groups. Cavity preparation was made on the occlusal surface of maxillary first molar using a round diamond bur. 19% EDTA, 37% phosphoric acid, and distilled water were applied on the surface of the cavity of the teeth in group I, II, and III subsequently. The cavity then filed by glass ionomer cements. The rats were sacrified at 1, 3, 5, 7, and 14 days after the treatment (n=3 for each day. The specimens were then processed histologically. Immunohistochemical (IHC analysis was performed using rabbit anti rat MMP-8 polyclonal antibody to examine MMP-8 expression and HE (Hematoxylen Eosin staining to observe the number of macrophages. The results showed 37% phosphoric acid application induced stronger expression of MMP-8 and higher number of macrophages than 19% EDTA. The strongest expression of MMP-8 seems on 5 days after the treatment where the highest number of macrophages were also found.

  8. Quorum sensing-controlled gene expression in lactic acid bacteria

    NARCIS (Netherlands)

    Kuipers, Oscar P.; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; Vos, Willem M. de


    Quorum sensing in lactic acid bacteria (LAB) involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular response regulator. This regulator in turn activates transcription of target genes, that commonly include the struc

  9. Effect of boric acid supplementation of ostrich water on the expression of Foxn1 in thymus. (United States)

    Xiao, Ke; Ansari, Abdur Rahman; Rehman, Zia Ur; Khaliq, Haseeb; Song, Hui; Tang, Juan; Wang, Jing; Wang, Wei; Sun, Peng-Peng; Zhong, Juming; Peng, Ke-Mei


    Foxn1 is essential for thymus development. The relationship between boric acid and thymus development, optimal dose of boric acid in ostrich diets, and the effects of boric acid on the expression of Foxn1 were investigated in the present study. Thirty healthy ostriches were randomly divided into six groups: Group I, II, III, IV, V, VI, and supplemented with boric acid at the concentration of 0 mg/L, 40 mg/L, 80 mg/L, 160 mg/L, 320 mg/L, 640 mg/L, respectively. The histological changes in thymus were observed by HE staining, and the expression of Foxn1 analyzed by immunohistochemistry and western blot. TUNEL method was used to label the apoptotic cells. Ostrich Foxn1 was sequenced by Race method. The results were as following: Apoptosis in ostrich thymus was closely related with boric acid concentrations. Low boric acid concentration inhibited apoptosis in thymus, but high boric acid concentration promoted apoptosis. Foxn1-positive cells were mainly distributed in thymic medulla and rarely in cortex. Foxn1 is closely related to thymus growth and development. The nucleotide sequence and the encoded protein of Foxn1 were 2736 bases and 654 amino acids in length. It is highly conserved as compared with other species. These results demonstrated that the appropriate boric acid supplementation in water would produce positive effects on the growth development of ostrich thymus by promoting Foxn1 expression, especially at 80 mg/L, and the microstructure of the thymus of ostrich fed 80 mg/L boric acid was well developed. The supplementation of high dose boron (>320 mg/L) damaged the microstructure of thymus and inhibited the immune function by inhibiting Foxn1 expression, particularly at 640 mg/L. The optimal dose of boric acid supplementation in ostrich diets is 80 mg/L boric acid. The genomic full-length of African ostrich Foxn1 was cloned for the first time in the study.

  10. Mechanistic and stereochemical studies of glycine oxidase from Bacillus subtilis strain R5. (United States)

    Jamil, Farrukh; Gardner, Qurra-Tul-Ann Afza; Bashir, Qamar; Rashid, Naeem; Akhtar, Muhammad


    Glycine oxidase gene from a strain of Bacillus subtilis was cloned and expressed in Escherichia coli. The purified enzyme was found, by mass spectrometry, to have a protein M(r) of 40763 (value of 40761.6 predicted from DNA sequence) and a FAD prosthetic group M(r) of 785.1 (theoretical value of 785.5). Glycine oxidase optimally catalyzes the conversion of glycine and oxygen into glyoxylate, hydrogen peroxide, and ammonia. Using samples of [2-RS-(3)H(2),2-(14)C]-, [2-R-(3)H,2-(14)C]-, and [2-S-(3)H,2-(14)C]glycine, we found that in the overall process H(Si) is removed. Incubation of the enzyme with [2-RS-(3)H(2),2-(14)C]glycine under anaerobic conditions, when only the reducing half of the reaction can occur, led to the recovery of 98.5% of the original glycine, which had the same (3)H:(14)C ratio as the starting substrate. The primary isotope effect was studied using [2-(2)H(2)]glycine, and we found that the specificity constants, k(cat)/K(M), for the protio and deuterio substrates were 1.46 x 10(3) and 1.05 x 10(2) M(-1) s(-1), respectively. Two alternative mechanisms for FAD-containing oxidases that involve either the intermediacy of a FADH(2)-imino acid complex or an amino acid covalently linked to FAD, formed via a carbanion, have been considered. The current knowledge of the mechanisms is reviewed, and we argue that a mechanism involving the FADH(2)-imino acid complex can be dissected to satisfactorily explain some of puzzling observations for which the carbanion mechanism was originally conceived. Furthermore, our results, together with observations in the literature, suggest that the interaction of glycine with the enzyme occurs within a tight ternary complex, which is protected from the protons of the medium.

  11. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. (United States)

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J


    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.

  12. Lysyl oxidase in colorectal cancer. (United States)

    Cox, Thomas R; Erler, Janine T


    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.

  13. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp.

    Directory of Open Access Journals (Sweden)

    T. Catalina Adarme-Vega


    Full Text Available With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA to C20:4 eicosatetraenoic acid (ETA, correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4, but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.

  14. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Gu Keyu


    Full Text Available Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L., a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. Results Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF, was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were

  15. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.


    wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N-6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested...

  16. Abscisic acid and aldehyde oxidase activity in maize ear leaf and grain relative to post-flowering photosynthetic capacity and grain-filling rate under different water/nitrogen treatments. (United States)

    Qin, Shujun; Zhang, Zongzheng; Ning, Tangyuan; Ren, Shizhong; Su, Licheng; Li, Zengjia


    This study investigated changes in leaf abscisic acid (ABA) concentrations and grain ABA concentrations in two maize cultivars and analyzed the following relationships under different water/nitrogen treatments: leaf ABA concentrations and photosynthetic parameters; leaf ABA concentrations and grain ABA concentrations; leaf/grain ABA concentrations and grain-filling parameters; and aldehyde oxidase (AO, EC activities and ABA concentrations. The ear leaf average AO activities and ABA concentrations were lower in the controlled release urea treatments compared with the conventional urea treatments. The average AO activities in the grains were higher in the controlled release urea treatments, and the ABA concentrations were significantly increased at 11-30 DAF. The Pn and ABA concentrations in ear leaves were negatively correlated. And the Gmean were positively correlated with the grain ABA concentrations at 11-30 DAF and negatively correlated with the leaf ABA concentrations at 20 and 40-50 DAF. The grain ABA concentrations and leaf ABA concentrations were positively correlated. Thus, the Gmean were closely related to the AO activities and to the ear leaf and grain ABA concentrations. As compared to other treatments, the subsoiling and controlled release urea treatment promoted the uptake of water and nitrogen by maize, increased the photosynthetic capacity of the ear leaves, increased the grain-filling rate, and improved the movement of photosynthetic assimilates toward the developing grains. In the cultivar Z958, higher ABA concentrations in grains at 11-30 DAF and lower ABA concentrations in ear leaves during the late grain-filling stage, resulted in higher grain-filling rate and increased accumulation of photosynthetic products (relative to the cultivar D3).

  17. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104. (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine


    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms.

  18. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    Directory of Open Access Journals (Sweden)

    Vallejo-Ruiz Verónica


    Full Text Available Abstract Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL. These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation.

  19. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. (United States)

    Okamoto, Shusuke; Chin, Taejun; Nagata, Keisuke; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji


    Several studies on fermentative production of a vinyl monomer itaconic acid from hydrolyzed starch using Aspergillus terreus have been reported. Herein, we report itaconic acid production by Escherichia coli expressing recombinant α-amylase, using soluble starch as its sole carbon source. To express α-amylase in E. coli, we first constructed recombinant plasmids expressing α-amylases by using cell surface display technology derived from two amylolytic bacteria, Bacillus amyloliquefaciens NBRC 15535(T) and Streptococcus bovis NRIC 1535. The recombinant α-amylase from S. bovis (SBA) showed activity at 28°C, which is the optimal temperature for production of itaconic acid, while α-amylase from B. amyloliquefaciens displayed no noticeable activity. E. coli cells expressing SBA produced 0.15 g/L itaconic acid after 69 h cultivation under pH-stat conditions, using 1% starch as the sole carbon source. In fact, E. coli cells expressing SBA had similar growth rates when grown in the presence of 1% glucose or starch, thereby highlighting the expression of an active α-amylase that enabled utilization of starch to produce itaconic acid in E. coli.

  20. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. (United States)

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro


    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses.

  1. 巴西橡胶树乙醇酸氧化酶HbGOX1基因的鉴定与表达分析%Identification and Expression of Glycolate Oxidase HbGOX1 Gene from Hevea brasiliensis

    Institute of Scientific and Technical Information of China (English)

    程汉; 陈相黄华孙


    Photorespiratory pathway is an important metabolic pathway in plant,which consumes the products of photo-synthesis and reduces crop final yield. Glycolate oxidase is the key regulatory enzyme of this pathway, while the study in rubber tree is absence. In this study, the cDNA sequence of HbGOX1 gene was identified and characterized, and the peptide sequence was analyzed bioinformatically. The expression pattern of HbGOX1 gene was further explored under cold stress. The results showed that this gene was negatively regulated by cold stress. This study provided some fundenmental information for the roles of photorespiration in rubber biosynthesis in Hevea brasiliensis.%光呼吸途径是植物中重要的反应途径,它通过消耗光合作用产物影响作物的产量。乙醇酸氧化酶是该途径的关键调控酶,在橡胶树中尚未见研究报道。本研究分离和鉴定橡胶树HbGOX1基因的全长cDNA序列,对其编码的蛋白质进行生物信息学分析,并通过qPCR技术进一步研究HbGOX1基因在低温胁迫下的表达情况。结果发现,该基因受低温胁迫负调控。此结果为进一步揭示橡胶树光呼吸途径在橡胶合成中的作用奠定了基础。

  2. Inducing Effect of Dihydroartemisinic Acid in the Biosynthesis of Artemisinins with Cultured Cells of Artemisia annua by Enhancing the Expression of Genes

    Directory of Open Access Journals (Sweden)

    Jianhua Zhu


    Full Text Available Artemisinin has been used in the production of “artemisinin combination therapies” for the treatment of malaria. Feeding of precursors has been proven to be one of the most effective methods to enhance artemisinin production in plant cultured cells. At the current paper, the biosynthesis of artemisinin (ART and its four analogs from dihydroartemisinic acid (DHAA in suspension-cultured cells of Artemisia annua were investigated. ARTs were detected by HPLC/GC-MS and isolated by various chromatography methods. The structures of four DHAA metabolites, namely, dihydro-epi-deoxyarteannuin B, arteannuin I, arteannuin K, and 3-β-hydroxy-dihydro-epi-deoxyarteannuin B, were elucidated by physicochemical and spectroscopic analyses. The correlation between gene expression and ART content was investigated. The results of RT-PCR showed that DHAA could up-regulate expression of amorpha-4,11-diene synthase gene (ADS, amorpha-4,11-diene C-12 oxidase gene (CYP71AV1, and farnesyl diphosphate synthase gene (FPS (3.19-, 7.21-, and 2.04-fold higher than those of control group, resp., which indicated that biosynthesis processes from DHAA to ART were enzyme-mediated.

  3. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum. (United States)

    Ogel, Z B; Yüzügüllü, Y; Mete, S; Bakir, U; Kaptan, Y; Sutay, D; Demir, A S


    Scytalidium thermophilum produces an extracellular phenol oxidase on glucose-containing medium. Certain phenolic acids, specifically gallic acid and tannic acid, induce the expression of the enzyme. Production at 45 degrees C in batch cultures is growth-associated and is enhanced in the presence of 160 microM CuSO4 x 5 H2O and 3 mM gallic acid. The highest enzyme activity is observed at pH 7.5 and 65 degrees C, on catechol. When incubated for 1 h at pH 7 and pH 8, 95% and 86% of the activity is retained. Thermostability decreases gradually from 40 degrees C to 80 degrees C. Estimated molecular mass is c. 83 kDa, and pI is acidic at c. 5.4. Substrate specificity and inhibition analysis in culture supernatants suggest that the enzyme has unique properties showing activity towards catechol; 3,4-dihydroxy-L-phenylalanine (L-DOPA); 4-amino-N, N-diethylaniline (ADA); p-hydroquinone; gallic acid; tannic acid and caffeic acid, and no activity towards L-tyrosine, guaiacol, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulphonic acid) (ABTS) and syringaldazine. Inhibition is observed in the presence of salicyl hydroxamic acid (SHAM) and p-coumaric acid. Enzyme activity is enhanced by cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), and the organic solvents dimethyl sulfoxide (DMSO) and ethanol. No inhibition is observed in the presence of carbon monoxide. Benzoin, benzoyl benzoin and hydrobenzoin are converted into benzil, and stereoselective oxidation is observed on hydrobenzoin. The reported enzyme is novel due to its catalytic properties resembling mainly catechol oxidases, but displaying some features of laccases at the same time.

  4. Current status of NADPH oxidase research in cardiovascular pharmacology

    Directory of Open Access Journals (Sweden)

    Rodiño-Janeiro BK


    and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years. Keywords: nicotinamide adenine dinucleotide phosphate oxidase, NOX, cardiovascular therapeutic targets, inhibitors, pharmacophore models

  5. Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design


    de Gier, Jan-Willem L.; Schepper, Mike; Reijnders, Willem N.M.; Dyck, Stef J. van; Slotboom, Dirk Jan; Warne, Antony; Saraste, Matti; Krab, Klaas; Finel, Moshe; Stouthamer, Adriaan H.; Van Spanning, Rob J. M.; van der Oost, John


    In Paracoccus denitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOQP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sen...

  6. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons. (United States)

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł


    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  7. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning;


    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  8. Some properties of active and latent catechol oxidase of mushroom

    Directory of Open Access Journals (Sweden)

    Janusz Czapski


    Full Text Available Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS. Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive and irreversible characteristics of inhibition of latent and active catechol oxidase was calculated from kinetic data. Electrophoretic analysis followed by scanning of the gels was used. The spots' absorbance was determined from a computer image of the isoenzyme band patterns. It allowed us to estimate gels quantitatively. Presence of one additional clearly defined slow moving isoform of SDS-activated catechol oxidase, differed in the respect of 3 bands for the active and 4 bands for the total.

  9. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit

    Directory of Open Access Journals (Sweden)

    F.E. Sluse


    Full Text Available Cyanide-resistant alternative oxidase (AOX is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX and the proton electrochemical gradient energy-dissipating pathway (UCP lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation. Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

  10. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli. (United States)

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel


    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.

  11. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. (United States)

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe


    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.

  12. Regulation of NADPH oxidase activity in phagocytes: relationship between FAD/NADPH binding and oxidase complex assembly. (United States)

    Debeurme, Franck; Picciocchi, Antoine; Dagher, Marie-Claire; Grunwald, Didier; Beaumel, Sylvain; Fieschi, Franck; Stasia, Marie-José


    The X(+)-linked chronic granulomatous disease (X(+)-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X(+)-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X(+)-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.

  13. 3-hydroxi-anthranilic acid is early expressed in stroke

    Directory of Open Access Journals (Sweden)

    A. Mangas


    Full Text Available Using an immunohistochemical technique, we have studied the distribution of 3-OH-anthranilic acid (3-HAA in the rat brain. Our study was carried out in control animals and in rats in which a stroke model (single transient middle cerebral artery occlusion was performed. A monoclonal antibody directed against 3-HAA was also developed. 3-HAA was exclusively observed in the infarcted regions (ipsilateral striatum/cerebral cortex, 2, 5 and 21 days after the induction of stroke. In control rats and in the contralateral side of the stroke animals, no immunoreactivity for 3-HAA was visualized. Under pathological conditions (from early phases of stroke, we reported for the first time the presence of 3-HAA in the mammalian brain. By double immunohistochemistry, the coexistence of 3-HAA and GFAP was observed in astrocytes. The distribution of 3-HAA matched perfectly with the infarcted regions. Our findings suggest that, in stroke, 3-HAA could be involved in the tissue damage observed in the infarcted regions, since it is well known that 3-HAA exerts cytotoxic effects.

  14. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta. (United States)

    Lager, S; Ramirez, V I; Gaccioli, F; Jansson, T; Powell, T L


    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR120 is predominantly expressed in the microvillous membrane (MVM) of human placenta and that the expression level of this receptor in MVM is not altered by maternal body mass index (BMI).

  15. Expression of the SNAT2 amino acid transporter during the development of rat cerebral cortex. (United States)

    Rodríguez, Angelina; Angelina, Rodríguez; Berumen, Laura C; Francisco, Zafra; Giménez, Cecilio; Cecilio, Giménez; García-Alcocer, María Guadalupe; Guadalupe, García-Alcocer María


    The sodium-coupled neutral amino acid transporter 2 (SNAT2) is a protein that is expressed ubiquitously in mammalian tissues and that displays Na(+), voltage and pH dependent activity. This transporter mediates the passage of small zwitterionic amino acids across the cell membrane and regulates the cell homeostasis and its volume. We have examined the expression of SNAT2 mRNA and protein during the development of the rat cerebral cortex, from gestation through the postnatal stages to adulthood. Our data reveal that SNAT2 mRNA and protein expression is higher during embryogenesis, while it subsequently diminishes during postnatal development. Moreover, during embryonic period SNAT2 colocalizes with the radial glial cells marker GLAST, while in postnatal period it is mainly detected in neuronal dendrites. These findings suggest a relevant role for amino acid transport through SNAT2 in the developing embryonic brain.

  16. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, E.B.; Shanklin, J.; Ohlrogge, J.B. (Michigan State Univ., East Lansing (United States))


    Little is known about the metabolic origin of petroselinic acid (18:1[Delta][sup 6cis]), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the [Delta][sup 9]-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriander endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and [Delta][sup 4]-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase. 27 refs., 5 figs.

  17. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. (United States)

    Cahoon, E B; Shanklin, J; Ohlrogge, J B


    Little is known about the metabolic origin of petroselinic acid (18:1 delta 6cis), the principal fatty acid of the seed oil of most Umbelliferae, Araliaceae, and Garryaceae species. To examine the possibility that petroselinic acid is the product of an acyl-acyl carrier protein (ACP) desaturase, Western blots of coriander and other Umbelliferae seed extracts were probed with antibodies against the delta 9-stearoyl-ACP desaturase of avocado. In these extracts, proteins of 39 and 36 kDa were detected. Of these, only the 36-kDa peptide was specific to tissues which synthesize petroselinic acid. A cDNA encoding the 36-kDa peptide was isolated from a coriander endosperm cDNA library, placed under control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Expression of this cDNA in transgenic tobacco callus was accompanied by the accumulation of petroselinic acid and delta 4-hexadecenoic acid, both of which were absent from control callus. These results demonstrate the involvement of a 36-kDa putative acyl-ACP desaturase in the biosynthetic pathway of petroselinic acid and the ability to produce fatty acids of unusual structure in transgenic plants by the expression of the gene for this desaturase.

  18. Involvement of Sp1 in Butyric Acid-Induced HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Kenichi Imai


    Full Text Available Background/Aims: The ability of human immunodeficiency virus-1(HIV-1 to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs, could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Methods: Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. Results: We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP was required for butyric acid-induced HIV-1 activation. Conclusions: These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria.

  19. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn


    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  20. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells


    Lidiia Astakhova; Mtakai Ngara; Olga Babich; Aleksandr Prosekov; Lyudmila Asyakina; Lyubov Dyshlyuk; Tore Midtvedt; Xiaoying Zhou; Ingemar Ernberg; Liudmila Matskova


    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell l...

  1. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling. (United States)

    Abdelwahed, Afef; Bouhlel, Ines; Skandrani, Ines; Valenti, Kita; Kadri, Malika; Guiraud, Pascal; Steiman, Régine; Mariotte, Anne-Marie; Ghedira, Kamel; Laporte, François; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila


    In vitro antioxidant and antimutagenic activities of two polyphenols isolated from the fruits of Pistacia lentiscus was assessed. Antioxidant activity was determined by the ability of each compound to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH*), to inhibit xanthine oxidase and to inhibit the lipid peroxidation induced by H(2)O(2) in K562 cell line. Antimutagenic activity was assayed with SOS chromotest using Escherichia coli PQ37 as tester strain and Comet assay using K562 cell line. 1,2,3,4,6-Pentagalloylglucose was found to be more effective to scavenge DPPH* radical and protect against lipid peroxidation. Moreover, these two compounds induced an inhibitory activity against nifuroxazide and aflatoxin B1 mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress. For this purpose, we used a cDNA-microarray containing 82 genes related to cell defense, essentially represented by antioxidant and DNA repair proteins. We found that 1,2,3,4,6-pentagalloylglucose induced a decrease in the expression of 11 transcripts related to antioxidant enzymes family (GPX1, TXN, AOE372, SHC1 and SEPW1) and DNA repair (POLD1, APEX, POLD2, MPG, PARP and XRCC5). The use of Gallic acid, induced expression of TXN, TXNRD1, AOE372, GSS (antioxidant enzymes) and LIG4, POLD2, MPG, GADD45A, PCNA, RPA2, DDIT3, HMOX2, XPA, TDG, ERCC1 and GTF2H1 (DNA repair) as well as the repression of GPX1, SEPW1, POLD1 and SHC1 gene expression.

  2. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. (United States)

    García-Villalobos, Héctor; Morales-Trejo, Adriana; Araiza-Piña, Benedicto A; Htoo, John K; Cervantes-Ramírez, Miguel


    The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.

  3. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. (United States)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S


    Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus.

  4. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    Directory of Open Access Journals (Sweden)

    Hamid-Reza Samadlouie


    Full Text Available The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  5. Ethylene biosynthesis genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    NARCIS (Netherlands)

    ten Have, A.; Woltering, E.J.


    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and af

  6. Oral treatment with the NADPH oxidase antagonist apocynin mitigates clinical and pathological features of parkinsonism in the MPTP marmoset model. (United States)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Finsen, Bente; 't Hart, Bert A


    This study evaluates the therapeutic efficacy of the NADPH oxidase inhibitor apocynin, isolated as principal bioactive component from the medicinal plant Picrorhiza kurroa, in a marmoset MPTP model of Parkinson's disease (PD). The methoxy-substituted catechol apocynin has a similar structure as homovanillic acid (HVA), a metabolite of dopamine (DA). Apocynin acquires its selective inhibitory capacity of the reactive oxygen species generating NADPH oxidase via metabolic activation by myeloperoxidase (MPO). As MPO is upregulated in activated brain microglia cells of PD patients and in MPTP animal models, the conditions for metabolic activation of apocynin and inhibition of microglia NADPH oxidase are in place. Marmoset monkeys received oral apocynin (100 mg/kg; p.o.) (n = 5) or Gum Arabica (controls; n = 5) three times daily until the end of the study, starting 1 week before PD induction with MPTP (1 mg/kg s.c. for 8 days). Parkinsonian symptoms, motor function, home-cage activity and body weight were monitored to assess the disease development and severity. Post-mortem numbers of the tyrosine hydroxylase expressing DA neurons in the substantia nigra were counted. During the MPTP injections, apocynin limited the body weight loss and relieved parkinsonian symptoms compared to controls (Linear regression, P motor-function deterioration.

  7. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. (United States)

    Riedel, Annett; Lang, Roman; Rohm, Barbara; Rubach, Malte; Hofmann, Thomas; Somoza, Veronika


    Pyridines are widely distributed in foods. Nicotinic acid (NA), a carboxylated pyridine derivative, inhibits lipolysis in adipocytes by activation of the orphan NA receptor (HM74A) and is applied to treat hyperlipidemia. However, knowledge on the impact of pyridine derivatives on intestinal lipid metabolism is scarce. This study was performed to identify the structural determinants of pyridines for their effects on fatty acid uptake in enterocyte-like Caco-2 cells and to elucidate the mechanisms of action. The impact of 17 pyridine derivatives on fatty acid uptake was tested. Multiple regression analysis revealed the presence of a methyl group to be the structural determinant at 0.1 mM, whereas at 1 mM, the presence of a carboxylic group and the N-methylation presented further structural characteristics to affect the fatty acid uptake. NA, showing a stimulating effect on FA uptake, and N-methyl-4-phenylpyridinium (MPP), inhibiting FA uptake, were selected for mechanistic studies. Gene expression of the fatty acid transporters CD36, FATP2 and FATP4, and the lipid metabolism regulating transcription factors peroxisome proliferator-activated receptor (PPAR) α and PPARγ was up-regulated upon NA treatment. Caco-2 cells were demonstrated to express the low-affinity NA receptor HM74 of which the gene expression was up-regulated upon NA treatment. We hypothesize that the NA-induced fatty acid uptake might result from NA receptor activation and related intracellular signaling cascades. In contrast, MPP increased transepithelial electrical resistance. We therefore conclude that NA and MPP, both sharing the pyridine motif core, exhibit their contrary effects on intestinal FA uptake by activation of different mechanisms.

  8. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. (United States)

    Georgiadi, Anastasia; Boekschoten, Mark V; Müller, Michael; Kersten, Sander


    Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6 h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and peroxisome proliferator-activated receptor (PPAR)α-/- mice to allow exploration of the specific contribution of PPARα. It was found that: 1) C18:3 had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between C18:2 and C18:3. Large similarity was also observed between PPARα agonist Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPARα-dependent manner, emphasizing the importance of PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g., Acot1, Angptl4, Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for natural killer T cell function. 6) Deletion and activation of PPARα had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPARα.

  9. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Song; Jiaying Feng; Lihua Zhou; Gang Shu; Xiaotong Zhu; Ping Gao; Yongliang Zhang; Qingyan Jiang


    Fatty acid transport protein-1 (FATP-1) is one of the important transporter proteins involved in fatty acid transmembrane transport and fat deposition. To study the relationship between FATP-1 mRNA expression and fat deposition, chicken (Gallus gallus) FATP-1 sequence was first cloned by rapid amplification of cDNA ends (RACE). Tissue samples of chest muscle, leg muscle, subcutaneous fat, and abdominal fat were collected from six male and six female broilers each, at 22 days, 29 days, and 42 days, respectively. The tissue specificity and ontogenesis expression pattern of the FATP-1 mRNA of yellow-feathered broilers was studied by real-time reverse transcription polymerase chain reaction (RT-PCR), and the fat deposition laws in different tissues were also compared. A 2,488 bp cDNA sequence of chicken FATP-1 was cloned by RACE (GenBank accession no. DQ352834), including 547 bp 3' end untranslated region (URT) and 1,941 bp open reading frame (ORF). Chicken FATP-1 encoded 646 amino acid residues, which shared 83.9% and 83.0% identity with those of human and rat, respectively. The results of quantitative PCR demonstrated a constant FATP-1 mRNA expression level in the chest muscle and subcutaneous fat of both male and female broilers at three stages, whereas the expression level of the FATP-1 mRNA in the leg muscle at 42 days was significantly higher than that at 22 days or 29 days. In the abdominal fat of male broilers, the gene expression significantly increased with age, whereas the female broilers showed a dramatic downregulation of FATP-1 expression in abdominal fat at 42 days. This suggested a typical tissue-and gender-specific expression pattern of chicken FATP-1, mediating the specific process of fatty acid transport or utilization in muscle and adipose tissues.

  10. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. (United States)

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François


    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  11. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T


    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...

  12. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.


    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compoun

  13. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. (United States)

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M


    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  14. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids (United States)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  15. Expression patterns of nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase in human malignant lymphomas

    DEFF Research Database (Denmark)

    Olesen, Uffe Høgh; Hastrup, Nina; Sehested, Maxwell


    The purpose of the study was to determine in human malignant lymphomas the expression patterns of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinic acid phosphoribosyltransferase (NAPRT), the primary, rate-limiting enzymes in the synthesis of NAD+. NAMPT is a potential biomarker for se...

  16. Expression patterns of glial fibrillary acidic protein (GFAP)-delta in epilepsy-associated lesional pathologies

    NARCIS (Netherlands)

    L. Martinian; K. Boer; J. Middeldorp; E.M. Hol; S.M. Sisodiya; W. Squier; E.M.A. Aronica; M. Thom


    Aims: Glial fibrillary acidic protein (GFAP)-delta is a novel isoform that differs in its C-terminal sequence from other GFAP isoforms. Previous studies suggest restriction of expression to the subpial layer, subventricular zone and the subgranular zone astrocytes, with an absence in pathological co

  17. Substrate specifity and inhibitors of polyphenol oxidase in aspect of darkening of fresh and frozen mushrooms (Agaricus bisporus (Lange Sing.

    Directory of Open Access Journals (Sweden)

    Janusz Czapski


    Full Text Available Activity of mushroom polyphenol oxidase (PPO toward 6 substrates and inhibitory effect of cysteine, 2-mercaptoethanol, benzoic acid and sodium metabisulphite were determined. The o-diphenols which appeared to be the best substrates were: catechin, DOPA (L-3,4-dihydro-xyphenylalanine and chlorogcnic acid. Affinity of PPO crude preparation substrates to enzyme, expressed as inverse value of Michaelis constant was lower then affinity of catechol. Inhibitory effect depended on specifity of inhibitors and their concentration. Electrophoretic patterns of PPO of mushrooms reveals slow and fast moving 4 isoforms when DOPA was used as a substrate, 2 bands for catechin and chlorogenic acid while only one band showed activity toward tyrosine and p-cresol.

  18. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  19. Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas. (United States)

    Kaur, Simran; Norkina, Oxana; Ziemer, Donna; Samuelson, Linda C; De Lisle, Robert C


    The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is proposed to add to the stress/inflammation of the pancreas in CF. DNA microarray analysis of the CF mouse revealed altered pancreatic gene expression characteristic of stress/inflammation. When the duodenal pH was corrected genetically (crossing CFTR null with gastrin null mice) or pharmacologically (use of the proton pump inhibitor omeprazole), expression levels of genes measured by quantitative RT-PCR were significantly normalized. It is concluded that the acidic duodenal pH in CF contributes to the stress on the exocrine pancreas and that normalizing duodenal pH reduces this stress.

  20. Imaging Cancer Cells Expressing the Folate Receptor with Carbon Dots Produced from Folic Acid. (United States)

    Bhunia, Susanta Kumar; Maity, Amit Ranjan; Nandi, Sukhendu; Stepensky, David; Jelinek, Raz


    Development of new imaging tools for cancer cells in vitro and in vitro is important for advancing cancer research, elucidating drug effects upon cancer cells, and studying cellular processes. We showed that fluorescent carbon dots (C-dots) synthesized from folic acid can serve as an effective vehicle for imaging cancer cells expressing the folate receptor on their surface. The C-dots, synthesized through a simple one-step process from folic acid as the carbon source, exhibited selectivity towards cancer cells displaying the folate receptor, making such cells easily distinguishable in fluorescence microscopy imaging. Biophysical measurements and competition experiments both confirmed the specific targeting and enhanced uptake of C-dots by the folate receptor-expressing cells. The folic acid-derived C-dots were not cytotoxic, and their use in bioimaging applications could aid biological studies of cancer cells, identification of agonists/antagonists, and cancer diagnostics.

  1. An acid phosphatase locus expressed in mouse kidney (Apk) and its genetic location on chromosome 10. (United States)

    Womack, J E; Auerbach, S B


    A genetic locus controlling the electrophoretic mobility of an acid phosphatase in mouse kidney is described. This locus, called acid phosphatase-kidney (Apk), is not expressed in erythrocytes, liver, spleen, heart, lung, brain, skeletal muscle, stomach, or testes. The product of Apk hydrolyzes the substrate naphthol AS-MX phosphoric acid but is not active on alpha-naphthylphosphate or 4-methylumbelliferylphosphate. It is not inactivated by 50 C for 1 hr, nor is its electrophoretic mobility altered by incubation with neuraminidase. The locus is invariant among 31 inbred strains (Apka), with a variant allele (Apkm) observed only in Mus musculus molossinus. Codominant expression was observed in F1 hybrids of M. m. molossinus and inbred strains. Apk was mapped on Chr 10, near the neurological mutant waltzer (v).

  2. Activation of Hepatic Lipase Expression by Oleic Acid: Possible Involvement of USF1

    Directory of Open Access Journals (Sweden)

    Adrie J. M. Verhoeven


    Full Text Available Polyunsaturated fatty acids affect gene expression mainly through peroxisome proliferator-activated receptors (PPARs and sterol regulatory element binding proteins (SREBPs, but how monounsaturated fatty acids affect gene expression is poorly understood. In HepG2 cells, oleate supplementation has been shown to increase secretion of hepatic lipase (HL. We hypothesized that oleate affects HL gene expression at the transcriptional level. To test this, we studied the effect of oleate on HL promoter activity using HepG2 cells and the proximal HL promoter region (700 bp. Oleate increased HL expression and promoter activity 1.3–2.1 fold and reduced SREBP activity by 50%. Downregulation of SREBP activity by incubation with cholesterol+25-hydroxycholesterol had no effect on HL promoter activity. Overexpression of SREBP2, but not SREBP1, reduced HL promoter activity, which was effected mainly through the USF1 binding site at -307/-312. Oleate increased the nuclear abundance of USF1 protein 2.7 ± 0.6 fold, while USF1 levels were reduced by SREBP2 overexpression. We conclude that oleate increases HL gene expression via USF1. USF1 may be an additional fatty acid sensor in liver cells.

  3. Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids. (United States)

    Erranz, Benjamín; Miquel, Juan Francisco; Argraves, W Scott; Barth, Jeremy L; Pimentel, Fernando; Marzolo, María-Paz


    Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.

  4. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian


    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  5. Co-expression Analysis Identifies CRC and AP1 the Regulator of Arabidopsis Fatty Acid Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Xinxin Han; Linlin Yin; Hongwei Xue


    Fatty acids (FAs) play crucial rules in signal transduction and plant development,however,the regulation of FA metabolism is still poorly understood.To study the relevant regulatory network,fifty-eight FA biosynthesis genes including de novo synthases,desaturases and elongases were selected as "guide genes" to construct the co-expression network.Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT)identifies 797 candidate FA-correlated genes.Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism,and function in many processes.Interestingly,63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched.Two TF genes,CRC and AP1,both correlating with 8 FA guide genes,were further characterized.Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds.The contents of palmitoleic acid,stearic acid,arachidic acid and eicosadienoic acid are decreased,whereas that of oleic acid is increased in ap1 and crc seeds,which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes.In addition,yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15,indicating that CRC may directly regulate FA biosynthesis.

  6. Myristic Acid (MA) Promotes Adipogenic Gene Expression and the Differentiation of Porcine Intramuscular Adipocyte Precursor Cells

    Institute of Scientific and Technical Information of China (English)

    LU Nai-sheng; ZHANG Yong-liang; JIANG Qing-yan; SHU Gang; XIE Qiu-ping; ZHU Xiao-tong; GAO Ping; ZHOU Gui-xuan; WANG Song-bo; WANG Li-na; XI Qian-yun


    Intramuscular fat (IMF) content is considered to be a key factor that affects the marbling, tenderness, juiciness and lfavor of pork. To investigate the effects of myristic acid (MA) on the differentiation of porcine intramuscular adipocytes, cells were isolated from longissimus dorsi muscle (LDM) and treated with 0, 10, 50 or 100μmol L-1 MA. The results showed that MA signiifcantly promotes the differentiation of intramuscular adipocytes in a dose-dependent manner. MA also led to a parallel increase in the expression of peroxisome proliferator activated receptor-γ(PPARγ) and adipose-related genes, such as glucose transporter 1 (GLUT1), lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4/aP2), fatty acid translocase (FAT), acetyl-CoA carboxylaseα(ACCα), adipose triglyceride lipase (ATGL) and fatty acid synthase (FASN). However, no signiifcant effects of MA were observed on the expression of CAAT enhancer binding protein-α(C/EBPα) or hormone sensitive lipase (HSL). The expression of pyruvate dehydrogenase kinase 4 (PDK4) was increased by MA during the early stages of differentiation (day 1-3). In addition, MA also increased the absolute content of C14 (P<0.001) and saturated fatty acids (SFA) (P<0.05) to varying degrees, but no effects were observed on other fatty acids. These results suggest that MA might be able to enhance the IMF content of pork and increase the accumulation of myristic and myristoleic acid in muscle, which might have beneifcial implications for human health.

  7. 共培养下后交叉韧带成纤维细胞中赖氨酰氧化酶的基因表达**☆%Lysyl oxidase gene expressions in the posterior cruciate ligament fibroblasts co-cultured with synovial cells

    Institute of Scientific and Technical Information of China (English)

    张艳君; 梅虎; 蒋稼欢; 谢静; 尹琳; 陈荣富; 许春明; 王春莉; 宋国立


    to improve the healing ability of injured posterior cruciate ligament, we need to find new ways for regeneration and repair of injured posterior cruciate ligament. Previous studies have demonstrated that lysyl oxidases play an important role in the tissue repair mechanism, but the effect of lysyl oxidases from injured posterior cruciate ligament on the process of wound repair remains unclear. OBJECTIVE: To investigate the expressions of lysyl oxidases in the posterior cruciate ligament fibroblasts co-cultured with synovial cel s. METHODS: The fourth passage of posterior cruciate ligament fibroblasts and synovial cel s were placed in 6-wel plates and Transwel , respectively. Two groups were designed as fol ows, posterior cruciate ligament fibroblasts group as control and co-cultured group termed as test group. At 6 hours after co-culture, total RNA was isolated and the expressions of lysyl oxidases in the posterior cruciate ligament fibroblasts were analyzed by semi-quantitative reverse-transcription PCR and quantitative real-time PCR. RESULTS AND CONCLUSION: The results revealed that co-culture contributed to up-regulations of lysyl oxidases compared with the control group, and gene levels were up to 1.1 folds in lysyl oxidase, 1.4 folds in lysyl oxidase-like 1 protein, 1.1 folds in lysyl oxidase-like 2 protein, 1.3 folds in lysyl oxidase-like 3 protein, 1.1 folds in lysyl oxidase-like 4 protein in co-cultured posterior cruciate ligament cel s (P < 0.05). The differential expression of lysyl oxidases in co-cultured posterior cruciate ligament cel s implies that cel-cel interaction and crosstalk are related with posterior cruciate ligament wound healing and have significant potential value and clinical usage for cure of injured posterior cruciate ligament.

  8. Effects of Oils Rich in Linoleic and α-Linolenic Acids on Fatty Acid Profile and Gene Expression in Goat Meat

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi


    Full Text Available Alteration of the lipid content and fatty acid (FA composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA and α-linolenic acid (LNA for 100 days. Inclusion of flaxseed oil increased (p < 0.05 the α-linolenic acid (C18:3n-3 concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05 decreased the arachidonic acid (C20:4n-6 and conjugated linolenic acid (CLA c-9 t-11 content in the ST muscle. There was a significant (p < 0.05 upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression.

  9. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G


    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  10. Identification and characterization of an antennae-specific aldehyde oxidase from the navel orangeworm.

    Directory of Open Access Journals (Sweden)

    Young-Moo Choo

    Full Text Available Antennae-specific odorant-degrading enzymes (ODEs are postulated to inactivate odorant molecules after they convey their signal. Different classes of insect ODEs are specific to esters, alcohols, and aldehydes--the major functional groups of female-produced, hydrophobic sex pheromones from moth species. Esterases that rapidly inactive acetate and other esters have been well-studied, but less is known about aldehyde oxidases (AOXs. Here we report cloning of an aldehyde oxidase, AtraAOX2, from the antennae of the navel orangeworm (NOW, Amyelois transitella, and the first activity characterization of a recombinant insect AOX. AtraAOX2 gene spans 3,813 bp and encodes a protein with 1,270 amino acid residues. AtraAOX2 cDNA was expressed in baculovirus-infected insect Sf21 cells as a ≈280 kDa homodimer with 140 kDa subunits. Recombinant AtraAOX2 degraded Z11Z13-16Ald and plant volatile aldehydes as substrates. However, as expected for aldehyde oxidases, recombinant AtraAOX2 did not show specificity for Z11Z13-16Ald, the main constituent of the sex pheromone, but showed high activity for plant volatile aldehydes. Our data suggest AtraAOX2 might be involved in degradation of a diversity of aldehydes including sex pheromones, plant-derived semiochemicals, and chemical cues for oviposition sites. Additionally, AtraAOX2 could protect the insect's olfactory system from xenobiotics, including pesticides that might reach the sensillar lymph surrounding the olfactory receptor neurons.

  11. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells (United States)

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila


    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  12. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    Directory of Open Access Journals (Sweden)

    Jianmei Su

    Full Text Available Multicopper oxidases (MCOs are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II oxidation, the cotA gene from a highly active Mn(II-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0 supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II-oxidizing activity. The specific activity of purified CotA towards Mn(II was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II were 14.85±1.17 mM, 3.01×10(-6±0.21 M·min(-1 and 0.32±0.02 s(-1, respectively. Moreover, the Mn(II-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II oxidation mechanisms, but also offers

  13. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis


    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  14. Catabolism of caffeine and purification of a xanthine oxidade responsible for methyluric acids production in Pseudomonas putida L Catabolismo de cafeína e purificação de xantina oxidase responsável pela produção de ácidos metilúricos em Pseudomonas putida L

    Directory of Open Access Journals (Sweden)

    Dirce Mithico Yamaoka-Yano


    Full Text Available Caffeine catabolism and a xanthine oxidase involved in the alkaloid breakdown were studied in Pseudomonas putida L, a strain displaying high ability to grow on this substrate. Cells cultured with unlabelled caffeine and 14C labeled caffeine and xanthine showed that this alkaloid was broken-down via theobromine/paraxanthine -> 7-methylxanthine -> xanthine -> uric acid -> allantoin -> allantoic acid. Methyluric acids were formed from the oxidation of theobromine, paraxanthine and 7-methylxanthine, although no bacterial growth was observed on these compounds, indicating that this might be due to a wide substrate specificity of xanthine oxidase. This was confirmed by activity staining in PAGE where activity was observed with theophylline and 3-methylxanthine, which are not involved in the alkaloid breakdown. A single band of activity was detected without addition of NAD+, showing an oxidase form of the enzyme. The enzyme optimum temperature and pH were 30oC and 7.0, respectively. The determined Km was 169 µM, and the pI 3.1 - 4.0. The molecular weight determined by side by side comparison of activity staining of the enzyme in PAGE and PAGE of BSA was 192 kDa, which was coincident with the sum (198.4 kDa of three subunits (71, 65.6 and 61.8 kDa of the purified protein.O catabolismo de cafeína e a enzima xantina oxidase, envolvida na sua degradação, foram estudados em Pseudomonas putida L, uma linhagem com alta capacidade para utilizar este substrato como fonte de energia. Células crescidas na presença de cafeína e xantina marcadas com 14C, e cafeína não marcada, mostraram que este alcalóide foi degradado via teobromina/paraxantina -> 7-metilxantina -> xantina -> ácido úrico -> alantoína -> ácido alantóico. Ácidos metilúricos foram formados a partir de teobromina, paraxantina e 7-metilxantina, embora nenhum crescimento bacteriano ter sido observado quando estes compostos foram usados como substratos, indicando que a xantina oxidase

  15. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus. (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao


    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l(-1), monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  16. Nucleic acid modulation of gene expression: approaches for nucleic acid therapeutics against cancer. (United States)

    Nakata, Yuji; Kim, Tae-Kon; Shetzline, Susan; Gewirtz, Alan M


    Most cancers are characterized by abnormal gene expression, which is thought to contribute to the pathogenesis and maintenance of the malignant phenotype; abnormal proliferation, maturation, and apoptosis. Silencing such genes would appear to be a rational approach to the therapy of cancer, and some preliminary clinical studies support this concept. Of the strategies available, the anti-mRNA gene silencing approach has attracted much attention and is the focus of this review. This strategy includes three types of agents: (1) single-stranded antisense oligonucleotides; (2) catalytically active oligonucleotides, such as ribozymes, and DNAzymes that possess inherent RNA cleaving activity; and (3) small interfering RNA (siRNA) molecules that induce RNA interference (RNAi). Among these agents, antisense oligonucleotides, especially phosphorothioate (PS) oligonucleotides, have been the most frequently used in clinical trials. In this article, we provide an overview of anti-mRNA gene silencing agents and their development for use as cancer therapeutics.

  17. Identification and heterologous expression of a Δ4-fatty acid desaturase gene from Isochrysis sphaerica. (United States)

    Guo, Bing; Jiang, Mulan; Wan, Xia; Gong, Yangmin; Liang, Zhuo; Hu, Chuanjiong


    The marine microalga Isochrysis sphaerica is rich in the very-long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA, C20:5ω-3) and docosahexaenoic acid (DHA, C22:6ω-3) that are important to human health. Here, we report a functional characterization of a Δ4-fatty acid desaturase gene (FAD4) from I. sphaerica. IsFAD4 contains a 1,284 bp open reading frame encoding a 427 amino acid polypeptide. The deduced amino sequence comprises three conserved histidine motifs and a cytochrome b5 domain at its N-terminus. Phylogenetic analysis indicated that IsFad4 formed a unique Isochrysis clade distinct from the counterparts of other eukaryotes. Heterologous expression of IsFAD4 in Pichia pastoris showed that IsFad4 was able to desaturate docosapentaenoic acid (DPA) to form DHA, and the rate of converting DPA to DHA was 79.8%. These results throw light on the potential industrial production of specific polyunsaturated fatty acids through IsFAD4 transgenic yeast or oil crops.

  18. Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. (United States)

    Pimenta Lange, Maria João; Liebrandt, Anja; Arnold, Linda; Chmielewska, Sara-Miriam; Felsberger, André; Freier, Eduard; Heuer, Monika; Zur, Doreen; Lange, Theo


    Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C. sativus. Two cDNAs code for GA 7-oxidases (CsGA7ox1, and -2), five for GA 20-oxidases (CsGA20ox1, -2, -3, -4, and -5), four for GA 3-oxidases (CsGA3ox1, -2, -3, and -4), and another five for GA 2-oxidases (CsGA2ox1, -2, -3, -4, and -5). Their enzymatic activities were investigated by heterologous expression of the cDNAs in Escherichia coli and incubation of the cell lysates with (14)C-labelled, D2-labelled, or unlabelled GA-substrates. The two GA 7-oxidases converted GA12-aldehyde to GA12 efficiently. CsGA7ox1 converted GA12 to GA14, to 15α-hydroxyGA12, and further to 15α-hydroxyGA14. CsGA7ox2 converted GA12 to its 12α-hydroxylated analogue GA111. All five GA 20-oxidases converted GA12 to GA9 as a major product, and to GA25 as a minor product. The four GA 3-oxidases oxidized the C19-GA GA9 to GA4 as the only product. In addition, three of them (CsGA3ox2, -3, and -4) converted the C20-GA GA12 to GA14. The GA 2-oxidases CsGA2ox1, -2, -3, and -4 oxidized the C19-GAs GA9 and GA4 to GA34 and GA51, respectively. CsGA2ox2, -3, and -4 converted GA51 and GA34 further to respective GA-catabolites. In addition to C19-GAs, CsGA2ox4 also converted the C20-GA GA12 to GA110. In contrast, CsGA2ox5 oxidized only the C20 GA12 to GA110 as the sole product. As shown for CsGA20ox1 and CsGA3ox1, similar reactions were catalysed with 13-hydroxlyated GAs as substrates. It is likely that these enzymes are also responsible for the biosynthesis of 13-hydroxylated GAs in vivo that occur at low levels in cucumber.

  19. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty


    Full Text Available Lysophosphatidic acid (LPA, generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients.

  20. NADPH Oxidases in Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Joy X. Jiang


    Full Text Available Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH oxidases (NOXs are emerging as major sources of reactive oxygen species (ROS. Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases.

  1. Production of mycotoxins by galactose oxidase producing Fusarium using different culture

    Directory of Open Access Journals (Sweden)

    Pereira Angela Maria


    Full Text Available The original isolate of the galactose oxidase producing fungus Dactylium dendroides, and other five galactose oxidase producing Fusarium isolates were cultivated in different media and conditions, in order to evaluate the production of 11 mycotoxins, which are characteristic of the genus Fusarium: moniliformin, fusaric acid, deoxynivalenol, fusarenone-X, nivalenol, 3-acetyldeoxynivalenol, neosolaniol, zearalenol, zearalenone, acetyl T-2, and iso T-2. The toxicity of the culture extracts to Artemia salina larvae was tested.

  2. Modulation of antimicrobial host defense peptide gene expression by free fatty acids.

    Directory of Open Access Journals (Sweden)

    Lakshmi T Sunkara

    Full Text Available Routine use of antibiotics at subtherapeutic levels in animal feed drives the emergence of antimicrobial resistance. Development of antibiotic-alternative approaches to disease control and prevention for food animals is imperatively needed. Previously, we showed that butyrate, a major species of short-chain fatty acids (SCFAs fermented from undigested fiber by intestinal microflora, is a potent inducer of endogenous antimicrobial host defense peptide (HDP genes in the chicken (PLoS One 2011, 6: e27225. In the present study, we further revealed that, in chicken HD11 macrophages and primary monocytes, induction of HDPs is largely in an inverse correlation with the aliphatic hydrocarbon chain length of free fatty acids, with SCFAs being the most potent, medium-chain fatty acids moderate and long-chain fatty acids marginal. Additionally, three SCFAs, namely acetate, propionate, and butyrate, exerted a strong synergy in augmenting HDP gene expression in chicken cells. Consistently, supplementation of chickens with a combination of three SCFAs in water resulted in a further reduction of Salmonella enteritidis in the cecum as compared to feeding of individual SCFAs. More importantly, free fatty acids enhanced HDP gene expression without triggering proinflammatory interleukin-1β production. Taken together, oral supplementation of SCFAs is capable of boosting host immunity and disease resistance, with potential for infectious disease control and prevention in animal agriculture without relying on antibiotics.

  3. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  4. Oxidase-based biocatalytic processes

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Woodley, John; Krühne, Ulrich

    solvent-resistant oxygen sensors as supporting technology for oxidase-basedreactions using a glucose oxidase reaction system as an example.iiImplementation of biocatalytic oxidation at scale still requires process knowledge which includes thelimitations of the system and the knowledge about the potential......Biocatalytic processes are gaining significant focus in frontiers where they offer unique advantages(selectivity and mild operating conditions) over chemical catalysts. It is therefore not surprising that therehave been many industrial biocatalytic processes implemented.Despite past successes......, the implementation of a new biocatalytic process still presents some challenges (demands placed on the biocatalyst) in terms of the requirements to make a viable industrial process. Inorder for a biocatalytic process to be economically successful, it is necessary that certain a set of targetmetrics (product titre...

  5. Oxidative phenols in forage crops containing polyphenol oxidase enzymes. (United States)

    Parveen, Ifat; Threadgill, Michael D; Moorby, Jon M; Winters, Ana


    Polyphenol oxidases (PPOs) are copper-containing enzymes that catalyze oxidation of endogenous monophenols to ortho-dihydroxyaryl compounds and of ortho-dihydroxyaryl compounds to ortho-quinones. Subsequent nucleophilic addition reactions of phenols, amino acids, and proteins with the electrophilic ortho-quinones form brown-, black-, or red-colored secondary products associated with the undesired discolouration of fruit and vegetables. Several important forage plants also exhibit significant PPO activity, and a link with improved efficiency of ruminant production has been established. In ruminant animals, extensive degradation of forage proteins, following consumption, can result in high rates of excretion of nitrogen, which contributes to point-source and diffuse pollution. Reaction of quinones with forage proteins leads to the formation of protein-phenol complexes that are resistant to proteolytic activity during ensilage and during rumen fermentation. Thus, PPO in red clover (Trifolium pratense) has been shown to improve protein utilization by ruminants. While PPO activity has been demonstrated in a number of forage crops, little work has been carried out to identify substrates of PPO, knowledge of which would be beneficial for characterizing this trait in these forages. In general, a wide range of 1,2-dihydroxyarenes can serve as PPO substrates because these are readily oxidized because of the ortho positioning of the hydroxy groups. Naturally occurring phenols isolated from forage crops with PPO activity are reviewed. A large number of phenols, which may be directly or indirectly oxidized as a consequence of PPO activity, have been identified in several forage grass, legume, cereal, and brassica species; these include hydroxybenzoic acids, hydroxycinnamates, and flavonoids. In conclusion, a number of compounds are known or postulated to enable PPO activity in important PPO-expressing forage crops. Targeting the matching of these compounds with PPO activity

  6. Lysyl oxidase in cancer research. (United States)

    Perryman, Lara; Erler, Janine T


    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will breakdown the process of cancer progression and the various roles that LOX plays has in the advancement of cancer. We will highlight why LOX is an exciting therapeutic target for the future.

  7. Poultry fat decreased fatty acid transporter protein mRNA expression and affected fatty acid composition in chickens

    Directory of Open Access Journals (Sweden)

    Yuan Jianmin


    Full Text Available Abstract Background A study was undertaken to examine the effects of poultry fat (PF compared with those of soybean oil (SBO on intestinal development, fatty acid transporter protein (FATP mRNA expression, and fatty acid composition in broiler chickens. A total of 144 day-old male commercial broilers were randomly allocated to 2 treatment groups (6 replicates of 12 chicks for each treatment and fed isocaloric diets containing 3.0% PF or 2.7% SBO at 0 to 3 wk and 3.8% PF or 3.5% SBO at 4 to 6 wk, respectively. Results PF had no influence on intestinal morphology, weight, or DNA, RNA, or protein concentrations at 2, 4, and 6 wk of age. However, compared with SBO, PF significantly decreased FATP mRNA abundance at 4 wk (P = 0.009 and 6 wk of age (P P = 0.039; and decreased C18:2 (P = 0.015, C18:3 (P P = 0.018, Σ-polyunsaturated fatty acids (Σ-PUFA (P = 0.020, and the proportion of PUFA (P P = 0.010, C18:3 (P P P = 0.005, and the proportion of PUFA (P  Conclusions PF decreases FATP and L-FABP mRNA expression and decreased the proportion of PUFA in the intestinal mucosa and breast muscle.

  8. Expression of PPARα modifies fatty acid effects on insulin secretion in uncoupling protein-2 knockout mice

    Directory of Open Access Journals (Sweden)

    Chan Catherine B


    Full Text Available Abstract Aims/hypothesis In uncoupling protein-2 (UCP2 knockout (KO mice, protection of beta cells from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome proliferator-activated receptor-α (PPARα. Methods PPARα expression was reduced in isolated islets from UCP2KO and wild-type (WT mice with siRNA for PPARα (siPPARα overnight. Some islets were also cultured with oleic or palmitic acid, then glucose stimulated insulin secretion (GSIS was measured. Expression of genes was examined by quantitative RT-PCR or immunoblotting. PPARα activation was assessed by oligonucleotide consensus sequence binding. Results siPPARα treatment reduced PPARα protein expression in KO and WT islets by >85%. In siPPARα-treated UCP2KO islets, PA but not OA treatment significantly decreased the insulin response to 16.5 mM glucose. In WT islets, siPPARα treatment did not modify GSIS in PA and OA exposed groups. In WT islets, PA treatment significantly increased UCP2 mRNA and protein expression. Both PA and OA treatment significantly increased PPARα expression in UCP2KO and WT islets but OA treatment augmented PPARα protein expression only in UCP2KO islets (p Conclusion These data show that the negative effect of saturated fatty acid on GSIS is mediated by PPARα/UCP2. Knockout of UCP2 protects beta-cells from PA exposure. However, in the absence of both UCP2 and PPARα even a short exposure (24 h to PA significantly impairs GSIS.

  9. Dynamic regulation of glutamic acid decarboxylase 65 gene expression in rat testis

    Institute of Scientific and Technical Information of China (English)

    Haixiong Liu; Shifeng Li; Yunbin Zhang; Yuanchang Yan; Yiping Li


    Glutamate decarboxylase 65 (GAD65) produces γ-amino-butyric acid,the main inhibitory neurotransmitter in adult mammalian brain.Previous experiments,per-formed in brain,showed that GAD65 gene possesses two TATA-less promoters,although the significance is unknown.Here,by rapid amplification of cDNA ends method,two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis.RT-PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation,suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level.By using GAD65-speciflc antibodies,western blotting analysis showed that the 58-kDa GAD65,N-terminal 69 amino acids truncated form of full-length GAD65 protein,was developmentally expressed during post-natal testis matu-ration,suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing.Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis,primary spermatocytes and spermatids of post-natal of Day 90 testis.The above results suggested that GAD65 gene expression is dynamically regulated at mul-tiple levels during post-natal testis maturation.

  10. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    Directory of Open Access Journals (Sweden)

    Natalia M. Bottasso Arias


    Full Text Available Celiac disease (CD is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs: intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs’ expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa.

  11. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo


    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  12. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. (United States)

    Maisonneuve, Sylvie; Bessoule, Jean-Jacques; Lessire, René; Delseny, Michel; Roscoe, Thomas J


    In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.

  13. Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamli, Majid Rasool; Kim, Jihoe; Pokharel, Smritee; Jan, Arif Tasleem [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Lee, Eun Ju [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Choi, Inho, E-mail: [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Bovine Genome Resources Bank, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)


    Highlights: • AOX1 contributes to the formation of myotube. • Silencing of AOX1 reduces myotube formation. • AOX1 regulates MyoG gene expression. • AOX1 contributes to myogenesis via H{sub 2}O{sub 2}. - Abstract: Aldehyde oxidases (AOXs), which catalyze the hydroxylation of heterocycles and oxidation of a wide variety of aldehydic compounds, have been present throughout evolution from bacteria to humans. While humans have only a single functional aldehyde oxidase (AOX1) gene, rodents are endowed with four AOXs; AOX1 and three aldehyde oxidase homologs (AOH1, AOH2 and AOH3). In continuation of our previous study conducted to identify genes differentially expressed during myogenesis using a microarray approach, we investigated AOX1 with respect to its role in myogenesis to conceptualize how it is regulated in C2C12 cells. The results obtained were validated by silencing of the AOX1 gene. Analysis of their fusion index revealed that formation of myotubes showed a marked reduction of up to 40% in AOX1{sub kd} cells. Expression of myogenin (MYOG), one of the marker genes used to study myogenesis, was also found to be reduced in AOX1{sub kd} cells. AOX1 is an enzyme of pharmacological and toxicological importance that metabolizes numerous xenobiotics to their respective carboxylic acids. Hydrogen peroxide (H{sub 2}O{sub 2}) produced as a by-product in this reaction is considered to be involved as a part of the signaling mechanism during differentiation. An observed reduction in the level of H{sub 2}O{sub 2} among AOX1{sub kd} cells confirmed production of H{sub 2}O{sub 2} in the reaction catalyzed by AOX1. Taken together, these findings suggest that AOX1 acts as a contributor to the process of myogenesis by influencing the level of H{sub 2}O{sub 2}.

  14. Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1. (United States)

    Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling


    As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels.

  15. Alternative oxidase involvement in Daucus carota somatic embryogenesis. (United States)

    Frederico, António Miguel; Campos, Maria Doroteia; Cardoso, Hélia Guerra; Imani, Jafargholi; Arnholdt-Schmitt, Birgit


    Plant alternative oxidase (AOX) is a mitochondrial inner membrane enzyme involved in alternative respiration. The critical importance of the enzyme during acclimation upon stress of plant cells is not fully understood and is still an issue of intensive research and discussion. Recently, a role of AOX was suggested for the ability of plant cells to change easily its fate upon stress. In order to get new insights about AOX involvement in cell reprogramming, quantitative real-time polymerase chain reaction (PCR) and inhibitor studies were performed during cell redifferentiation and developmental stages of Daucus carota L. somatic embryogenesis. Transcript level analysis shows that D. carota AOX genes (DcAOX1a and DcAOX2a) are differentially expressed during somatic embryogenesis. DcAOX1a shows lower expression levels, being mainly down-regulated, whereas DcAOX2a presented a large up-regulation during initiation of the realization phase of somatic embryogenesis. However, when globular embryos start to develop, both genes are down-regulated, being this state transient for DcAOX2a. In addition, parallel studies were performed using salicylhydroxamic acid (SHAM) in order to inhibit AOX activity during the realization phase of somatic embryogenesis. Embryogenic cells growing in the presence of the inhibitor were unable to develop embryogenic structures and its growth rate was diminished. This effect was reversible and concentration dependent. The results obtained contribute to the hypothesis that AOX activity supports metabolic reorganization as an essential part of cell reprogramming and, thus, enables restructuring and de novo cell differentiation.

  16. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia. (United States)

    Xing, Hong-yi; Meng, Er-yan; Xia, Yuan-peng; Peng, Hai


    The purpose of this study was to observe the expression of LINGO-1 after cerebral ischemia, investigate the effects of retinoic acid (RA) on the expression of LINGO-1 and GAP-43, and the number of synapses, and to emplore the repressive effect of LINGO-1 on neural regeneration after cerebral ischemia. The model of permanent focal cerebral ischemia was established by the modified suture method of middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. The expression of LINGO-1 was detected by Western blotting and that of GAP-43 by immunohistochemistry. The number of synapses was observed by transmission electron microscopy. The SD rats were divided into three groups: sham operation (sham) group, cerebral ischemia (CI) group and RA treatment (RA) group. The results showed that the expression level of LINGO-1 at 7th day after MCAO in sham, CI and RA groups was 0.266 ± 0.019, 1.215 ± 0.063 and 0.702 ± 0.081, respectively (PLINGO-1 expression is up-regulated after cerebral ischemia, and RA inhibits the expression of LINGO-1, promotes the expression of GAP-43 and increases the number of synapses. It suggests that LINGO-1 may be involved in the pathogenesis of cerebral ischemia, which may provide an experimenal basis for LINGO-1 antogonist, RA, for the treatment of cerebral ischemia.

  17. Study on the role of catalase for uptake of metallic mercury Part 3 In vitro oxidation of metallic mercury by catalase and hydrogen peroxide generated by several oxidase system




    In vitro oxidation of metallic mercury by catalase and hydrogen peroxide generated by the glucose-glucose oxidase system, D-alanine-D-amino acid oxidase system and xanthine-xanthine oxidase-superoxide dismutase system was investigated. In vitro oxidation of metallic mercury by catalase and hydrogen peroxide generated by the reaction with glucose and glucose oxidase was observed in erythrocytes and crystalline beef liver catalase solution. The uptake depended on the concentration of glucose ox...

  18. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta


    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  19. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells


    Tsong-Min Chang; Guey-Yueh Shi; Hua-Lin Wu; Chieh-Hsi Wu; Yan-Di Su; Hui-Lin Wang; Hsin-Yun Wen; Huey-Chun Huang


    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothe...

  20. Calcium affecting protein expression in longan under simulated acid rain stress. (United States)

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang


    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  1. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. (United States)

    Polen, Tino; Wendisch, Volker F


    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

  2. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. (United States)

    Hegeman, C E; Good, L L; Grabau, E A


    Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents. D-myo-inositol-3-phosphate synthase (MIPS EC catalyzes the first step in de novo synthesis of myo-inositol. A soybean (Glycine max) MIPS cDNA (GmMIPS1) was isolated by reverse transcriptase-PCR using consensus primers designed from highly conserved regions in other plant MIPS sequences. Southern-blot analysis and database searches indicated the presence of at least four MIPS genes in the soybean genome. Northern-blot and immunoblot analyses indicated higher MIPS expression and accumulation in immature seeds than in other soybean tissues. MIPS was expressed early in the cotyledonary stage of seed development. The GmMIPS1 expression pattern suggested that it encodes a MIPS isoform that functions in seeds to generate D-myo-inositol-3-phosphate as a substrate for phytic acid biosynthesis.

  3. Profiling of hepatic gene expression in rats treated with fibric acid analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cornwell, Paul D.; Souza, Angus T. de; Ulrich, Roger G


    Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors whose ligands include fatty acids, eicosanoids and the fibrate class of drugs. In humans, fibrates are used to treat dyslipidemias. In rodents, fibrates cause peroxisome proliferation, a change that might explain the observed hepatomegaly. In this study, rats were treated with multiple dose levels of six fibric acid analogs (including fenofibrate) for up to two weeks. Pathological analysis identified hepatocellular hypertrophy as the only sign of hepatotoxicity, and only one compound at the highest dose caused any significant increase in serum ALT or AST activity. RNA profiling revealed that the expression of 1288 genes was related to dose or length of treatment and correlated with hepatocellular hypertrophy. This gene list included expression changes that were consistent with increased mitochondrial and peroxisomal {beta}-oxidation, increased fatty acid transport, increased hepatic uptake of LDL-cholesterol, decreased hepatic uptake of glucose, decreased gluconeogenesis and decreased glycolysis. These changes are likely linked to many of the clinical benefits of fibrate drugs, including decreased serum triglycerides, decreased serum LDL-cholesterol and increased serum HDL-cholesterol. In light of the fact that all six compounds stimulated similar or identical changes in the expression of this set of 1288 genes, these results indicate that hepatomegaly is due to PPAR{alpha} activation, although signaling through other receptors (e.g. PPAR{gamma}, RXR) or through non-receptor pathways cannot be excluded.

  4. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You


    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  5. 一种来源于克劳氏芽孢杆菌的高碱性尿酸氧化酶的异源表达及重组酶性质分析%Heterologous expression of a high alkaline urate oxidase from Bacillus clausii and characterization of the recombinant enzyme

    Institute of Scientific and Technical Information of China (English)

    王一恬; 沈微; 陈献忠; 樊游; 王正祥


    以碱性蛋白酶生产菌克劳氏芽孢杆菌(Bacillus clausii)基因组DNA为模板PCR扩增获得尿酸氧化酶基因(BcU),插入原核表达载体pET28α中,构建表达载体pET-BcU,并转化大肠杆菌BL21(DE3)获得重组大肠杆菌BL21(DE3)/pET-BcU.经IPTG诱导,重组菌BL21(DE3)/pET-BcU表达出有活性的尿酸氧化酶,含空质粒的重组菌在同样条件下没有酶活.酶学性质分析显示,重组酶最适pH值为9.0,在pH值9.0~11范围内酶活几乎不变,是一种高碱性尿酸氧化酶.%The BcU gene encoding urate oxidase was amplified by PCR with genome DNA of Bacillus clausii as template. The gene BcU was cloned into pET28α resulting in the recombinant plasmid pET-BcU. The recombiant plasmid was transformed into Escherichia coli BL21(DE3). Induced with IPTG, the recombinant strain BL21 ( DE3 )/pET-BcU expressed active urate oxidase, while the control BL21 ( DE3 )/pET did not. The optimum pH for recombinant enzyme was 9. 0 and the enzymatic activity showed almost no difference between pH 9. 0 ~ 11. The recombinant enzyme is a kind of high alkaline urate oxidase.

  6. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco


    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  7. Sesamin modulates gene expression without corresponding effects on fatty acids in Atlantic salmon (Salmo salar L.). (United States)

    Schiller Vestergren, A; Wagner, L; Pickova, J; Rosenlund, G; Kamal-Eldin, A; Trattner, S


    This study examined the effects of sesamin inclusion in vegetable oil-based diets fed to Atlantic salmon (Salmo salar L.). The diets used differed in n-6/n-3 fatty acid (FA) ratio (0.5 and 1) and sesamin content (high 5.8 g/kg, low 1.16 g/kg and no sesamin). The oils used in the feeds were a mixture of rapeseed, linseed and palm oil. Fish were fed for 4 months. Fatty acids and expression of hepatic genes involved in transcription, lipid uptake, desaturation, elongation and β-oxidation were measured. No major effects on the percentage of DHA in white muscle, liver triacylglycerol and phospholipid fraction were detected. Genes involved in β-oxidation, elongation and desaturation were affected by sesamin addition. Limited effects were seen on any of the transcription factors tested and no effect was seen on the expression of peroxisome proliferator-activated receptors (PPAR). Expression of both SREBP-1 and SREBP-2 increased with sesamin addition. It was concluded that supplementation of fish feed with a high level of sesamin had a negative effect on the growth rate and live weight and did not alter the proportions of DHA in tissues even though gene expression was affected. Thus, more studies are needed to formulate a diet that would increase the percentage of DHA in fish without negative effects on fish growth.

  8. Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. (United States)

    Whitehead, Nicholas P; Yeung, Ella W; Froehner, Stanley C; Allen, David G


    Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91(phox), p67(phox) and rac 1 were increased 2-3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91(phox) and p67(phox) were increased 3-4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67(phox),which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca(2+) rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca(2+) entry, a key mechanism for muscle damage and functional impairment.

  9. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast.

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Lin

    Full Text Available BACKGROUND: Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α, one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.

  10. Hippocampal and cortical expression of gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein in pentylenetetrazol-induced chronic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yi Zeng; Zhong Yang; Xiaodong Long; Chao You


    BACKGROUND: Gamma-aminobutyric acid transporter plays an important role in gamma-aminobutyric acid metabolism, and is highly associated with epilepsy seizures.Pathologically, astrocytes release active substances that alter neuronal excitability, and it has been demonstrated that astrocytes play a role in epileptic seizures.OBJECTIVE: To observe changes in gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression in the hippocampus and cortex of the temporal lobe in rats with pentylenetetrazol-induced chronic epilepsy.DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment was performed at the Department of Neurobiology, Third Military University of Chinese PLA between January 2006 and December 2007.MATERIALS: Pentylenetetrazol was purchased from Sigma, USA; rabbit anti-rat gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein were from Chemicon, USA.METHODS; A total of 40 Sprague Dawley rats were divided into model and control groups. Rat models of chronic epilepsy were created by pentylenetetrazol kindling, and were subdivided into 3-, 7-, and 14-day kindling subgroups.MAIN OUTCOME MEASURES: Gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression, as well as the number of positive cells in the hippocampus and cortex of temporal lobe of rats, were determined by immunohistochemistry and Western blot analyses.RESULTS: Compared with the control group, the number of gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein -positive cells in the hippocampus and cortex of rats with pentylenetetrazol-induced epilepsy significantly increased, gamma-aminobutyric acid transporter 1 and glial fibrillary acidic protein expression increased after 3 days of kindling, reached a peak on day 7, and remained at elevated levels at day 14 (P < 0.05).CONCLUSION: Astrocytic activation and gamma-aminobutyric acid transporter 1 overexpression may contribute to pentylenetetrazol

  11. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Okito, Asuka [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Nakahama, Ken-ichi, E-mail: [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Akiyama, Masako [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan); Ono, Takashi [Department of Orthodontic Science, Tokyo Medical and Dental University, Tokyo (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, Tokyo (Japan)


    Osteoclast activity is enhanced in acidic environments following systemic or local inflammation. However, the regulatory mechanism of receptor activator of NF-κB ligand (RANKL) expression in osteoblasts under acidic conditions is not fully understood. In the present paper, we detected the mRNA expression of the G-protein-coupled receptor (GPR) proton sensors GPR4 and GPR65 (T-cell death-associated gene 8, TDAG8), in osteoblasts. RANKL expression and the cyclic AMP (cAMP) level in osteoblasts were up-regulated under acidic culture conditions. Acidosis-induced up-regulation of RANKL was abolished by the protein kinase A inhibitor H89. To clarify the role of GPR4 in RANKL expression, GPR4 gain and loss of function experiments were performed. Gene knockdown and forced expression of GPR4 caused reduction and induction of RANKL expression, respectively. These results suggested that, at least in part, RANKL expression by osteoblasts in an acidic environment was mediated by cAMP/PKA signaling resulting from GPR4 activation. A comprehensive microarray analysis of gene expression of osteoblasts revealed that, under acidic conditions, the phenotype of osteoblasts was that of an osteoclast supporting cell rather than that of a mineralizing cell. These findings will contribute to a molecular understanding of bone disruption in an acidic environment. - Highlights: • RANKL expression was increased in osteoblasts under acidosis via cAMP/PKA pathway. • GRP4 knockdown resulted in decrease of RANKL expression. • GRP4 overexpression resulted in increase of RANKL expression. • Osteoblast mineralization was reduced under acidic condition.

  12. Glutamine and glutamic acid enhance thyroid-stimulating hormone β subunit mRNA expression in the rat pars tuberalis. (United States)

    Aizawa, Sayaka; Sakai, Takafumi; Sakata, Ichiro


    Thyroid-stimulating hormone (TSH)-producing cells of the pars tuberalis (PT) display distinct characteristics that differ from those of the pars distalis (PD). The mRNA expression of TSHβ and αGSU in PT has a circadian rhythm and is inhibited by melatonin via melatonin receptor type 1; however, the detailed regulatory mechanism for TSHβ expression in the PT remains unclear. To identify the factors that affect PT, a microarray analysis was performed on laser-captured PT tissue to screen for genes coding for receptors that are abundantly expressed in the PT. In the PT, we found high expression of the KA2, which is an ionotropic glutamic acid receptor (iGluR). In addition, the amino acid transporter A2 (ATA2), also known as the glutamine transporter, and glutaminase (GLS), as well as GLS2, were highly expressed in the PT compared to the PD. We examined the effects of glutamine and glutamic acid on TSHβ expression and αGSU expression in PT slice cultures. l-Glutamine and l-glutamic acid significantly stimulated TSHβ expression in PT slices after 2- and 4-h treatments, and the effect of l-glutamic acid was stronger than that of l-glutamine. In contrast, treatment with glutamine and glutamic acid did not affect αGSU expression in the PT or the expression of TSHβ or αGSU in the PD. These results strongly suggest that glutamine is taken up by PT cells through ATA2 and that glutamic acid locally converted from glutamine by Gls induces TSHβ expression via the KA2 in an autocrine and/or paracrine manner in the PT.

  13. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts. (United States)

    Nana, Fernand W; Hilou, Adama; Millogo, Jeanne F; Nacoulma, Odile G


    This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus) and Amaranthus hybridus (A. hybridus), two food plant species found in Burkina Faso. Hydroacetonic (HAE), methanolic (ME), and aqueous extracts (AE) from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin-Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE)/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE) /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight) in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method) and iron reducing power (FRAP method) ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  14. Urate oxidase purification by salting-in crystallization: towards an alternative to chromatography.

    Directory of Open Access Journals (Sweden)

    Marion Giffard

    Full Text Available BACKGROUND: Rasburicase (Fasturtec® or Elitek®, Sanofi-Aventis, the recombinant form of urate oxidase from Aspergillus flavus, is a therapeutic enzyme used to prevent or decrease the high levels of uric acid in blood that can occur as a result of chemotherapy. It is produced by Sanofi-Aventis and currently purified via several standard steps of chromatography. This work explores the feasibility of replacing one or more chromatography steps in the downstream process by a crystallization step. It compares the efficacy of two crystallization techniques that have proven successful on pure urate oxidase, testing them on impure urate oxidase solutions. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigate the possibility of purifying urate oxidase directly by crystallization from the fermentation broth. Based on attractive interaction potentials which are known to drive urate oxidase crystallization, two crystallization routes are compared: a by increased polymer concentration, which induces a depletion attraction and b by decreased salt concentration, which induces attractive interactions via a salting-in effect. We observe that adding polymer, a very efficient way to crystallize pure urate oxidase through the depletion effect, is not an efficient way to grow crystals from impure solution. On the other hand, we show that dialysis, which decreases salt concentration through its strong salting-in effect, makes purification of urate oxidase from the fermentation broth possible. CONCLUSIONS: The aim of this study is to compare purification efficacy of two crystallization methods. Our findings show that crystallization of urate oxidase from the fermentation broth provides purity comparable to what can be achieved with one chromatography step. This suggests that, in the case of urate oxidase, crystallization could be implemented not only for polishing or concentration during the last steps of purification, but also as an initial capture step, with minimal

  15. Effect of estrogen on gene expression of fatty acid synthase in periosteum

    Institute of Scientific and Technical Information of China (English)

    ZHENG Rui-min; LIN Shou-qing; LIU Yong; HUANG Man-ting; GONG Wei-yan; WU Zhi-hong


    Background Estrogen deficiency contributes to postmenopausal osteoporosis.Periosteum might be a potential target of estrogen,but the underlying mechanism at gene level is far from being elucidated.The objective of this study was to investigate the correlation between estrogen and fatty acid synthase(FAS)expression in periosteum.Methods Human periosteum cells were cultured in vitro.Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR.The expression of FAS in periosteum of ovarectomized(OVX)SD rats was investigated.Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR.Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control.The estradiol levels were(20.81±12.62)pg/ml,(19.64±4.35)pg/ml and(13.47+1.84)pg/ml in the sham group,the control,and the OVX group,respectively.The estradiol levels in the OVX group was significantly lower(P=0.0386).The FAS gene expression in periosteum in the OVX group,sham group,and control group was 3.09±1.97,1.33±0.47 and 1.51±1.32,respectively.The gene expression in the OVX group was significantly higher (P=0.0372).Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.

  16. Expression of a cyanobacterial {del}{sup 6}-desaturase gene results in {gamma}-linolenic acid production in transgenic plants

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.; Thomas, T.L. [Texas A & M Univ., College Station, TX (United States)


    Gamma-linolenic acid (GLA), a nutritionally important fatty acid in human and animal diets, is not produced in oil seed crops. Many oil seed plants, however, produce significant quantities of linoleic acid, a fatty acid that could be converted to GLA by the enzyme {del}{sup 6}-desaturase if it were present. As a first step to producing GLA in oil seed crops, we have cloned a cyanobacterial {del}{sup 6}-desaturase gene. Expression of this gene in transgenic tobacco resulted in GLA accumulation. Octadecatetraenoic acid, a highly unsaturated, industrially important fatty acid, was also found in transgenic tobacco plants expressing the cyanobacterial {del}{sup 6}-desaturase. This is the first example of engineering the production of `novel` polyunsaturated fatty acids in transgenic plants. 28 refs., 4 figs., 1 tab.

  17. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells. (United States)

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi


    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  18. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang


    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  19. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat (United States)

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary


    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  20. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN (United States)

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya


    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272


    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin


    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over-expressing

  2. Relative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth. (United States)

    Parry-Hanson, Angela A; Jooste, Piet J; Buys, Elna M


    Cross-protection of acid-adapted Escherichia coli O157:H7 against inimical stresses is mediated by the glucose-repressed sigma factor RpoS. However, many food systems in which E. coli O157:H7 occurs are complex and contain glucose. This study was aimed at investigating the contribution of acid and lactoperoxidase (LP)-inducible genes to cross-protection of E. coli O157:H7 against LP system and lactic acid (LA) in Tryptone Soy Broth (TSB). Acid-adapted and non-adapted E. coli O157:H7 were challenged to activated LP and LA at pH 4.0 and 5.0 in TSB for 6h at 25°C followed by expression of acid and LP-inducible genes. Acid-adapted E. coli showed cross-protection against activated LP and LA. All the acid-inducible genes tested were repressed at pH 4.0 with or without activated LP system. At pH 7.4, gadA, ompC and ompF were induced in acid-adapted cells. Induction of corA occurred in non-adapted cells but was repressed in acid-adapted cells. Although acid-inducible genes were repressed at pH 4.0, high resistance of acid-adapted cells indicates that expression of acid-inducible genes occurred during acid adaptation and not the actual challenge. Repression of rpoS indicates that RpoS-independent systems contribute to cross-protection in acid-adapted E. coli O157:H7.

  3. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid.

    Directory of Open Access Journals (Sweden)

    Ramamurthi Vidya Priyadarsini

    Full Text Available Chlorophyllin (CHL, a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA, a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA-induced hamster buccal pouch (HBP carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.

  4. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid. (United States)

    Vidya Priyadarsini, Ramamurthi; Kumar, Neeraj; Khan, Imran; Thiyagarajan, Paranthaman; Kondaiah, Paturu; Nagini, Siddavaram


    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.

  5. Saturated fatty acids stimulate and insulin suppresses CIDE-A expression in bovine mammary epithelial cells. (United States)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki


    Cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDE-A) was first identified by its sequence homology with the N-terminal domain of DNA fragmentation factor (DFF). CIDE-A negatively regulates the activity of uncoupling protein 1 (UCP1) in brown adipose tissue. CIDE-A and UCP1 mRNA were detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and lactating bovine mammary glands. Physiological concentrations of saturated fatty acids (stearate and palmitate), but not unsaturated fatty acids (oleate and linoleate) induced up-regulation of CIDE-A mRNA in bMEC. Treatment with insulin (5-10 ng/ml) induced down-regulation of CIDE-A and UCP1. The expression levels of CIDE-A and UCP1 mRNA in bovine mammary glands at various stages of the lactation cycle were determined by quantitative RT-PCR analysis. CIDE-A mRNA expression at peak lactation (2 months after parturition) was significantly higher than at dry off and non-pregnancy but not late lactation. These results suggest that CIDE-A and UCP1 are regulated by insulin and/or fatty acids in mammary epithelial cells and lactating mammary glands, and thereby play an important role in lipid and energy metabolism.

  6. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia


    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  7. Time course degeneration and expression of glial fibrillary acidic protein in mer-knockout mice

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-ying; WANG Huai-zhou; WANG Ning-li


    Background Muller cells in the mammalian retina normally express low levels of glial fibrillary acidic protein (GFAP); however, its expression is upregulated in response to the loss of retinal neurons. The change in expression of GFAP is one of the earliest indicators of retinal damage and is correlated with the time course of disease. The aim of this study was to investigate the time course of degeneration and the expression of GFAP in the retina of mer knockout mice. Methods A total of 30 mer knockout mice, aged from 15-20 days to 1 year and 32 age-matched wild type mice as controls were tested. Immunohistochemistry was used to show the expression of GFAP in the central and peripheral retina of mer knockout and control mice at postnatal age of 15 days (P15d), 20 days (P20d), 4 weeks (P4w), 6 weeks (P6w), 8 weeks (P8w), 3 months (P3m), 6 months (P6m) and 1 years (P1y).Results The expression of GFAP in the central and peripheral retina of wild type mice was limited to the retinal ganglion cell and nerve fiber layers. In the central retina of mer knockout mice, GFAP expression was upregulated at P4w and GFAP immunolabelling penetrates across the entire thickness of the retina at P8w; whereas in the peripheral retina, the GFAP expression was upregulated at P20d and GFAP immunolabelling penetrates the entire retina after P4w. Conclusions Increased expression of GFAP in Muller cells of mer knockout mice occur at P20d in the peripheral retina and P4w in the central retina. GFAP expression in Muller cells appears to be a secondary response to the loss of retinal neurons. Increased expression of GFAP may occur prior to any detectable morphological changes in the retina. This study suggests that the loss of retinal neurons may begin in the early stages of retinitis pigmentosa, prior to the discovery of any morphological changes in the retina.

  8. Expression and characterization of an enantioselective antigen-binding fragment directed against α-amino acids (United States)

    Eleniste, Pierre P.; Hofstetter, Heike; Hofstetter, Oliver


    This work describes the design and expression of a stereoselective Fab that possesses binding properties comparable to those displayed by the parent monoclonal antibody. Utilizing mRNA from hybridoma clones that secrete a stereoselective anti-L-amino acid antibody, a corresponding biotechnologically produced Fab was generated. For that, appropriate primers were designed based on extensive literature and databank searches. Using these primers in PCR resulted in successful amplification of the VH, VL, CL and CH1 gene fragments. Overlap PCR was utilized to combine the VH and CH1 sequences and the VL and CL sequences, respectively, to obtain the genes encoding the HC and LC fragments. These sequences were separately cloned into the pEXP5-CT/TOPO expression vector and used for transfection of BL21(DE3) cells. Separate expression of the two chains, followed by assembly in a refolding buffer, yielded an Fab that was demonstrated to bind to L-amino acids but not to recognize the corresponding D-enantiomers. PMID:23827208

  9. Purification, Gene Cloning and Expression of an Acidic Phospholipase A2 from Agkistrodon shedaoensis Zhao

    Institute of Scientific and Technical Information of China (English)

    Qian JIN; Li-Xia YANG; Hao-Mang JIAO; Bin LU; Yu-Qun WU; Yuan-Cong ZHOU


    A protein with the activity of phospholipase A2 named asAPLA2 was purified to homogeneity from the venom of Agkistrodon shedaoensis Zhao through DEAE-Sepharose CL-6B anion exchange column,Source S and Mono Q FPLC. Its molecular weight was estimated as 19 kD by SDS-PAGE and its pI was about 3.5 by IEF analysis. It inhibits the platelet aggregation that was induced by 1 μmol/L ADP, and the IC50 was determined to be 6 μmol/L. Degenerate primer was designed and synthesized according to the Nterminal amino acid sequence of asAPLA2. Its full-length cDNA was cloned by RT-PCR from the total RNA extracted from the snake venom gland. According to the deduced amino acid sequence, its molecular weight and pI are determined to be 13,649 and 4.39 respectively as calculated by DNAclub and DNAstar softwares.The gene was then cloned into the expression plasmid pET-40b(+) and expressed in E. Coli BL21(DE3).Western blot analysis indicated that the expressed protein cross-reacted with the antibody against the nativeenzyme.

  10. Purification, Gene Cloning and Expression of an Acidic Phospholipase A2 from Agkistrodon shedaoensis Zhao

    Institute of Scientific and Technical Information of China (English)

    QianJIN; Li-XiaYANG; Hao-MangJIAO; BinLU; Yu-QunWU; Yuan-CongZHOU


    A protein with the activity of phospholipase A2 named asAPLA2 was pmified to homogeneity from the venom of Agkistrodon shedaoensis Zhao through DEAE-Sepharose CL-6B anion exchange column,Source S and Mono Q FPLC. Its molecular weight was estimated as 19kD by SDS-PAGE and its pI was about 3.5 by IEF analysis. It inhibits the platelet aggregation that was induced by 1μmol/L ADP, and the IC50 was determined to be 6μmol/L. Degenerate primer was designed and synthesized according to the Nterminal amino acid sequence of asAPLA2. Its full-length cDNA was cloned by RT-PCR from the total RNA extracted from the snake venom gland. According to the deduced amino acid sequence, its molecular weight and pI are determined to be 13,649 and 4.39 respectively as calculated by DNAclub and DNAstar softwares.The gene was then cloned into the expression plasmid pET-40b(+) and expressed in E.coli BL21(DE3).Western blot analysis indicated that the expressed protein cross-reacted with the antibc dy against the native enzyme.

  11. Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons. (United States)

    Cao, Qingqing; Wang, Wei; Gu, Juan; Jiang, Guohui; Bian, Xiling; Wang, Kewei; Xu, Zucai; Li, Jie; Chen, Guojun; Wang, Xuefeng


    Recent studies have indicated that acid-sensing ion channels may play a significant role in the termination of epilepsy. In particular, acid-sensing ion channel 3 (ASIC3) is expressed in the central nervous system and is most sensitive to extracellular pH. However, whether ASIC3 plays a role in epilepsy is unknown. In this study, qRT-PCR, Western blot, immunohistochemistry, double immunofluorescence labeling, and slice recordings were used. We first detected elevated ASIC3 expression patterns in the brains of temporal lobe epilepsy patients and epileptic rats. ASIC3 was expressed in neurons and glia in both humans and in an experimental model of epilepsy, and ASIC3 was colocalized with inhibitory GABAergic interneurons. By blocking ASIC3 with its antagonist APETx2, we observed that injected APETx2 shortened the latency to seizure and increased the incidence of generalized tonic clonic seizure compared to the control group in models of both pilocarpine- and pentylenetetrazole (PTZ)-induced seizures. Additionally, blocking ASIC3 significantly decreased the frequency of action potential (AP) firing in interneurons. Moreover, APETx2 significantly reduced the amplitudes and frequencies of miniature inhibitory postsynaptic currents (mIPSCs) while showed no differences with the APETx2 + bicuculline group and the bicuculline group. These findings suggest that elevated levels of ASIC3 may serve as an anti-epileptic mechanism via postsynaptic mechanisms in interneurons. It could represent a novel therapeutic strategy for epilepsy treatment.

  12. Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    da Silva Ayla


    Full Text Available Abstract Background The effects of acetic acid, a common food preservative, on the bacteriophage-encoded enterotoxin A (SEA expression and production in Staphylococcus aureus was investigated in pH-controlled batch cultures carried out at pH 7.0, 6.5, 6.0, 5.5, 5.0, and 4.5. Also, genomic analysis of S. aureus strains carrying sea was performed to map differences within the gene and in the temperate phage carrying sea. Results The sea expression profile was similar from pH 7.0 to 5.5, with the relative expression peaking in the transition between exponential and stationary growth phase and falling during stationary phase. The levels of sea mRNA were below the detection limit at pH 5.0 and 4.5, confirmed by very low SEA levels at these pH values. The level of relative sea expression at pH 6.0 and 5.5 were nine and four times higher, respectively, in the transitional phase than in the exponential growth phase, compared to pH 7.0 and pH 6.5, where only a slight increase in relative expression in the transitional phase was observed. Furthermore, the increase in sea expression levels at pH 6.0 and 5.5 were observed to be linked to increased intracellular sea gene copy numbers and extracellular sea-containing phage copy numbers. The extracellular SEA levels increased over time, with highest levels produced at pH 6.0 in the four growth phases investigated. Using mitomycin C, it was verified that SEA was at least partially produced as a consequence of prophage induction of the sea-phage in the three S. aureus strains tested. Finally, genetic analysis of six S. aureus strains carrying the sea gene showed specific sea phage-groups and two versions of the sea gene that may explain the different sea expression and production levels observed in this study. Conclusions Our findings suggest that the increased sea expression in S. aureus caused by acetic acid induced the sea-encoding prophage, linking SEA production to the lifecycle of the phage.

  13. Mitochondrial cytochrome c oxidase deficiency. (United States)

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre


    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.

  14. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.) (United States)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei


    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  15. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    Directory of Open Access Journals (Sweden)

    Komal Sodhi


    Full Text Available Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs in the presence and absence of cobalt protoporphyrin (CoPP, an HO-1 inducer, and tin mesoporphyrin (SnMP, an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels.

  16. Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus (United States)

    Medema, Marnix H.; Alam, Mohammad T.; Heijne, Wilbert H. M.; van den Berg, Marco A.; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A. L.; Breitling, Rainer; Takano, Eriko


    Summary To increase production of the important pharmaceutical compound clavulanic acid, a β‐lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome‐wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild‐type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology. PMID:21342474

  17. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. (United States)

    Medema, Marnix H; Alam, Mohammad T; Heijne, Wilbert H M; van den Berg, Marco A; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A L; Breitling, Rainer; Takano, Eriko


    To increase production of the important pharmaceutical compound clavulanic acid, a β-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild-type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology.

  18. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain. (United States)

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei


    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  19. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination


    Yushi Ishibashi; Shinsuke Kasa; Masatsugu Sakamoto; Nozomi Aoki; Kyohei Kai; Takashi Yuasa; Atsushi Hanada; Shinjiro Yamaguchi; Mari Iwaya-Inoue


    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidas...

  20. Spatiotemporal relationships among D-serine,serine racemase, and D-amino acid oxidase during mouse postnatal development%D-型丝氨酸、丝氨酸消旋酶及D-型氨基酸氧化酶在小鼠出生后个体发育中的分布变化及相互关系

    Institute of Scientific and Technical Information of China (English)

    王立真; 朱兴族


    AIM: To elucidate the spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase (EC; DAO) in mouse cortex, striatum, cerebellum, heart, lung, liver, spleen, kidney, and skeletal muscle during mouse postnatal development. METHODS: The transcription levels of serine racemase and DAO were assayed by reverse transcription-polymerase chain reaction (RT-PCR). The protein levels of serine racemase were examined by Western blot. DAO activities were assayed by colorimetric method. D-serine was measured by HPLC. RESULTS: In cortex, striatum, and cerebellum, free D-serine increased drastically after birth and coincided well with the increase of serine racemase expression. However, among the 9 tissues examined, DAO activities were detected only in cerebellum and kidney. During the 3rd week, DAO activity in cerebellum and kidney increased dramatically, which concurred with the drastic decline of D-serine content in these tissues. On the other hand, while D-serine and serine racemase fall to trace level in cerebellum and kidney at the 3rd weekend, DAO activities in these tissues increased continuously. CONCLUSION: The free D-serine is mainly synthesized by serine racemase. However, novel mechanisms might be involved in D-serine deposition in mouse tissues with high level of D-serine and no detectable DAO activity such as cortex and striatum. DAO in cerebellum and kidney might have other physiological functions in addition to degrading D-amino acid.%目的:探讨小鼠个体发育过程中皮层、纹状体、小脑、心脏、肺、肝脏、脾脏、肾脏和骨骼肌中D-型丝氨酸,丝氨酸消旋酶(SR)及D-型氨基酸氧化酶(DA0)的分布特征及相互关系.方法:RT-PCR法检测SR和DAO mRNA水平;Westernblot检测SR蛋白水平;比色法检测DAO酶活力;高效液相法检测游离D-型丝氨酸含量.结果:小鼠出生后早期个体发育过程中皮层、纹状体和小脑内游离D-型丝氨酸含量

  1. Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion. (United States)

    Hammond, Charles E; Beeson, Craig; Suarez, Giovanni; Peek, Richard M; Backert, Steffen; Smolka, Adam J


    Acute Helicobacter pylori infection of gastric epithelial cells and human gastric biopsies represses H,K-ATPase α subunit (HKα) gene expression and inhibits acid secretion, causing transient hypochlorhydria and supporting gastric H. pylori colonization. Infection by H. pylori strains deficient in the cag pathogenicity island (cag PAI) genes cagL, cagE, or cagM, which do not transfer CagA into host cells or induce interleukin-8 secretion, does not inhibit HKα expression, nor does a cagA-deficient strain that induces IL-8. To test the hypothesis that virulence factors other than those mediating CagA translocation or IL-8 induction participate in HKα repression by activating NF-κB, AGS cells transfected with HKα promoter-Luc reporter constructs containing an intact or mutated NF-κB binding site were infected with wild-type H. pylori strain 7.13, isogenic mutants lacking cag PAI genes responsible for CagA translocation and/or IL-8 induction (cagA, cagζ, cagε, cagZ, and cagβ), or deficient in genes encoding two peptidoglycan hydrolases (slt and cagγ). H. pylori-induced AGS cell HKα promoter activities, translocated CagA, and IL-8 secretion were measured by luminometry, immunoblotting, and ELISA, respectively. Human gastric biopsy acid secretion was measured by microphysiometry. Taken together, the data showed that HKα repression is independent of IL-8 expression, and that CagA translocation together with H. pylori transglycosylases encoded by slt and cagγ participate in NF-κB-dependent HKα repression and acid inhibition. The findings are significant because H. pylori factors other than CagA and IL-8 secretion are now implicated in transient hypochlorhydria which facilitates gastric colonization and potential triggering of epithelial progression to neoplasia.

  2. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. (United States)

    Arai, Hiroyuki; Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu


    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.

  3. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. (United States)

    Calvo, Angel Pablo; Nicolás, Carlos; Nicolás, Gregorio; Rodríguez, Dolores


    Gibberellin 20-oxidase