WorldWideScience

Sample records for acid methyl ester

  1. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    Science.gov (United States)

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  2. A Convenient Synthesis of Amino Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  3. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Indian Academy of Sciences (India)

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  4. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  5. NF EN 14103. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the ester and methylic ester content of linoleic acid; NF EN 14103. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en ester et en ester methylique de l'acide linolenique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard aims at determining the ester and methylic ester content of fatty acids methylic esters (FAME) used as pure bio-fuels or as constituent of a heating or diesel fuel. This method allows also to determine the methylic ester content of linoleic acid. It allows to verify that the ester content of FAMEs is greater than 90% (m/m) and that the linoleic acid content is comprised between 1% (m/m) and 15% (m/m). The method is applicable to FAMEs with methylic ester contents comprised between C14 and C24. (J.S.)

  6. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  7. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  8. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    Science.gov (United States)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  9. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Science.gov (United States)

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  11. Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    OpenAIRE

    Medina-González, Yaocihuatl; De Caro, Pascale; Thiebaud-Roux, Sophie; Lacaze-Dufaure, Corinne

    2007-01-01

    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and ...

  12. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Directory of Open Access Journals (Sweden)

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  13. Synthesis and Characteristics of an Aspartame Analogue, L-Asparaginyl L-3-Phenyllactic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    Hu TAO; Da-Fu CUI; You-Shang ZHANG

    2004-01-01

    An aspartame analogue,L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond.The aspartic acid of aspartame could be replaced by asparagine as reported in the literature.In this analogue,the hydrogen ofamide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond.However,the product was not sweet,showing that the peptide bond could not be replaced by ester bond.The peptide C-N bond behaves as a double bond that is not free to rotate and the C,O,N and H atoms are in the same plane.The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond,resulting in the loss of sweet taste.

  14. Synthesis and characteristics of an aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester.

    Science.gov (United States)

    Tao, Hu; Cui, Da-Fu; Zhang, You-Shang

    2004-06-01

    An aspartame analogue, L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond. The aspartic acid of aspartame could be replaced by asparagine as reported in the literature. In this analogue, the hydrogen of amide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond. However, the product was not sweet, showing that the peptide bond could not be replaced by ester bond. The peptide C-N bond behaves as a double bond that is not free to rotate and the C, O, N and H atoms are in the same plane. The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond, resulting in the loss of sweet taste.

  15. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    Science.gov (United States)

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  16. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  17. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Science.gov (United States)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  18. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenylalanine...... nor L-serine methyl ester, stimulate insulin secretion. In the presence of L-glutamine, however, the effect of L-serine was additive, while the methyl esters of L-serine and L-phenylalanine as well as native L-phenylalanine, potentiated the glucose-stimulated release of insulin. Measurements of islet...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  19. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    Science.gov (United States)

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

  20. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Science.gov (United States)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  1. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  2. Fatty Acid Methyl Esters of Melon Seed Oil: Characterisation for Potential Diesel Fuel Application

    Directory of Open Access Journals (Sweden)

    Paul M. EJIKEME

    2011-06-01

    Full Text Available Fatty acid methyl esters (FAME, biodiesel, are alternative diesel fuels usually obtained from renewable sources, mainly, vegetable and animal oils through transesterification among other processes. Melon seed oil was extracted from melon seeds bought from a local market, degummed and alkali refined using standard methods. FAME of the oil was produced using methanol in the molar ration of 1:6, 1% sodium hydroxide catalyst at the reaction temperature of 60 deg C for the duration of 1h. Results obtained showed that the fatty acid methyl esters had a specific gravity of 0.8786, viscosity of 6.24 centistokes, pH of 7.23, heating value of 36.34 J/g and flash point of 148 deg C. The FAME yield was 87.35% under the reaction conditions that applied. The infrared spectra of both the refined oil and the methyl esters from it, showed peaks at 1721.3cm-1 and 1167.8cm-1 (C=O and C-O stretches large and medium absorbance's for oils and methyl esters. Generally, the fuel properties of the FAME compared with values obtained under the same conditions for conventional petroleum diesel that was sourced from a retail outlet; suggesting that biodiesel from MSO could be used alone or in blends with petrodiesel to power compression ignition (diesel engines.

  3. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1H and 13C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  4. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    OpenAIRE

    Ion Dragalin; Olga Morarescu; Maria Sedcenco; Radu Marin Rosca

    2015-01-01

    The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%), confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  5. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Directory of Open Access Journals (Sweden)

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  6. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    Science.gov (United States)

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes. PMID:26969251

  7. Preparation of sphingolipid fatty acid methyl esters for determination by gas-liquid chromatography.

    Science.gov (United States)

    MacGee, J; Williams, M G

    1981-01-30

    Sphingolipid fatty acids are first converted to a mixture of free acids and their n-butyl esters by heating the specimen at 85 degree C in aqueous butanolic hydrogen chloride; the butyl esters are then saponified with methanolic potassium hydroxide. After acidification and extraction into hexane, the fatty acids are extracted into a very small volume of aqueous trimethyl(m-trifluorotolyl)ammonium hydroxide (TMTFTH), injection of an aliquot of the TMTFTH extract into the gas chromatograph yields the fatty acid methyl esters by pyrolytic methylation of the quaternary ammonium salts of the fatty acids. The preparation of a specimen ready for the gas--liquid chromatographic (GLC) analysis with quantitative recovery of the sphingolipid fatty acids can be accomplished in less than 2 h. By comparison, none of a number of well-accepted techniques for the release of sphingomyelin fatty acids by hydrolysis or methanolysis released the fatty acids quantitatively in less than 3 h, and all required additional manipulations before GLC analysis. PMID:7217267

  8. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs); Sintese de novas amidas graxas a partir da aminolise de esteres metilicos

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carolina R.; Montes D' Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D' Oca, Marcelo G., E-mail: dqmdoca@furg.b [Universidade Federal do Rio Grande, RS (Brazil). Escola de Quimica e Alimentos

    2010-07-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  9. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  10. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  11. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  12. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  13. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Science.gov (United States)

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  14. RENEWABLE ENERGY CONTENT OF FATTY ACID METHYL ESTERS (FAME AND GLYCEROL

    Directory of Open Access Journals (Sweden)

    Giuseppe Toscano

    2009-12-01

    Full Text Available Fatty acid methyl esters (FAME and glycerol produced by transesterification reaction contain atoms that in the reagents belong to methanol and, therefore, are not renewable. A method to evaluate the content of the renewable and non-renewable energetic fraction, released during their combustion, was 52 Fig. 2 - Correlation between EFNR and NCM of FAME. Fig. 3 - Correlation between NCM and NS. Fig. 4 - Correlations between EFNR and NS. 07_Toscano(541_47 26-01-2010 9:35 Pagina 52 developed using a thermochemical criteria, based on bond dissociation energies and the knowledge of the molecular structure of the reagents and the products. Results show that the fraction of non-renewable energy in the most diffused FAME is lower than 1% depending on the lengths of the carbonaceous methyl esters. Meanwhile, the energetic supply for the GL of this fraction is about 1.6%. The data reported in this document can be used to develop a criteria that corrects the fiscal mechanism aspects of some renewable energy products.

  15. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study

    Science.gov (United States)

    Eißmann, Frank; Weber, Edwin

    2011-11-01

    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.

  16. Gas chromatography determination of fatty acid alkyl esters (methyl and ethyl in the presence of mono., di- and triglycerides

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2010-04-01

    Full Text Available Determining fatty acid methyl or ethyl esters, in the presence of mono-, di- and tri glycerides, is very important when studying fatty compounds' methanolysis or ethanolysis, as well as for controlling the quality of petrochemical products. This work presents a useful technique for determining fatty acids methyl or ethyl esters by high temperature gas chromastography in the presence of mono-, di- and triglycerides. Samples were silylated with N, O-bis (trimethylsilyl trifluroacetamide (BSTFA and then passed throught a 12m HT5 column coated with a phenyl-polysiloxane-carborane film. Standard methyl and ethyl palmitate, methyl and ethyl oleate, DL-palmitin, dipalmitin, tripalmitin and triolein solutions were used for calibrating the technique, using tricaprin as internal standard. Retention times and response factors were also determined. The results were employed in following-up palm oil methanolysis and ethanolysis reactions.

  17. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Science.gov (United States)

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  18. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  19. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Directory of Open Access Journals (Sweden)

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  20. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    Science.gov (United States)

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  1. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Science.gov (United States)

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  2. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  3. Ternary Liquid-Liquid Equilibrium for Systems of Fatty Acid Methyl Ester(Methyl Palmitate/Methyl Stearate)+Ethanol+Glycerol at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 罗慧娟; 马沛生

    2015-01-01

    Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distri-bution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square devia-tion(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.

  4. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    Energy Technology Data Exchange (ETDEWEB)

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M. [Central Arid Zone Research Institute, Jodhpur 342003 (India)

    2005-10-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel. (author)

  5. 脂肪酸甲酯磺酸盐%Fatty acid methyl ester sulfonate

    Institute of Scientific and Technical Information of China (English)

    韩建英

    2012-01-01

    Fatty acid methyl ester sulfonate(MES) is an anionic surfactant based on natural oils generated from plant and animal as raw materials. MES has good detergency, lime soap dispersing ability, hard water-resistance, emulsibility, water-solubility and biodegradability; besides, it can improve the solubility of soap in water. Because of the good performance of MES, it can be used in synthetic powder detergent, compound soap powder, composite soap, shampoo and personal care products. The present production situation, product forms, properties as well as applications of MES were related.%脂肪酸甲酯磺酸盐简称(MES)是以天然动植物油脂为原料制得的脂肪酸系阴离子表面活性剂。它具有良好的去污性、钙皂分散性、抗硬水性、乳化性、增溶性和生物降解性,并能改进肥皂的溶解性。由于MES性能优良,主要用于合成洗衣粉、复合皂粉、复合肥皂、香波以及个人清洁用品中。对MES的生产现状、产品形式、性能以及应用进行了概述。

  6. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    International Nuclear Information System (INIS)

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  7. Combustion characteristics of fatty acid methyl esters derived from recycled cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Yo-ping Greg Wu; Ya-fen Lin; Chang-Tang Chang [National Ilan University, Ilan (Taiwan). Department of Chemical and Materials Engineering

    2007-12-15

    The goal of this study is to find out the exhaust emissions differences produced by different kinds of fatty acid methyl esters (FAME) derived from used cooking oils and animal fats, as well as the importance of the purification step in exhaust emissions production. A total of 120 L of waste vegetable oil and 30 L of waste frying oil were collected and converted into three batches of FAME. There were two batches of FAME produced from waste vegetable oil (B01 and B02), and one batch of FAME produced by mixing 2% of waste frying oil with waste vegetable oil (B03). The FAMEs used in this study had higher density, kinematic viscosity, and flash point, but a lower gross heating value, when compared to the premium diesel. The B01 engine produced higher CO formation and the diesel-fuelled engine produced higher CO than the B02 and B03 did for engine speeds higher than 1400 rpm. Most of the FAME fuels produced higher CO{sub 2} than the diesel fuel did. The FAME fuels emitted higher NOx and PM, but lower SO{sub 2}, than the diesel fuel. C{sub n}H{sub 2n+2}, diphenyl sulfone (C{sub 12}H{sub 10}O{sub 2}S), and diethyl phthalate (C{sub 12}H{sub 14}O{sub 4}) can be selected as the character index for the combustion of FAME. 26 refs., 8 figs., 1 tab.

  8. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Directory of Open Access Journals (Sweden)

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  9. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Directory of Open Access Journals (Sweden)

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  10. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  11. Self-assembled structure of alkyloxy substituted benzoic acid methyl ester on HOPG:An STM study

    Institute of Scientific and Technical Information of China (English)

    YUAN Qunhui; LU Jun; WAN Lijun; BAI Chunli

    2004-01-01

    Self-assembled structures of 3,4,5-tris-dodecy- loxy benzoic acid methyl ester (E12), 3,4,5-tris-tetradecy- loxy-benzoic acid methyl ester (E14) and their mixture (E12/E14) have been studied on HOPG by scanning tunneling microscopy (STM). Dimer-like patterns induced by dipole-dipole interaction are observed in E12 and E14 monolayers. The molecules form close-packed rows and interdigitate with the alkyl chains in adjacent molecules. The structural differences are proposed to be from the different length of substituted alkyl chains. Owing to similar adsorption energy, phase separation is observed in the E12 and E14 mixed adlayer with different domains.

  12. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Microbial lipids have the potential to substantially reduce the use of liquid fossil fuels, though one obstacle is the energy costs associated with the extraction and subsequent conversion into a biofuel. Here we report a one-step method to produce FAME (fatty acid methyl esters) from Rhodotorula glutinis by combining lipid extraction in a microwave reactor with acid-catalysed transesterification. The microwave did not alter the FAME profile and over 99% of the lipid was esterified when using 25 wt% H2SO4 over 20 min at 120 °C. On using higher loadings of catalyst, similar yields were achieved over 30 s. Equivalent amounts of FAME were recovered in 30 s using this method as with a 4 h Soxhlet extraction, run with the same solvent system. When water was present at less than a 1:1 ratio with methanol, the main product was FAME, above this the major products were FFA (free fatty acids). Under the best conditions, the energy required for the microwave was less than 20% of the energy content of the biodiesel produced. Increasing the temperature did not change the EROI (energy return on investment) substantially; however, longer reaction times used an equivalent amount of energy to the total energy content of the biodiesel. - Highlights: • The extraction and transesterification of yeast lipid were achieved using a microwave reactor. • The lipid was extracted from Rhodotorula glutinis within 30 s under all conditions. • Addition of 25 wt% H2SO4 catalyst converted 95% glycerides to FAME over 5 min. • Water could be tolerated up to 25 wt% without high FFA production. • The temperature of the microwave had less impact on EROI than the length of extraction

  13. S-(−)-10,11-Dihydroxyfarnesoic Acid Methyl Ester Inhibits Melanin Synthesis in Murine Melanocyte Cells

    OpenAIRE

    Seung-Hwa Baek; Jun-Won Ahn; Sung-Hee Nam; Cheol-Sik Yoon; Jae-Cheon Shin; Sang-Han Lee

    2014-01-01

    The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasmas, freckles, age spots, and chloasmas. In the course of screening for melanin synthesis inhibitors, we found that the culture broth from an insect morphopathogenic fungus, Beauveria bassiana CS1029, exhibits potent antimelanogenic activity. We isolated and purified an active metabolite and identified it as S-(−)-10,11-dihydroxyfarnesoic acid methyl ester (dhFAME), an insect j...

  14. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  15. Unequivocal NMR assignments: O-methoxy-methyl esters derivatives of acid chromanones from Calophyllum brasiliense CAMB. (Guanandi).

    Science.gov (United States)

    Caneppele, D; Vieira, P C; Dall'Oglio, E L; da Silva, L E; Sousa, P T

    2008-01-01

    The present work describes the fractionation of the crude hexane extract (EBHEX) from Calophyllum brasiliense (Clusiaceae) stem bark. Derivatization of DCM(2-9) fraction with diazomethane afforded the chromanones inophylloidic acid, isobrasiliensic acid, as well as, a mixture containing isobrasiliensic and brasiliensic acids, in the form of their more stable O-methoxy-methyl esters derivatives 1, 2, and 3, respectively. The isolation of 1 from C. brasiliense is described for the first time herein. The use of two-dimensional NMR methods ((1)H-COSY, HMQC, and HMBC) allowed the precise determination of (13)C and (1)H chemical shifts of compounds 1, 2, and 3. PMID:18626818

  16. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products.

    Science.gov (United States)

    Wasta, Ziar; Mjøs, Svein A

    2013-07-19

    Fatty acids in products claimed to contain oils with the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were analyzed as fatty acid methyl esters by gas chromatography-mass spectrometry using electron impact ionization. To cover the variation in products on the market, the 20 products that were studied in detail were selected from a larger sample set by statistical methodology. The samples were analyzed on two different stationary phases (polyethylene glycol and cyanopropyl) and the fatty acid methyl esters were identified by methodology that combines the mass spectra and retention indices into a single score value. More that 100 fatty acids had a chromatographic area above 0.1% of the total, in at least one product. Retention indices are reported as equivalent chain lengths, and overlap patterns on the two columns are discussed. Both columns were found suitable for analysis of major and nutritionally important fatty acids, but the large number of minor compounds that may act as interferents will be problematic if low limits of quantification are required in analyses of similar sample types. A database of mass spectral libraries and equivalent chain lengths of the detected compounds has been compiled and is available online. PMID:23773584

  17. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    International Nuclear Information System (INIS)

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE2 production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE2 in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE2 in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  18. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado, Irene [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Cidre, Florencia; Herranz, Sandra [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain); Estevez-Braun, Ana [Instituto Universitario de Bio-Orgánica “Antonio González”. Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2. 38206. La Laguna, Tenerife (Spain); Instituto Canario de Investigaciones del Cáncer (ICIC) (Spain); Heras, Beatriz de las, E-mail: lasheras@farm.ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain)

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  19. Characterization of Mycolic Acids in Total Fatty Acid Methyl Ester Fractions from Mycobacterium Species by High Resolution MALDI-TOFMS.

    Science.gov (United States)

    Teramoto, Kanae; Suga, Mitsuo; Sato, Takafumi; Wada, Takayuki; Yamamoto, Atsushi; Fujiwara, Nagatoshi

    2015-01-01

    Mycolic acids (MAs) are characteristic components of bacteria in the suborder Corynebacterineae, such as Mycobacterium. MAs are categorized into subclasses based on their functional bases (cyclopropane ring, methoxy, keto, and epoxy group). Since MAs have heterogeneity among bacterial species, analyzing of MAs are required in the chemotaxonomic field. However, their structural analysis is not easy because of their long carbon-chain lengths and several functional groups. In this study, total fatty acid (FA) methyl ester (ME) fraction of M. tuberculosis H37Rv was analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS). The distributions of carbon-chain length and their relative peak intensities were confirmed with those obtained by analysis of each subclass fraction which was separated from total FA ME fraction using thin-layer chromatography (TLC). The observed major peaks were reliably assigned as MAs owing to the high mass accuracy (errorodd-numbered carbon-chain MAs for the total FA ME fraction were consistent with those of MA subclass fractions. To visualize whole MAs, contour maps of relative peak intensities for whole MAs were created. The contour maps indicated the MA subclasses and their distributions of carbon-chains with relative peak intensities at a glance. Our proposed method allows simple characterization in a short time and thus enables the analysis of large numbers of samples, and it would contribute to the chemotaxonomy. PMID:26819906

  20. Peak alignment and robust principal component analysis of gas chromatograms of fatty acid methyl esters and volatiles

    DEFF Research Database (Denmark)

    Frosch, Stina; Jørgensen, Bo

    2007-01-01

    Gas chromatograms of fatty acid methyl esters and of volatile lipid oxidation products from fish lipid extracts are analyzed by multivariate data analysis [principal component analysis (PCA)]. Peak alignment is necessary in order to include all sampled points of the chromatograms in the data set...... that the usage of ROPCA is advantageous, compared with traditional PCA, when analysing the entire profile of chromatographic data in cases of sub-optimally aligned data. It also demonstrates how choosing the most robust PCA (sample or element-wise) depends on the type of outliers present in the data set....

  1. NF EN 14213. - Heating fuels. - Fatty acid methyl esters (FAME) - Requirements and test methods; NF EN 14213. - Fioul domestique. - Esters methyliques d'acides gras (EMAG). - Exigences et methodes d'essais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    This standard specifies requirements and test methods for marketed and delivered fatty acid methyl ester (FAME) to be used as heating oil solely or as a blending component for the production of heating oil. At 100% concentration it is applicable to fuel for use in heating equipment designed or subsequently adapted to run on 100% FAME.

  2. Synthesis and Crystal Structure of 4-(4,6-dimethoxyl -pyrimidin-2-yl)-3-thiourea Carboxylic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen; MA Hai-Xia

    2006-01-01

    The title compound 4-(4,6-dimethoxylpyrimidin-2-yl)-3-thiourea carboxylic acid methyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at the room temperature. The structure was characterized by elemental analysis and IR and determined by X-ray diffraction analysis. Crystallographic data: C9H12N4O4S, Mr = 272.29, monoclinic, space group C2/m with a = 1.6672(3), b = 0.66383(12), c = 1.1617(2) nm, β = 109.275(2)°, V = 1.2136(4) nm3, Dc = 1.490 g/cm3, μ = 0.281 mm-1, F(000) = 568, Z = 4, R1 = 0.0341and wR2 = 0.1042.

  3. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    Science.gov (United States)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  4. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    International Nuclear Information System (INIS)

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  5. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  6. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Indian Academy of Sciences (India)

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  7. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.

    Science.gov (United States)

    Racovita, Radu C; Peng, Chen; Awakawa, Takayoshi; Abe, Ikuro; Jetter, Reinhard

    2015-05-01

    The present work aimed at a comprehensive chemical characterization of the cuticular wax mixtures covering leaves of the monocot species Aloe arborescens. The wax mixtures were found to contain typical aliphatic compound classes in characteristic chain length distributions, including alkanes (predominantly C31), primary alcohols (predominantly C28), aldehydes (predominantly C32), fatty acid methyl esters (predominantly C28) and fatty acids (bimodal distribution around C32 and C28). Alkyl esters ranging from C42 to C52 were identified, and found to mainly contain C28 alcohol linked to C16-C20 acids. Three other homologous series were identified as 3-hydroxy fatty acids (predominantly C28), their methyl esters (predominantly C28), and 2-alkanols (predominantly C31). Based on structural similarities and homolog distributions, the biosynthetic pathways leading to these novel wax constituents can be hypothesized. Further detailed analyses showed that the A. arborescens leaf was covered with 15 μg/cm(2) wax on its adaxial side and 36 μg/cm(2) on the abaxial side, with 3:2 and 1:1 ratios between epicuticular and intracuticular wax layers on each side, respectively. Terpenoids were found mainly in the intracuticular waxes, whereas very-long-chain alkanes and fatty acids accumulated to relatively high concentrations in the epicuticular wax, hence near the true surface of the leaf. PMID:25200334

  8. Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry.

    Science.gov (United States)

    Webster, R L; Rawson, P M; Evans, D J; Marriott, P J

    2016-07-01

    Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl-siloxane nonpolar first dimension column and high-temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination. PMID:27159197

  9. Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry.

    Science.gov (United States)

    Webster, R L; Rawson, P M; Evans, D J; Marriott, P J

    2016-07-01

    Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl-siloxane nonpolar first dimension column and high-temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination.

  10. Mobility-limited polyarylamine biscarbonate ester (PABC) /[6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) bulk heterojunction photovoltaic device

    CERN Document Server

    Lin, Liang-Bih; Preske, Amanda E; Mamiya, Arthur A; Filho, Demétrio A da Silva; Cardoso, George C

    2016-01-01

    Photovoltaic (PV) devices made from blends of a polyarylamine biscarbonate ester (PABC) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) have been fabricated and characterized. PABC is a hole transporting co-polymer prepared from reacting N,N'diphenyl-N,N'bis(3-hydroxyphenyl)1,1;biphenyl(4,4'diamine), diethylene glycol bischloroformate, and triethylemine. By varying the polymer loading in the blend, optimal power conversion efficiency (PCE) of approximately 0.45\\% has been achieved for a blend consisting of 25 wt\\% PABC, which is an order of magnitude higher than the PCE for a 45 wt\\% blend. The optimal ratio is at about 0.44:0.56 molar ratio of the active hole transporting to electron transporting moieties. Results of mobility studies suggest that blends with higher PABC loading have efficiencies limited by 'hole' transport. Also responsible for the lower efficiency at higher PABC concentrations was optical filtering. The efficiency does not appear to be limited by deep charge trapping. Density fun...

  11. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Cvengros, J. Jan; Cvengrosova, Zuzana [Slovak Univ. of Technology, Faculty of Chemical and Food Technology, Bratislava (Slovakia)

    2004-08-01

    From the point of view price and available capacity used frying oils or fats (UFO) represent an attractive raw material for the production of methyl esters (ME) of higher fatty acids as alternative fuels for diesel engines. If they are treated such that the required quality, with an acidity number up to 3.0 mg KOH/g and a water content up to 0.1 wt%, is achieved they can be processed to ME using standard techniques of alkali-catalysed transesterification with methanol which are utilized for production of the ME from new oils/fats. The problematic waste can thus be converted to an ecologically friendly fuel. Vacuum distillation of free fatty acids in a film evaporator is an effective method for simultaneously decreasing the content of FFA and water in UFO. Final distillation of raw ME in a film vacuum evaporator results in practically all parameters required by the standard, in the final ME being achieved. Undesirable low-temperature properties of ME derived from UFO, due to higher fraction of saturated acyls, can be adjusted by the addition of depressants-flow improvers for winterization. Some simplified methods for the quality control of UFO and ME are discussed. The conversion of acylglycerols to ME is monitored by GLC with a packed column, where the peak areas of ME in the sample before and after the reaction with an effective methylation agent are compared. The method for the determination of the water content in esters utilizes the reaction of calcium carbide with water, the volume of acetylene being measured. (Author)

  12. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Eun; Park, Ji-Woon; Hwang, Jungho, E-mail: hwangjh@yonsei.ac.kr

    2014-01-01

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10{sup −3} S/m from 4.3 × 10{sup −9} S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer.

  13. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    International Nuclear Information System (INIS)

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  14. Synthesis of (2R, 4R)-2-N-tert-Butyloxycarbonyl Amino-4,5-epoxido-valeric Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The stereoselective synthesis of (2R, 4R)-2-N-tert-butyloxycarbonyl amino-4, 5-epoxido- valeric acid methyl ester 8, which is the key intermediate for the synthesis of (2'S, 2R) -3-trans-nitrocyclopropyl-alanine, was first accomplished.

  15. Synthesis of (2R,4R)—2—N—tert—Butyloxycarbonyl Amino—4,5—epoxido—valeric Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    XinRongQIN; YuLiXIE; 等

    2002-01-01

    The stereoselective synthesis of (2R,4R)-2-N-tert-butyloxycarbonyl amino-4,5-epoxido-valeric acid methyl ester 8,which is the key intermediate for the synthesis of (2′S,2R)-3-trans-nitrocyclopropyl-alanine,was first accomplished.

  16. Methods of preparation of fatty acid methyl esters (FAME. Statistical assessment of the precision characteristics from a collaborative trial

    Directory of Open Access Journals (Sweden)

    Pérez-Camino, M. C.

    2000-12-01

    Full Text Available The official regulations for the control of the olive and olive pomace oils of the European Union (EU and International Olive Oil Council (IOOC include the determination of fatty acids in order to be applied to several purity criteria. The determination of fatty acids require the preparation of the fatty acid methyl esters (FAME for the subsequent analysis by gas chromatography with good precision and reproducibility. Among the methods used in the laboratories of both the industries and the official institutions looking after the olive oil control, the ones selected were: 1 cold methylation with methanolic potash and 2 hot methylation with sodium methylate followed by acidification with sulphuric acid in methanol and heating. A statistical assessment of the precision characteristics were performed on the determination of fatty acids using both methods by a collaborative trial following the directions included in the AOAC regulation (AOAC 1995. In oils with low acidities, the results obtained for both methylation methods were equivalent. However, the olivepomace oil sample (acidity 15.5% showed significative differences between the fatty acid compositions obtained using both methylation methods. Finally, the methylation with the acidic+basic method did not yield an increase of the trans-isomers of the fatty acids.Los métodos oficiales para el control del aceite de oliva y de orujo de oliva de la Unión Europea (UE y del Comité Oleícola Internacional (COI incluyen la determinación de ácidos grasos en la aplicación de varios criterios de pureza. La determinación de ácidos grasos requiere la preparación de los ésteres metílicos de los ácidos grasos (FAME y su posterior análisis mediante cromatografía de gases con una buena repetibilidad y reproducibilidad. Entre los muchos métodos usados por los laboratorios de la industria y de los organismos oficiales de control, se seleccionaron los siguientes: 1 metilación en frío con potasa

  17. Synthesis and Crystal Structure of 2-[(4-Methoxy- 6-methylthio-2-pyrimidinyl)aminocarbonyl-aminosulfonyl] Benzoic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    黄明智; 王晓光; 毛春晖; 黄路; 宋海斌

    2004-01-01

    The title compound 2-[(4-methoxy-6-methylthio-2-pyrimidinyl)aminocarbonyl-aminosulfonyl]benzoic acid methyl ester (C15H16N4O6S2,Mr = 412.44) was obtained by the reaction of (4-methoxy-6-methylthio-2-pyrimidinyl)amine with 2-methoxylcarbonylbenzene-sulfonylisocya-nate.The crystal is of monoclinic,space group P21/c with a =11.169(3),b = 9.508(3),c = 17.690(5)(A),β = 91.593(5)o,Z = 4,V = 1877.9(10)(A)3,Dc = 1.459 g/cm3,F(000) = 856,μ(MoKα) = 0.324 mm-1,R = 0.0690 and Wr = 0.1368 for 3301 observed reflections (I > 2((I)).The N(1)-H…N(3) and N(2)-H…O(4) hydrogen bonds can be observed.In the molecule the phenyl plane(I),pyrimi-din-2-yl-urea bridge plane(Ⅱ) and ester plane(Ⅲ) form three conjugated systems.

  18. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.

    Science.gov (United States)

    Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R

    2015-03-01

    The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step.

  19. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content.

    Science.gov (United States)

    Kim, Jieun; Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Choi, Tae O; Kim, Jae-Kon; Jeon, Young Jae; Kwon, Eilhann E

    2016-07-01

    This study fundamentally investigated the pseudo-catalytic transesterification of dried Nannochloropsis oceanica into fatty acid methyl esters (FAMEs) without oil extraction, which was achieved in less than 5min via a thermo-chemical pathway. This study presented that the pseudo-catalytic transesterification reaction was achieved in the presence of silica and that its main driving force was identified as temperature: pores in silica provided the numerous reaction space like a micro-reactor, where the heterogeneous reaction was developed. The introduced FAME derivatization showed an extraordinarily high tolerance of impurities (i.e., pyrolytic products and various extractives). This study also explored the thermal cracking of FAMEs derived from N. oceanica: the thermal cracking of saturated FAMEs was invulnerable at temperatures lower than 400°C. Lastly, this study reported that N. oceanica contained 14.4wt.% of dried N. oceanica and that the introduced methylation technique could be applicable to many research fields sharing the transesterification platform. PMID:27082269

  20. NF EN 14104. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the acid index; NF EN 14104. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de l'indice d'acide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard describes a titration method for the determination of the acid index of slightly colored fatty acids methylic esters (FAME). This method allows the determination of the acid index over a concentration range comprised between 0.10 mg of KOH/g and 1 mg of KOH/g. (J.S.)

  1. Fatty Acid Methyl Ester (FAME Succession in Different Substrates as Affected by the Co-Application of Three Pesticides.

    Directory of Open Access Journals (Sweden)

    Alessandra Cardinali

    Full Text Available In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality.In this study the fatty acid methyl esters (FAMEs evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole, with two extraction methods, and two incubation times (0 and 58 days. FAMEs extraction followed the microbial identification system (MIDI and ester-linked method (EL.The pesticides showed high persistence, as revealed by half-life (t1/2 values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time.Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.

  2. Fuel properties of highly polyunsaturated fatty acid methyl esters: Prediction of fuel properties of algal biodiesel

    Science.gov (United States)

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, can be derived from other triacylglycerol-containing feedstocks. Especially algae are being considered for this purpose due to their claimed high production potential. However, there are no comprehensive reports regarding...

  3. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M.L.; Quinn, Matthew; Wychen, Stefanie van; Templeton, David W.; Wolfrum, Edward J. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2012-04-15

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process. (orig.)

  4. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  5. Evaluation of the separation characteristics of application-specific (fatty acid methyl esters) open-tubular columns for gas chromatography.

    Science.gov (United States)

    Kiridena, Waruna; Qian, Jing; Koziol, Wladyslaw W; Poole, Colin F

    2007-03-01

    The solvation parameter model is used to characterize the separation properties of the polar stationary phases EC-Wax and PAG with a poly(ethylene oxide) backbone (substituted with propylene oxide in the case of PAG) and the cyanopropyl-substituted polysilphenylene-siloxane stationary phase BPX90 at five equally spaced temperatures between 60 and 140 degrees C. The separation characteristics of these stationary phases are compared to four PEG and two poly(cyanopropylsiloxane) stationary phases (HP-20M, HP-Innowax, SolGel-Wax, DB-WAXetr, HP-88, and SP-2340) characterized in the same way. The database of system constants for these polar stationary phases is used to provide insight into the separation mechanism for fatty acid methyl esters and to determine selectivity differences that can be expected for generically similar stationary phase types. The discussion is not structured to indicate which stationary phase should be used for a particular separation but to provide a general framework to demonstrate the relationship between the retention mechanism and stationary phase chemistry. PMID:17461115

  6. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  7. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Wagutu, Agatha W.; Chhabra, Sumesh C.; Lang' at-Thoruwa, Caroline C. [Department of Chemistry, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Thoruwa, Thomas F.N. [Department of Energy Engineering, Kenyatta University, P.O. Box 43844, Nairobi (Kenya); Mahunnah, R.L.A. [University of Dar-es Salaam, Muhimbili College of Medicine, P.O. Box 53486, Dar-es Salaam (Tanzania)

    2010-08-15

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L{sup -1} (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries. (author)

  8. S-(−-10,11-Dihydroxyfarnesoic Acid Methyl Ester Inhibits Melanin Synthesis in Murine Melanocyte Cells

    Directory of Open Access Journals (Sweden)

    Seung-Hwa Baek

    2014-07-01

    Full Text Available The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasmas, freckles, age spots, and chloasmas. In the course of screening for melanin synthesis inhibitors, we found that the culture broth from an insect morphopathogenic fungus, Beauveria bassiana CS1029, exhibits potent antimelanogenic activity. We isolated and purified an active metabolite and identified it as S-(−-10,11-dihydroxyfarnesoic acid methyl ester (dhFAME, an insect juvenile hormone. To address whether dhFAME inhibits melanin synthesis, we first measured the size of the melanin biosynthesis inhibition zone caused by dhFAME. dhFAME also showed inhibitory activity against mushroom tyrosinase in Melan-a cells. Intracellular, dose-dependent tyrosinase inhibition activity was also confirmed by zymography. In addition, we showed that dhFAME strongly inhibits melanin synthesis in Melan-a cells. Furthermore, we compared levels of TYR, TRP-1, TRP-2, MITF, and MC1R mRNA expression by reverse-transcription polymerase chain reaction and showed that treatment of Melan-a cells with 35 μM dhFAME led to an 11-fold decrease in TYR expression, a 6-fold decrease in TRP-2 expression, and a 5-fold decrease in MITF expression. Together, these results indicate that dhFAME is a potent inhibitor of melanin synthesis that can potentially be used for cosmetic biomaterial(s.

  9. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties

    Energy Technology Data Exchange (ETDEWEB)

    Canoira, Laureano; Garcia Galean, Juan; Alcantara, Ramon [Department of Chemical Engineering and Fuels, ETS Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Lapuerta, Magin; Garcia-Contreras, Reyes [Maquinas y Motores Termicos, ETS Ingenieros Industriales, Universidad de Castilla La Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-01-15

    Fatty acid methyl esters (FAMEs) from castor oil have been synthesized by methanolysis catalyzed by sodium methoxide and the optimal transesterification conditions have been found. However, some properties of the castor FAME render it unsuitable in pure state for its direct use as fuel in internal combustion engines. Thus, blends with reference diesel have been prepared and their properties have been evaluated. Among these properties, the oxidative stability of the blends shows a negative anti-synergistic effect, that is, all the blends have an induction period lower than the pure reference diesel and the pure castor FAME. On the contrary, the lubricity shows a positive synergistic effect, the wear scar of the blends being always lower than those of the pure components. The cold-filter plugging point of the blends shows also a singular effect, since the filterability remains identical to that of the reference diesel until around 50 vol% of castor FAME has been blended with it. The blends of castor FAME and reference diesel until approximately 40 vol% of castor FAME meet most of the specifications of the EN 590 standard. (author)

  10. Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61-Butyl Acid Methyl Ester (PCBM)

    KAUST Repository

    Tummala, Naga Rajesh

    2015-11-24

    High-boiling-point solvent additives, employed during the solution processing of active-layer formulations, impact the efficiency of bulk hetero-junction (BHJ) organic solar cells by influencing the morphological / topological features of the multicomponent thin film. Here, we aim at a better understanding of how these additives change the aggregation landscape in the casting solution prior to film deposition via a multi-scale computational study of the aggregation phenomena of phenyl-C61-butyric-acid methyl ester (PCBM) in various solutions. The energetic landscape of PCBM-solvent / solvent-additive intermolecular interactions is evaluated at the electronic-structure level through symmetry-adapted perturbation theory to determine the nature and strength of non-covalent forces important to aggregation. Molecular dynamics simulations highlight how the choice of solvent and solvent additives control the formation of molecular aggregates. Our results indicate that high-boiling-point solvent additives change the effective interactions among the PCBM and casting-solvent molecules and alter the equilibrium PCBM aggregate sizes in solution.

  11. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    International Nuclear Information System (INIS)

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  12. Silane Reduction of 5-Hydroxy-6-methyl-pyridine-3,4-dicarboxylic Acid Diethyl Ester: Synthesis of Vitamin B6

    Directory of Open Access Journals (Sweden)

    Andrew G. Gum

    2003-12-01

    Full Text Available Alternative methods for the synthesis of pyridoxine have been investigated. The key intermediate, 5-hydroxy-6-methyl-pyridine-3,4-dicarboxylic acid diethyl ester (5, was reduced with either a silane monomer (MeSiH(OEt2 or a polysiloxane (polymethylhydrosiloxane, PMHS to afford crude pyridoxine. An isolation technique utilizing a commercially available resin was devised, affording the desired product, vitamin B6, in an overall yield of 38-54 % and a purity of 76%.

  13. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    International Nuclear Information System (INIS)

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  14. Fractionation of fish oil fatty acid methyl esters by means of argentation and reversed-phase high-performance liquid chromatography, and its utility in total fatty acid analysis

    NARCIS (Netherlands)

    Özcimder, M.; Hammers, W.E.

    1980-01-01

    The utility of reversed-phase and argentation high-performance liquid chromatography (HPLC) as pre-fractionation methods in fatty acid analysis is discussed. Both HPLC modes were applied to cod liver oil fatty acid methyl esters. Apart from positional isomers, the fractions obtained by reversed-phas

  15. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  16. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    Energy Technology Data Exchange (ETDEWEB)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E., E-mail: hekatz@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Wu, Meng-Yin [Department of Electrical and Computer Engineering, University of Wisconsin, 415 Engineering Drive, Madison, Wisconsin 53706 (United States); Johns, Gary L.; Markovic, Nina [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States); Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin, 248 MS and E Building, 1509 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  17. Crystallisation and Melting Behavior of Methyl Esters of Palm Oil

    Directory of Open Access Journals (Sweden)

    Cheng S. Foon

    2006-01-01

    Full Text Available The methyl esters of palm oil, which consists of saturated and unsaturated esters (0.6 to 95.9% unsaturation of the C12 to C18 fatty acids, solidify at the two temperature ranges, -52 to -45°C and -24 to 21°C, when the esters are cooled. When the esters are heated, they melt at two distinct temperatures, -25 and -33°C and a broad peak at -9 to 28°C. The heating thermograms also showed an exothermic crystallisation peak in between two endothermic melting peaks, indicating the occurrence of re-crystallisation of low melting methyl esters into higher melting point crystal and then melt again at higher temperature.

  18. Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    Institute of Scientific and Technical Information of China (English)

    Sung-Suk; Suh; So; Jung; Kim; Jinik; Hwang; Mirye; Park; Taek-Kyun; Lee; Eui-Joon; Kil; Sukchan; Lee

    2015-01-01

    Objecive:To screen the fatty acid(FA) composition of 20 marine microalgae species,including seven Diophyceae,six Bacillariophyeae four Chlorophyceae,two Haptophyceae and one Raphidophyceae species.Methods:Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed.Results:The FA composition of microalgae was speciesspecific.For example,seven different species of Dinophyceae were composed primarily of C14:0,C16:0.C18:0.C20:4n-6.C20:5n-3 and C22:6n-3.while C14:0.C16:0,C16:1.C18:0.C20:5n-3 and C22:6n-3 were abundant FAs in six species of Bacillariophyceae.In addition,four Chlurophyceae,two Haptopkyeeae and one Raphidophyceae species all contained a high degree of C16:1 n-7[(9.2R-34.91)%and(34.48-35.04)%].C14:0[(13.34-25.96)%]and[(26.69-Z8.24)%],and C16:0[(5.89-29.15)%]and[(5.70-16.81)%].Several factors contribute to the nutritional value of microalgae.including the polyunsaturated FA content and n-3 to n-6 FA ratio,which could be used to assess the nutritional quality of microalgae.Conclusions:This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea,and identifies the potential utility of FAs as species-specific biomarkers.

  19. Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    Institute of Scientific and Technical Information of China (English)

    Sung-Suk Suh; So Jung Kim; Jinik Hwang; Mirye Park; Taek-Kyun Lee; Eui-Joon Kil; Sukchan Lee

    2015-01-01

    Objective:To screen the fatty acid (FA) composition of 20 marine microalgae species, including sevenDiophyceae, sixBacillariophyceae, fourChlorophyceae, twoHaptophyceae and oneRaphidophyceae species.Methods: Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed.Results:The FA composition of microalgae was species-specific. For example, seven different species ofDinophyceae were composed primarily of C14:0, C16:0, C18:0, C20:4n-6, C20:5n-3 and C22:6n-3, while C14:0, C16:0, C16:1, C18:0, C20:5n-3 and C22:6n-3 were abundant FAs in six species ofBacillariophyceae. In addition, fourChlorophyceae, twoHaptophyceae and oneRaphidophyceae species all contained a high degree of C16:1n-7 [(9.28-34.91)% and (34.48-35.04)%], C14:0 [(13.34-25.96)%] and [(26.69-28.24)%], and C16:0 [(5.89-29.15)%] and [(5.70-16.81)%]. Several factors contribute to the nutritional value of microalgae, including the polyunsaturated FA content and n-3 to n-6 FA ratio, which could be used to assess the nutritional quality of microalgae.Conclusions:This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea, and identifies the potential utility of FAs as species-specific biomarkers.

  20. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Science.gov (United States)

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  1. Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Shweta; Singh, Bhaskar; Sharma, Yogesh C. [Banaras Hindu University, Department of Applied Chemistry, Institute of Technology, Varanasi (India); Frometa, Amado Enrique N. [Universidad Tecnologica de Izucar de Matamoros, Puebla (Mexico)

    2012-12-15

    Commercial-grade limestone used in whitewashing which is a low-cost material has been used as a catalyst for the synthesis of fatty acid methyl esters. The catalyst was characterized by differential thermal analysis/thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy for the study of its physicochemical nature. The catalyst was calcined at 900 C for 2.5 h for the decomposition of calcium carbonate to calcium oxide. The catalyst was further activated by dissolving 1.5 wt% of catalyst in 30 ml methanol (7.5:1, methanol to used frying oil molar ratio) and stirred at 25 C for 1 h on a magnetic stirrer. The transesterification reaction was performed using calcium oxide as a catalyst and then with the ''activated calcium oxide.'' The conversion obtained was 94.4 % with calcium oxide and was found to be lower for the ''activated calcium oxide'' (i.e., 87.36 %). The conversion increased to 96.8 % on increasing the catalyst amount to 2.0 wt% in 5 h. A high yield (>95 %) of fatty acid methyl esters was observed when either calcium oxide or ''activated calcium oxide'' was taken as catalyst. The catalytic activity of calcium oxide obtained from low-grade limestone has been found to be comparable with the laboratory-grade CaO. (orig.)

  2. Sintesis Metil Ester Sulfonat Dari Asam Stearat Dan Metil Ester Sulfonat Dari Asam Oleat

    OpenAIRE

    Samosir, Yustina

    2011-01-01

    The Synthesis of Methyl Ester Sulfonate (MES) from stearic acid and from oleic acid through the stages of esterification reaction, that are esterification from stearic acid and oleic acid that forms methyl ester stearic acid and methyl ester oleic acid next stage was sulfonating the two of methyl esters to form a methyl ester sulfonate stearic acid and methyl ester oleic acid sulfonate. Furthermore, both fatty acid methyl ester sulfonate is neutralized with NaOH to obtain sulfonate salt. ...

  3. L-Altruronic acid formed by epimerization of D-galacturonic acid methyl esters during saponification of citrus pectin.

    Science.gov (United States)

    Zhan, D; Qiu, F; Mort, A J

    2001-02-15

    While searching for oligosaccharides containing rhamnose residues in the endopolygalacturonase (EPG) digest of saponified citrus pectin, we found several oligomers containing, in addition to galacturonic acid, a sugar previously unreported in pectin. The 1- and 2-D 1H NMR spectra of the oligosaccharides were consistent with the sugar being a uronic acid with its 2- and 3-hydroxyls being axial and 4-hydroxyl being equatorial. MALDI-TOF mass spectrometry indicated that the oligomers consisted solely of uronic acids. Reduction of the uronic acids in the oligosaccharides converted them to galactose and altrose. The altrose was found to be the L enantiomer by comparison of its trimethylsilyl (-)-2-butyl glycosides to those of authentic D-altrose and a racemic mixture. The sugar was not found in oligosaccharides prepared from EPG digestion of citrus pectin deesterified with pectin methylesterase rather than saponification. Thus, it appears that during saponification, a small proportion of the methylesterified galacturonic acid residues in pectins is epimerized at C-5 leading to formation of L-altruronic acid residues.

  4. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester.

    Science.gov (United States)

    Brandt, Gabriel S; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J; Yep, Alejandra; Kenyon, George L; Petsko, Gregory A; Jordan, Frank; Ringe, Dagmar

    2008-07-22

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  5. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    Science.gov (United States)

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  6. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  7. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity.

    Science.gov (United States)

    MacDonald, Marybeth C; Arivalagan, Pugazhendhi; Barre, Douglas E; MacInnis, Judith A; D'Cunha, Godwin B

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  8. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). PMID:23294646

  9. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  10. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  11. NF EN 14109. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the potassium content by atomic absorption spectroscopy; NF EN 14109. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en potassium par spectrometrie d'absorption atomique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard specifies a method of determination of sodium contents for concentrations equal or greater than 0.5 mg/kg. This method is applicable to fatty acids methylic esters (FAME) intended to be incorporated to mineral oils. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  12. NF EN 14108. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the sodium content by atomic absorption spectroscopy; NF EN 14108. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en sodium par spectrometrie d'obsorption atomique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard specifies a method of determination of sodium contents for concentrations equal or greater than 1 mg/kg. This method is applicable to fatty acids methylic esters (FAME) intended to be incorporated to mineral oils. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  13. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Amin Abedini

    2013-01-01

    Full Text Available Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae, a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL. Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.

  14. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae).

    Science.gov (United States)

    Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François; Neut, Christel; Hennebelle, Thierry

    2013-01-01

    Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically. PMID:24348709

  15. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yin-yu; Liu, Yuhuan; Lin, Xiangyang [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China); Chen, Wen-wei [College of Life Science, China Jiliang University, Hangzhou 310018 (China); Lei, Hanwu [Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 (United States); Ruan, Roger [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China)]|[Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108-6005 (United States)

    2009-02-15

    Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst. (author)

  16. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Melancon, Justin M.; Živanović, Sandra R., E-mail: sz@latech.edu [Institute for Micromanufacturing and Electrical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272 (United States)

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection of secondary electrons due to hole charge trapping at the semicontinuous gold layer.

  17. Thin film transistors based on poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester hetero-junction for ammonia detection

    Science.gov (United States)

    Chen, Yuyan; Xie, Guangzhong; Xie, Tao; Liu, Yanni; Du, Hongfei; Su, Yuanjie; Jiang, Yadong

    2015-10-01

    Composite film and bilayer film based on poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl C61 butyric acid methyl ester(PC61BM) were firstly utilized as active layers of OTFT sensor. By comparing with electrical and sensing properties of these different devices for ammonia (NH3) at room temperature, the device based on PC61BM/P3HT composite film exhibited the optimum characteristics. The recovery value of PC61BM/P3HT composite film reached 93.9% of its initial value at 20 ppm NH3 within 9 min, which was improved by 75.5% in comparison with the one based on pristine P3HT film. In addition, the sensing mechanisms of all sensors were studied as well.

  18. Application of Factorial Design of Experiments for the Continuous Hydrogenation of Enriched Castor Oil Methyl Esters

    OpenAIRE

    Tulasi Sri Venkata Ramana Neeharika; Karna Narayana Prasanna Rani; Kasturi Venkata Sesha Adinarayana Rao; Thella Prathap Kumar; Rachapudi Badari Narayana Prasad

    2013-01-01

    Castor oil methyl esters contains nearly 90% ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid). Hydrogen-ated castor oil methyl esters finds several applications in coating, lubricants formulations and pharmaceu-tical areas. The present study reports a fast, simple, efficient and continuous hydrogenation of enriched castor oil methyl ester (ECME) using 10% Pd/C catalyst at different pressures and temperatures. The range of process conditions for this study varied from 30-60 °C, 5-15 bar wi...

  19. NF EN 14214. - Automotive fuels. - Fatty acid methyl esters (FAME) for diesel engines. - Requirements and test methods; NF EN 14214. - Carburants pour automobiles. - Esters methyliques d'acides gras (EMAG) pour moteurs Diesel. - Exigences et methodes d'essais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    This standard specifies requirements and test methods for marketed and delivered fatty acid methyl esters (FAME) to be used either as automotive fuel for diesel engines, at 100% concentration, or as an extender for automotive fuel for diesel engines, in accordance with the requirements of EN 590. At 100% concentration it is applicable to fuel for use in diesel engine vehicles designed or subsequently adapted to run on 100% FAME.

  20. NF EN 14110. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the methanol content; NF EN 14110. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en methanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard describes a method of methanol dosimetry in fatty acids methylic esters (FAME) which can be applied to gas-oil and domestic fuel oil. This method is applicable over a large spectrum of methanol concentrations comprised between 0.01% (m/m) and 0.5% (m/m). It is not applicable to FAME mixtures containing low boiling point compounds. (J.S.)

  1. 75 FR 4292 - 2-Propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene and 2-methylpropyl 2-methyl-2...

    Science.gov (United States)

    2010-01-27

    ...-propenoate; when used as an inert ingredient in a pesticide chemical formulation. BASF Corporation submitted...-methylpropyl 2- methyl-2-propenoate on food or feed commodities. DATES: This regulation is effective January 27...: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS...

  2. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn

    2011-09-23

    The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. PMID:21851946

  3. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.

    Science.gov (United States)

    Gupta, Vinod Kumar; Khani, Hadi; Ahmadi-Roudi, Behzad; Mirakhorli, Shima; Fereyduni, Ehsan; Agarwal, Shilpi

    2011-01-15

    Quantitative structure-retention relationship (QSRR) models correlating the retention times of fatty acid methyl esters in high resolution capillary gas chromatography and their structures were developed based on non-linear and linear modeling methods. Genetic algorithm (GA) was used for the selection of the variables that resulted in the best-fitted models. Gravitational index (G2), number of cis double bond (NcDB) and number of trans double bond (NtDB) were selected among a large number of descriptors. The selected descriptors were considered as inputs for artificial neural networks (ANNs) with three different weights update functions including Levenberg-Marquardt backpropagation network (LM-ANN), BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton backpropagation (BFG-ANN) and conjugate gradient backpropagation with Polak-Ribiére updates (CGP-ANN). Computational result indicates that the LM-ANN method has better predictive power than the other methods. The model was also tested successfully for external validation criteria. Standard error for the training set using LM-ANN was SE=0.932 with correlation coefficient R=0.996. For the prediction and validation sets, standard error was SE=0.645 and SE=0.445 and correlation coefficient was R=0.999 and R=0.999, respectively. The accuracy of 3-2-1 LM-ANN model was illustrated using leave multiple out-cross validations (LMO-CVs) and Y-randomization.

  4. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  5. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  6. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  7. Efficient and stable, structurally inverted poly(3-hexylthiopen): [6,6]-phenyl-C61-butyric acid methyl ester heterojunction solar cells with fibrous like poly(3-hexylthiopen)

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, Jayasundera, E-mail: jayasundera@yahoo.com [Applied Functional Polymers and Laboratory for Solar Energy Research, University of Bayreuth, 95440 Bayreuth (Germany); Institute of Fundamental Studies, Hantana Road, CP 20000, Kandy (Sri Lanka); Shankar, Karthik [Department of Electrical Engineering, Department of Material Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Grimes, Craig A., E-mail: cgrimes@engr.psu.edu [Department of Electrical Engineering, Department of Material Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Thelakkat, Mukundan, E-mail: mukundan.thelakkat@unibayreuth.de [Applied Functional Polymers and Laboratory for Solar Energy Research, University of Bayreuth, 95440 Bayreuth (Germany)

    2011-10-31

    We investigated an inverted organic photovoltaic device structure in which a densely packed {approx} 100 nm thin TiO{sub 2} layer on fluorine doped conducting glass serves as anode and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Au layer on top of the active layer serves as cathode. The active layer is comprised of a blend of poly(3-hexylthiopene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The rectification behavior of such a device is improved significantly and injection losses are minimized compared to devices without any compact TiO{sub 2} layer. Moreover, nanostructured P3HT active layer was achieved in-situ by spin coating concentrated pure P3HT and P3HT:PCBM blend and solar cell performances on thickness of the active layer were also investigated. For the inverted solar cells constructed with different concentrations of P3HT and PCBM keeping the P3HT:PCBM ratio 1:0.8 (wt.%), the highest short circuit current and efficiency was observed when the P3HT and PCBM concentration was equal to 1.5 (wt.%) and 1.2 (wt.%) respectively. This leads to highly stable and reproducible power conversion efficiency above 3.7% at 100 mW/cm{sup 2} light intensity under AM 1.5 conditions.

  8. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    International Nuclear Information System (INIS)

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  9. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    OpenAIRE

    Babu, K.; N. K. Maurya; Mandal, A.; Saxena, V. K.

    2015-01-01

    AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES) was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited go...

  10. Synthesis of a high-grade lubricant from sunflower oil methyl esters

    Directory of Open Access Journals (Sweden)

    Hillion Gérard

    2003-09-01

    Full Text Available This paper presents the synthesis of saturated branched fatty acid methyl esters by codimerization of ethylene with conjugated linoleic methyl esters from sunflower oil. The catalytic system used is composed of iron, diimine and a reducing agent. This four-step synthesis will be discussed. After a last step of transesterification with TMP (trimethylolpropane a lubricant with interesting characteristics (in particular a high thermal stability and a good cold behavior is obtained

  11. Methyl Esters for Tumor Drug Delivery

    Directory of Open Access Journals (Sweden)

    José Portilla-Arias

    2010-01-01

    Full Text Available New copolyesters derived from poly(β,L-malic acid have been designed to serve as nanoconjugate platforms in drug delivery. 25% and 50% methylated derivatives (coPMLA-Me25H75 and coPMLA-Me50H50 with absolute molecular weights of 32 600 Da and 33 100 Da, hydrodynamic diameters of 3.0 nm and 5.2 nm and zeta potential of −15 mV and −8.25 mV, respectively, were found to destabilize membranes of liposomes at pH 5.0 and pH 7.5 at concentrations above 0.05 mg/mL. The copolymers were soluble in PBS (half life of 40 hours and in human plasma (half life of 15 hours but they showed tendency to aggregate at high levels of methylation. Fluorescence-labeled copolymers were internalized into MDA-MB-231 breast cancer cells with increased efficiency for the higher methylated copolymer. Viability of cultured brain and breast cancer cell lines indicated moderate toxicity that increased with methylation. The conclusion of the present work is that partially methylated poly(β,L-malic acid copolyesters are suitable as nanoconjugate platforms for drug delivery.

  12. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Hauff, Simone [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany); Vetter, Walter [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany)], E-mail: w-vetter@uni-hohenheim.de

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was {approx}90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC{sub eq}) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese

  13. Combustion of Pure, Hydrolyzed and Methyl Ester Formed of Jatropha Curcas Lin oil

    Directory of Open Access Journals (Sweden)

    Muhaji Muhaji

    2015-10-01

    Full Text Available The density and viscosity of vegetable oil are higher than that of diesel oil. Thus its direct combustion in the diesel engine results many problems. This research was conducted to investigate the flame characteristics of combustion of jatropha curcas lin in pure, hydrolyzed and methyl ester form. The results indicated that the combustion of pure jatropha curcas lin occurs in three stages, hydrolyzed in two stages    and methyl ester in one stage. For pure jatropha curcas lin, in the first stage, unsaturated fatty acid burned for  0.265 s.  It is followed by saturated fatty acid, burned for 0.389 s in the second stage. And, in the last stage is the burned of glycerol for 0.560 s. Meanwhile for hydrolyzed one, in the first stage, unsaturated fatty acid burned for 0.736 s, followed by saturated fatty acid, burned  for 0.326 s in the second stage. And the last, for methyl ester is the burned for 0.712 s. The highest burning rate was for methyl ester which was 0.003931cc/s. The energy releasing rate of methyl ester, which was for 13,628.67 kcal/(kg.s resembled that of diesel oil the most, while the lowest rate was for pure jatropha curcas lin which was 8,200.94 kcal/(kg.s. In addition, massive explosion occurred in the fuel containing unsaturated fatty acid and glycerol

  14. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface

    KAUST Repository

    El-Ballouli, AlA'A O.

    2014-05-14

    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C61-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion. © 2014 American Chemical Society.

  15. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    Science.gov (United States)

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae. PMID:26993642

  16. Determination of the antioxidant activity based on the content changes in fatty acid methyl esters in vegetable oils

    Institute of Scientific and Technical Information of China (English)

    Housam Haj Hamdo; Zaid Al-Assaf; Warid Khayata

    2014-01-01

    Free radicals,which are generated in several biochemical reactions in the body,have been implicated as mediators of many diseases,including cancer,atherosclerosis and heart diseases.Although the endogenous antioxidants can scavenge these free radicals,they are often insufficient to maintain the in vivo redox balance.The antioxidant activity (AOA) was examined by addition of each tested antioxidants [alpha-tocopherol (a-T),beta-tocopherol (β-T),gamma-tocopherol (γ-T),delta-tocopherol (δ-T),butylated hydroxyanisole (BHA),2,6-di-tert-butyl-4-methylphenol (BHT),and ascorbyle palmitate (AP)] to four types of different vegetable oils (sunflower oil,soybean oil,corn oil and olive oil).Moreover,content changes in fatty acids were then investigated every 3 months during the storage period.The results showed that the AOA was different among the tested antioxidants.The AOA for BHA was the most for different types of oil compared with other antioxidants,whereas the δ-T possessed the lowest AOA.

  17. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hohl, G.H. [Military Technology Agency, Vienna (Austria)

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  18. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Science.gov (United States)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  19. NF EN 14106. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the free glycerol content; NF EN 14106. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en glycerol libre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard specifies a gas chromatography method of determination of the free glycerol content of fatty acids methylic esters (FAME) for concentrations comprised between 0.005% and 0.070%. The objective of this method is to evaluate the quality of the FAMEs in terms of trans-esterification of their by-products content, such as glycerol, which can change the fuel combustion properties. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  20. Effect of reaction temperature and time on neem methyl ester yield in a batch reactor

    International Nuclear Information System (INIS)

    Highlights: • Fatty acid profile and molecular mass of neem oil were determined. • Main effects of the factors and interaction were successfully quantified and compared. • Six (6) regression models were developed for methyl ester yield using NLREG software. • Results showed that the models can predict the methyl ester yield within 7% of experimental values. - Abstract: Experimental investigation of neem methyl ester yield in a batch reactor at different process conditions of temperature and reaction duration was carried out using a 2-factor, 5-level full factorial experimental design. Reaction temperature was varied between 40 °C and 60 °C, while reaction time was studied in the range of 30–120 min. The study, which was carried out using 1% w/w catalyst amount and alcohol to oil ratio of 6:1, showed that reaction temperature had a highly significant effect (p < 0.01) in comparison with reaction time, which had a significant effect (p < 0.05) on methyl ester yield. Six (6) empirical models were developed for the response variable of methyl ester yield using a non-linear regression analysis method, facilitated by NLREG version 6.3 software. Results showed that the mean predicted ester yield values and mean experimental values were not statistically different at the 95% confidence level, whereas the maximum deviation observed was 6.9%

  1. 一锅法合成4-甲基-5-咪唑甲酸乙酯工艺%The Preparation of 4-Methyl-5-imidazole-carboxylic Acid Ethyl Ester by One-pot Reaction

    Institute of Scientific and Technical Information of China (English)

    朱驯; 魏运洋

    2012-01-01

    [Aims] The aim is to look for a new preparation method of 4-methyl-5-imidazole-carboxylic acid ethyl ester. [Methods] 4-Methyl-5-imidazole-carboxylic acid ethyl ester with versatility was prepared from 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide by one-pot reaction. [Results] The effect on yield of the mole ratio of materials, reaction temperature, different solvent were discussed by experiments. We could receive the optimal reaction condition, the mole ratio of 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide is 1:1:2 (in mol), the reaction temperature is 120 ℃, the solvent is dioxane. And the syntheses yield of 4-methyl-5-imidazole-carboxylic acid ethyl ester is 70% under this condition. [Conclusions] The new route is simple and the raw materials are easily obtained, which is suitable for industrial production.%[目的]寻找一条合成4-甲基-5-咪唑甲酸乙酯的新工艺路线。[方法]以乙酰乙酸乙酯、磺酰氯与甲酰胺为原料,采用一锅法合成一种用途广泛的多功能单体4-甲基-5-咪唑甲酸乙酯。[结果]通过实验,确定了一条合成4-甲基-5-咪唑甲酸乙酯的新工艺:以二氧六环为溶剂,环化时反应温度为120℃,反应时间为4 h,n(乙酰乙酸乙酯)∶n(磺酰氯)∶n(甲酰胺)为1∶1∶2,在该条件下,4-甲基-5-眯唑甲酸乙酯的产率为70%。[结论]该方法路线简单,原料易得,适合工业化生产。

  2. Preparation and characterization oF Ru-Sn/Al2O3 catalysts for the hydrogenation of fatty acid methyl esters

    Directory of Open Access Journals (Sweden)

    Vanina A. Mazzieri

    2010-01-01

    Full Text Available Ru-Sn/Al2O3 catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity.

  3. Preparation and characterization of Ru-Sn/Al{sub 2}O{sub 3} catalysts for the hydrogenation of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Mazzieri, Vanina A.; Sad, Mario R.; Vera, Carlos R.; Pieck, Carlos L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe (Argentina). Universidad Nacional del Litoral. Inst. de Investigaciones en Catalisis y Petroquimica; Grau, Ricardo [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe (Argentina). Universidad Nacional del Litoral. Inst. de Desarrollo Tecnologico para la Industria Quimica

    2010-07-01

    Ru-Sn/Al{sub 2}O{sub 3} catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity. (author)

  4. Reaction of gallocyanine methyl ester with uranyl ions

    Energy Technology Data Exchange (ETDEWEB)

    Kotoucek, M.; Hrbkova, M. (Palackeho Univ., Olomouc (Czechoslovakia). Prirodovedecka Fakulta)

    1984-09-01

    The reaction of gallocyanine methyl ester with uranyl ions was studied spectrophotometrically in slightly acid or neutral solutions of 40% (m/m) ethanol. A violet complex of UO/sub 2/L/sub 2/ is formed at pH>5. The conditional stability constants of the complex in the pH range 6-7.4 and the equilibrium constants of the coordination reaction were derived from the concentration curves and the continuous variations curves. The optimum conditions were sought for the spectrophotometric determination of uranium based on the occurrence of the UO/sub 2/L/sub 2/ complex. The relative standard deviation obtained for a uranium concentration of 106 ..mu..g.l/sup -1/ was ssub(r)=2.13%.

  5. Reaction of gallocyanine methyl ester with uranyl ions

    International Nuclear Information System (INIS)

    The reaction of gallocyanine methyl ester with uranyl ions was studied spectrophotometrically in slightly acid or neutral solutions of 40% (m/m) ethanol. A violet complex of UO2L2 is formed at pH>5. The conditional stability constants of the complex in the pH range 6-7.4 and the equilibrium constants of the coordination reaction were derived from the concentration curves and the continuous variations curves. The optimum conditions were sought for the spectrophotometric determination of uranium based on the occurrence of the UO2L2 complex. The relative standard deviation obtained for a uranium concentration of 106 μg.l-1 was ssub(r)=2.13%. (author)

  6. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    Science.gov (United States)

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. PMID:27136612

  7. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    Science.gov (United States)

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil.

  8. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  9. Avocado and olive oil methyl esters

    Science.gov (United States)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  10. Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

    NARCIS (Netherlands)

    Osburn, S.; Steill, J. D.; Oomens, J.; O' Hair, R. A. J.; Van Stipdonk, M.; Ryzhov, V.

    2011-01-01

    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe(center dot+), have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe(center dot+) undergoes rapid ion molecule reactions with dimethyl disulfide, a

  11. EXPERIMENTAL INVESTIGATION OF LINSEED AND NEEM METHYL ESTERS AS BIODIESEL ON CI ENGINE

    OpenAIRE

    V.DHANA RAJU; P.RAVINDRA KUMAR

    2012-01-01

    An experimental investigations were carried out on C.I.engine with Bio Diesel blends of Linseed Methyl Esters and Neem Oil Methyl Esters .The engine used for the experiments was single cylinder Four Stroke water cooled, constant speed diesel engine . Linseed Methyl ester (LSOME) and Neem oil methyl ester (NOME) are derived through transesterification process and parameters of transesterification were optimized. The blends of various proportions of the LSOME & NOME with diesel were prepared, a...

  12. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  13. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  14. Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences beta-oxidation activities, gamma-decalactone production, and cell ultrastructure in Sporidiobolus ruinenii cultivated on ricinoleic acid methyl ester.

    Science.gov (United States)

    Feron, Gilles; Mauvais, Geneviève; Lherminier, Jeanine; Michel, Joël; Wang, Xiao-Dong; Viel, Christophe; Cachon, Rémy

    2007-06-01

    The sensitivity of Sporidiobolus ruinenii yeast to the use of reducing agents, reflected in changes in the oxidoreduction potential at pH 7 (Eh7) environment, ricinoleic acid methyl ester catabolism, gamma-decalactone synthesis, cofactor level, beta-oxidation activity, and ultrastructure of the cell, was studied. Three environmental conditions (corresponding to oxidative, neutral, and reducing conditions) were fixed with the use of air or air and reducing agents (hydrogen and dithiothreitol). Lowering Eh7 to neutral conditions (Eh7 = +30 mV and +2.5 mV) favoured the production of lactone more than the more oxidative condition (Eh7 = +350 mV). In contrast, when a reducing condition was used (Eh7 = -130 mV), the production of gamma-decalactone was very low. These results were linked to changes in the cofactor ratio during lactone production, to the beta-oxidation activity involved in decanolide synthesis, and to ultrastructural modification of the cell. PMID:17668034

  15. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    Science.gov (United States)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  16. ZrOCl2·8H2O:An Efifcient and Cheap Catalyst for Esteriifcation of Free Fatty Acids to Methyl Esters

    Institute of Scientific and Technical Information of China (English)

    Cai Jie; Zhang Qiuyun; Huang Congmin; Zhou Kaizhi; Ma Peihua

    2014-01-01

    The esteriifcation of lauric acid with methanol could be efifciently catalyzed by ZrOCl2·8H2O, and this reaction was studied to develop a green method for biodiesel production. The inlfuencing factors, such as amount of catalyst, reac-tion time and molar ratio of acid to methanol, were investigated. The results indicated that the ZrOCl2·8H2O catalyst showed high catalytic activity, and gave a 97.0%methyl laurate conversion rate under the following optimized conditions, viz.:a lauric acid/methanol molar ratio of 1:10, a catalyst dosage of 4%, and a reaction duration of 2 h at methanol relfuxing tem-perature. The catalyst could be easily recovered while its activity could be well retained after three cycles. The ZrOCl2·8H2O catalyst also exhibited excellent catalytic activity for the esteriifcation of different free long-chain fatty acids (including non-edible oils with high acid value) with different short carbon chain alcohols. Therefore, the ZrOCl2·8H2O catalyst has good potential for the synthesis of biodiesel from low-cost feedstocks such as waste vegetable oils and non-edible oils.

  17. 3-溴-4-羟基-5-甲氧基苯甲酸甲酯的合成%Synthesis of 3-bromo-4-hydroxy-5-methoxy-benzoic Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    闫慧丽; 张立新; 张慧芳; 马甲民

    2011-01-01

    以香兰素为主要原料,经溴水溴代得溴代香兰素,再经氧化银氧化制取溴代香兰酸,最后与甲醇发生酯化反应,成功制得3-溴-4-羟基-5-甲氧基苯甲酸甲酯,总收率66.4%.各步反应的生成物提纯后经过1H-NMR、IR进行表征.%3-bromo4-hydroxy-5-methoxy-benzoic acid methyl ester in total yield of 66.4% is synthesized from vanillin via bromation by bromide, oxidation over silver oxide and esterification with methanol.The products from different steps are identified by 1H-NMR and IR.

  18. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    Science.gov (United States)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  19. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  20. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    Science.gov (United States)

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  1. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    Science.gov (United States)

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  2. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    Directory of Open Access Journals (Sweden)

    Arti Kumari

    Full Text Available One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5% caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  3. Volumetric properties of sunflower methyl ester oil at high pressure.

    Science.gov (United States)

    Aparicio, Cristina; Guignon, Bérengère; Rodríguez-Antón, Luis M; Sanz, Pedro D

    2007-09-01

    Biodiesel is an alternative to diesel oil (DO), because it is a fuel obtained from renewable resources that has lower emissions than DO. Biomass production should promote agricultural activity to obtain fuels for the transport sector. The study of the behavior of biodiesel at varying pressure and temperature is very interesting because diesel engines are mechanical systems that work with fuels submitted to high pressure. The specific volume, isothermal compressibility, and cubic expansion coefficients of refined sunflower methyl ester oil (SMEO) and unrefined sunflower methyl ester oil (URSMEO) were obtained and compared with those of DO from 0.1 to 350 MPa and 288.15 to 328.15 K. This work shows that oil refinement did not significantly modify any of the properties studied of the final biodiesel. Compared with DO, both SMEOs were about 6% denser, whereas isothermal compressibility and cubic expansion coefficients were bigger or smaller for DO depending on pressure and temperature.

  4. Production and Characterization of Jatropha Oil Methyl Ester

    Directory of Open Access Journals (Sweden)

    P. Venkateswara Rao, G. Srinivasa Rao

    2013-04-01

    Full Text Available Biodiesel is emerging as a promising substitute of an alternative fuel and has gained significant attention due to the predicted depletion of conventional fuels availability in near future and environmental pollution concern. Utilization of biodiesel produced from Jatropha oil by transesterification process is one of the most promising options to replace conventional fossil diesel fuel. The physical properties such as density, Kinematic viscosity, flash point, carbon residue, Pour point and Cetane number were found out for diesel, Jatropha oil and Jatropha Oil Methyl Ester (JOME produced in the laboratory. Properties obtained for the Jatropha oil methyl ester are very closely matched with the values of conventional diesel fuel and can be used without any modification in the existing diesel engine.

  5. [Enantioseparation of 2-phenylcarboxylic acid esters by capillary gas chromatography].

    Science.gov (United States)

    Shi, Xueyan; Liu, Feipeng; Bian, Qinghua

    2016-01-01

    Chiral 2-arylcarboxylic acid derivatives are important intermediates for preparing 2-arylcarboxylic acids, which are non-steroidal anti-inflammatory drugs (NSAIDs). In order to separate 2-phenylcarboxylic acid ester enantiomers by capillary gas chromatography (CGC), 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin were used as CGC chiral stationary phases, separately, and their enantioseparation abilities to enantiomers of methyl 2-phenylbutanoate, ethyl 2-phenylbutanoate, isopropyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were examined. It was found that methyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were successfully separated by using 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin as CGC chiral stationary phases, respectively. The enantiomer separation abilities of 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin to the three pairs of 2-phenylcarboxylic acid esters tested are superior to those of 2, 6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin. PMID:27319170

  6. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  7. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Science.gov (United States)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  8. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut...

  9. Phenylalanine and tyrosine methyl ester intramolecular interactions and conformational analysis by (1)H NMR and infrared spectroscopies and theoretical calculations.

    Science.gov (United States)

    Cormanich, Rodrigo A; Ducati, Lucas C; Tormena, Cláudio F; Rittner, Roberto

    2014-04-01

    Amino acid conformational analysis in solution are scarce, since these compounds present a bipolar zwitterionic structure ((+)H3NCHRCOO(-)) in these media. Also, intramolecular hydrogen bonds have been classified as the sole interactions governing amino acid conformational behavior in the literature. In the present work we propose phenylalanine and tyrosine methyl ester conformational studies in different solvents by (1)H NMR and infrared spectroscopies and theoretical calculations. Both experimental and theoretical results are in agreement and suggest that the conformational behavior of the phenylalanine and tyrosine methyl esters are similar and are dictated by the interplay between steric and hyperconjugative interactions.

  10. Production of methyl ester from oil in the wastewater pond of a palm oil factory

    Directory of Open Access Journals (Sweden)

    Tongurai, C.

    2007-11-01

    Full Text Available This research studied the suitable technique for the production of methyl ester from waste palm oil in the water pond of a palm oil mill. The composition of the waste palm oil was 73.82% fatty acid, 5.07% triglyceride, 3.39% diglyceride and 17.76% unknown compounds. The unknown compounds were separated via simple distillation carried out at a temperature range of 300-350oC.First, the experiments were carried out in screw capped bottles using filtrated as-received waste oil as the reactant. The esterification and transesterification process were conducted using sulfuric acid catalyst in a methanol solution. The key parameters studied were mole ratio of waste oil to methanol (1:1 to 1:72, amount of catalyst from 0.1-20 v/w% of the reactant, temperature range of 60-98oC and reaction time range of 15-180 minutes. Thin Layer Chromatography (TLC analysis showed 85-90% purity of methyl ester with 4-5% of mono-, di-, and triglycerides and fatty acids and about 5-10% of the unknown compounds for the best condition. The resulting yield of biodiesel was 84-88%. Eradication of contaminants by distillation gave about a 75% distillate yield. Distilled waste palm oil was esterified and transesterified using the previous optimum condition of as-received waste oil, but the reaction time and temperature were varied. The optimal result was obtained by using distilled waste palm oil to methanol molar ratio of 1:8, sulfuric acid of 1 v/w% of reactant, reaction temperature of 70oC and reaction time of 1 hour. TLC analysis indicated a biodiesel composition of methyl ester, free fatty acid, diglyceride and monoglyceride of 96.39%, 3.20%, 0.24% and 0.17%, respectively. The yield of biodiesel was 96-98% having physical fuel properties according to Thailand standard for methyl esterFinally, the distilled waste palm oil was esterified using a 3 liters continuous stirred-tank reactor (CSTR. Using the suitable condition for the batch process and an hour retention time, the

  11. Identification of rapeseed oil fatty acid esters in transesterification reactions by gas chromatography - mass spectrometry method

    International Nuclear Information System (INIS)

    Rapeseed oil transesterification with different alcohols - methyl, ethyl, n-propyl and isopropyl alcohol - has been carried out. Yields of fatty acid alkyl esters obtained from rapeseed oil were determined using the internal standard method. Results of interpretation of the obtained ester mass spectra are reported. The specimen of Latvian rape oil contains: 57.6% of oleic acid, 18.2% of linoleic acid, 8.2% linolenic acid, 3.3% palmitic acid, 2% of stearic acid and less than 1% of arachidic acid. Values of Kovats retention indices of the rapeseed oil fatty acid esters on the capillary columns DB-5 MS and DB-17 MS have been compared. More selective separation of fatty acid alkyl esters has been achieved on the stationary phase with higher content of phenyl groups (DB-17 MS). (authors)

  12. NF EN 14107. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the phosphorus content by high frequency induced plasma emission spectroscopy (ICP method); NF EN 14107. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en phosphore par spectrometrie d'emission de plasma induit par haute frequence (methode ICP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard specifies a method of phosphorus content dosimetry in fatty acids methylic esters (FAME) using high frequency induced plasma emission spectroscopy and for concentrations comprised between 4 mg/kg and 20 mg/kg. The objective of this method is to evaluate the quality of the FAMEs in terms of trans-esterification of their by-products content, such as phosphorus, which can change the fuel combustion properties. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  13. NF EN 14105. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the free- and total-glycerol content and of the mono-, di-, and triglycerides content. Reference method; NF EN 14105. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en glycerols libre et total et en mono-, di- et triglycerides. Methode de reference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This European standard specifies a method of determination of the free glycerol and of the residual mono-, di-, and triglycerides content in fatty acids methylic esters (FAME) which will be incorporated in mineral oils. The total glycerol content is then determined from the obtained results. This method is adapted to colza, sunflower and soja oil FAMEs but not to copra or palm oil-based FAMEs because of the risk of peak superimposition. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  14. Synthesis and hydrolysis resisting capacity of ethoxylated ricinoleic acid methyl esters%蓖麻油酸甲酯乙氧基化物的合成与耐酸耐碱性研究

    Institute of Scientific and Technical Information of China (English)

    张谦; 孙永强; 王万绪; 智丽飞; Martino Di Serio; 刘伟

    2015-01-01

    Ethoxylated ricinoleic acid methyl esters (ECAME - 10)obtained directly from castor oil acid methyl esters by the use of a special homogeneous catalyst. The average ethylene oxide (EO)adduct number of ECAME - 10 was determined by saponification value,gas chromatography (GC)and 1 HNMR. The hydrolysis resisting capacity of ECAME - 10 was investigated under different pH value conditions. The appearance changes of ECAME - 10 solution under different storing time periods was tracked and photographed and surface tension of different stages of the solution at different stages was measured. Results showed that the hydrolysis resisting capacity of ECAME - 10 is rather strong. The hydrolysis rate of ECAME - 10 is below 40% in pH value range of 4 - 9 after eight weeks. Surface tension of solutions can be kept stable after the hydrolysis reaction.%在一定的温度和压力条件下,以及特制的均相催化剂作用下,直接由蓖麻油酸甲酯得到了产物蓖麻油酸甲酯乙氧基化物(ECAME -10)。通过皂化值、气相色谱(GC)和1 HNMR 测定了ECAME -10的平均环氧乙烷(EO)加合数,在不同pH条件下测定了ECAME -10的耐酸耐碱性,并跟踪拍摄了不同pH溶液不同阶段的外观照片,同时测定了不同阶段溶液的表面张力。结果显示:ECAME -10有较强的抗水解能力,当pH =4~9时,ECAME -10的水解较慢,8周后其水解率在40%以下;水解后的表面张力数据表明,水解后溶液的表面张力可保持稳定。

  15. 磺酸功能化离子液体催化不饱和脂肪酸甲酯的环氧化研究%Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Br(o)nsted Acidic Ionic Liquid as Catalyst

    Institute of Scientific and Technical Information of China (English)

    蔡双飞; 王利生

    2011-01-01

    The epoxidation of unsaturated fatty acid methyl esters (FAMEs) by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Br(o)nsted acidic ionic liquid (IL) [C3SO3HMIM][HSO4] as catalyst. The effects of hydrogen peroxide/ethylenic unsaturation ratio, acetic acid concentration, IL concentration, recycling of the IL catalyst, and temperature on the conversion to oxirane were studied. The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied. The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane, and the rate of hydrolysis (oxirane cleavage) were higher by using the IL catalyst.

  16. Microwave-assisted methyl esters synthesis of Kapok (Ceiba pentandra seed oil: parametric and optimization study

    Directory of Open Access Journals (Sweden)

    Awais Bokhari

    2015-09-01

    Full Text Available The depleting fossil fuel reserves and increasing environmental concerns have continued to stimulate research into biodiesel as a green fuel alternative produced from renewable resources. In this study, Kapok (Ceiba pentandra oil methyl ester was produced by using microwave-assisted technique. The optimum operating conditions for the microwave-assisted transesterification of Kapok seed oil including temperature, catalyst loading, methanol to oil molar ratio, and irradiation time were investigated by using Response Surface Methodology (RSM based on Central Composite Design (CCD. A maximum conversion of 98.9 % was obtained under optimum conditions of 57.09 °C reaction temperature, 2.15 wt% catalyst (KOH loading, oil to methanol molar ratio of 1:9.85, and reaction time of 3.29 min. Fourier Transform Infra-Red (FT-IR spectroscopy was performed to verify the conversion of the fatty acid into methyl esters. The properties of Kapok oil methyl ester produced under the optimum conditions were characterized and found in agreement with the international ASTM D 6751 and EN 14214 standards.

  17. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    Science.gov (United States)

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. PMID:24583221

  18. Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells.

    Science.gov (United States)

    So, Yangkang; Lee, Seung Young; Han, Ah-Reum; Kim, Jin-Baek; Jeong, Hye Gwang; Jin, Chang Hyun

    2016-01-01

    In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. PMID:27548124

  19. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    Science.gov (United States)

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process.

  20. Synergetic Enhancement of Device Efficiency in Poly(3-hexylthiophene-2,5-diyl/[6,6]-phenyl C61 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells by Glycerol Addition in the Active Layer

    Directory of Open Access Journals (Sweden)

    Bobins Augustine

    2015-01-01

    Full Text Available Poly(3-hexylthiophene-2,5-diyl(P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM is the widely used active layer for the bulk heterojunction solar cells. Annealing is essential for P3HT:PC60BM active layer, since it facilitates the creation of better network for the transfer of the charge carriers. However, the PC60BM in the active layer can crystallize excessively during annealing treatments and disrupt the favorable morphology by forming crystallites in micrometer ranges, thus reducing device efficiency. In this paper we used glycerol as an additive in the active layer. Due to high boiling point of glycerol, it makes slow drying of the active layer possible during the annealing. It thus gives enough time to both electron donor (P3HT and electron acceptor (PC60BM components of the active layer to self-organize and also restrict the crystal overgrowth of PC60BM. Further, the glycerol additive makes the active layer smoother, which may also improve adhesion between the electrode and the active layer. The devices with the pristine active layer showed a power conversion efficiency (PCE of about 2.1% and, with the addition of 30 vol% of glycerol in the active layer, the PCE value increased to 3%.

  1. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels

    Science.gov (United States)

    Wu, Fujia; Wang, Jianxin; Chen, Wenmiao; Shuai, Shijin

    As an alternative and renewable fuel, biodiesel can effectively reduce diesel engine emissions, especially particulate matter and dry soot. However, the biodiesel effects on emissions may vary as the source fuel changes. In this paper, the performance of five methyl esters with different sources was studied: cottonseed methyl ester (CME), soybean methyl ester (SME), rapeseed methyl ester (RME), palm oil methyl ester (PME) and waste cooking oil methyl ester (WME). Total particulate matter (PM), dry soot (DS), non-soot fraction (NSF), nitrogen oxide (NO x), unburned hydrocarbon (HC), and carbon monoxide (CO) were investigated on a Cummins ISBe6 Euro III diesel engine and compared with a baseline diesel fuel. Results show that using different methyl esters results in large PM reductions ranging from 53% to 69%, which include the DS reduction ranging from 79% to 83%. Both oxygen content and viscosity could influence the DS emission. Higher oxygen content leads to less DS at high load while lower viscosity results in less DS at low load. NSF decreases consistently as cetane number increases except for PME. The cetane number could be responsible for the large NSF difference between different methyl esters.

  2. Antifungal activity of 4-substituted crotonic acid esters.

    Science.gov (United States)

    Gershon, H; Shanks, L; Gawiak, D E

    1976-08-01

    Twenty-three 4-substituted crotonic acid esters were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes. For the analogues of the methyl ester containing substituents in the 4 position, the following order of fungitoxicity was observed: I greater than Br greater than Cl greater than CH3S greater than CH3O greater than F=H. Of the homologues of the esters of the 4-iodo and 4-bromo compounds which included methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl, ethyl 4-iodocrotonate was most toxic to the four fungi at pH 7.0 in the presence of 10% beef serum (C. albicans, 18mug/ml, A. niger, 40 mug/ml, M. mucedo, 5 mug/ml, T. mentagrophytes, 4 mug/ml). It is believed that the mechanism of fungitoxicity is due, in part, to a nucleophilic reaction involving SH-containing compounds. This is based on the correlation of fungitoxicity with the order of leaving groups in the nucleophilic reaction and the protection against the toxicity of the test compounds to the fungi by cysteine and glutathione.

  3. Use of calcium oxide in palm oil methyl ester production

    Directory of Open Access Journals (Sweden)

    Kulchanat Prasertsit

    2014-04-01

    Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

  4. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    OpenAIRE

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three m...

  5. 脂肪酸甲酯磺酸盐中二钠盐来源分析及改进%Source analysis of dio-sodium salt in fatty acid methyl ester sulfonate and amelioration

    Institute of Scientific and Technical Information of China (English)

    蒋惠亮; 王相明

    2012-01-01

    实验考察了脂肪酸甲酯磺酸盐(MES)合成的各工序中α-磺基脂肪酸二钠(二钠盐)的变化量。其中再酯化阶段二钠盐减少最多,中和阶段二钠盐产生最多,这是由于再酯化阶段引入了部分甲醇以及中和阶段的强碱性环境和较高温度引起的。同时提出了各阶段的改进方法。经过优化实验,得到二钠盐含量最低时,各阶段最佳条件为:漂白温度75℃,再酯化时间6 h,甲醇与脂肪酸甲酯磺酸摩尔比30∶1,中和方式为以碳酸钠粉末干法中和。%The content ofdi-sodium salt ( DSS ) in every step of MES's synthesis was measured, the maximal decrease of DSS is in reesterification stage, the maximal increase of DSS is in neutralization stage. It could be resulted from the methanol introduction in reesterification stage, strong alkaline environment and higher temperature in neutralization stage. Meanwhile, improvement is also proposed for every stage in ameliorated method. By optimizing the experiment, the optimal condition for every stage was obtained as, bleaching temperature 75 ℃, reesterification time 6h, the mole ratio of methanol to fatty acid methyl ester sulfonic acid 30 : 1, neutralization pattern, dry neutralization by sodium carbonate powder when the content of di-sodium salt is the lowest.

  6. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Directory of Open Access Journals (Sweden)

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  7. Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics

    International Nuclear Information System (INIS)

    There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was trans esterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions. (Author)

  8. Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Puhan, Sukumar; Vedaraman, N.; Ram, Boppana V.B. [Central Leather Research Inst., Chemical Engineering Div., Chennai (India); Sankarnarayanan, G.; Jeychandran, K. [Anna Univ., Dept. of Mechanical Engineering, Chennai (India)

    2005-01-01

    There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was trans esterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions. (Author)

  9. Epoxidation of methyl esters derived from Jatropha oil: An optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, M.; Tan, I. M.; Nadeem, M.; Devi, C.; Lee, S. Y. C.; Sagir, M.; Radhid, U.

    2013-05-01

    The optimization of the epoxidation reaction of methyl esters obtained from Jatropha oil was appraised. Response surface methodology (RSM) based on a central composite rotatable design (CCRD) was employed for the experimental design. Four reaction variables namely hydrogen peroxide/ C=C mole ratio, formic acid/C=C mole ratio, reaction temperature and reaction time were evaluated. The optimum epoxidation conditions calculated by the quadratic model were 3.12 moles of hydrogen peroxide/C=C moles, 0.96 moles of formic acid/C=C moles, a reaction temperature of 70.0 degree centigrade and a reaction time of 277 minutes. A reaction optimized by the proposed process parameters provided a yield of 92.89 {+-} 1.29 wt.% with relatively improved reaction time. Hydrogen peroxide concentration and reaction temperature were found to be the most significant variables while reaction temperature and hydrogen peroxide showed strong interactions. The epoxidized methyl esters were analyzed using FT-IR, 1H NMR and {sup 1}3C NMR techniques. This study suggested relatively higher molar ratio of formic acid required than was proposed in the literature. (Author) 33 refs.

  10. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  11. Discrimination of Pulp Oil and Kernel Oil from Pequi (Caryocar brasiliense) by Fatty Acid Methyl Esters Fingerprinting, Using GC-FID and Multivariate Analysis

    NARCIS (Netherlands)

    Faria-Machado, A.F.; Tres, Alba; Ruth, Van S.M.; Antoniassi, Rosemar; Junqueira, N.T.V.; Lopes, P.S.N.; Bizzo, H.R.

    2015-01-01

    Pequi is an oleaginous fruit whose edible oil is composed mainly by saturated and monounsaturated fatty acids. The biological and nutritional properties of pequi oil are dependent on its composition, which can change according to the oil source (pulp or kernel). There is little data in the scient

  12. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    Science.gov (United States)

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  13. Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Auluck, S. [CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi 110012 (India); Chyský, Jan [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-06-01

    A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C{sub 15}H{sub 12}N{sub 4}O{sub 2}S{sub 2}) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K{sup 2} for the local density approximation (Engel–Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C–H…O, C–H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C–H…O interaction while B molecule exhibit C–H…N interaction. We should emphasis that there is π–π interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å). - Highlights: • Electronic structure, chemical bonding, and electron charge density were studied. • Density of states at Fermi level is 5.50 (3.45) states/Ry cell, for LDA (EVGGA). • Bare electronic specific heat coefficient is 0.95 (0.59) mJ/mole-K{sup 2} for LDA(EVGGA). • There are two independent molecules (A and B) in the asymmetric unit.

  14. Purification and Characterization of a New Antifungal Compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic Acid Methyl Ester from Streptomyces hydrogenans Strain DH16.

    Science.gov (United States)

    Kaur, Talwinder; Kaur, Amarjeet; Sharma, Vishal; Manhas, Rajesh K

    2016-01-01

    In agriculture, biocontrol agents have been emerged as safe alternative to chemical pesticides where Streptomyces spp. and their metabolites constitute a great potential for their exploration as potent agents for controlling various fungal phytopathogens. The present study reports an antifungal compound purified from Streptomyces hydrogenans strain DH16, a soil isolate, using silica gel chromatography and semi preparative HPLC. The compound was characterized using various spectroscopic techniques (IR, (1)H and (13)C NMR) and named 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester (SH2). Compound (SH2) showed significant inhibitory activity against fungal phytopathogens and resulted in severe morphological aberrations in their structure. Minimal inhibitory and minimal fungicidal concentrations of the compound ranged from 6.25 to 25 μg/ml and 25 to 50 μg/ml, respectively. In vivo evaluation of the compound showed strong control efficacy against Alternaria brassicicola, a seed borne pathogen, on radish seeds. In comparison to mancozeb and carbendazim, the compound was more effective in controlling damping off disease. Additionally, it promoted plant growth with increased rate of seed germination, and displayed no phytotoxicity. The compound retained its antifungal activity after its exposure to temperature of 100°C and sunlight for 1 h. Furthermore, the compound (SH2) when tested for its biosafety was found to be non-cytotoxic, and non-mutagenic against Salmonella typhimurium TA98 and TA100 strains. This compound from S. hydrogenans strain DH16 has not been reported earlier, so this new compound can be developed as an ideal safe and superior biofungicide for the control of various fungal plant diseases. PMID:27446043

  15. Morphological and spectroscopic characterizations of inkjet-printed poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester blends for organic solar cell applications

    International Nuclear Information System (INIS)

    The most exploited active material for photovoltaic devices is the regioregular poly(3-hexylthiophene) (P3HT), p-type conjugated polymer, blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), n-type material. The deposition methods and the induced morphology strongly influence the functionality of the active material and in turn the final charge generation performances of a photoactive layer. In the present work, we studied the influence of PCBM concentration on the morphological and spectroscopic properties of the inkjet printed P3HT:PCBM blends through atomic force microscopy (AFM), Raman spectroscopy and transient absorption spectroscopy. The aim is to value the charge formation yield in the blends, prepared by inkjet technology, as function of the acceptor concentrations in correlation with morphology and intermixing of the two components. For the inkjet printed samples the blends composition that corresponds to the best intermixing between P3HT and PCBM and the higher charges formation yield should be between 20% and 45% in weight (wt)., differently for what has been found previously for spin-coated samples. Indeed, for inkjet prepared film, the 45 wt.% blend ratio leads to much bigger domains with respect to the spin-coated samples as shown from the AFM measurements. - Highlights: • Inkjet-printed P3HT:PCBM blends for organic solar cell applications • Coarser morphology of inkjet P3HT:PCBM films with respect to the spin-coated film • Inkjet P3HT:PCBM films showed charge formation maximum for PCBM wt.% lower than 45

  16. Morphological and spectroscopic characterizations of inkjet-printed poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester blends for organic solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, A., E-mail: annalisa.bruno@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Piazzale Enrico Fermi 1, 80055 Portici, Naples (Italy); Villani, F., E-mail: fulvia.villani@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Piazzale Enrico Fermi 1, 80055 Portici, Naples (Italy); Grimaldi, I.A.; Loffredo, F.; Morvillo, P.; Diana, R. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Piazzale Enrico Fermi 1, 80055 Portici, Naples (Italy); Haque, S. [Chemistry Department, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Piazzale Enrico Fermi 1, 80055 Portici, Naples (Italy)

    2014-06-02

    The most exploited active material for photovoltaic devices is the regioregular poly(3-hexylthiophene) (P3HT), p-type conjugated polymer, blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), n-type material. The deposition methods and the induced morphology strongly influence the functionality of the active material and in turn the final charge generation performances of a photoactive layer. In the present work, we studied the influence of PCBM concentration on the morphological and spectroscopic properties of the inkjet printed P3HT:PCBM blends through atomic force microscopy (AFM), Raman spectroscopy and transient absorption spectroscopy. The aim is to value the charge formation yield in the blends, prepared by inkjet technology, as function of the acceptor concentrations in correlation with morphology and intermixing of the two components. For the inkjet printed samples the blends composition that corresponds to the best intermixing between P3HT and PCBM and the higher charges formation yield should be between 20% and 45% in weight (wt)., differently for what has been found previously for spin-coated samples. Indeed, for inkjet prepared film, the 45 wt.% blend ratio leads to much bigger domains with respect to the spin-coated samples as shown from the AFM measurements. - Highlights: • Inkjet-printed P3HT:PCBM blends for organic solar cell applications • Coarser morphology of inkjet P3HT:PCBM films with respect to the spin-coated film • Inkjet P3HT:PCBM films showed charge formation maximum for PCBM wt.% lower than 45.

  17. Effects of ultrasound radiation on coconut fatty acid methyl esters preparation by enzyme%超声波辐射对酶法制备椰子油脂肪酸甲酯的影响

    Institute of Scientific and Technical Information of China (English)

    龚本前; 刘钟栋

    2011-01-01

    Biodiesel, a renewable energy, is environmental friendly. As the substitute and supplement for petroleum, biodiesel has many advantages, such as renewable, easily degradation, low of the combustion emissions and almost no greenhouse effect. In this paper ultrasonic radiation was used in esterifying synthesis biodiesel. The reaction was fast and yield was high. Ultrasonic radiation can assist lipase catalyzed ester synthesis by fatty acid and methanol in organic medium. Effects of different factors and ultrasound radiation on coconut fatty acid methyl esters preparation by enzyme were studied. Coconut fatty acid, ethanol and lipozyme Novozym435 were the major raw material. The single factor is used in optimizing the parameters. The best condition was: enzyme 7% ( mass fraction based on oil) ; water 10% ( mass fraction based on oil) ; ultrasonic power 250W; the total reaction time 25min; n-hexane, 2mL/goil; molar ration of ethanol to coconut fatty acid 2' 1. The transesterification yield of 90. 18% was obtained under the optimum conditions.%生物柴油作为可再生能源,是环境友好的生物燃料,作为石化柴油的替代品及补充品具有可再生、易于降解、燃烧排放的污染物低、基本无温室效应等特点.本文利用超声辐射强化酯化制备生物柴油具有反应速度快,产率高等优点,探讨了超声辐照对有机相中脂肪酶催化脂肪酸与甲醇酯化反应的促进作用.以蒸馏椰子油脂肪酸、甲醇及Novozym435脂肪酶为主要原料,研究了不同因素及超声辐射对酶法促进油脂脂肪酸甲酯化的影响.对反应条件进行单因素实验,确定了最佳反应工艺参数.经分析初步得出脂肪酶催化甲酯化最佳条件为:酶用量7%,水加入量10%,超声功率250W,反应总时间25min,2mL正已烷/1g脂肪酸,甲醇与椰子油脂肪酸的摩尔比2∶1.在此条件下,脂肪酸甲酯转化率达到90.18%.

  18. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  19. Experimental Analysis of Performance of Diesel Engine Using Kusum Methyl Ester With Diethyl Ether as Additive

    Directory of Open Access Journals (Sweden)

    Sandip S. Jawre,

    2014-05-01

    Full Text Available The fossile fuels are widely used in diesel engine and continually depleting with increasing consumption and prices day by day. The fatty acid methyl ester has become an effective alternative to diesel. Various types of vegetable oil such as Jatropha, karanja, cottonseed, neem, sunflower, palm, mahuva, coconut etc. can be used as fuel in diesel engine. Kusum oil is one of the fuel used in present work. The viscosity of kusum oil is very high, so it was reduced by Transesterification process. This study presents effect of diethyl ether as additive to biodiesel of kusum (schliechera oleosa methyl ester on the performance and emission of diesel engine at different load and constant speed and two different injection pressure (170 and 190 bar. From literature it was observed that very few studies had been conducted on use of neat biodiesel and diethyl ether blends and use of kusum methyl ester (KME in diesel engine found to be very less as compared to different biodiesel. Hence this topic was taken under study. The fuels and its blends used are 100% diesel, B100 (100% KME, BD-1 (95% KME, 5% DEE, BD-2 (90% KME, 10% DEE, BD-3 (85% KME, 15% DEE respectively. It was observed that the performance of engine increases at high injection pres-sure. The results indicate that lower BSFC was observed with BD-3 as compared to B100, BD-1 and BD-2. Brake thermal efficiency of BD-3 decreased at 170 bar injection pressure but it increase at 190 bar. Drastic re-duction in smoke is observed with all blends at higher engine loads. DEE addition to biodiesel reflects better engine performance compared to neat biodiesel.

  20. The Effect of Prickly Poppy Methyl Ester Blends on Ci Engine Performance and Emission Characteristics

    Directory of Open Access Journals (Sweden)

    P. Lawrence

    2011-01-01

    Full Text Available Problem statement: The aim of this research was to investigate the effect of using Prickly poppy methyl ester as a fuel blend on Diesel engine (CI engine performance and exhaust emission. Approach: Short-term engine performance tests were conducted to evaluate and compare the use of various diesel fuel supplements at blend rations of 60/40, 70/30, 80/20, 90/10, in a standard, fully instrumented, four stroke, Direct Injection (DI, Kirlosker comet Diesel engine located at the authors’ laboratory. The prickly poppy oil with high free fatty acid is not used as edible oil, it can be considered as a potential source of non edible oil for utilization as a feed stock vegetable oil for bio diesel production. The prickly poppy oil was subjected to esterification and transesterification processes and the Prickly Poppy Methyl Ester (PPME obtained was tested as supplement. Results: The test showed that PPME blends with diesel could be conveniently used as a diesel substitute in a diesel engine. The test further showed increase in break thermal efficiency, brake power and reduction of specific fuel consumption for PPME and its blends with diesel generally, but the most significant conclusion from the study is that the 80% Diesel/20% PPME blend produced maximum values of the brake power, brake thermal efficiency and minimum values of the specific fuel consumption and also yielded minimum values of NOx, CO and HC emission. Conclusion: Using Prickly Poppy Methyl Ester (PPME as a bio fuel blend with Diesel shows an improvement in performance and significant reduction in exhaust emission for the generation of cleaner environment.

  1. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Institute of Scientific and Technical Information of China (English)

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  2. Synthesis, Resolution, and Enantiomeric Purity Assay of 2-n-Butylbutanedioic Acid 4-t-Butyl Esters

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Racemic 2-n-butylbutanedioic acid 4-t-butyl esters were synthesized from methyl hexanoate and t-butyl α-iodoacetate via alkylation and subsequently selective hydrolyzation. The (R)-and (S)-2-n-butylbutanedioic acid 4-t-butyl esters were obtained by the resolution of the above-mentioned racemic compounds with(S)-( - ) or(R)-( + )-α-methylbenzylamine, respectively. The e.e. values of the two optical active products were determined to be above 99% by HPLC after the formation of two pairs of diastereoisomers with ( R)-( + )-α-methylbenzylamine and (S)-phenylalanine methyl ester.

  3. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeA

  4. Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters

    International Nuclear Information System (INIS)

    Highlights: • Nozzle flow and spray characteristics of methyl esters have been studied. • A new hybrid spray model was implemented into KIVA4 CFD code. • Nozzle flow simulation shows methyl stearate has less cavitation. • Methyl linoleate atomization is comparable with diesel atomization. • Methyl stearate has poor atomization compared to other methyl esters. - Abstract: In compression ignition engines, the quality of the spray atomization significantly affects the performance and emissions of the engine. The differences in thermo-physical properties of biodiesel have significant effect on both the internal nozzle flow and spray characteristics. In this study, the internal nozzle flow and spray characteristics of three major methyl esters found in various biodiesels, namely methyl oleate, methyl stearate, and methyl linoleate were studied as a representative of different biodiesels. A new hybrid spray model developed by coupling cavitation induced spray model with KHRT model in KIVA4 CFD code was used in this study. The model was validated against diesel spray characteristics obtained from the experiments conducted in house using constant volume spray chamber and good agreement was found. The internal flow simulations shows that methyl stearate cavitates the least followed by methyl oleate and linoleate. The spray simulations shows that spray tip penetration of methyl stearate is higher than other methyl esters and diesel because of its high viscosity and large droplet diameter. Methyl linoleate was found to atomize better than other esters and comparable to diesel. However at high ambient temperature, liquid length is highly dominated by both latent heat of vaporization and viscosity

  5. Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters.

    Science.gov (United States)

    Antoszczak, Michał; Sobusiak, Maria; Maj, Ewa; Wietrzyk, Joanna; Huczyński, Adam

    2015-09-01

    New Salinomycin (SAL) bioconjugates with amino acid methyl esters were obtained and their antiproliferative activity against cancer cell lines including drug-resistant ones was studied. New compounds exhibit antiproliferative activity towards leukemia and doxorubicin-resistant colon adenocarcinoma cell line and are more effective and less toxic than the commonly currently used anticancer drugs.

  6. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  7. Crystallization behavior of fatty acid methyl esters

    Science.gov (United States)

    Biodiesel made from vegetable oils or animal fats has many attractive characteristics as an alternative fuel for compression-ignition (diesel) engines. However, biodiesel from the most common agricultural sources has flow properties that are susceptible to start up and operability problems during c...

  8. EXPERIMENTAL INVESTIGATION OF LINSEED AND NEEM METHYL ESTERS AS BIODIESEL ON CI ENGINE

    Directory of Open Access Journals (Sweden)

    V.DHANA RAJU

    2012-06-01

    Full Text Available An experimental investigations were carried out on C.I.engine with Bio Diesel blends of Linseed Methyl Esters and Neem Oil Methyl Esters .The engine used for the experiments was single cylinder Four Stroke water cooled, constant speed diesel engine . Linseed Methyl ester (LSOME and Neem oil methyl ester (NOME are derived through transesterification process and parameters of transesterification were optimized. The blends of various proportions of the LSOME & NOME with diesel were prepared, analyzed and compared with diesel fuel,and comparison was made to suggest the better option among the bio diesel. Various Tests have been carried out to examine properties, performance of different blends (B05, B10, B15, and B20 of LSOME and NOME in comparison to diesel. From the experimental Results it is indicated that B20 have closer performance to diesel. However, its diesel blends showed reasonable efficiencies. From the experimental results it is observed that Linseed methyl ester gives better performance compared to Neem methyl esters and also the emissions and smoke for these diesel blends are less as compare to the pure diesel.

  9. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    International Nuclear Information System (INIS)

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  10. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    Directory of Open Access Journals (Sweden)

    K. Babu

    2015-09-01

    Full Text Available AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited good surface activity, reducing the surface tension of surfactant solution up to 38.4 mN/m and 27.6 mN/m without and with NaCl, respectively. During the thermal analysis of SMES, a 31.2% mass loss was observed from 70 ˚C to 500 ˚C. The phase behavior of the cosurfactant/SMES-oil-water system plays a key role in interpreting the performance of enhanced oil recovery by microemulsion techniques. Flooding experiments were performed using a 0.5 pore volume of synthesized SMES solutions at three different concentrations. In each case chase water was used to maintain the pressure gradient. The additional recoveries in surfactant flooding were found to be 24.53%, 26.04% and 27.31% for 0.5, 0.6 and 0.7 mass% of surfactant solutions, respectively.

  11. Hepatotoxicity, Nephrotoxicity and Oxidative Stress in Rat Testis Following Exposure to Haloxyfop-p-methyl Ester, an Aryloxyphenoxypropionate Herbicide

    OpenAIRE

    Ebenezer Tunde Olayinka; Ayokanmi Ore

    2015-01-01

    Haloxyfop-p-methyl ester (HPME) ((R)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid), is a selective aryloxyphenoxypropionate (AOPP) herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170–210 g) were randomized into four groups (I–IV). Group I (control) received 1 mL of distilled water, whil...

  12. A Convenient Route to 4-Carboxy-4-Anilidopiperidine Esters and Acids

    Directory of Open Access Journals (Sweden)

    Gjermund Henriksen

    2012-03-01

    Full Text Available The route selection and development of a convenient synthesis of 4-carboxy-4-anilidopiperidines is described. Previous routes were hampered by the low yield of the target esters as well as the inability to convert the esters to the required free acids. Considerations for large-scale production led to a modified synthesis that utilised a tert-butyl ester of 4-carboxy-4-anilidopiperidines which resulted in a dramatic increase in the overall yield of the target N-propionylated- 4-anilidopiperidine-4-carboxylic acids and their corresponding methyl esters. These compounds are now available for use as precursors and reference standards, of particular value for the production of 11C and 18F-labelled 4-carboxy-4-anilidopiperidine radiotracers.

  13. Ester Exchange Polymerization of 3-Hydroxyl Propionic Acid Methyl Ester Catalyzed by SO3 H-functionalized Ionic Liquids%磺酸功能化离子液体催化3-羟基丙酸甲酯酯交换聚合反应

    Institute of Scientific and Technical Information of China (English)

    徐国荣; 刘建华; 宋大勇; 陈静; 夏春谷

    2012-01-01

    Employing SO3 H-functionalized ionic liquids as catalysts, the biodegradable poly [ 3-hydroxypropionic acid] (PHP) was obtained by ester exchange polymerization of 3-Hydroxyl propionie acid methyl ester(3-HPM). The effects of various ionic liquids, reaction temperature and reaction time on the polymerization performance were discussed in detail. Meanwhile, the FFIR, NMR and TG-DSC were applied to characterize the products. The PHP with Mw above 1.0×104 and yield above 82% could be obtained when catalyzed by [ BsMIm] [ OTf] under the opti- mal reaction conditions. In addition, the catalyst in the polymer could be removed completely after washing with water, efficiently avoiding the pollution of the product.%以磺酸功能化咪唑离子液体为催化剂,以3-羟基丙酸甲酯为原料,采用自身酯交换法合成了具有生物可降解性能的聚羟基脂肪酸酯.系统考察了离子液体种类、反应温度以及聚合反应时间对反应性能的影响,同时采用红外、核磁、热分析等手段对产物进行表征.研究结果表明:阴离子为CF3SO-3的磺酸功能化离子液体在120℃的低温下催化聚合反应所得聚酯Mw可达10 159,收率82.1%;通过水洗方法可有效去除产物中的离子液体催化剂,从而避免催化剂污染产物.

  14. 15th International Sunflower Conference Synthesis of new derivatives from vegetable sunflower oil methyl esters via epoxydation and oxirane opening

    Directory of Open Access Journals (Sweden)

    Pages Xavier

    2001-03-01

    Full Text Available Recently, epoxides have received increased attention because they are of interest both as end-products and as chemical intermediates; epoxidized oils, mainly High Oleic Sunflower Oil, and their ester derivatives have thus found important applications as plasticizers and additives for polyvinyl chloride (PVC. Epoxidized esters have been produced classically from High Oleic Sunflower Methyl Esters (HOSME using H2O2 and formic acid. The epoxidation reaches 90% on pilot scale (5kg. Epoxidized esters produced from HOSME have respectively hydroxyl values of 0, oxirane values of 5.2/4.5 and iodine values of 1.7/1.5. Cleavage trials of the oxirane group of the epoxidized esters with different reactants have been undertaken in order to produce on pilot scale new derivatives to be characterized and tested in different fields of application (lubrication, detergency and as chemical intermediates. Reaction of Epoxy-HOSME with an excess of oleic acid was conducted under atmospheric pressure without any catalyst and solvent. The oxirane opening leads to complete estolide formation: after neutralization, analytical controls (chemical values, GC and HPLC analysis indicate that the estolides are composed of a mixture of C36 (oleate of methyl hydroxystearate and C54 (di-oleate of methyl dihydroxystearate. Oxirane opening with alcohols (ethanol and octanol was preferentially performed by acid catalysis at 100°C under atmospheric pressure. Analytical controls show the formation of different etheralcohols and secondary products resulting from dehydration, transesterification and dimerization side-reactions. Cleavage reaction of Epoxy-HOSME with a primary amine (butylamine was conducted under pressure, at high temperature (180/200°C. Both transesterification and opening of the oxirane group occur under these conditions. Reaction products are composed of amides formed by transesterification and a mixture of fatty amines/imines obtained by ring opening as established

  15. Synthesis of (2R,3aR,8aR)-6-Chloro-3a-hydroxy-1,2,3,3a,8,8a- hexahydropyrrolo[2,3-b]indole-2-carboxylic Acid Methyl Ester by Reductive Cyclization

    Institute of Scientific and Technical Information of China (English)

    HONG,Wen-Xu(洪文旭); YAO,Zhu-Jun(姚祝军)

    2004-01-01

    A synthesis of(2R,3aR,8aR)-6-chloro-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid methyl ester(1)was achieved.An aldol reaction with Garner aldehyde,a hydroxyl introduction by Davis reagent,and a reductive intramolecular ring-closure reaction were served as the key steps.This piece of work provides a new way to synthesize the analogues of hexahydropyrrolo[2,3-b]indole,starting from readily available chemical substrates and inexpensive reagents.

  16. Use of fumaric acid esters in psoriasis

    Directory of Open Access Journals (Sweden)

    Roll Antonie

    2007-01-01

    Full Text Available Fumaric acid esters (FAE are chemical compounds derived from the unsaturated dicarbonic acid fumaric acid. The usage of FAEs in treatment of psoriasis was introduced in the late 1950′s. In the 1980s more standardized oral preparations of FAEs were developed containing dimethylfumarate(DMF and salts of monoethylfumarate(MEF as main compounds. In 1994, Fumaderm ® an enteric-coated tablet containing DMF and calcium, magnesium, and zinc salts of MEF was approved for the treatment of psoriasis in Germany and since then has become the most commonly used systemic therapy in this country. Fumaric acids have been proven to be an effective therapy in patients with psoriasis even though the mechanisms of action are not completely understood. About 50-70% of the patients achieve PASI 75 improvement within four months of treatment and without any long-term toxicity, immunosuppressive effects, or increased risk of infection or malignancy. Tolerance is limited by gastrointestinal side effects and flushing of the skin. This article reviews pharmacokinetics, uses, contraindications, dosages, and side effects of treatment with FAEs.

  17. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Directory of Open Access Journals (Sweden)

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    Full Text Available In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME, neem oil methyl esters (NOME, and Waste Cooking Oil Methyl Esters (WCOME were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel a reduction in performance, combustion, and emission characteristics were clear from the study.

  18. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  19. In vitro skin permeation and retention of 5-aminolevulinic acid ester derivatives for photodynamic therapy.

    Science.gov (United States)

    De Rosa, Fernanda Scarmato; Tedesco, Antônio Cláudio; Lopez, Renata Fonseca Vianna; Pierre, Maria Bernadete Riemma; Lange, Norbert; Marchetti, Juliana Maldonado; Rotta, Jeane Cristina Gomes; Bentley, Maria Vitória Lopes Badra

    2003-04-29

    In photodynamic therapy (PDT), 5-aminiolevulinic acid (5-ALA) applied topically is converted, via the heme cycle, into protoporphyrin IX (PpIX), a photosensitizing agent, which upon excitation with light can induce tumor destruction. Due to its hydrophilic and zwitterionic characteristics, 5-ALA has limited penetration into the skin. More lipophilic 5-ALA ester derivatives are expected to cross stratum corneum more easily than 5-ALA. According to the determination of the partition coefficients of 5-ALA methyl, n-butyl, n-hexyl and n-octyl esters, these compounds showed an increased affinity to the SC, with 5-ALA hexyl ester and 5-ALA-octyl ester having the highest partition coefficients. Our in vitro skin permeation studies demonstrated an increased permeated amount for hexyl-ALA after 6 h of incubation, compared to other esters and 5-ALA. After 6 h, more 5-ALA-hexyl ester and -octyl ester were retained at viable epidermis and dermis than 5-ALA. According to these results, and considering that the conversion of 5-ALA into PpIX occurs preferentially in epidermis, it can be supposed that topical use of ester derivatives with longer chains (C(6) or C(8)) is an interesting proposal to optimize topical 5-ALA-PDT

  20. Process optimization for methyl ester production from waste cooking oil using activated carbon supported potassium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, B.H.; Goh, C.S.; Chin, L.H. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-12-15

    This paper presents the transesterification of waste cooking palm oil (WCO) using activated carbon supported potassium fluoride catalyst. A central composite rotatable design was used to optimize the effect of molar ratio of methanol to oil, reaction period, catalyst loading and reaction temperature on the transesterification process. The reactor was pressurized up to 10 bar using nitrogen gas. All the variables were found to affect significantly the methyl ester yield where the most effective factors being the amount of catalyst and reaction temperature, followed by methanol to oil ratio. A quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis using response surface methodology (RSM). The optimum condition for transesterification of WCO to methyl ester was obtained at 3 wt.% amount of catalyst, 175 C temperature, 8.85 methanol to oil molar ratio and 1 h reaction time. At the optimum condition, the predicted methyl ester yield was 83.00 wt.%. The experimental value was well within the estimated value of the model. The catalyst showed good performance with a high yield of methyl ester and the separation of the catalyst from the liquid mixture is easy. (author)

  1. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  2. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    Science.gov (United States)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  3. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    Science.gov (United States)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  4. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  5. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    Directory of Open Access Journals (Sweden)

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  6. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    Science.gov (United States)

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  7. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF OXIME ESTERS FROM DIHYDROCUMIC ACID

    Directory of Open Access Journals (Sweden)

    Yanqing Gao,

    2012-07-01

    Full Text Available Dihydrocumic acid was prepared from β-pinene through oxidation and dehydration. Then, ten oxime esters from dihydrocumic acid were synthesized. Reaction conditions of the oxime esters were adjusted and their structures were characterized by IR, 1H-NMR, MS, and elemental analysis. The antibacterial activity of these newly synthesized oxime esters against Gram-negative bacteria and Gram-positive bacteria was also investigated using the inhibition zone method. The preliminary results indicated that seven compounds displayed better antibacterial activity against Gram-negative bacteria compared with bromogeramine, a commercially available antibacterial agent.

  8. Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Celikten, ismet; Koca, Atilla [Department of Mechanical Education, Faculty of Technical Education, Gazi University, 06500, Teknikokullar, Ankara (Turkey); Ali Arslan, Mehmet [Department of Mechanical Education, Institute of Science and Technology, Gazi University, 06570, Maltepe, Ankara (Turkey)

    2010-04-15

    Fuel properties of rapeseed oil and soybean oil methyl esters (e.g. density, cetane number and viscosity etc.) are similar to those of the diesel fuel. These methyl esters can be used as diesel engine fuel by mixing with diesel fuel. In this study a comparison of diesel fuel, the rapeseed oil methyl ester and the soybean oil methyl ester was made from the engine performance and emissions point of view. The tests were carried out with a four-cylinder diesel engine for tree different injection pressures such as 250, 300 and 350 bar with each of these fuels. For the purpose of comparison, tests were also conducted at full load conditions with diesel fuel. As the result, the performance and emission values of rapeseed oil (R) and soybean oil (S) methyl esters were found to be nearly the same with those of diesel fuels (D) when injection pressure was increased to 300 bar. (author)

  9. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten;

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  10. 蓖麻籽脂质提取与甲酯化衍生优化及其脂肪酸组成分析%Optimization of Castor Bean Lipid Extraction and Methyl Ester Derivation and Analysis of Fatty Acid Composition

    Institute of Scientific and Technical Information of China (English)

    楼乔明; 杨文鸽; 徐大伦; 金淼; 吴东晓; 郑贤孟

    2012-01-01

    The effects on lipid extraction and methyl ester derivation of castor seeds were studied using different methods, and the fatty acid composition was also analyzed in this paper. The results indicated that significant differenees existed in the effects of different methods on the lipid extraction and methyl ester derivation(P <0. 05). The method of dichlormethane - methanol was effective in lipid extraction and the extraction level was 58. 25% , which had the great advantages of low toxicity, good solubility and complete extraction of lipids. Acid - alkali combined method had virtues of entire derivatization and less side effects, which could better reflect the fatty acid composition of castor seeds, and was a ideal method for the derivatization of castor seeds lipid. Meanwhile, castor oil mainly consisted of ricinoleic acid (76.43%~86. 50% ), linolic acid (4. 88%~6.27% ) and oleic acid (2.70%~4. 18%) , and also contained small amounts of palmitic acid, stearic acid, linolenic acid and dodecenoic acid.%采用不同方法对蓖麻籽的脂质提取和甲酯化衍生效果进行研究,并对其脂肪酸组成进行分析.结果表明:不同方法对蓖麻籽的脂质提取和衍生化效果存在显著差异(P<0.05);二氯甲烷-甲醇法的脂质提取率为58.25%,且具有低毒、溶解性强和提取完全的优点,是蓖麻籽脂质提取的有效方法;酸碱结合法具有衍生完全且副反应少等优点,能更好地反映蓖麻籽脂肪酸的真实组成,是蓖麻籽脂质甲酯化衍生的理想方法.同时蓖麻籽脂肪酸以蓖麻油酸(76.43%~86.50%)、亚油酸(4.88%~6.27%)和油酸(2.70%~4.18%)为主,并含有少量的棕榈酸、硬脂酸以及亚麻酸和二十碳烯酸.

  11. Microwave-assisted preparation of naphthenic acid esters

    Directory of Open Access Journals (Sweden)

    VERA CIRIN-NOVTA

    2006-12-01

    Full Text Available The synthesis of esters of natural petroleum acids of the naphthenic type assisted with microwave irradiation under the conditions of acid catalysis was carried out with various alcohols: methanol, ethanol, n-butanol and tert-butyl alcohol. Microwave dielectric heating of the reaction mixture in an unmodified microwave oven with activation of the naphthenic acids with sulfuric and p-toluenesulfonic acid afforded the esters of the naphthenic acids. Depending on the catalyst and the steric and nucleophilic properties of the alcohols, the yield of naphthenic esters ranged from 31.25 % to 88.90 %. As a consequence of microwave dielectric heating, the esterification time was reduced from 6–10 h to 5 min.

  12. One-step fabrication of large-scaled indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly (3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester multi-layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianchen [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Department of Chemistry and Biochemistry, Faculty of Engineering, Kyushu University, 1-1 Namiki, Tsukuba 305-0044 (Japan); Shirai, Yasuhiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Han, Liyuan [Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Wakayama, Yutaka, E-mail: Yutaka@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Department of Chemistry and Biochemistry, Faculty of Engineering, Kyushu University, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-03-03

    A technique is established for fabricating a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly (3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (PEDOT:PSS/P3HT:PCBM) multi-layered structure in one step by transferring a continuous P3HT:PCBM solid film floating on PEDOT:PSS solution onto an indium tin oxide/glass substrate with a size of 2.5 × 1.5 cm{sup 2}. This structure can be obtained under simple experimental conditions and can be fabricated over a large area. Preliminary testing shows that the prepared structure can yield a photovoltaic effect. - Highlights: • Organic photovoltaic cell produced by floating multi-layers • One-step fabrication technique for large-scale organic photovoltaic cell • Swelling and surface tension to enable multi-layer floating films.

  13. Colour indicator for enantiomeric excess and assignment of the configuration of the major enantiomer of an amino acid ester

    NARCIS (Netherlands)

    Delden, R.A.van; Feringa, B.L.

    2002-01-01

    A colour indicator for the full range of enantiomeric excess (-100% --> 100% ee) is presented which is based on visual colour inspection of a liquid crystal doped with the analyte, i.e. the methyl ester of amino acid phenylglycine, providing the enantiomeric excess and allowing the assignment of the

  14. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  15. Levodopa methyl ester increases nerve growth factor expression in visual cortex area 17 in a feline model of strabismic amblyopia

    Institute of Scientific and Technical Information of China (English)

    Yongwen Li; Xing Lin; Shijun Zhang; Rong Li; Weizhe Jiang; Renbin Huang

    2011-01-01

    In the present study, a feline model of strabismic amblyopia was established during a sensitive developmental period, and the influence of levodopa methyl ester and levodopa on nerve growth factor expression in the visual cortex (area 17) was compared. Pattern visual-evoked potential and immunohistochemistry results showed that levodopa methyl ester and levodopa treatment shortened P100 wave latency, increased P100 amplitude, and increased the number of endogenous nerve growth factor-positive cells in visual cortex levels. In particular, the effects of levodopa methyl ester were superior to levodopa treatment.

  16. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    Directory of Open Access Journals (Sweden)

    Adewuyi Adewale

    2011-12-01

    Full Text Available Abstract Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP. The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition.

  17. Synthesis, Characterization, and Cytotoxicity of a Novel Gold(III Complex with O,O′-Diethyl Ester of Ethylenediamine-N,N′-Di-2-(4-MethylPentanoic Acid

    Directory of Open Access Journals (Sweden)

    Nebojša Pantelić

    2016-09-01

    Full Text Available A novel gold(III complex, [AuCl2{(S,S-Et2eddl}]PF6, ((S,S-Et2eddl = O,O′-diethyl ester of ethylenediamine-N,N′-di-2-(4-methylpentanoic acid was synthesized and characterized by IR, 1D (1H and 13C, and 2D (H,H-COSY and H,H-NOESY NMR spectroscopy, mass spectrometry, and elemental analysis. Density functional theory calculations confirmed that (R,R-N,N′ diastereoisomer was energetically the most stable isomer. In vitro antitumor action of ligand precursor [(S,S-H2Et2eddl]Cl2 and corresponding gold(III complex was determined against tumor cell lines: human adenocarcinoma (HeLa, human colon carcinoma (LS174, human breast cancer (MCF7, non-small cell lung carcinoma cell line (A549, and non-cancerous cell line human embryonic lung fibroblast (MRC-5 using microculture tetrazolium test (MTT assay. The results indicate that both ligand precursor and gold(III complex have showed very good to moderate cytotoxic activity against all tested malignant cell lines. The highest activity was expressed by [AuCl2{(S,S-Et2eddl}]PF6 against the LS174 cells, with IC50 value of 7.4 ± 1.2 µM.

  18. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  19. Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems

    Science.gov (United States)

    Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario

    1999-06-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.

  20. Performance evaluation of a diesel engine fueled with methyl ester of pongamia oil

    Directory of Open Access Journals (Sweden)

    A. Haiter Lenin, K. Thyagarajan

    2012-01-01

    Full Text Available In this study pongamia methyl ester was prepared by transesterification using potassium hydroxide (KOH as catalyst and was used as fuel in a four stroke, water cooled, single cylinder, direct injection diesel engine. Pongamia methyl ester fuel blends (75% and 100% were used for conducting the engine performance tests at varying loads (20%, 40%, 60%, 80%, and 100%. Tests were carried out over entire range of engine operation at varying conditions of load. The performance, combustion and emission characteristics were determined. Based on these, the parameters such as brake thermal efficiency, specific fuel consumption, exhaust gas temperature, emissions in exhaust such as CO, CO2, O2, HC and NOx were recorded. The results show that the blend of pongamia oil with diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification.

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  2. The Pharmacological Activities of the Metabolites of N-[(Trimethylamineboryl)-Carbonyl]-L-Phenylalanine Methyl Ester

    OpenAIRE

    Miller, M. C.III; Sood, A.; Spielvogel, B. F.; Shrewsbury, R. P.; Hall, I. H.

    1996-01-01

    The metabolites of N-[(trimethylamineboryl)-carbonyl]-L-phenylalanine methyl ester 1 proved to be active in a number of pharmacological screens where the parent had previously demonstrated potent activity. The proposed metabolites demonstrated significant activity as cytotoxic, hypolipidemic, and anti-inflammatory agents. In cytotoxicity screens several of the proposed metabolites afforded better activity than the parent compound against the growth of suspended and solid tumor cell lines. Eva...

  3. Dynamical behavior of rapeseed oil and methyl ester of rapeseed oil during high-pressure injection

    OpenAIRE

    Bambuleac Dumitru

    2012-01-01

    Fuels’ physical properties such as density, viscosity, speed of sound and bulk modulus have and important influence on the engine performance. This work will study the behavior of the rapeseed oil and methyl ester of rapeseed oil during high-pressure injection. Several aspects of the injection and combustion process will be analyzed in order to try to find out in what manner these aspects are influenced by the above-mentioned fuels’ characteristics and also by different operating regimes. In ...

  4. Experimental investigation on a diesel engine using neem oil and its methyl ester

    OpenAIRE

    Sivalakshmi S.; Balusamyb T.

    2011-01-01

    Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO) and its methyl ester (NOME) on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at ...

  5. τ-regioselective addition of (-)-Nα -tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate

    OpenAIRE

    López-Larrubia, Pilar; García-Amo, María; Mayoral, Elena P.; Robert J. Gillies; Cerdán, Sebastián; Ballesteros, Paloma

    2004-01-01

    Addition of (-)-Nα-tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate regioselectively yielded diethyl 2-[4-(2-methoxycarbonyl-2-tert-butoxycarbonylaminoethyl) imidazol-1-yl] succinate as a 1:1 mixture of diastereomers. These compounds were identified by NMR using (Eu(fod)3 as a stereospecific shift reagent, but were impossible to separate and characterise independently. Neutral hydrolysis of the mixture yielded the corresponding deprotected diastereomeric N τ-(2-ethoxycarbonyl-...

  6. Solvent-free Synthesis of Long Chain Aliphatic Acid Methyl Esters in Br(o)nsted Acidic Ionic Liquids at Room Temperature%在Br(o)nsted酸性功能化离子液体中室温无溶剂合成长链脂肪酸甲酯

    Institute of Scientific and Technical Information of China (English)

    李心忠; 林棋

    2009-01-01

    SO_3H-functionalized Br(o)nsted acidic ionic liquid:1-(4-sulfonic benzyl)-3-methyl-imidazolium hydrogen sulfate was synthesized and characterized.The synthesis of these ionic liquids by using N-methylimidazole,benzyl chloride,sulphuric acid,chlorosulfonic acid as the starting material via quaternarization,ion-exchange,and sulfonation reaction,their structures were confirmed by IR and 1HNMR.It was investigated that these ionic liquids could act as reaction media and the catalyst for the Fischer esterification of the long chain aliphatic acids with methanol.The optimum reaction conditions were:n(acids):n(methol):n(ionic liquids)=1:1:0.1,reaction temperature 25 ℃,reaction time 3~4.5 h,the isolated yields 84%~98%.This approach has advantages such as:it can be carried out smoothly at room temperature under solvent-free conditions,without heating and separating water,esters can be separated easily and high yields.The ionic liquid could be recovered easily and recycled three times without any significant loss in catalytic activity.%该文以N-甲基咪唑、苄基氯、硫酸、氯磺酸为原料,经季铵化、离子交换、磺化3步反应合成了磺酸型Br(o)nsted 酸性离子液体:1-(4-磺酸基苄基)-3-甲基-咪唑硫酸氢根盐,通过FTIR、1HNMR对其结构进行了确证.以其作为反应介质与催化剂,考察了C4~C16的直链脂肪酸与甲醇的Fischer酯化反应,确定了最佳反应条件:n(酸):n(醇):n(离子液体)=1:1:0.1,反应温度25 ℃、反应时间3~4.5 h,产率84%~98%,产物气相色谱纯度≥96%.该法无需加热、分水,产物分离简便,离子液体经真空除水后可重复使用,循环使用3次,催化活性保持不变.

  7. Benzyl esters of C2-C20 fatty acids and metabolically relevant carboxylic acids. Preparation and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1987-11-13

    Short-, medium- and long-chain fatty acids, and other types of metabolically relevant carboxylic acids like hydroxy-, keto-, aromatic and dicarboxylic acids, were analyzed by capillary gas chromatography. For separation, benzyl ester derivatives were used, prepared by reaction of the potassium carboxylates with benzyl bromide in acetonitrile catalyzed by a crown ether. The reaction conditions for quantitative benzylation were studied. Keto groups of ketocarboxylic acids were stabilized prior to benzylation by formation of O-methyl oximes using methoxyamine hydrochloride in aqueous-ethanolic solution. The separation of more than 45 carboxylic acids was achieved on a CP-Sil 5 CB fused-silica capillary column in less than 70 min. The electron impact mass spectra of ketocarboxylic acid O-methyl oxime benzyl esters PMID:3693495

  8. Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yung-Sung [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China); Department of Mechanical Engineering, Hsiuping Institute of Technology, No.11, Gongye Rd., Dali City, Taichung County 412-80 (China); Lin, Hai-Ping [Department of Mechanical and Automation Engineering, Da-Yeh University, 168 University Road, Dacun, Changhua 51591 (China)

    2010-09-15

    In Taiwan, millions of tons of waste cooking oil are produced each year, and less than 20% of it, about 150,000 ton/a, is reclaimed and reused. Most waste oil is flushed down the drain. Utilizing waste cooking oil to make biodiesel not only reduces engine exhaust gas pollution, but also replaces food-derived fuels, and reduces ecologic river pollution. This study employed two-stage transesterification to lower the high viscosity of waste oil, utilized emulsion to reduce the methyl ester NOx pollution, and used methanol to enhance the stability and viscosity of emulsified fuel. To further analyze spray characteristics of fuels, this experiment built a constant volume bomb under high temperature, used high speed photography to analyze spray tip penetration, spray angle, and the Sauter mean diameter (SMD) of fuel droplets, and compared the results with fossil diesel. The experimental results suggested that, two-stage transesterification can significantly lower waste oil viscosity to that which is close to fossil diesel viscosity. At a temperature above 300 C, waste cooking oil methyl esters had a water content of 20%, spray droplet characteristics were significantly improved, and NOx emission dropped significantly. The optimal fuel ratio suggested in this experiment was waste cooking oil methyl ester 74.5%, methanol 5%, water 20%, and composite surfactant Span-Tween 0.5%. (author)

  9. EXPERIMENTAL INVESTIGATION OF METHYL ESTER OF COTTON SEED OIL BLEND WITH DIESEL ON CI ENGINE

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2014-01-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat cotton seed oil is converted into their respective methyl ester through transesterification process. Experiments were conducted using various blends of methyl ester of cotton seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The results showed higher brake thermal efficiency and lower brake specific fuel consumption for B25 when compared to other blends . There is an appreciable decrease in HC emission while the decrease in CO emission is marginal. However, there is an increase in the emission of NOx. Reduction in smoke emission is observed for B25 at all loads, particularly there is a marked decrease of 5.4% at full load when compared to diesel. It was observed that the combustion characteristics of the blends of methyl ester of cotton seed oil with diesel followed closely with that of the base line diesel.

  10. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  11. Scientific Opinion on the safety evaluation of the active substances, terephthalic acid, dimethyl ester , polymer with 1,4-butanediol, cyclized, polymers with glycidyl methacrylate, hydroxyl-terminated polybutadiene, methyl methacrylate and styrene, and cobalt stearate for use in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2012-10-01

    Full Text Available

    This scientific opinion of EFSA deals with the safety evaluation of the oxygen absorber (terephthalic acid, dimethyl ester, polymer with 1,4-butanediol, cyclized, polymers with glycidyl methacrylate, hydroxyl-terminated polybutadiene, methyl methacrylate and styrene copolymer (CAS No 1223402-34-3, FCM substance No 1005 and the oxidation catalyst cobalt stearate (CAS No 1002-88-6 and FCM Substance No 1004, intended to be used up to a maximum percentage of 1% in polyethylene terephtalate (PET for absorbing oxygen from the food environment. All starting substances of the oxygen absorber formulation and cobalt stearate have been evaluated and approved for use as additives in plastic food contact materials. Methyl methacrylate, glycidyl methacrylate and cobalt stearate were not detected at the detection limits of 0.6, 0.006 and 0.0005 mg/kg food simulant, respectively. Butadiene was not detected in the PET bottles at a detection limit of 0.33 mg/kg plastic. For PET formulated with the maximum 1% of the active copoymer, the migration of the low molecular weight fraction (LMWF of the copolymer was estimated to be less than 35 µg/kg food. The CEF Panel concluded that the use of the copolymer up to 1% w/w in PET for contact with all types of foods at temperature up to 95°C and the use of cobalt stearate as oxidation catalyst in PET, is not of safety concern for the consumer.

  12. BIODIESEL SYNTHESIS OF COTTON SEEDS OIL (CEIBAPENTANDRA BY CHEMICALLY TRANSESTERIFICATION PROCESS AND ION FRAGMENTATION OF METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Erin Ryantin Gunawan

    2016-08-01

    Full Text Available Fossil fuel is commercial energy sources in many communities where their abundance progressively reduced and the resulting environmental pollution. Biodiesel is one alternative fuel made from vegetable which oils are suitable to replace the function of fossil fuels and environmentally friendly. Synthesis of biodiesel from cotton seeds oil was carried out by chemically ransesterification process. Composition of methyl esters in biodiesel thatwas analyzed by GC-MS are methyl palmitate (16.71%, methyl 8,11-octadecadienoic (46.45 % and methyl linoleate (4.21 %.The highest amount of biodiesel conversion isat ratio of oil and methanol (1:1 with the catalyst 1% (weight of oil. The produced biodiesel was 93.7 %. Chemical properties of the produced biodiesel meets the standard SNI 04-7182-2006 i.e. saponification value of 120.167 mg KOH / g, acid value of 0.28 mg KOH / g and iod value 55.84g iod/100g of sample.

  13. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... fruits and vegetables Dehydrated fruit and vegetable juices Edible vegetable fat-water emulsions As... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. Synthesis of monoketo and monohydroxy eicosanoic acids and esters with substituents at odd–numbered (3-13 carbons

    Directory of Open Access Journals (Sweden)

    HULYA CELIK

    2002-07-01

    Full Text Available In this study, monoketo and monohydroxy eicosanoic acids and their methyl esters with the position of the substituent on odd numbered carbon atoms from 3 to 13 were synthesized with high purity. Furthermore, the semicarbazone and anilide derivatives of the obtained keto acids were prepared. They were characterized by TLC, IR and 1H-NMR spectroscopy and their physical and chemical properties were established.

  15. Synthesis and insecticidal activities of new pyrethroid acid oxime ester derivatives

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of compounds containing oxime-ester linkage in place of the ester linkage in pyrethroid ester are designed and prepared. Bioassay data of insecticidal activities of these compounds on Ostrinia nubilalis (H.) and Culex pipines (L.) are presented. Among them 4-dimethyaminobenzaldehyde oxime ester of 2,2,3,3-tetramethylcyclopropanecarboxylic acid and 4-dimethyamino benzaldehyde oxime ester of cyclopropanecarboxylic acid are found to be potent insecticide against Ostrinia nubilalis (H.). Structure-activity relationship of the compounds is discussed.

  16. Partial syntheses of some isomers of Gibberellin A, and Gibberellin A, methyl ester

    OpenAIRE

    Fraga, Braulio M.; Gómez, Clemente D.; Melchor G. Hernández; De Paz, Emilio; Tellado, Fernando G.; Perales, Áurea

    1990-01-01

    The partial synthesis of an isomer of gibberellic acid meyhyl ester, with a lactone between C-6 and C-10 and an esterified acid group at C-19, is described. The overall yield from gibberellic acid was 46%. The preparation of 6-epi-GA. has also been carried out. Its structure was confirmed by an X-ray analysis of its 1B-iodo derivativo.

  17. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  18. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    ZHU Feng; LIN Yongcheng

    2006-01-01

    A novel 1-isoquinolone analog designated as marinamide (A) and its methyl ester (B), were produced by the application of mixed fermentation technique to two mangrove endophytic fungi (strains Nos. 1924 and 3893) from the South China Sea. Their structures were elucidated by comprehensive spectra methods (mainly by 2D NMR) as 4- (2-pyrrolyl)-1-isoquinolone-3-carboxylic acid (A) and methyl 4-(2-pyrrolyl)-1-isoquinolone-3-carboxylate (B), respectively. Compounds A and B were not obtained when either strain was cultured individually under the same conditions. The results showed that the application of mixed fermentation technique maybe rep- resents a potentially important approach to discover novel metabolites.

  19. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  20. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  1. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  2. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  3. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Science.gov (United States)

    2010-08-25

    ... AGENCY 40 CFR Part 180 Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  4. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  5. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of...

  6. Studies of a pyridino-crown ether-based chiral stationary phase on the enantioseparation of biogenic chiral aralkylamines and α-amino acid esters by high-performance liquid chromatography.

    Science.gov (United States)

    Lévai, Sándor; Németh, Tamás; Fődi, Tamás; Kupai, József; Tóth, Tünde; Huszthy, Péter; Balogh, György Tibor

    2015-11-10

    This paper reports the enantioseparation ability of a pyridino-18-crown-6 ether-based chiral stationary phase [(S,S)-CSP-1]. The enantiomeric discrimination of chiral stationary phase (S,S)-CSP-1 was evaluated by HPLC using the mixtures of enantiomers of various protonated primary aralkylamines [1-phenylethylamine hydrogen perchlorate (PEA), 2,3-dihydro-1H-inden-1-amine (1-aminoindan), 2,2'-(1,2-diaminoethane-1,2-diyl) diphenol (HPEN)] and perchlorate salts of α-amino acid esters [alanine benzyl ester (Ala-OBn), phenylalanine benzyl ester (Phe-OBn), phenylalanine methyl ester (Phe-OMe), phenylglycine methyl ester (PhGly-OMe), glutamic acid dibenzyl ester (Glu-diOBn), and valine benzyl ester (Val-OBn)]. The best enantioseparation was achieved in the case of PEA. The high enantioselectivity was rationalized by the strong π-π interaction of the extended π system of the aryl-substituted pyridine unit. PMID:26218505

  7. Simultaneous determination of C2-C22 non-esterified fatty acids and other metabolically relevant carboxylic acids in biological material by gas chromatography of their benzyl esters.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1988-03-18

    A method for the simultaneous determination of non-esterified short-, medium- and long-chain fatty acids and other types of metabolically relevant carboxylic acids such as hydroxy, keto, aromatic and dicarboxylic acids in biological material by capillary gas chromatography of benzyl ester derivatives is described. Sample preparation avoiding incomplete isolation of carboxylic acids consisted of deproteinization and extraction with ethanol, fixation of carboxylic acids as carboxylates, removal of interfering compounds such as neutral lipids by hexane extraction and amino acids, acyl carnitines and other cations by cation-exchange chromatography, derivatization of keto groups of ketocarboxylic acids into O-methyl oximes and benzyl ester formation by reaction of the potassium carboxylates with benzyl bromide via crown ether catalysis. The sample preparation conditions were investigated, showing the usefulness of this method for quantitative determinations. Chromatograms obtained from human serum, human urine and rat heart ventricle and concentrations of carboxylic acids in these specimens are presented. PMID:3372640

  8. Use of citric acid esters as alternative fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Georg; Thuneke, Klaus; Remmele, Edgar [Technologie- und Foerderzentrum, Straubing (Germany); Schieder, Doris [Technische Univ. Muenchen, Straubing (Germany). Lehrstuhl fuer Chemie Biogener Rohstoffe

    2013-06-01

    Common fuels for (adapted) diesel engines are fossil diesel fuel, fatty acid methyl ester (FAME or biodiesel) or vegetable oils. Furthermore the citric acid esters tributylcitrate (TBC) and triethylcitrate (TEC) are expected to be a possible diesel substitute. Their use as fuel was applied for a patent in Germany in 2010. According to the patent applicant the advantages are low soot combustion, independence of energy imports due to the possibility of local production and a broad raw material base. Their fuel properties have been analysed in the laboratory and compared with the relevant fuel standards. Only some of the determined values are meeting the specifications, but on the other hand few rapeseed oil characteristics (e. g. oxidation stability and viscosity) can be improved if the citric acid esters are used as a blend component. The operating and emission behaviour of a vegetable oil compatible CHP unit fuelled with various rapeseed oil and TBC blends were investigated and a trouble free and soot emission reduced engine operation due to the high molecularly bound oxygen content was observed. Long term test runs are necessary for an entire technical validation. (orig.)

  9. Jojoba methyl ester as a diesel fuel substitute: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.S.; Ismail, M.A.; Elfeky, S.M.S.; Abu-Elyazeed, O.S.M. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, University of Helwan, Masakin Elhelmia, Mattaria, Cairo 11718 (Egypt)

    2007-02-15

    The aim of the present work is to prepare jojoba methyl ester (JME) as a diesel fuel substitute. This was carried out experimentally and its chemical and physical properties were determined. Esterification method is used to produce methyl ester from raw jojoba oil. This method is optimized to produce the highest amount of fuel using a minimum amount of methyl alcohol. To achieve the above aim, a test rig for fuel production was developed. To measure the JME burning velocity a constant volume bomb was developed. The bomb was fully instrumented with a piezoelectric pressure transducer, charge amplifier, digital storage oscilloscope, A/D converter and a personal computer. Several grades of fuel were produced but, two grades only were selected and tested as an economical alternative fuel. The chemical and physical properties of these grades of fuel are measured as well as the laminar burning velocity. It is found that JME liquid fuel exhibited lower burning velocities than iso-octane. The new fuel is found to be suitable for compression ignition engine particularly in the indirect-injection ones, while for direct-injection, and high-speed engines fuel modifications are required. The new fuel is safe, has no sulphur content and reduces the engine wear as well as lengthens the lifetime of lubricating oil. (author)

  10. Conversion of carbohydrates to levulinic acid esters

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of converting carbohydrates into levulinic acid, a platform chemical for many chemical end products. More specifically the invention relates to a method for converting carbohydrates such as mono-, di- or polysaccharides, obtained from for example biomass...

  11. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  12. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  13. Dynamical behavior of rapeseed oil and methyl ester of rapeseed oil during high-pressure injection

    Science.gov (United States)

    Bambuleac, Dumitru

    2012-04-01

    Fuels' physical properties such as density, viscosity, speed of sound and bulk modulus have and important influence on the engine performance. This work will study the behavior of the rapeseed oil and methyl ester of rapeseed oil during high-pressure injection. Several aspects of the injection and combustion process will be analyzed in order to try to find out in what manner these aspects are influenced by the above-mentioned fuels' characteristics and also by different operating regimes. In such a way, some features of the technical efficiency of the two non-conventional diesel fuels will be determined. As a reference, it will serve the results from testing classical diesel.

  14. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    LENUS (Irish Health Repository)

    Deegan, Alexander Paul

    2012-02-01

    INTRODUCTION: We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm(R); Biogen Idec GmbH, Ismaning, Germany) for 6 months. METHODS: Report of a case. RESULTS: His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP). CONCLUSIONS: Therapy with oral prednisolone (40 mg\\/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

  15. Enzymatic synthesis and application of fatty acid ascorbyl esters

    OpenAIRE

    Stojanović Marija M.; Carević Milica B.; Mihailović Mladen D.; Knežević-Jugović Zorica D.; Petrović Slobodan D.; Bezbradica Dejan I.

    2013-01-01

    Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully use...

  16. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    Science.gov (United States)

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  17. Experimental Autoignition of C4-C6 Saturated and Unsaturated Methyl and Ethyl Esters

    CERN Document Server

    Bennadji, Hayet; Coniglio-Jaubert, Lucie; Billaud, Francis; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2009-01-01

    Autoignition delay times, ?, of methyl crotonate, methyl acrylate, ethyl butanoate, ethyl crotonate, and ethyl acrylate were studied in shock tube experiments. A series of mixtures diluted with argon, of varying fuel/oxygen equivalence ratios (?=0.25, 0.4, 1.0, and 2.0), were measured behind reflected shock waves over the temperature range of 1280-1930 K, pressure range of 7-9.65 atm, during which the logarithm of ? varies linearly as a function of the inverse temperature for all equivalence ratios. The ignition delay time decreases as temperature rises. The dependence of ? on temperature, and reactant concentrations is given in an empirical correlation. The results provide a database for the validation of small saturated and unsaturated esters kinetic mechanisms at elevated temperatures and pressure combustion.

  18. Influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene):(6,6)-phenyl C61 butyric acid methyl ester blend ratio on the performance of inverted type organic solar cells based on Eosin-Y-coated ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ginting, Riski Titian [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yap, Chi Chin, E-mail: ccyap@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2013-06-01

    The influence of poly(2-methoxy-5-(2’-ethyl)-hexyloxy-p-phenylene vinylene) (MEH-PPV) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) weight ratio on the photovoltaic performance of inverted type organic solar cell based on Eosin-Y-coated ZnO nanorods has been investigated. Experimental results showed that the photovoltaic performance improved with weight ratio of MEH-PPV:PCBM from 1:1 to 1:3 due to better percolation pathway for electron transport and enhanced infiltration of polymer blend into interspace of Eosin-Y-coated ZnO nanorods. However, the overall performance started to decrease at weight ratio of 1:4 due to the aggregation of PCBM clusters which results in poor polymer blend infiltration. The optimum device at weight ratio of 1:3 exhibited short circuit current density of 3.95 ± 0.10 mA cm{sup −2}, open circuit voltage of 0.53 ± 0.03 V, fill factor of 0.50 ± 0.03, and power conversion efficiency of 1.02 ± 0.07 %. - Highlights: • The device performance increased with donor:acceptor weight ratio up to 1:3. • Aggregation of fullerene-derivative led to poor infiltration at weight ratio of 1:4. • The optimum weight ratio was different from that of conventional device.

  19. Analysis of. gamma. -radiolysis products of aqueous solutions of esters of aliphatic amino acids by the PMR method

    Energy Technology Data Exchange (ETDEWEB)

    Panin, V.I.; Sidorov, P.S.; Usatyi, A.F.

    1987-09-01

    The ..gamma..-radiolysis of aqueous solutions of methyl esters of aliphatic amino acids and peptides was investigated by the method of nuclear (proton) magnetic resonance (PMR). The resonance lines appearing in the PMR spectra of the irradiated systems were identified, and a conclusion was drawn about the molecular structure of the radiolysis products. The kinetics of the accumulation of radiolysis products was studied, and the values of their radiation yields were estimated.

  20. Chemometric analysis of mass spectra of cis and trans fatty acid picolinyl esters

    DEFF Research Database (Denmark)

    Leth, Torben

    1997-01-01

    Capillary GC of fatty acid methyl esters with MS detection only yields information about the molecular weight of the compound. However, if picolinyl esters of fatty acids are analysed in this way it is possible to obtain more information about their structure, perhaps even the cis or trans...... with a quadropole MS-detector. The mass spectra clearly show the molecular weight and the position of double bonds in the fatty acids, but whether the configuration is cis or trans is impossible to discern visually. However, with the use of principal component analysis, it is possible to distinguish between cis...... and trans fatty acids of C16:1, C18:1,n-9, C18:1,n-12, C18:2 and C22:1 in two- and three-dimensional score plots. With Soft Independent Modelling of Class Analogy (SIMCA), it is possible to calculate models that can predict from the mass spectra of unknown fatty acids whether they are of the cis or trans...

  1. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A;

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe......-leucine. L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells......, a cloned rat islet tumor cell line. A twofold increase in islet glutamate dehydrogenase activity was induced by 5 mmol/liter L-leucine OMe, a larger effect than that of L-leucine (P less than 0.02), whereas L-arginine OMe had a small inhibitory effect. We conclude that L-leucine OMe is a potent stimulus...

  2. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  3. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NOx) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NOx and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%. (Author)

  4. Technical feasibility assessment of oleic sunflower methyl ester utilisation in Diesel bus engines

    International Nuclear Information System (INIS)

    This paper describes the results obtained while testing the technical feasibility of using oleic sunflower methyl ester (SME) blended with Diesel fuel in proportions up to 30% in an unmodified Diesel bus engine. Vegetable oils methyl esters blended with Diesel oil are commonly used in compression ignition engines. However, R and D background information on the practical use of traditional sunflower oil derivatives is sparse. The present results include evaluation of the engine performance and fuel consumption and gaseous concentrations (CO and NOX) in the exhaust gas. The exhaust gas opacity while using Diesel/SME blends and Diesel fuel was also compared. The collected data show that oleic SME utilisation did not lead to a deterioration of engine performance or to an increase in fuel consumption. Furthermore, significant increases of NOX and CO concentrations in the exhaust gas derived from SME utilisation were not detected. The smoke opacity was slightly reduced when SME was used in the proportion of 30%. The experimental testing seems to indicate that oleic SME is a suitable replacement for Diesel fuel and can be used safely in compression ignition engines in proportions as high as 30%

  5. Biodiesel With Optimized Fatty Ester Composition

    Science.gov (United States)

    Biodiesel is largely composed of the mono-alkyl esters, usually methyl esters, of vegetable oils or animal fats with its fatty acid profile corresponding to that of the parent oil or fat. The different fatty esters have varying properties of relevance to biodiesel. The feedstock-dependent variatio...

  6. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO2 emissions while causing slightly higher NOx emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  7. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  8. Theoretical and kinetic study of the hydrogen atom abstraction reactions of unsaturated C6 methyl esters with hydroxyl radical

    Science.gov (United States)

    Wang, Quan-De; Ni, Zhong-Hai

    2016-04-01

    This work reports a systematic ab initio and chemical kinetic study of the rate constants for hydrogen atom abstraction reactions by hydroxyl radical (OH) on typical isomers of unsaturated C6 methyl esters at the CBS/QB3 level of theory. The high-pressure limit rate constants at different reaction sites for all the methyl esters in the temperature range from 500 to 2000 K are calculated via transition-state theory with the Wigner method for quantum tunneling effect and fitted to the modified three parameters Arrhenius expression using least-squares regression. Further, a branching ratio analysis for each reaction site has been performed.

  9. Neural Tube Defects, Folic Acid and Methylation

    Directory of Open Access Journals (Sweden)

    Henk J. Blom

    2013-09-01

    Full Text Available Neural tube defects (NTDs are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.

  10. Effects of β-cyclodextrins on the enzymatical hydrolysis of chiral dichlorprop methyl ester

    Institute of Scientific and Technical Information of China (English)

    WEN Yue-zhong; ZHOU Shan-shan; FANG Zhao-hua; LIU Wei-ping

    2005-01-01

    The effect of β-cyclodextrins(β-CDs) on the enzymatical hydrolysis of chiral dichlorprop methyl ester (DCPPM) was studied.Four kinds of β-cyclodextrins(β-cyclodextrin, Partly methylated-CD( PM-β-CD), hydroxypropyl-cyclodextrin(HP-β-CD) and carboxymethylcyclodextrin(CM-β-CD) ) were used. Compared with 100% DCPPM in the absence of β-cyclodextrins, the activity of lipase decreased with the increase of β-cyclodextrin and PM-β-cyclodextrin. However, CM-β-cyclodextrin stimulated the lipase activity. The inhibition effect of β-cyclodextrin and PM-β-cyclodextrin on the hydrolysis of DCPPM is affected by many factors other than degree of the methylation blocking the active site of lipase. UV-Vis and Fourier transform infrared(FTIR) spectroscopy studies of the complexation of aqueous DCPPM with β-CDs provide fresh insight into the molecular structure of the complex and explain the effects of β-CDs on enzymatical hydrolysis of chiral DCPPM. Data showed that inclusion complexes had formed by complexation of the CM-β-CD with DCPPM and the solubility of DCPPM was increased in water, which leaded to the increased lipase activity.

  11. Synthesis of N-(methoxycarbonyl or isopropylcarbamoyl- methoxyphosphonyl)-α-amino acid ester and their stereomers

    Institute of Scientific and Technical Information of China (English)

    陈茹玉; 李慧英

    1996-01-01

    N-(methoxycarbonyl-methoxyphosphonyl)-α-amino add esters (I) were synthesized via the reaction of the corresponding phosphonyl chloride with amino acid ester hydrochlorides in the presence of a base. Compound I was aminated to yield N-(isopropylcarbainoyl-methoxyphosphonyl)-α-amino acid esters (II). With l-amino acids as starting materials, the isomers of products I and II were separated and their configurations were confirmed by the single crystal X-ray diffraction of II.

  12. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by {sup 1}H NMR of their (S)-2-methylbutyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Francisco A. da C.; Mendes, Maricleide P. de L.; Fonseca, Neuracy C. da, E-mail: fandrade@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2013-06-15

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by {sup 1}H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH{sub 2}-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  13. A Convenient, General Synthesis of 1,1-Dimethylallyl Esters as Protecting Groups for Carboxylic Acids

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A.

    2006-01-01

    Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided. PMID:15816730

  14. A convenient, general synthesis of 1,1-dimethylallyl esters as protecting groups for carboxylic acids.

    Science.gov (United States)

    Sedighi, Minoo; Lipton, Mark A

    2005-04-14

    [reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.

  15. Effect of the Rapeseed Oil Methyl Ester Component on Conventional Diesel Fuel Properties

    Directory of Open Access Journals (Sweden)

    Kumbár V.

    2015-01-01

    Full Text Available The effect of the rapeseed oil methyl ester (RME component in diesel fuel was assessed. Dynamic viscosity and density of blends were particularly observed. Measurements were performed at standard constant temperature. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In the case of pure RME, pure diesel fuel, and the blend of both, temperature dependence of dynamic viscosity and density was examined. Considerable temperature dependence of dynamic viscosity and density was found out and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and literature data sources. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modelled using the 3rd degree polynomial. Temperature dependence of density was modelled using the 2nd degree polynomial. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  16. Dynamical behavior of rapeseed oil and methyl ester of rapeseed oil during high-pressure injection

    Directory of Open Access Journals (Sweden)

    Bambuleac Dumitru

    2012-04-01

    Full Text Available Fuels’ physical properties such as density, viscosity, speed of sound and bulk modulus have and important influence on the engine performance. This work will study the behavior of the rapeseed oil and methyl ester of rapeseed oil during high-pressure injection. Several aspects of the injection and combustion process will be analyzed in order to try to find out in what manner these aspects are influenced by the above-mentioned fuels’ characteristics and also by different operating regimes. In such a way, some features of the technical efficiency of the two non-conventional diesel fuels will be determined. As a reference, it will serve the results from testing classical diesel.

  17. Effects of Diary Scum Oil Methyl Ester on a DI Diesel Engine Performance and Emission

    Directory of Open Access Journals (Sweden)

    Benson Varghese Babu

    2012-06-01

    Full Text Available Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emission from CI engine and minimum cost so there is need for producing biodiesel other than from seed oil. In this study the diary waste scum were used as the raw material to produce biodiesel. Scum oil methyl ester (SOME is produced in laboratory by tranestrification process. The properties of SOME thus obtained are comparable with ASTM biodiesel standards. Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke diesel engine fuelled with scum biodiesel and its blends with standard diesel. Tests has been conducted using the fuel blends of 10%, 20%, 30% and 100% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 17.5 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, brake specific fuel consumption, and exhaust gas temperature.

  18. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  19. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Umer; Anwar, Farooq; Ashraf, Samia [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Moser, Bryan R. [United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL 61604 (United States); Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604 (United States)

    2008-12-15

    We report the optimization of sunflower oil methyl esters (SOME/biodiesel) production via alkaline catalyzed transesterification of crude sunflower oil and subsequent physical and chemical characterization. The optimum conditions elucidated for the methanolysis of sunflower oil were found to be: methanol/sunflower oil molar ratio, 6:1; reaction temperature, 60 C; and NaOH catalyst concentration, 1.00% (w/w). An optimum SOME yield of 97.1% was achieved. SOME were analyzed by gas-liquid chromatography (GLC). A number of fuel properties of SOME as measured according to accepted methods were found to satisfy nearly all prescribed ASTM D 6751 specifications, where applicable. The results of the present study indicated that SOME could be a potential alternative to other common biodiesels and petrodiesel. (author)

  20. Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine

    Directory of Open Access Journals (Sweden)

    N Shrivastava

    2012-11-01

    Full Text Available Fast depletion of fossil fuel resources forces the extensive research on the alternative fuels. Vegetable oils edible or non edible can be a better substitute for the petroleum diesel. Karanja, a non edible oil can be a potential source to replace the diesel fuel. To investigate the feasibility of Karanja oil as an alternative diesel fuel, its biodiesel was prepared through the transesterification process. The Biodiesel was then subjected to performance and emission tests in order to assess its actual performance, when used as a diesel engine fuel. The data generated for the 20, 50 and 100 percent blended biodiesel were compared with base line data generated for neat diesel fuel. Result showed that the Biodiesel and its blend showed lower thermal efficiency. Emission of Carbon monoxide, unburned Hydrocarbon and smoke was found to be reduced where as oxides of nitrogen was higher with biodiesel and its blends. Keywords: alternate Diesel fuel; Biodiesel; Karanja oil methyl ester; performance and emission

  1. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NOx to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  2. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  3. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    Science.gov (United States)

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  4. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112.

    Science.gov (United States)

    Chen, Liwei; Pernazza, Daniele; Scott, Latanya M; Lawrence, Harshani R; Ren, Yuan; Luo, Yunting; Wu, Xin; Sung, Shen-Shu; Guida, Wayne C; Sebti, Said M; Lawrence, Nicholas J; Wu, Jie

    2010-09-15

    The protein tyrosine phosphatase (PTP) Shp2 (PTPN11) is an attractive target for anticancer drug discovery because it mediates growth factor signaling and its gain-of-function mutants are causally linked to leukemias. We previously synthesized SPI-112 from a lead compound of Shp2 inhibitor, NSC-117199. In this study, we demonstrated that SPI-112 bound to Shp2 by surface plasmon resonance (SPR) and displayed competitive inhibitor kinetics to Shp2. Like some other compounds in the PTP inhibitor discovery efforts, SPI-112 was not cell permeable, precluding its use in biological studies. To overcome the cell permeation issue, we prepared a methyl ester SPI-112 analog (SPI-112Me) that is predicted to be hydrolyzed to SPI-112 upon entry into cells. Fluorescence uptake assay and confocal imaging suggested that SPI-112Me was taken up by cells. Incubation of cells with SPI-112Me inhibited epidermal growth factor (EGF)-stimulated Shp2 PTP activity and Shp2-mediated paxillin dephosphorylation, Erk1/2 activation, and cell migration. SPI-112Me treatment also inhibited Erk1/2 activation by a Gab1-Shp2 chimera. Treatment of Shp2(E76K) mutant-transformed TF-1 myeloid cells with SPI-112Me resulted in inhibition of Shp2(E76K)-dependent cell survival, which is associated with inhibition of Shp2(E76K) PTP activity, Shp2(E76K)-induced Erk1/2 activation, and Bcl-XL expression. Furthermore, SPI-112Me enhanced interferon-gamma (IFN-gamma)-stimulated STAT1 tyrosine phosphorylation, ISRE-luciferase reporter activity, p21 expression, and the anti-proliferative effect. Thus, the SPI-112 methyl ester analog was able to inhibit cellular Shp2 PTP activity.

  5. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  6. 杂环氨基酸酯的合成与表征%Synthesis and characterization of heterocyclic amino acid esters

    Institute of Scientific and Technical Information of China (English)

    马养民; 刘斌

    2011-01-01

    L-trytophan methyl/ethyl ester hydrochloride, L-histidine methyl ester hydrochloride and L-proline methyl/ethyl ester hydrochloride were synthesized by reacting with three kinds of heterocyclic amino acids in a methanol/alcohol in the presence of thionyl chloride,and high yield product was produced. The structures of these compounds were characterized by NMR spectroscopy, IR spectroscopy and elemental analysis. Three types of heterocuclic amino acid esters were prepared by amino acid ester hydrochiloride in saturatede sodium carbonate,and extracted by methylene chloride.%以三种杂环结构的氡基酸、二氯亚砜、甲醇/乙醇为原料,合成L-色氨酸甲/乙酯盐酸盐、L-组氨酸甲酯盐酸盐以及L-脯氨酸甲/乙酯盐酸盐.产率较高,并通过核磁共振谱、红外光谱、元素分析对其盐酸盐进行了结构表征,所得到的氨基酸酯盐酸盐分别用饱和碳酸钠溶液中和、二氯甲烷萃取,最终得到了三类杂环氨基酸酯.

  7. Dissociation of castor oil-induced diarrhoea and intestinal mucosal injury in rat: effect of NG-nitro-L-arginine methyl ester.

    OpenAIRE

    Capasso, F; Mascolo, N; Izzo, A A; Gaginella, T S

    1994-01-01

    1. Castor oil (2 ml orally) produced diarrhoea in rats 1-7 h after challenge, which was associated with gross damage to the duodenal and jejunal mucosa. 2. The injury was accompanied by release of acid phosphatase into the gut lumen, indicating cellular injury. 3. Intraperitoneal injection of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 2.5-50 mg kg-1 twice), prevented the diarrhoea. The dose of L-NAME (50 mg kg-1) completely blocked the diarrhoea but inc...

  8. Enzymatic Synthesis of Glucose-Based Fatty Acid Esters in Bisolvent Systems Containing Ionic Liquids or Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Kai-Hua Zhao

    2016-09-01

    Full Text Available Sugar fatty acid esters (SFAEs are biocompatible nonionic surfactants with broad applications in food, cosmetic, and pharmaceutical industries. They can be synthesized enzymatically with many advantages over their chemical synthesis. In this study, SFAE synthesis was investigated by using two reactions: (1 transesterification of glucose with fatty acid vinyl esters and (2 esterification of methyl glucoside with fatty acids, catalyzed by Lipozyme TLIM and Novozym 435 respectively. Fourteen ionic liquids (ILs and 14 deep eutectic solvents (DESs were screened as solvents, and the bisolvent system composed of 1-hexyl-3-methylimidazolium trifluoromethylsulfonate ([HMIm][TfO] and 2-methyl-2-butanol (2M2B was the best for both reactions, yielding optimal productivities (769.6 and 397.5 µmol/h/g, respectively which are superior to those reported in the literature. Impacts of different reaction conditions were studied for both reactions. Response surface methodology (RSM was employed to optimize the transesterification reaction. Results also demonstrated that as co-substrate, methyl glucoside yielded higher conversions than glucose, and that conversions increased with an increase in the chain length of the fatty acid moieties. DESs were poor solvents for the above reactions presumably due to their high viscosity and high polarity.

  9. Performance of spray deposited poly [N-9 Double-Prime -hepta-decanyl-2,7-carbazole-alt-5,5-(4 Prime ,7 Prime -di-2-thienyl-2 Prime ,1 Prime , 3 Prime -benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Leona [Department of Electrical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan); Babu, R. Ramesh [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu (India); Kannappan, Santhakumar; Kojima, Kenzo; Mizutani, Teruyoshi [Department of Electrical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan); Ochiai, Shizuyasu, E-mail: ochiai@aitech.ac.jp [Department of Electrical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2012-01-31

    Bulk heterojunction organic solar cell devices were fabricated using the spray deposited poly [N-9 Double-Prime -hepta-decanyl-2,7-carbazole-alt-5,5-(4 Prime ,7 Prime -di-2-thienyl-2 Prime ,1 Prime , 3 Prime -benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer. The spray coating parameters such as spraying time, substrate-nozzle distance for the deposition of active layers were analyzed. Optical absorption of the active layers was analyzed using UV-visible spectral studies in the wavelength range from 300 to 800 nm. The surface morphology of the active layers deposited with different parameters was examined using atomic force microscopy. Surface morphology of the active layers deposited with the substrate-nozzle distance of 20 cm and for 20 s shows smooth morphology with peak-valley value of 4 nm. The devices fabricated using the selected active layer show overall power conversion efficiency of 1.08%. - Graphical abstract: Current-voltage (J-V) characteristics of spray deposited PCDTBT:PC{sub 61}BM active layer based solar cell device under illumination of AM 1.5 G, 100 mW/cm{sup 2}. Highlights: Black-Right-Pointing-Pointer Organic solar cells were fabricated using a spray deposited PCDTBT:PC61BM active layer. Black-Right-Pointing-Pointer The active layers deposited with spray conditions show flat morphology. Black-Right-Pointing-Pointer Using the selected active layers power conversion efficiency of 1.08% is obtained.

  10. 壳聚糖-聚乳酸及壳聚糖-聚(R)-3-羟基丁酸甲酯共混膜的制备及评价%Preparation and Evaluation of Blended Membrane Consisted of Chitosan and Polylactide or Poly(R)-3-Hydroxybutyric Acid Methyl Ester

    Institute of Scientific and Technical Information of China (English)

    刘弋潞; 谭艳玲; 梁秋志

    2012-01-01

    The blended membrane consisted of chitosan and polylactide (PLA) or poly (R) -3-hydroxybutyric acid methyl ester (PHB) was prepared by the tape casting process. The tensile strength of chitosan-PLA (111, w/w) and chitosan-PHB (1 : \\,w/w) blended membrane were (25.39±1.63) and (23.49±0.43)Mpa with the water absorption rate of (32.65±2.41) % and (33.72±3.11) %, respectively. The degrading rate of the chitosan-PLA blended membrane immersed in the artificial tissue fluid for 45 d was (32.26±0.56) %. It indicated that the membrane could induce the new tissue to regenerate.%用流延法制备壳聚糖与聚乳酸或聚(R)-3-羟基丁酸甲酯共混膜.壳聚糖-聚乳酸(1∶1,w/w)和壳聚糖-聚(R)-3-羟基丁酸甲酯(1∶1,w/w)共混膜的抗拉强度为(25.39±1.63)和(23.49±0.43)MPa,吸水率为(32.65±2.41)%和(33.72±3.11)%.该壳聚糖-聚乳酸膜在人工组织液中浸泡45d后,降解率为(32.26±0.56)%,提示其可诱导新组织再生.

  11. DESIGN AND SYNTHESIS OF 4-[2’-(5’- NITRO] IMIDAZOLYL BENZOYL (N-METHYL AMINO ACIDS AND PEPTIDES

    Directory of Open Access Journals (Sweden)

    PARAMITA DAS

    2010-06-01

    Full Text Available In the past two decades, a wide variety of bioactive peptides have been discovered. Condensation of heterocyclic moieties viz nicotinic acid, thiazole coumarin, quinolin, furan, imidazole etc. with amino acids and peptides resulted in compounds with potent biological activities. Many of the heterocyclic found to exhibit antifungal, antibacterial, cytotoxic, antineoplastic, insectisidal, antiinflammatory, anthelmintic, tyrosinase inhibitory and melanin production inhibitory activities. Metronidazole, serconidazole, flucanazole are well known marketed drugs. Introduction of D-amino acids and N-methylation of amino acids like tyrosine, valine, alanine etc enhanced antimicrobial activity. Hence an attempt is made towards the synthesis of 5-nitroimidazolyl-benzoic acid derivative of N-methylamino acids and peptide using solution phase technique of peptide synthesis. The method includes the introduction of tert-butyloxy carboxyl group (Boc to amino acids to protect the amino group forming Boc-amino acids .The protection of carboxyl group was done by converting the amino acids into corresponding methyl ester. The protected amino acids were coupled using diisopropylcarbodimide and triethylamine to get protected dipeptides. N-methylation was done by treating with methyl iodide and sodium hydride. The ester group was then removed by lithium hydroxide. The Boc(N-methyldipetide were coupled to amino acids or Boc(Nmethyl dipeptide were coupled to 4-[2-(5-nitroimidazoly]benzoic acids.

  12. Determination of characteristic properties of low sulphur IGO (industrial gasoil) and FAME (fatty acid methyl ester) mixtures for application technology; Bestimmung anwendungstechnischer Eigenschaften von FAME (Fettsaeuremethylester) in Heizoel EL mittels einer Pruefapparatur

    Energy Technology Data Exchange (ETDEWEB)

    Liska, M.; Rheinberg, O. van [Oel-Waerme-Inst. gGmbH, Aachen (Germany); Seehack, S.; Gruen, H.; Lucka, K.; Koehne, H. [Inst. fuer wirtschaftliche Oelheizung (IWO), Hamburg (Germany)

    2008-10-15

    Hardware-in-the-loop test rigs have been assembled for the investigation of characteristic properties of mixtures of low-sulfur IGO and FAME for application technology. The aim of these test rigs is to differentiate alternative fuels regarding the operational reliability for the use in oil firing systems. Two out of three 20% (v/v) FAME mixtures proofed to be critical as malfunctions due to blockings and deposits occurred. The critical fuels furthermore showed a significant increase in water content, acid number and peroxide number. This shows interdependency between malfunction of burner components and a delectable change of fuel properties. Nonetheless the fuel analytics prior to testing could not be used to predict the fuel quality. An increase of component lifetime could be achieved by the change of the oil tube material from copper to stainless steel respectively the stabilization of the fuel by additives for those alternative fuels proven to be critical. (orig.)

  13. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Directory of Open Access Journals (Sweden)

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  14. [Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].

    Science.gov (United States)

    Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang

    2014-04-01

    Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.

  15. Experimental Investigations on the Engine Performance and Characteristics of Compression Ignition (CI Engine Using Dual Bio – Fuel Methyl Ester As Alternate Fuel With Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    Inturi Vamsi,

    2015-05-01

    Full Text Available Petroleum products and resources are limited and their consumption is increasing very fast with globalization and high technology development since last decade. The emissions from the petroleum products polluting the environment considerably. Bio-fuels can be produced from diverse sources, which are subject to local geography, topology and climatology. Hence, every nation will have its own choice of a source. Duel bio-fuel represents an untapped resource of energy easily available in India. This study investigates the potential substitution of duel bio-fuel methyl ester blends for diesel as fuel for automobiles and other industrial purposes. This study is concerned with the analysis of the performance and emission characteristics of the duel bio-fuel methyl esters and comparing with petroleum diesel. The fuels used were neat methyl ester, diesel and different blends of the methyl ester with diesel. The tests were carried out on a 4.4 KW, single cylinder, direct injection, air-cooled diesel engine. The fuels used were neat duel bio-fuel methyl ester, diesel and different blends of the methyl ester with diesel. The experimental result shows that 20% of blend shows better performance with reduced pollution. This analysis shows that duel bio-fuel methyl ester and its blends are a potential substitute for diesel.

  16. Depigmenting Effect of Kojic Acid Esters in Hyperpigmented B16F1 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Firdaus B. Lajis

    2012-01-01

    Full Text Available The depigmenting effect of kojic acid esters synthesized by the esterification of kojic acid using Rhizomucor miehei immobilized lipase was investigated in B16F1 melanoma cells. The depigmenting effect of kojic acid and kojic acid esters was evaluated by the inhibitory effect of melanin formation and tyrosinase activity on alpha-stimulating hormone- (α-MSH- induced melanin synthesis in B16F1 melanoma cells. The cellular tyrosinase inhibitory effect of kojic acid monooleate, kojic acid monolaurate, and kojic acid monopalmitate was found similar to kojic acid at nontoxic doses ranging from 1.95 to 62.5 μg/mL. However, kojic acid monopalmitate gave slightly higher inhibition to melanin formation compared to other inhibitors at doses ranging from 15.63 to 62.5 μg/mL. Kojic acid and kojic acid esters also show antioxidant activity that will enhance the depigmenting effect. The cytotoxicity of kojic acid esters in B16F1 melanoma cells was significantly lower than kojic acid at high doses, ranging from 125 and 500 μg/mL. Since kojic acid esters have lower cytotoxic effect than kojic acid, it is suggested that kojic acid esters can be used as alternatives for a safe skin whitening agent and potential depigmenting agents to treat hyperpigmentation.

  17. Determining Phthalic Acid Esters Using Terahertz Time Domain Spectroscopy

    Science.gov (United States)

    Liu, L.; Shen, L.; Yang, F.; Han, F.; Hu, P.; Song, M.

    2016-09-01

    In this report terahertz time domain spectroscopy (THz-TDS) is applied for determining phthalic acid esters (PAEs) in standard materials. We reported the THz transmission spectrum in the frequency range of 0.2 to 2.0 THz for three PAEs: di-n-butyl phthalate (DBP), di-isononyl phthalate (DINP), and di-2-ethylhexyl phthalate ester (DEHP). The study provided the refractive indices and absorption features of these materials. The absorption spectra of three PAEs were simulated by using Gaussian software with Density Functional Theory (DFT) methods. For pure standard PAEs, the values of the refractive indices changed between 1.50 and 1.60. At 1.0 THz, the refractive indices were 1.524, 1.535, and 1.563 for DINP, DEHP, and DBP, respectively. In this experiment different concentrations of DBP were investigated using THz-TDS. Changes were measured in the low THz frequency range for refractive indices and characteristic absorption. The results indicated that THz-TDS is promising as a new method in determining PAEs in many materials. The results of this study could be used to support the practical application of THz-TDS in quality detection and food monitoring. In particular, this new technique could be used in detecting hazardous materials and other substances present in wine or foods.

  18. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3700 Fatty acid, ester with styrenated phenol... chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  19. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half...... was observed. However, after treatment of the effluent from the thermophilic reactor in a hyper-thermophilic digester (HRT: 5 days) 0 CO 34-53% of the DEHP content was removed and the DBP removal was increased to further 62-74%. Removal rates (k(h)) of DEHP and DBP were found to be 0.11-0.32 d(-1) and 0...... is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate degradation of organic...

  20. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester

    International Nuclear Information System (INIS)

    Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.

  1. Hepatotoxicity, Nephrotoxicity and Oxidative Stress in Rat Testis Following Exposure to Haloxyfop-p-methyl Ester, an Aryloxyphenoxypropionate Herbicide

    Directory of Open Access Journals (Sweden)

    Ebenezer Tunde Olayinka

    2015-10-01

    Full Text Available Haloxyfop-p-methyl ester (HPME ((R-2-{4-[3-chloro-5-(trifluoromethyl-2-pyridyloxy]phenoxy}propionic acid, is a selective aryloxyphenoxypropionate (AOPP herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170–210 g were randomized into four groups (I–IV. Group I (control received 1 mL of distilled water, while animals in Groups II, III and IV received 6.75, 13.5 and 27 mg/kg body weight HPME, respectively, for 21 days. There was a significant (p < 0.05 increase in renal and hepatic function biomarkers (urea, creatinine, total bilirubin, ALP, ALT, AST in the plasma of treated animals compared to control. Levels of testicular antioxidants, ascorbic acid and glutathione, and activities of glutathione-S-transferase, superoxide dismutase and catalase were reduced significantly after 21 days of HPME administration in a dose-dependent manner. The testicular malondialdehyde level increased significantly in the HPME-treated rats relative to the control. A significant decrease in testicular lactate dehydrogenase, acid phosphatase and γ-glutamyl transferase was also observed in HPME-treated animals. Testicular histology revealed severe interstitial edema and sections of seminiferous tubules with necrotic and eroded germinal epithelium in the HPME-treated rats. Overall, data from this study suggest that HPME altered hepatic and renal function and induced oxidative stress and morphological changes in the testis of rats.

  2. Fatty acid steryl, stanyl, and steroid esters by esterification and transesterification in vacuo using Candida rugosa lipase as catalyst.

    Science.gov (United States)

    Weber, N; Weitkamp, P; Mukherjee, K D

    2001-01-01

    Sterols (sitosterol, cholesterol, stigmasterol, ergosterol, and 7-dehydrocholesterol) and sitostanol have been converted in high to near-quantitative yields to the corresponding long-chain acyl esters via esterification with fatty acids or transesterification with methyl esters of fatty acids or triacylglycerols using lipase from Candida rugosa as biocatalyst in vacuo (20-40 mbar) at 40 degrees C. Neither organic solvent nor water is added in these reactions. Under similar conditions, cholesterol has been converted to cholesteryl butyrate and steroids (5alpha-pregnan-3beta-ol-20-one or 5-pregnen-3beta-ol-20-one) have been converted to their propionic acid esters, both in moderate to high yields, via transesterification with tributyrin and tripropionin, respectively. Reaction parameters studied in esterification include the temperature and the molar ratio of the substrates as well as the amount and reuse properties of the C. rugosa lipase. Lipases from porcine pancreas, Rhizopus arrhizus, and Chromobacterium viscosum are quite ineffective as biocatalysts for the esterification of cholesterol with oleic acid under the above conditions.

  3. Two New Saccharide Fatty Acid Esters from the Fruit of Morinda citrifolia L. and Their ABTS Radical Scavenging Activities

    Directory of Open Access Journals (Sweden)

    Hong-Cai Zhang

    2013-11-01

    Full Text Available Two n ew saccharide fatty acid esters (1 and (2, and six other compounds were isolated from the fruit of Morinda citrifolia L. (Rubiaceae The structures were established as (2E-oct-2-enoate-2-O-β-D - glucopyranosyl-β-D-glucopyranoside(1, (2E-2,6-dimethyl -6-hydroxyl-oct-2,7-dienoate-2-O-β-D-glucopyranosyl-β-D-glucopyranoside(2, saccharumoside C(3, O-β-D-apiofuranosyl-(1→6-O-β-D-glucopyranosides of 3-methyl-2-butenol(4, 3-methyl-but-2-en-1-yl β-D-glucopyranosyl (1→6-β-D-glucopyranoside(5, benzyl - glucopyranoside(6, Hexyl-O-β-D-glucopyranoside(7, and caproic acid(8. Compound 1 and 2 showed moderate activity against ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonate radical in concentration of 0.1-3.2 mg/mL.

  4. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    Science.gov (United States)

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity. PMID:25728921

  5. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  6. Energy- and exergy analysis of rape seed oil methyl ester (RME) production under Swedish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hovelius, K.; Hansson, P. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Agricultural Engineering

    1999-10-01

    In this study the rape seed oil methyl ester (RME) production chain was analysed with respect to its energy- and exergy efficiencies. The differences between results from an ordinary energy analysis and an exergy analysis of the production were also quantified and discussed. The sensitivity of the results to changes in some of the most important input parameters were then analysed in order to find production strategies that increase the exergy efficiency. The study was applied to rape seed cultivation situated in southern Sweden. The rape seed oil was hot pressed in a large-scale plant, and the RME was esterified in the same factory as that in which the rape seed oil was pressed. Both direct and indirect energy and exergy flows used for RME production were included. The analysis showed that a large part of the energy and exergy used to produce RME was related to nitrogen fertilizers and diesel fuels. Another important conclusion was that the exergy efficiency of the production in general is higher than the energy efficiency. A third conclusion was that it is possible, by using alternative production strategies, to improve the exergy efficiency without decreasing the energy efficiency.

  7. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME)

    International Nuclear Information System (INIS)

    The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics. It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns

  8. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine

    International Nuclear Information System (INIS)

    An experimental investigation was carried out on a small direct injection (DI) diesel engine, fuelling the engine with 10% (B10), 20% (B20), 30% (B30) and 40% (B40) blending of Koroch seed oil methyl ester (KSOME) with diesel. The performance and combustion characteristics of the engine at various loads are compared and analyzed. The results showed higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE) for the KSOME blends. The engine indicated power (IP) was more for the blends up to B30, but found to be reduced for the blend B40 when compared to that of diesel. The engine combustion parameters such as pressure crank angle diagram, peak pressure, time of occurrence of peak pressure, net heat-release rate, cumulative heat release, ignition delay and combustion duration were computed. The KSOME blends exhibited similar combustion trend with diesel. However, the blends showed an early start of combustion with shorter ignition delay period. The study reveals the suitability of KSOME blends up to B30 as fuel for a diesel engine mainly used in generating sets and the agricultural applications in India without any significant drop in engine performance.

  9. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

    Directory of Open Access Journals (Sweden)

    G.DURGA DEVI

    2012-07-01

    Full Text Available Diesel engines are widely used as power sources in medium and heavy-duty applications because of their lower fuel consumption and lower emissions of carbon monoxide (CO and unburned hydrocarbons (HC compared with gasoline engines. Rudolf Diesel, the inventor ofthe diesel engine, ran an engine on groundnut oil at the Paris Exposition of 1900. Since then, vegetable oils have been used as fuels when petroleum supplies were expensive or difficult to obtain. With the increased availability of petroleum in the 1940s, research into vegetable oils decreased. Since the oil crisis of the 1970s research interest has expanded in the area of alternative fuels. The difficulties associated with using raw vegetable oils in diesel engines identified in the literature are injector coking, severe engine deposits, filter gumming problems, piston ring sticking, and injector coking and thickening of the lubricating oil. The highviscosity and low volatility of raw vegetable oils are generally considered to be the major drawbacks for their utilization as fuels in diesel engines. Castor methyl ester (CME blends showed performance characteristics close to diesel. Therefore castor methylester blends can be used in CI engines in rural area for meeting energy requirement in various agricultural operations such as irrigation, threshing, indistries etc.

  10. Evaluation of engine performance and emission with methyl ester of Karanja oil

    Directory of Open Access Journals (Sweden)

    Shikha Gangil

    2016-09-01

    Full Text Available Biodiesel has been considered as potential alternative to petroleum diesel with the renewable origin for the existing compression ignition engine. The main objective of the present work is evaluating performance and emission characteristics of diesel engine for various blends (B20, B40, B60, B80 and B100 of Karanja biodiesel and commercial diesel. The experimental investigation was carried out in IC (internal combustion at variable loads and compared with conventional diesel fuel with respect to engine performance parameters i.e. brake specific fuel consumption (BSFC, brake specific power consumption (BSEC, brake thermal efficiency (η-B.Th, for varying load conditions. The results obtained indicated the better fuel properties and engine performance at B40. For all cases, BSFC reduced with increase in load. It can be observed that the BSEC for various blends is lower as compared with that of diesel fuel. The availability of oxygen in the Karanja oil methyl ester-diesel fuel blend may be the reason for the lower BSEC. Brake thermal efficiency is increased due reduced heat loss with increased in load. It was found that the emission level of CO and HC level decreased with increased in blend proportion in diesel fuel. NOx emission increased with increase in blend proportion in diesel fuel.

  11. INFLUENCE OF PALM METHYL ESTER (PME AS AN ALTERNATIVE FUEL IN MULTICYLINDER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Mohd Hafizil M. Yasin

    2012-12-01

    Full Text Available Palm oil is one of the vegetable oil, which is converted to biodiesel through a transesterification process using methanol as the catalyst. Palm oil biodiesel or palm methyl ester (PME can be used in diesel engines without any modification, and can be blended with conventional diesel to produce different proportions of PME-diesel blend fuels. The physical properties of PME were evaluated experimentally and theoretically. The effect of using neat PME as fuel on engine performance and emissions was evaluated using a commercial four-cylinder four-stroke IDI diesel engine. The experimental results on an engine operated with PME exhibited higher brake specific fuel consumption in comparison with the conventional fuel. With respect to the in-cylinder pressure and heat release rate, these increased features by over 8.11% and 9.3% with PME compared to conventional diesel. The overall results show that PME surpassed the diesel combustion quality due to its psychochemical properties and higher oxygen content.

  12. Exhaust gas assisted reforming of rapeseed methyl ester for reduced exhaust emissions of CI engines

    International Nuclear Information System (INIS)

    The nitrogen oxides (NOx) emissions of compression ignition (CI) engines fueled with biodiesel are generally higher compared to conventional diesel fuelling. Previous research work in CI engines has shown that the partial replacement of hydrocarbon fuels by hydrogen combined with exhaust gas recirculation (EGR) can reduce NOx and smoke emissions without significant changes to the engine efficiency. In the present study, the production of hydrogen-rich gas by catalytic exhaust gas assisted fuel reforming of rapeseed methyl ester (RME) has been investigated experimentally as a way to provide the required hydrogen for the reduction of biodiesel emissions. For comparison, tests with ultra low sulphur diesel (ULSD) were also performed. The reforming experiments were carried out in a mini reactor supplied with exhaust gas from a single cylinder CI engine. In all cases, the reactor inlet temperature was kept at 290-bar C which was chosen as a typical low exhaust gas temperature of diesel engines operating at part load. The engine operating condition (speed, load) was the same in all the tests and the reactor product gas was examined as a function of the reactor fuel flow rate and the composition of fuel and engine exhaust gas. Up to 17% hydrogen content of the reformer product was achieved and the results indicated that the main reactions in the reformer were the exothermic complete oxidation of part of the fuel and the endothermic steam reforming reaction. Reforming of RME produced more hydrogen with higher fuel conversion efficiency compared to ULSD reforming

  13. Synergistic antiviral effect in vitro of azidothymidine and amphotericin B methyl ester in combination on HIV infection

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Svenningsen, A;

    1992-01-01

    The nucleoside analogue azidothymidine (AZT) and the methyl ester of amphotericin B (AME) were assayed for antiviral effect on HIV infection singly and in combination. Both compounds were effective in inhibiting HIV infection of MT-4 cells. At concentrations where either compound alone had no sig...... synergistic antiviral properties. Amphotericin B itself significantly reduced HIV infectivity in vitro and should not be used as an antifungal agent in cultures intended to propagate HIV....

  14. Ecological audit of rape seed oil or rape methyl ester as a substitute for diesel fuel (ecological audit rape seed oil)

    International Nuclear Information System (INIS)

    The objective of this study is to answer the following central question: Is the environmental pollution burden resulting from the cultivation of rape and the use of rape seed oil or rape methyl ester to be rated less severe than that of the manufacture and use of diesel fuel, and should, therefore, farmland be used in Germany to grow rape for rape seed oil or rape methyl ester production as a substitute for diesel fuel? Firstly, the extent is investigated to which rape seed oil or rape methyl ester can contribute to cuts in emissions of climate-relevant trace gases as compared to diesel fuel from crude oil. Secondly, the environmental impact and hazards associated with the cultivation, transport and manufacture of rape seed oil or rape methyl ester (again as compared to diesel fuel) are investigated. The data analysed relate to the entire life cycle. (orig./UWA)

  15. 75 FR 20785 - Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a...

    Science.gov (United States)

    2010-04-21

    ... AGENCY 40 CFR Part 180 Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the..., concerning polyglyceryl phthalate ester of coconut oil fatty acids; exemption from the requirement of a... phthalate ester of coconut oil fatty acids'' pursuant to a petition by the Joint Inserts Task Force,...

  16. Noncytotoxic and Antitumour-Promoting Activities of Garcinia Acid Esters from Garcinia atroviridis Griff. ex T. Anders (Guttiferae)

    OpenAIRE

    Abdul M. Ali; Nashriyah Mat; Lajis, Nordin H.; Mooi, Lim Y.; Mohidin Amran; Mackeen, Mukram M.

    2012-01-01

    The in vitro antitumour-promoting, cytotoxic, and antioxidant activities of two ester derivatives of garcinia acid, that is, 2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide (1) and 1′,1′′-dibutyl methyl hydroxycitrate (2), that had been previously isolated from the fruits of Garcinia atroviridis Griff. ex T. Anders (Guttiferae), were examined. Based on the inhibition of Epstein-Barr virus early antigen (EBV-EA) activation, compound 1 (IC50: 70  μ M) showed much higher (8-fol...

  17. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  18. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  19. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  20. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    Science.gov (United States)

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL. PMID:24768282

  1. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  2. Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions.

    Science.gov (United States)

    Ren, Kangzi; Lamsal, Buddhi P

    2017-01-01

    The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change. PMID:27507510

  3. Conformational analysis and intramolecular interactions of L-proline methyl ester and its N-acetylated derivative through spectroscopic and theoretical studies.

    Science.gov (United States)

    Braga, Carolyne B; Ducati, Lucas C; Tormena, Cláudio F; Rittner, Roberto

    2014-03-01

    This work reports a detailed study regarding the conformational preferences of L-proline methyl ester (ProOMe) and its N-acetylated derivative (AcProOMe) to elucidate the effects that rule their behaviors, through nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies combined with theoretical calculations. These compounds do not present a zwitterionic form in solution, simulating properly amino acid residues in biological media, in a way closer than amino acids in the gas phase. Experimental (3)JHH coupling constants and infrared data showed excellent agreement with theoretical calculations, indicating no variations in conformer populations on changing solvents. Natural bond orbital (NBO) results showed that hyperconjugative interactions are responsible for the higher stability of the most populated conformer of ProOMe, whereas for AcProOMe both hyperconjugative and steric effects rule its conformational equilibrium.

  4. The assignment of the configuration for α-hydroxy acid esters using a CEC strategy.

    Science.gov (United States)

    Peng, Ruixue; Lin, Lili; Zhang, Yuheng; Wu, Wangbin; Lu, Yan; Liu, Xiaohua; Feng, Xiaoming

    2016-06-21

    A simple and efficient (1)H NMR method for determining the absolute configuration of chiral α-hydroxy acid esters using a competing enantioselective conversion (CEC) strategy was developed. The α-hydroxy acid esters were acylated in the presence of Feng's chiral N,N'-dioxide-scandium(iii) complex, and the faster reaction was identified when one enantiomer of the chiral α-hydroxy acid ester was treated with both enantiomers of the ligand by NMR analysis of the reaction mixture without further purification. A mnemonic is presented to aid the assignment of the absolute configuration of the substrates. PMID:27189590

  5. [Phthalic acid esters (PAEs) pollution in farmland soils: a review].

    Science.gov (United States)

    Wang, Kai-Rong; Cui, Ming-Ming; Shi, Yan-Xi

    2013-09-01

    The environmental pollution and food safety problems caused by phthalic acid esters (PAEs) have been attracted 'extensive attention around the world. As a large PAEs producer and consumer, China is facing severe PAEs environmental pollution problems. This paper reviewed the present pollution status of six PAEs classified by the U.S. Environmental Protection Agency as the priority pollutants in China farmland soils, analyzed the sources of these six PAEs in this country, and discussed the absorption and accumulation characteristics of the PAEs in different crops as well as the bio-toxic effects of PAEs pollutants. The PAEs concentrations in China farmland soils are significantly higher those in the farmland soils of the United States and European countries. The main sources of PAEs in China farmland soils are atmospheric deposition, agricultural films, sewage sludge application, and wastewater irrigation. There exist significant differences in the characteristics of PAEs absorption, accumulation, and distribution among different crops. PAEs not only have negative effects on soil quality, crop growth, and crop physiological and biochemical properties, but also possess bio-accumulative characteristics. The weaknesses in current researches were pointed out, and the suggestions for the further researches were given, e. g., to expand the scope of PAEs pollution survey, to explore the toxic mechanisms of PAEs on crops, and to develop the techniques for in situ remediation of PAEs-polluted soils.

  6. Improvement of Kidney Apelin and Apelin Receptor in Nitro-L-Arginine-Methyl Ester Induced Rats

    Directory of Open Access Journals (Sweden)

    S. Ali Akbar Mahmoody

    2015-02-01

    Full Text Available Background: We have investigated the effect of 8 weeks aerobic training (AT and Ferula gummosis supplement (FG on apelin and apelin receptor (APJ, nitric oxide (NO and angiotensin converting enzyme (ACE of hypertensive rats. Materials and Methods: In a experimental study, 50 adult male wistar rats were classified into five groups; 1- AT, 2- FG, 3- combination of aerobic training + Ferula Gummosa supplement (TFG, 4- nitro-L-arginine-methyl ester (L-NAME, 5- shame (control groups (SH. The rats in the 1 to 4 groups received L-NAME (10 mg/kg, 6 times a week for 8 weeks. Also, the 1 and 3 groups experienced the training of 15 to 22 m/min for 25 to 64 minutes, 5 times a week for 8 weeks, whereas, the 2 and 3 groups received Ferula gummosis supplement (90 mg/kg, 6 times a week for 8 weeks. However, rats in 5 groups received NaCl solution. Results: At protocols resulted in a significant increase in apelin and APJ as compared to control and L-NAME groups. The TFG protocols resulted in a markedly increase in apelin, APJ and significantly decrease of ACE levels as compared to L-NAME group. Chronically administration of L-NAME resulted increased, ACE, and reduced the levels of apelin, APJ and NO, as compared to control group. Conclusion: The results in this study show that physical regular activity with and without herbal treatment induce amplification in apelin/APJ system and down-regulation blood pressure in L-NAME induced hypertension in the rat kidney tissue.

  7. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  8. Incorporating Amino Acid Esters into Catalysts for Hydrogen Oxidation: Steric and Electronic Effects and the Role of Water as a Base

    Energy Technology Data Exchange (ETDEWEB)

    Lense, Sheri; Ho, Ming-Hsun; Chen, Shentan; Jain, Avijita; Raugei, Simone; Linehan, John C.; Roberts, John A. S.; Appel, Aaron M.; Shaw, Wendy

    2012-10-08

    Four derivatives of a hydrogen oxidation catalyst, [Ni(PCy2NBn-R2)2]2+ (Cy = cyclohexyl, Bn = benzyl, R = OMe, COOMe, CO-alanine-methyl ester, CO-phenylalanine-methyl ester), have been prepared to investigate steric and electronic effects on catalysis. Each complex was characterized spectroscopically and electrochemically, and thermodynamic data were determined. Crystal structures are also reported for the -OMe and -COOMe derivatives. All four catalysts were found to be active for H2 oxidation. The methyl ester (R = COOMe) and amino acid ester containing complexes (R = CO-alanine-methyl ester or CO-phenylalanine-methyl ester) had rates slower (4 s–1) than that of the parent complex (10 s–1), in which R = H, which is consistent with the lower amine pKa's and less favorable ΔGH2's found for these electron-withdrawing substituents. Dynamic processes for the amino acid ester containing complexes were also investigated and found not to hinder catalysis. The electron-donating methyl ether derivative (R = OMe) was prepared to compare electronic effects and has a catalytic rate similar to that of the parent complex. In the course of these studies, it was found that water could act as a weak base for H2 oxidation, although catalytic turnover requires a higher potential and utilizes a different sequence of catalytic steps than when using a base with a higher pKa. Finally and importantly, these catalysts provide a foundation upon which larger peptides can be attached to [Ni(PCy2NBn2)2]2+ hydrogen oxidation catalysts in order to more fully investigate and implement the effects of the outer coordination sphere.

  9. Sulfuric Acid ([3-(3-Silicapropyl)sulfanyl]propyl)ester as a Recyclable Catalyst for the Synthesis of 4,4'-(Arylmethylene)bis(1H-pyrazol-5-ols)%Sulfuric Acid ([3-(3-Silicapropyl)sulfanyl]propyl)ester as a Recyclable Catalyst for the Synthesis of4,4'-(Arylmethylene)bis(1H-pyrazol-5-ols)

    Institute of Scientific and Technical Information of China (English)

    Shekoofeh TAYEBI; Mojtaba BAGHERNEJAD; Dariush SABERI; Khodabakhsh NI KNAM

    2011-01-01

    Sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester is employed as a recyclable catalyst for the condensation reaction between aromatic aldehydes and 3-methyl-l-phenyl-5-pyrazolone.This condensation reaction was performed in ethanol under refluxing conditions giving 4,4-alkylmethylene-bis(3-methyl-5-pyrazolones) in 74-90% yields.The heterogeneous catalyst was recycled and used in eleven runs for the reaction between benzaldehyde and 3-methyl-l-phenyl-5-pyrazolone without losing catalytic activity.

  10. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  11. Oxidative stability of fatty acid alkyl esters: a review.

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2015-12-01

    Full Text Available The purpose of this study was to investigate and to process the current literary knowledge of the physico-chemical properties of vegetable oil raw used for biodiesel production in terms of its qualitative stability. An object of investigation was oxidative stability of biodiesel. In the study, we focused on the qualitative physico-chemical properties of vegetable oils used for biodiesel production, oxidative degradation and its mechanisms, oxidation of lipids, mechanisms of autooxidation, effectivennes of different synthetic antioxidants in relation to oxidative stability of biodiesel and methods of oxidative stability determination. Knowledge of the physical and chemical properties of vegetable oil as raw material and the factors affecting these properties is critical for the production of quality biodiesel and its sustainability. According to the source of oilseed, variations in the chemical composition of the vegetable oil are expressed by variations in the molar ratio among different fatty acids in the structure. The relative ratio of fatty acids present in the raw material is kept relatively constant after the transesterification reaction. The quality of biodiesel physico-chemical properties is influenced by the chain length and the level of unsaturation of the produced fatty acid alkyl esters. A biodiesel is thermodynamically stable. Its instability primarily occurs from contact of oxygen present in the ambient air that is referred to as oxidative instability. For biodiesel is oxidation stability a general term. It is necessary to distinguish ‘storage stability' and ‘thermal stability', in relation to oxidative degradation, which may occur during extended periods of storage, transportation and end use. Fuel instability problems can be of two related types, short-term oxidative instability and long-term storage instability. Storage instability is defined in terms of solid formation, which can plug nozzles, filters, and degrade engine

  12. Enhancement of Emulsifying Properties of Cuttlefish Skin Gelatin by Modification with N-hydroxysuccinimide Esters of Fatty Acids

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Encarnacion, A.B.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish (Sepia pharaonis) skin gelatin modified with N-hydroxysuccinimide esters of various fatty acids including capric acid (C10:0), lauric acid (C12:0), and myristic acid (C14:0) at different molar ratios was characterized and determined for emulsifying property. Fatty acid esters were incorpo

  13. Long-chain alkanoic acid esters of lupeol from Dorstenia harmsiana Engl. (Moraceae).

    Science.gov (United States)

    Poumale, Herve Martial P; Awoussong, Kenzo Patrice; Randrianasolo, Rivoarison; Simo, Christophe Colombe F; Ngadjui, Bonaventure Tchaleu; Shiono, Yoshihito

    2012-01-01

    In addition to lupeol (1a), three long-chain alkanoic acid esters of lupeol, in which two were new, were isolated from the hexane and ethyl acetate twigs extract of Dorstenia harmsiana Engl. (Moraceae). The structures of the new compounds were elucidated on the basis of 1D and 2D NMR experiments. Some isolated compounds were evaluated for their antimicrobial activities. The lupeol and its three long-chain alkanoic acid esters showed antifungal and antibacterial activities.

  14. Synthesis and characterization of new biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Two novel biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups were synthesized via the macromolecular substitution reactions of poly(dichlorophosphazene) with the sodium salt of lactic acid ester and sodium methoxyethoxyethoxide.Their structures were confirmed by ~(31)p NMR,~1H NMR,~(13)C NMR,IR,DSC,and elemental analysis.The lower critical solution temperature(LCST) behavior in water and in vitro degradation property of the polymers was investigated....

  15. Synthesis, isolation and characterization of methyl levulinate from cellulose catalyzed by extremely low concentration acid

    Institute of Scientific and Technical Information of China (English)

    Hui; Li; Lincai; Peng; Lu; Lin; Keli; Chen; Heng; Zhang

    2013-01-01

    A direct synthesis of methyl levulinate from cellulose alcoholysis in methanol medium under mild condition(180 210 C)catalyzed by extremely low concentration sulfuric acid(0.01 mol/L)and the product isolation were developed in this study.Effects of different process variables towards the catalytic performance were performed as a function of reaction time.The results indicated that sulfuric acid concentration,temperature and initial cellulose concentration had significant effects on the synthesis of methyl levulinate.An optimized yield of around 50%was achieved at 210 C for 120 min with sulfuric acid concentration of 0.01 mol/L and initial cellulose concentration below 100 g/L.The resulting product mixture was isolated by a distillation technique that combines an atmospheric distillation with a vacuum distillation where n-dodecane was added to help distill the heavy fraction.The light fraction including mainly methanol could be reused as the reaction medium without any substantial change in the yield of methyl levulinate.The chemical composition and structural of lower heavy fraction were characterized by GC/MS,FTIR,1H-NMR and13C-NMR techniques.Methyl levulinate was found to be a major ingredient of lower heavy fraction with the content over 96%.This pathway is efficient,environmentally benign and economical for the production of pure levulinate esters from cellulose.

  16. Investigations of engine performance and exhaust emissions of a diesel engine with an oxidation catalyst. Use of rape seed oil methyl ester (RME); Untersuchung des Betriebs- und Abgasemissionsverhaltens eines Dieselmotors mit Oxidationskatalysator. Verwendung von Rapsoel-Methyl-Ester (RME)

    Energy Technology Data Exchange (ETDEWEB)

    May, H.; Hattingen, U.; Theobald, J. [Kaiserslautern Univ. (Germany); Weidmann, K.; Koenig, A. [Volkswagen AG, (Germany)

    1998-02-01

    Investigations were carried out on a 1.9 ltr. turbocharged swirl-chamber diesel engine fuelled with three different qualities of Rape Seed Oil Methyl Ester (RME) at the University of Kaiserslautern. The RME fuels were supplied by different manufacturers. In comparison with the RME fuels a conventional, low sulphur (S<0.05 wt.%) diesel fuel was studied. (orig.) [Deutsch] An der Universitaet Kaiserslautern wurden an einem 1,9-l-Wirbelkammer-Turbodieselmotor Untersuchungen mit drei unterschiedlichen RME-Qualitaeten durchgefuehrt. Die RME-Kraftstoffe wurden von verschiedenen Herstellern geliefert. Zum Vergleich mit den RME-Kraftstoffen erfolgten Messungen mit einem konventionellen, schwefelarmen Dieselkraftstoff (S<0,05 Mas.-%). (orig.)

  17. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves.

    Science.gov (United States)

    Kanitkar, Akanksha; Balasubramanian, Sundar; Lima, Marybeth; Boldor, Dorin

    2011-09-01

    Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80°C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.

  18. Concentration and stabilization of C₂₀-₂₂ n-3 polyunsaturated fatty acid esters from the oil of Sardinella longiceps.

    Science.gov (United States)

    Chakraborty, Kajal; Joseph, Deepu; Joseph, Dexy

    2016-05-15

    Methyl esters of C20-22n-3 polyunsaturated fatty acids derived from sardine oil triglycerides were concentrated to 86% purity with greater than 30% recovery by argentated chromatography. The synergistic effect of ethyl acetate fractions of seaweeds Kappaphycus alvarezii, Hypnea musciformis and Jania rubens used in 0.1:0.2:0.2 (%, w/w) ratio in arresting oxidative degradation of the n-3 PUFA methyl ester concentrate was demonstrated during accelerated storage. The induction time (6.8h) and antioxidant activity indices (>24) were greater for n-3 PUFA concentrates supplemented with seaweed extracts than antioxidants BHT and α-tocopherol (<5h and <17, respectively). Nuclear Magnetic Resonance spectroscopy was employed to study the oxidative changes of fatty acid signals of PUFA concentrate during accelerated storage. Potential of seaweeds to improve the storage stability of C20-22n-3 fatty acid methyl esters was studied. This study has applications in development of food and pharmaceutical products. PMID:26776041

  19. Pemisahan dan Pemurnian Phthalic Acid Ester dari Minyak Nyamplung

    Directory of Open Access Journals (Sweden)

    William Ekaputra Taifan

    2013-09-01

    Full Text Available Minyak nyamplung dikenal sebagai minyak yang tidak dapat dikonsumsi. Oleh sebab itu, penelitian tentang minyak ini hanya fokus pada konversi minyak menjadi biodiesel. Pada penelitian ini, kami berusaha untuk memisahkan resin beracun dari fraksi metanol menggunakan ekstraksi pelarut diikuti kolom kromatografi. Resin beracun ini diidentifikasi sebagai phthalic acid ester (PAE. PAE ini biasanya digunakan sebagai zat aditif di industri polimer. Minyak nyamplung mengandung 1,8% PAE, yang masih jauh melebihi nilai ambang batas. Isolasi PAE dari minyak ini diharapkan dapt mengubah minyak yang tidak dapat dikonsumsi menjadi suplemen makanan yang bernilai. Proses isolasi PAE dimulai dengan memisahkan senyawa yang diinginkan dari lipid menggunakan ekstraksi pelarut bertingkat dengan metanol dan n-heksan. Analisa mass spectra dari fraksi pertama dan fraksi kedua metanol menunjukkan kandungan PAE sebesar 60% dan 6% pada tiap fraksi. Fraksi heksan tidak mengandung PAE. PAE yang terkandung pada fraksi metanol diisolasi lebih lanjut dari asam lemak menggunakan liquid column chromatography dengan n-heksan – etil asetat sebagai mobile phase. Bis- 2ethylhexyl phthalate diidentifikasi pada ketiga fraksi sesuai dengan hasil analisa GC-MS. Fraksi pertama diambil pada kondisi mobile phase 5% etil asetat, sedangkan fraksi kedua merupakan campuran 5% etil asetat dan 10% etil asetat. Fraksi ketiga diambil pada kondisi mobile phase 10% etil asetat mengandung PAE sebesar 98%. Fraksi keempat merupakan campuran 10% dan 15% mobile phase dan mengandung PAE sebesar 97%. Akhirnya, kandungan PAE pada fraksi metanol sebesar 58%. Dari hasil analisa, dapat disimpulkan bahwa mobile phase yang optimum untuk kromatografi adalah 10- 15% etil asetat dalam n-heksan.

  20. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  1. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  2. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  3. 富勒烯衍生物苯基C71-丁酸甲酯的结构和电学性质第一性原理研究%First principles calculations of structure and the electronic properties of fullerene derivative phenyl-C71-butyric acid methyl ester

    Institute of Scientific and Technical Information of China (English)

    张竹霞; 赵彦亮; 闫新; 韩培德; 刘旭光; 郝玉英; 许并社

    2009-01-01

    Phenyl-C71-butyric acid methyl ester ([70]PCBM) clusters are investigated by using the B3LYP method with 6-31G(d) basis set. The optimized results indicate that the addition of PCBM into the [6,6]-junction produces a closed methanofullerene which is thermodynamically stable product; and the addition into the [5,6]-junction results in an enlarged fullerene (an open fulleroid) which is a kinetically controlled product. The first adiabatic electron affinity for [70]PCBM is similar to that for C70. The energy gaps of [70]PCBM are reduced compared with those of C70. PCBM derivatives and show increased level of the lowest unoccupied molecular orbital of fullerenes. From the natural charge populations, it is found that adding PCBM unit onto the C70 cages does not change the charge populations remarkably; attaching a PCBM has no effect on the electronic structures of C70. The results of theoretical calculation suggest that PCBM is not involved in the process of photoelectric conversion but it plays a key role in adjusting the level of HOMO-LUMO for increasing photoelectric conversion efficiencies.%使用B3LYP/6-31G(d)方法对有机太阳电池中作为电子受体材料的富勒烯衍生物苯基C71-丁酸甲酯([70]PCBM)的同分异构体进行了计算.PCBM与C70通过六元环和六元环共用的CC双键加成得到的产物是热力学控制产物;通过五元环和六元环共用的C-C键加成得到的产物则是动力学控制产物.[70]PCBM与C70的第一绝热电子亲和势很接近.PCBM对前线轨道贡献很小,[70]PCBM的最高占据分子轨道和最低未占据分子轨道(LUMO)的电子云主要分布在C70笼上.PCBM提升了C70的LUMO能级水平,有利于提高太阳电池的光电转换效率.自然布居分析表明,PCBM与C70之间没有发生显著的电荷转移.所有的性质研究表明,PCBM基团并不涉及电池光电转换过程,但在调整C70能级水平提高光电转换效率中发挥了重要作用.

  4. Selective synthesis of thiodiglycol dicarboxylic acid esters via -TsOH/C-catalysed direct esterification

    Indian Academy of Sciences (India)

    Dahong Jiang; Min Huang

    2012-09-01

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is crucial for the transformation.

  5. Systematic evaluation of methyl ester bioisosteres in the context of developing alkenyldiarylmethanes (ADAMs) as non-nucleoside reverse transcriptase inhibitors (NNRTIs) for anti-HIV-1 chemotherapy.

    Science.gov (United States)

    Hoshi, Ayako; Sakamoto, Takeshi; Takayama, Jun; Xuan, Meiyan; Okazaki, Mari; Hartman, Tracy L; Buckheit, Robert W; Pannecouque, Christophe; Cushman, Mark

    2016-07-01

    The alkenyldiarylmethanes (ADAMs) are a class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting HIV-1. Four chemically and metabolically stabilized ADAMs incorporating N-methoxyimidoyl halide replacements of the methyl esters of the lead compound were previously reported. In this study, twenty-five new ADAMs were synthesized in order to investigate the biological consequences of installing nine different methyl ester bioisosteres at three different locations. Attempts to define a universal rank order of methyl ester bioisosteres and discover the 'best' one in terms of inhibitory activity versus HIV-1 reverse transcriptase (RT) led to the realization that the potencies are critically dependent on the surrounding structure at each location, and therefore the definition of universal rank order is impossible. This investigation produced several new non-nucleoside reverse transcriptase inhibitors in which all three of the three methyl esters of the lead compound were replaced by methyl ester bioisosteres, resulting in compounds that are more potent as HIV-1 RT inhibitors and antiviral agents than the lead compound itself and are expected to also be more metabolically stable than the lead compound. PMID:27234889

  6. The oxidative stability of rapeseed oil methyl and ethyl esters - environment friendly alternative fuel

    International Nuclear Information System (INIS)

    The oxidative stability of rapeseed oil and bio diesel fuel RME and REE, produced from it, has been determined. The addition of antioxidant BHT essentially prolongs the utility term of oil and its esters. (authors)

  7. Structure-activity relationships of vanillic acid ester analogs in inhibitory effect of antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells.

    Science.gov (United States)

    Ishimata, Nao; Ito, Hideyuki; Tai, Akihiro

    2016-08-01

    Methyl vanillate (1) showed strong degranulation inhibitory activity among vanillin derivatives tested. In order to find structure-activity relationships for developing anti-allergic agents with simple structures and potent activity, we synthesized several vanillic acid (VA) ester derivatives with C1-C4 and C8 alkyl chains and evaluated their degranulation inhibitory activities. The most active compound of VA ester derivatives was derivative 5 with a C4 straight alkyl chain, and derivative 5 exhibited approximately three-fold greater inhibitory activity than that of 1. Moreover, we designed 8 types of analogs based on 5, and we found that the minimum structure for potent degranulation inhibitory activity requires direct connection of the butyl ester moiety on the benzene ring and at least one hydroxyl group on the benzene ring. Butyl meta or para hydroxyl benzoate (10 or 11) has a simpler structure than that of 5 and exhibited more potent degranulation inhibitory activity than that of 5. PMID:27324979

  8. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    OpenAIRE

    Isabel Bento; Teresa Duarte, M.; M. João M. Curto; Inês F. Antunes; Hélène Ramos; Fátima C. Teixeira

    2006-01-01

    A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2)nCO2R of different lengths (n = 0-6, 9, 10) are described.Nucleophilic substitution reactions on halo esters (X(CH2)nCO2R) by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultin...

  9. Energetic balance of castor oil methyl and ethyl esters; Balanco energetico de esteres metilicos e etilicos de oleo de mamona

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Neto, Jose Adolfo de; Cruz, Rosenira Serpa da; Alves, Jaenes Miranda; Pires, Monica de Moura; Robra, Sabine [Universidade Estadual de Santa Cruz, Ilheus BA (Brazil). Grupo Bioenergia e Meio Ambiente]. E-mails: jalmeida@uesc.br; Parente Junior, Expedito [Tecnologias Bioenergeticas Ltda. (TECBIO), Fortaleza, CE (Brazil); Fundacao Nucleo de Tecnologia Industrial (NUTEC), Fortaleza, CE (Brazil)]. E-mail: expeditojr@tecbio.com.br

    2004-07-01

    Castor oil (Ricinus communis L.) is one of the cultures chosen by the biodiesel federal and state programs to supply raw material for biodiesel production - a biofuel indicated as renewable and less pollutant than its fossil competitor. An energetic balance was performed based on LCA - Life Cycle Analysis principles and Input-Output Analysis, comparing the castor oil energy performance with others traditional cultures: colza (Brassica napus) in Europe and soybean (Glycine max) in the United States. Energy balance (O-I) was positive in both production ways (methyl and ethyl) independent of coproduct use allocation alternative. The relation Output-Input (O-I) calculated for castor oil biodiesel [1.3-2.9] was higher than the colza (1.2-1.9) and lower than the soybean (3.2--3.4), independent of the way and allocation of the used byproduct. Both indicators suggest the energy and environmental viability of the castor oil biodiesel, provided that high agricultural productivity (higher than 1.500 kg/ha year) can be guaranteed. The potentialization of the positive energetic and environmental effects depends on the adequate utilization of the coproducts and process residues, the improvement of the energy efficiency in the the castor oil and biodiesel processing and the implementation of efficient management in the use of the chemical inputs (specially the N), responsible for up 5% of the total energy input.

  10. Green Synthesis Process of Ibuprofen Methyl Ester%布洛芬甲酯的绿色合成工艺

    Institute of Scientific and Technical Information of China (English)

    曹雅晴; 汤鲁宏

    2013-01-01

    An environmentally benign process has been established for the production of ibuprofen methyl ester,with ibuprofen and methanol as reactants,p-toluene sulfonic acid(PTSA) as catalyst,and glycerol as the adsorbent of water and the solvent of catalyst. The immiscibility of glycerol and ibuprofen methyl ester was exploited in this benign process. The chromatography was used to isolate the products. For the whole process, there was no discharge of effluent either during the process of synthesis or that of the purification. The reaction conditions have been optimized as follows; the optimal molar ratio of reactants was n( ibuprofen) -n( methanol) :n{ glycerol) = 1:10. 2:1. 4;the optimal amount of PTSA was 1 % of ibuprofen; the optimal reaction time was 4 h; and the optimum stirring speed was 300 r/min. Under the optimized conditions, the conversion rate could reach 97. 1 % , and the yield was more than 95%. Detected by LC/MS, the purity of ibuprofen methyl ester was 99. 9%.%以布洛芬和甲醇为原料,以对甲苯磺酸为催化剂,以甘油作为吸水剂和催化剂分离的溶剂,利用甘油与布洛芬甲酯可自动分层的特性,辅以柱色谱分离,建立了一种布洛芬甲酯的绿色合成工艺.整个工艺路线无三废产生.合成条件经正交实验优化,确定了最佳反应条件:反应体系的最佳组成为n(布洛芬)∶n(甲醇)∶n(甘油)=1∶10.2∶1.4,催化剂对甲苯磺酸的最佳添加量为布洛芬质量的1%,最佳转速为300 r/min,最佳反应时间为4h,在该条件下转化率可达97.1%,得率大于95.0%.经液相-质谱联用(LC/MS)检测,色谱纯度为99.9%.

  11. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Boeriu, C.G.

    2013-01-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and fil

  12. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  13. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  14. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  15. A COMPARATIVE STUDY OF CASTOR AND JATROPHA OIL SOURCE AND ITS METHYL ESTER TEST ON THE DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    DEVENDRA VASHIST,

    2011-06-01

    Full Text Available Neat non-edible oils pose problems when subjected to use when used in the CI engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of these oils. Two non-edible sources of the oils were identified i.e jatropha and castor. The biodiesel was prepared from neat oils and blends preparedwith diesel. up till 20 percent of biodiesel. Produced blends were tested for their use as a substitute fuel for diesel in a single cylinder diesel engine at varying loads. The best engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency were identified and compared. On the observed data for both the fuels, Chi square (2 statistical test was applied. The values calculated for 2 jatropha oil methyl ester (JOME = 0.0104 and 2 castor oil methyl ester (COME = 0.0524. The values concluded that there is no effect of fuel type on fuel consumption up till 20 percent biodiesel blended fuel.

  16. Novel Approach: Tungsten Oxide Nanoparticle as a Catalyst for Malonic Acid Ester Synthesis via Ozonolysis

    Directory of Open Access Journals (Sweden)

    Bilal A. Wasmi

    2014-01-01

    Full Text Available Malonic acid ester was synthesized via the one-step ozonolysis of palm olein. Malonic acid ester was spectroscopically characterized using gas chromatography mass spectroscopy (GC-MS. Tungsten oxide nanoparticles were used as the catalyst, which was characterized via X-ray powder diffraction (XRD and field emission scanning electron microscopy (FE-SEM. Tungsten oxide provided several advantages as a catalyst for the esterification malonic acid such as simple operation for a precise ozonation method, an excellent yield of approximately 10%, short reaction times of 2 h, and reusability due to its recyclability.

  17. Improvement of synthesis of vegetable oil methyl ester%植物油甲酯的合成工艺改进

    Institute of Scientific and Technical Information of China (English)

    周丽平; 洪永德; 徐维锋; 吴文忠

    2014-01-01

    The synthesis process of vegetable oil methyl ester was improved so as to increase the conver-sion rate and yield of vegetable oil methyl ester. The synergistic effect of shearer introduced to the trans-esterification was investigated, and the shortest reaction time was determined. The feasibility of sulfuric acid-catalyzed esterification of fatty acid saponifiable matter to improve the separation efficiency and yield was also researched. The results showed that the transesterification efficiency of the improved process increased greatly. The contents of monoglycerides, diglycerides and triglycerides were less than 0. 5%, 1% and undetectable respectively only in 5 min with laboratory device, and the conversion rate reached 99. 1%. The fatty acid saponifiable matter, the by-product in the reaction was neutralized by sulfuric acid and then esterified with methanol, the shortest reaction time was 1 h, and the acid value of the product was below 0. 8 mgKOH/g. Since emulsification effect caused by the fatty acid saponifiable matter was eliminated, the quick separation of oil and water was realized, and all the by-products trans-formed to fatty acid methyl ester, so the yield of the product reached 99. 5%. All the raw materials were industrial grade with low cost and wide selection of raw oils.%为了提高植物油甲酯的转化率和收率,对植物油甲酯的合成工艺进行了改进。考察了酯交换反应中引入剪切机的增效作用,确定了最短反应时间;并考察了硫酸催化副产物脂肪酸皂化物酯化来提高分离效率和收率的可行性。结果表明:经过改进的工艺,酯交换反应效率得到了大幅提高,实验室装置下只需5 min就可以达到单甘酯含量小于0.5%,二甘酯含量小于1%,三甘酯含量未检出的水平,甲酯转化率达到99.1%;反应生成的副产物脂肪酸皂化物被硫酸中和后与甲醇发生酯化反应,最短反应时间为1 h,产品酸值(KOH)小于0.8 mg/g;由于消除

  18. 40 CFR 721.10142 - Oxabicycloalkane carboxylic acid alkanediyl ester (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxabicycloalkane carboxylic acid alkanediyl ester (generic). 721.10142 Section 721.10142 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10142 Oxabicycloalkane carboxylic acid...

  19. Plasma Cholesterol Ester Fatty Acids: A New Biochemical Abnormality in Obstructive Jaundice

    OpenAIRE

    Scriven, M. W.; Horrobin, D. F.; Puntis, M. C. A.

    1995-01-01

    Changes in fatty acid patterns may explain many of the observed abnormalities found in obstructive jaundice. This study looked at fatty acids in plasma cholesterol esters, in a group of patients with obstructive jaundice and a matched group of controls. Significant abnormalities were demonstrated, most importantly a fall in essential fatty acids, in the jaundiced group. Overall the saturation of this fraction, as assessed by double bond index, rose. The essential fatty acids ar...

  20. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  1. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    Science.gov (United States)

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  2. Bioconversion of methyl ricinoleate to 4-hydroxy-decanoic acid and to gamma-decalactone by yeasts of the genus Candida.

    Science.gov (United States)

    Endrizzi, A; Belin, J M

    1995-01-01

    The capacity of several strains of yeasts to do the bioconversion of methyl ricinoleate into gamma-decalactone, was studied in a medium containing this methylic ester of fatty acid as sole carbon source. Amongst the strains which are able to do this bioconversion, two types of behaviour are observed: some of the strains produce gamma-decalactone during all the incubation in bioconversion medium while others produce this aroma compound very quickly and then consume it fast too. The tested strains produce at the same time gamma-decalactone and the corresponding acid form (4-hydroxy-decanoic acid), and this, in variable proportions. PMID:8568639

  3. Anticancer Activities of Substituted Cinnamic Acid Phenethyl Esters on Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIShu-chun; LIHui; ZHANGFa; LIZhong-jun; CUIJing-rong

    2003-01-01

    Caffeic acid phenethyl ester (CAPE) and sixteen substituted cinnamic acid phenethyl esters were prepared via conventional procedures in order to test their in vitro anticancer activities by either MTT assay or SRB assay on six different human cancer cell lines. The results indicated that in the concentration of 10μmol·L-1 the lead compmuM CAPE possessed anficancer activities against human HL-60, Bel-7402, and Hela cell lines, and two other compounds possessed potent anticancer activities against Bel-7402 and Hela cell lines.

  4. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1 when used as flavourings for all animal species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-04-01

    Full Text Available Chemical group 1 (CG 1 consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic acid, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, oleic acid, decanol, dodecanol, decyl acetate and dodecyl acetate. The remaining substances are considered safe for all animal species at 5 mg/kg complete feed (with a margin of safety between 1 and 120 and at 25 mg/kg complete feed (ethyl acetate and hexyl acetate, with a margin of safety between 2 and 6; and at 1 mg/kg complete feed for pigs and poultry and 1.5 mg/kg complete feed for all other species (ethylacrylate, ethyl hex-3-enoate, ethyl trans-2-butenoate, ethyl isobutyrate, ethyl isovalerate, butyl isovalerate, methyl isovalerate, hexyl isobutyrate, methyl 2-methyl butyrate, pentyl isovalerate, butyl 2-methyl butyrate, hexyl isovalerate, ethyl 2-methyl butyrate, hexyl 2-methyl butyrate and methyl 2-methylvalerate. No safety concern would arise for the consumer from the use of compounds belonging to CG 1 up to the highest safe level in feedingstuffs for all animal species. The FEEDAP Panel considers it prudent to treat all compounds under assessment as irritants to skin, eyes and respiratory tract and as skin sensitizers. No risk for the safety for the environment is foreseen. Since all 85 compounds are used in food as flavourings, no further demonstration of efficacy is necessary.

  5. Synthesis and Crystal Structure of 4-(4,6-Dimethoxylpyrimidin-2-yl)-3-thiourea Carboxylic Acid Ethyl Ester

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen

    2008-01-01

    4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine,potassium thiocyanate and methyl chloroformate in ethyl acetate.Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamidc at room temperature.The crystal structure was determined by X-ray diffraction analysis.Crystallographic data:C10H14N4O4S,Mr=286.31,monoclinic,space group C2/c with a=2.5309(3),b=0.67682(6),c=1.74237(19)nm,β=114.744(3)°,V=2.7106(5)nm3,Dc=1.403 g/cm3,μ=0.225mm-1,F(000)=1200,Z=8,R=0.0514 and wR=0.1529.

  6. Antifungal properties of 2-bromo-3-fluorosuccinic acid esters and related compounds.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1977-04-01

    Twelve esters (C1-C6) of erythro- and threo-2-bromo-3-fluorosuccinic acid and related compounds were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.7 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. At pH 7.0 in the presence of 10% beef serum, no consistent pattern in the fungitoxicity of the erythro- and threo-2-bromo-3-fluorosuccinate esters was seen. Increasing the length of the ester function affects fungitoxicity as follows: C2 greater than C1 greater than C3 greater than C4 greater than C5 greater than C6. The most fungitoxic compound in this study was threo-ethyl 2-bromo-3-fluorosuccinate (C. albicans, 14 mug/ml; A. niger, 30 mug/ml; M. mucedo, 9 mug/ml; T. mentagrophytes, 5 mug/ml). Due to the ease of dehydrohalogenation, the fungitoxicity of 2-bromo-3-fluorosuccinic acid esters may be the result of a mixture composed of the parent compound, the bromo- and fluorofumaric acid esters, and HF and HBr of which part may be formed extracellularly and part within the cell.

  7. Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester.

    Science.gov (United States)

    Mai, Ngoc Lan; Ahn, Kihun; Bae, Sang Woo; Shin, Dong Woo; Morya, Vivek Kumar; Koo, Yoon-Mo

    2014-12-01

    Sugar fatty acid esters are bio-surfactants known for their non-toxic, non-ionic, and high biodegradability . With great emulsifying and conditioning effects, sugar fatty acids are widely used in the food, pharmaceutical, and cosmetic industries. Biosynthesis of sugar fatty acid esters has attracted growing attention in recent decades. In this study, the enzymatic synthesis of sugar fatty acid esters in ionic liquids was developed, optimized, and scaled up. Reaction parameters affecting the conversion yield of lipase-catalyzed synthesis of glucose laurate from glucose and vinyl laurate (i.e. temperature, vinyl laurate/glucose molar ratio, and enzyme loads) were optimized by response surface methodology (RSM). In addition, production was scaled up to 2.5 L, and recycling of enzyme and ionic liquids was investigated. The results showed that under optimal reaction conditions (66.86 °C, vinyl laurate/glucose molar ratio of 7.63, enzyme load of 73.33 g/L), an experimental conversion yield of 96.4% was obtained which is close to the optimal value predicted by RSM (97.16%). A similar conversion yield was maintained when the reaction was carried out at 2.5 L. Moreover, the enzymes and ionic liquids could be recycled and reused effectively for up to 10 cycles. The results indicate the feasibility of ionic liquids as novel solvents for the biosynthesis of sugar fatty acid esters.

  8. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  9. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  10. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    Science.gov (United States)

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  11. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  12. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    Science.gov (United States)

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  13. Catalytic Esterification of Methyl Alcohol with Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Esterification of methyl alcohol with acetic acid catalysed by Amberlyst-15 (cation-exchange resin) was carried out in a batch reactor in the temperature ranging between 318-338 K, at atmospheric pressure. The reaction rate increased with increase in catalyst concentration and reaction temperature, but decreased with an increase in water concentration. Stirrer speed had virtually no effect on the rate under the experimental conditions. The rate data were correlated with a second-order kinetic model based on homogeneous reaction. The apparent activation energy was found to be 22.9kJ.mo1-1 for the formation of methyl acetate. The methyl acetate production was carried out aa batch and continuous in a packed bed restive distillation column with high purity methyl acetate produced.

  14. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Science.gov (United States)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  15. Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil.

    Science.gov (United States)

    Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian

    2014-02-15

    Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID.

  16. Synthesis and characterization of biodegradable polymer: Poly (ethene maleic acid ester-co-D,L-lactide acid)

    Institute of Scientific and Technical Information of China (English)

    Mei Na Huang; Yan Feng Luo; Jia Chen; Yong Gang Li; Chun Hua Fu; Yuan Liang Wang

    2007-01-01

    A novel biodegradable polymer-poly (ethene maleic acid ester-co-D,L-lactide acid) was synthesized by copolymerizing lactide and prepolymer, which was prepared by the condensation of maleic anhydride and glycol, using p-toluene sulphonic acid as a catalyst, attempting to improve the hydrophilicity, increase flexibility and modulate the degradation rate. FTIR, 1H NMR, MALLS and DSC were employed to characterize these polymers.

  17. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    Science.gov (United States)

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  18. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  19. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  20. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property.

  1. Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum

    Directory of Open Access Journals (Sweden)

    Abinaya Gurunathan

    2016-01-01

    Full Text Available To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicumand to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti(dengue vector and Culex quinquefasciatus(filarial vector. Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase. Ecdysone 20-monooxygenase assay (radioimmuno assay was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm and C. quinquefasciatus (LC50/24 h - 12.5 ppm than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively. The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatusthan the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicummay be considered as a potent source of mosquito larvicidal property.

  2. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    Science.gov (United States)

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  3. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    substituents have been examined by TGA‐MS using different sulphonic acids. A substantial lowering of the cleavage temperature is observed, and the ester cleavage can even be performed in situ on roll‐to‐roll‐coated films on polyethylene terephthalate (PET). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A...

  4. Synthesis of Versatile Building Blocks through Asymmetric Hydrogenation of Functionalized Itaconic Acid Mono-Esters

    NARCIS (Netherlands)

    Hekking, Koen F.W.; Lefort, Laurent; Vries, André H.M. de; Delft, Floris L. van; Schoemaker, Hans E.; Vries, Johannes G. de; Rutjes, Floris P.J.T.

    2008-01-01

    The rhodium-catalyzed asymmetric hydrogenation of several β-substituted itaconic acid mono-esters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β-alkyl-substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S

  5. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B;

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  6. Synthesis of 4-methoxybenzyl ester of monochloro pyrethrum acid%偏氯菊酸对甲氧基苄酯的合成研究

    Institute of Scientific and Technical Information of China (English)

    陈震; 张昌军; 林晓辉

    2011-01-01

    Synthesis of a new ester of monochloro pyrethrum acid was reported. 4, 6, 6-Trichloro-3, 3-dimethyl-hexahoic acid methyl ester was synthesized from methyl 3,3-dimethyl pentenoate and chloroform initiated with ferrous chloride in a confined system. Followed by ring-closure, elimination, hydrolysis and acidification,3-(2-chloro-ethenyl)-2,2-dimethyl-cy-clopropanecarboxylic acid ( monochloro pyrethrum acid) was obtained. 4-Methoxybenzyl ester of monochloro pyrethrum acid was obtained by the reaction between sodium of monochloro pyrethrum acid and a quaternary ammonium salt. Three undocumented compounds were obtained. Using the method reported in ' Tetrahedron letter ', benzoyl peroxide or nitrile azo used as initiator and reaction under atmospheric pressure, target product was not obtained.%报道了一种新的拟除虫菊酯——偏氯菊酯的合成方法.以贲亭酸甲酯为原料,氯化亚铁作为引发剂在密闭体系中与氯仿加成后得到3,3-二甲基-4,6,6-三氯己酸甲酯,再成环、脱卤化氢,水解酸化后得到2,2-二甲基-3-(乙氯乙烯基)-环丙烷羧酸(偏氯菊酸),偏氯菊酸钠与季铵盐回流得到标题化合物.在合成中得到了3种未见文献报道的新化合物.而采用文献原有的方法,使用过氧化苯甲酰或偶氮异丁腈在常压下反应则没有获得目标产物.

  7. Cyclobutyl methyl ketone as a model compound for pinonic acid to elucidate oxidation mechanisms

    Directory of Open Access Journals (Sweden)

    A. P. Praplan

    2012-04-01

    Full Text Available 3-Methyl-1,2,3-tricarboxylic acid (MBTCA, terpenylic acid and diaterpenylic acid acetate were identified in secondary organic aerosol (SOA from α-pinene photooxidation or ozonolysis. These compounds display interesting structural features: MBTCA has a high oxygen to carbon ratio, terpenylic acid contains a lactone ring in its structure and diaterpenylic acid acetate possesses an ester functional group. The reaction mechanisms leading to these products are still unknown, but it was demonstrated experimentally in earlier studies that MBTCA is formed from pinonic acid, a primary ozonolysis product of α-pinene. Because the direct observation of pinonic acid oxidation in a smog chamber would be difficult due to its relatively low volatility, a model compound possessing the substructure of interest was used instead: cyclobutyl methyl ketone (CMK. From its oxidation, several organic acids could be measured with ion chromatography (IC coupled to a mass spectrometer (MS. Succinic acid, the analogous product of MBTCA is formed at molar yields of 2 to 5%. Butyrolactone is detected as butanoic acid, due to hydrolysis in the sampling device. A monocarboxylic acid with nominal mass 146 was detected in the absence of nitrogen oxides (NOx and could be the analogous product of diaterpenylic acid acetate. However, due to a lack of available standards, the exact structure of this compound remains unelucidated. Finally, 4-oxobutanoic acid could also be measured and two structures of its expected analogous compound from pinonic acid oxidation are proposed. Because these compounds are primary products of the CMK oxidation, reaction mechanisms capable of adding one or two carboxylic functional groups without formation of stable intermediate products needs to be formulated. Such a formation mechanism of MBTCA from pinonic acid was found in the literature; however, it includes a hydrogen atom migration to an acyloxy radical, which is expected to loose

  8. Preparation and Reactions of Amino Acid Ester Sulfones as New Remote Asymmetrical Induced Reagents

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Cheng-He; BAI,Xue; LI,Tan-Qing; WU,Jun; Alfred Hassner

    2004-01-01

    @@ The development of chiral auxiliary-controlled asymmetric synthesis has been receiving increasing interest in recent yearsfi,2] Various chiral auxiliary reagents have been observed[3] and a lot of results showed that variation of the chiral auxiliary could influence asymmetric induction. Recently, it has been reported the reaction of the aminated sulfones as a remote chiral auxiliary with α,β-unsaturated carbonyl compounds.[4] Here we would like to report the preparation of amino acid ester sulfones as new remote asymmetrical induced reagents and their reactions with α,β-unsaturated esters.

  9. Microbubble ultrasound contrast agent with three esters and carboxylic methyl cellulose as main shell materials: Its preparation and imaging evaluation

    Institute of Scientific and Technical Information of China (English)

    杜永峰; 万明习; 周晓东

    2003-01-01

    Objective: To study on the preparation process of a new surfactant-based microbubble ultrasound contrast agent and to evaluate its contrast effects in vivo. Methods: Microbubble ultrasound contrast agent with three ester surfactants and other additives as its shell materials was prepared by sonication. Sulfur hexafluoride was adopted as the inner gas of the microbubbles. New methods through the combination of optical microscope and some softwares were used to measure the size distribution and the concentration of the microbubbles. Some parameters such as the pH value of the phosphate buffer, quantity of the carboxylic methyl cellulose in the shell materials, selection of the ultrasound power and process time, were studied. Six hybirded dogs were used to verify the in vivo contrast imaging of the contrast agent using second harmonic power Doppler modality. Safety and persistent time of the agent inner animal body were also investigated. Results: Ultrasound contrast agent prepared in the experiment had an average microbubble diameter of 3.95 microns with concentration of 3.6×109 microbubbles per millilitre. Carboxylic methyl cellulose was found as an important shell material which had obviously effect on the microbubble stability and production even with a little quantity. The buffer pH value also had a key role on the microbubble formation and the final production. When the buffer pH value reached 7.4, there was no microbubble produced. Under the approximate microbubble production, process time could be shorten with the increasing ultrasound power. The obvious ultrasound contrast imaging effects were detected in the dog's heart chamber and liver as well as kidney using only one millilitre agent when diluted. The agent was found safe to the dogs. At the same time, persistent time of the agent was found over 20 min in the dog's body. Conclusion: The new ultrasound contrast agent prepared in the experiment has high microbubble production and concentration, narrow

  10. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    OpenAIRE

    Jonas, A J; Butler, I J

    1989-01-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentr...

  11. Fatty acid content and antioxidant activity of Thai bananas.

    Directory of Open Access Journals (Sweden)

    Jirawan Banditpuritat and Rungthip Kawaree

    2007-12-01

    Full Text Available The aril extracts of three Thai banana varieties, namely “Kluai Khai”(KK, “Kluai Namwa”(KN and “Kluai Hom”(KH were analyzed by gas chromatography and mass spectrometry (GC-MS. GC-MS data were used to identify 5 methyl esters of each banana extract after transesterification. The most prominent components found in KK, KN and KH were hexadecanoic acid methyl ester (43.17, 29.18, 30.57 % respectively, 9, 12, 15-octadecatrienoic acid methyl ester (35.93, 30.46, 39.68 % respectively, 9, 12-octadecadienoic acid methyl ester (14.35, 36.10, 21.82 % respectively, 9-hexadecanoic acid methyl ester (3.76, 3.34, 3.32 % respectively and octadecanoic acid methyl ester (2.79, 0.92, 4.60 % respectively. The antioxidant activity of the crude oils was evaluated using DPPH method.

  12. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhipeng [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiufeng; Zhang, Yawen [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Ren, Tianhui, E-mail: thren@sjtu.edu.cn [School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, 200240 (China); Zhao, Yidong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Zeng, Xiangqiong; Heide, E. van der [Laboratory for Surface Technology and Tribology, University of Twente, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2014-07-01

    A novel long chain alkyl phenylboronic acid ester containing heterocyclic compound, bis (1-(benzothiazol-2-ylthio) propan-2-yl)-4-dodecylphenylboronic acid ester (DBBMT), was synthesized and characterized. The hydrolytic stability of the DBBMT was evaluated and the results show that DBBMT is of outstanding hydrolytic stability compared with normal borate esters, which indicates that the designed molecular structure, by introducing benzene ring to conjugate with the electron-deficient boron and the benzothiazole as a hinder group, is effective on obtaining a hydrolytically stable long chain alkyl phenylboronic acid ester. The tribological properties of DBBMT and ZDDP in mineral base oil were evaluated using a four-ball tribometer, which suggests that the DBBMT possesses comprehensive tribological properties and could be a potential candidate for the replacement of ZDDP. Furthermore, in order to understand the tribological behaviors, the worn surface was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy. The results indicate that the elements S, B, O and Fe perform complicated tribochemical reactions to form the compact tribological film composed of B{sub 2}O{sub 3}, FeS, Fe{sub 3}O{sub 4} and FeSO{sub 4}.

  13. Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester.

    Science.gov (United States)

    Jonas, A J; Butler, I J

    1989-07-01

    Tryptophan ethyl ester, a lipid-soluble tryptophan derivative, was used to bypass defective gastrointestinal neutral amino acid transport in a child with Hartnup disease. The child's baseline tryptophan concentrations in serum (20 +/- 6 microM) and cerebrospinal fluid (1.0 +/- 0.2 microM) were persistently less than 50% of normal values. Cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, was also less than 50% of normal (21 +/- 2 ng/ml). Serum tryptophan concentrations increased only modestly and briefly after an oral challenge with 200 mg/kg of oral L-tryptophan, reflecting the absorptive defect. An oral challenge with 200 mg/kg of tryptophan ethyl ester resulted in a prompt increase in serum tryptophan to a peak of 555 microM. Sustained treatment with 20 mg/kg q6h resulted in normalization of serum (66 +/- 15 microM) and cerebrospinal fluid tryptophan concentrations (mean = 2.3 microM). Cerebrospinal fluid 5-HIAA increased to more normal concentrations (mean = 33 ng/ml). No toxicity was observed over an 8-mo period of treatment, chronic diarrhea resolved, and body weight, which had remained unchanged for 7 mo before ester therapy, increased by approximately 26%. We concluded that tryptophan ethyl ester is effective at circumventing defective gastrointestinal neutral amino acid transport and may be useful in the treatment of Hartnup disease. PMID:2472426

  14. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings.

    Science.gov (United States)

    Uranga, Carla C; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D; Hernández-Martínez, Rufina

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. PMID:26926564

  15. Synthesis and transdermal properties of acetylsalicylic acid and selected esters.

    Science.gov (United States)

    Gerber, Minja; Breytenbach, Jaco C; Hadgraft, Jonathan; du Plessis, Jeanetta

    2006-03-01

    The primary aim of this study was to determine the transdermal penetration of acetylsalicylic acid and some of its derivatives, to establish a correlation, if any, with selected physicochemical properties and to determine if transdermal application of acetylsalicylic acid and its derivatives will give therapeutic drug concentrations with respect to transdermal flux. Ten derivatives of acetylsalicylic acid were prepared by esterification of acetylsalicyloyl chloride with ten different alcohols. The experimental aqueous solubility, logD and transdermal flux values were determined for acetylsalicylic acid and its derivatives at pH 4.5. In vitro penetration was measured through excised female human abdominal skin in diffusion cells. The experimental aqueous solubility of acetylsalicylic acid (6.56 mg/ml) was higher than that of the synthesised acetylsalicylate derivatives (ranging from 1.76 x 10(-3) to 3.32 mg/ml), and the logD of acetylsalicylic acid (-0.85) was lower than that of its derivatives (ranging from -0.25 to 1.95). There was thus an inverse correlation between the aqueous solubility data and the logD values. The experimental transdermal flux of acetylsalicylic acid (263.83 nmol/cm(2)h) was much higher than that of its derivatives (ranging from 0.12 to 136.02 nmol/cm(2)h).

  16. N-(4-Methyl-2-nitrophenylsuccinamic acid

    Directory of Open Access Journals (Sweden)

    Sabine Foro

    2012-03-01

    Full Text Available In the title compound, C11H12N2O5, the conformation of the N—H bond in the amide segment is syn to the ortho-nitro group in the benzene ring. The amide C=O and the carboxyl C=O of the acid segment are syn to each other and both are anti to the H atoms on the adjacent –CH2 groups. Furthermore, the C=O and O—H bonds of the acid group are in syn positions with respect to each other. The dihedral angle between the benzene ring and the amide group is 36.1 (1°. The amide H atom shows bifurcated intramolecular hydrogen bonding with an O atom of the ortho-nitro group and an intermolecular hydrogen bond with the carbonyl O atom of another molecule. In the crystal, the N—H...O(C hydrogen bonds generate a chain running along the [100] direction. Inversion dimers are formed via a pair of O—H...O(C interactions, that form an eight-membered hydrogen-bonded ring involving the carboxyl group.

  17. Isolation from Cussonia barteri of 1'-O-chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters.

    Science.gov (United States)

    Papajewski, S; Vogler, B; Conrad, J; Klaiber, I; Roos, G; Walter, C U; Süssmuth, R; Kraus, W

    2001-11-01

    1'-O-Chlorogenoylchlorogenic acid and 1'-O-chlorogenoylneochlorogenic acid, a new type of quinic acid esters, have been isolated, in addition to six known quinic acid esters, rutin, and a mixture of saponins, from the methanol extract of Cussonia barteri Seemann (Araliaceae) leaves collected in Cameroon. Structure determination was achieved by NMR, mass, IR, and UV spectroscopy. All compounds were tested for inhibitory activity on 5-lipoxygenase and cyclooxygenase-1, for antimicrobial activity against Bacillus subtilis, Pseudomonas fluorescens, and Cladosporium cucumerinum, and for haemolytic activity. PMID:11731915

  18. Solid Phase Synthesis of 2-Substituted 1,3-Oxazin-6-ones Using Resin-bound Cyclic Malonic Acid Ester

    Institute of Scientific and Technical Information of China (English)

    LIU, Zhan-Xiang(刘占祥); RUAN, Xiu-Xiu(阮秀秀); HUANG, Xian(黄宪)

    2004-01-01

    A facile solid phase synthesis of 2-substituted 1,3-oxazin-6-ones using polymer-supported Meldrum's acid has been reported. Reaction of the resin-bound cyclic malonic acid ester with triethyl orthoformate and subsequent double substitution with amide, afforded the corresponding polymer-supported acylaminomethylene cyclic malonic acid ester, which upon thermal treatment led to 1, 3-oxazin-6-ones in good yields and with high purity.

  19. 40 CFR 721.10074 - Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, 2-chloro-, 1-(3,3... Specific Chemical Substances § 721.10074 Acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester. (a... acetic acid, 2-chloro-, 1-(3,3-dimethylcyclohexyl)ethyl ester (PMN P-05-568; CAS No. 477218-59-0)...

  20. A convenient enantioselective decarboxylative aldol reaction to access chiral α-hydroxy esters using β-keto acids

    Directory of Open Access Journals (Sweden)

    Zhiqiang Duan

    2014-04-01

    Full Text Available We show a convenient decarboxylative aldol process using a scandium catalyst and a PYBOX ligand to generate a series of highly functionalized chiral α-hydroxy esters. The protocol tolerates a broad range of β-keto acids with inactivated aromatic and aliphatic α-keto esters. The possible mechanism is rationalized.

  1. Direct analysis of intact glycidyl fatty acid esters in edible oils using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    H. van Steenbergen; K. Hrnčiřík; A. Ermacora; S. de Koning; H.-G. Janssen

    2013-01-01

    Glycidyl esters (GE), fatty acid esters of glycidol, are process contaminants formed during edible oil processing. A novel direct method for the determination of intact GE in oils and fats based on gas chromatography-mass spectrometry (GC-MS) is presented. The method consists of a simple extraction

  2. Linear and cyclic ester Oligomers of succinic acid and 1,4-butanediol: Biocatalytic synthesis and characterization

    NARCIS (Netherlands)

    Habeych Narvaez, D.I.; Eggink, G.; Boeriu, C.G.

    2011-01-01

    The lipase-catalyzed synthesis of cyclic ester oligomers from non-activated succinic acid (A) and 1,4-butanediol (B) in the presence of immobilized Candida antarctica lipase B was investigated. Batch and pulse fed-batch systems were implemented to increase the formation of cyclic ester products. The

  3. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ..., lard, palm oil from fruit, peanut oil, safflower oil, sesame oil, soybean oil, and tallow and the fatty... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... 172.854 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  4. Synthesis of Structured Lipids by Lipase-Catalyzed Interesterification of Triacetin with Camellia Oil Methyl Esters and Preliminary Evaluation of their Plasma Lipid-Lowering Effect in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoning Wang

    2013-03-01

    Full Text Available Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435, the substrate molar ratios of FAMEs to triacetin, the reaction temperatures and the lipase amounts were studied for their efficiency in producing SLCTs. Results showed that Novozyme 435 was more suitable for this reaction system. Moreover, the optimal reaction conditions for the highest conversion of FAMEs and the highest LLS-TAGs (triacylglycerols with one short- and two long-chain acyl residues yields were achieved at a molar ratio of FAMEs to triacetin of 3:1, 50 °C of reaction temperature and a lipase amount of 4% (w/v. Scale-up was conducted based on the optimized reaction conditions. Results showed that after 24 h of reaction , the conversion rate of FAMEs was 82.4% and the rate of disubstituted triacetin was 52.4 mol%. The final product yield rate was 94.6%. The effects of the synthesized SLCTs on the plasma lipid level of fasting mice were also studied. The SLCTs could effectively lessen the total triacylglycerol levels in plasma compared to the triacylglycerol group in fasting NIH mice. It suggested that this type of structured lipid might be beneficial for human health, especially for the prevention of obesity.

  5. Production and application of nonionic surfactant-fatty methyl ester ethoxys%脂肪酸甲酯乙氧基化物FMEE的生产与应用

    Institute of Scientific and Technical Information of China (English)

    徐铭勋

    2012-01-01

    Fatty acid methyl ester ethoxyes (FMEE) is a low foam non-ionic surfactant, the FMEE's production and related application performance, including resistance to hard water, cleaning property, low-temperature fluidity, ecological environmental protection and other properties were discussed. On the other hand, paper-making, floatation, hard surface cleaning, textile dyeing and finishing, and other fields related applications were also explored in this paper.%脂肪酸甲酯乙氧基化物(FMEE)是一种低泡沫的非离子表面活性剂,本文探讨了FMEE的生产工艺与相关应用性能,包括耐硬水、净洗性能、低温流动性、生态环保等性质,也探索了其在造纸、煤碳浮选、硬表面清洗、纺织印染等领域相关应用.

  6. Highly efficient enzymatic synthesis of an ascorbyl unstaturated fatty acid ester with ecofriendly biomass-derived 2-methyltetrahydrofuran as cosolvent.

    Science.gov (United States)

    Hu, Ying-Dan; Qin, Ye-Zhi; Li, Ning; Zong, Min-Hua

    2014-01-01

    Enzymatic synthesis of ascorbyl undecylenate, an unsaturated fatty acid ester of ascorbic acid, was reported with biomass-derived 2-methyltetrahydrofuran (MeTHF) as the cosolvent. Of the immobilized lipases tested, Candida antarctica lipase B (CAL-B) showed the highest activity for enzymatic synthesis of ascorbyl undecylenate. Effect of reaction media on the enzymatic reaction was studied. The cosolvent mixture, t-butanol-MeTHF (1:4, v/v) proved to be the optimal medium, in which not only ascorbic acid had moderate solubility, but also CAL-B showed a high activity, thus addressing the major problem of the solvent conflict for dissolving substrate and keeping satisfactory enzyme activity. In addition, the enzyme was much more stable in MeTHF and t-butanol-MeTHF (1:4) than in previously widely used organic solvents, t-butanol, 2-methyl-2-butanol, and acetone. The much higher initial reaction rate in this cosolvent mixture may be rationalized by the much lower apparent activation energy of this enzymatic reaction (26.6 vs. 38.1-39.1 kJ/mol) and higher enzyme catalytic efficiency (Vmax /Km , 8.4 vs. 1.3-1.4 h(-1) ). Ascorbyl undecylenate was obtained with the yields of 84-89% and 6-regioselectivity of >99% in t-butanol-MeTHF (1:4) at supersaturated substrate concentrations (60 and 100 mM) after 5-8 h. PMID:24891225

  7. Methyl trisporate E. A sex pheromone in Phycomyces blakesleeanus.

    Science.gov (United States)

    Miller, M L; Sutter, R P

    1984-05-25

    Combined mating type cultures of Phycomyces blakesleeanus accumulate 41 mg of trisporic acids/l of medium, of which 30% is trisporic acid E. The methyl ester of trisporic acid E exhibits the same zygophore -inducing activity in bioassays with P. blakesleeanus and Mucor mucedo as does the pheromone methyl trisporate C. The structure of methyl trisporate E is 1,5-dimethyl-2-hydroxyl-4-oxo-6-(2'-hydroxyl-6'- methylocta -5',7'-d ien-8'-yl) -5-cyclohexene-1-carboxylic acid methyl ester.

  8. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column.

    Science.gov (United States)

    Hammann, Simon; Vetter, Walter

    2015-12-15

    Steryl esters are high molecular weight compounds (600-700g/mol) regularly present as a minor lipid class in animal and plant lipids. Different sterol backbones (e.g., cholesterol, β-sitosterol and brassicasterol) which can be esterified with various fatty acids can result in highly complex steryl ester patterns in food samples. The gas chromatographic (GC) analysis of intact steryl esters is challenging, since high elution temperatures are required for their elution. On nonpolar GC phases, steryl esters with fatty acids with differing degree of unsaturation (e.g., oleate and linoleate) cannot be separated and there are only few polar columns available with sufficient temperature stability. In this study, we used gas chromatography with mass spectrometry (GC/MS) and analyzed intact steryl esters on a commercial room temperature ionic liquid (RTIL) column which was shortened to a length of 12m. The column separated the steryl esters both by total carbon number and by degree of unsaturation of the fatty acid. For instance, cholesteryl esters with stearic acid (18:0), oleic acid (18:1n-9), linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) could be resolved (R≥1.3) from each other. By analysis of synthesized standard substances, the elution orders for different steryl backbones and different fatty acids on a given sterol backbone could be determined. Analysis of spreads and plant oils allowed to determine retention times for 37 steryl esters, although a few co-elutions were observed. The ionic liquid column proved to be well-suited for the analysis of intact steryl esters.

  9. Antifungal properties of alpha,omega-alkanedicarboxylic acids and their dimethyl esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1976-08-01

    Thirteen alpha, omega-alkanedicarboxylic acids (C2-C12, C14, and C16) and their dimethyl esters were tested against Aspergillus niger, Trichoderma viride, and Myrothecium verrucaria in Sabourauc dextrose agar at pH 4.0 AND 5.6. Toxicity to Canadida albicans, Trichophyton mentagrophytes, and Mucor mucedo was determined in the same medium at pH 5.6 and 7.0 in the absence and presence of 10% beef serum. The dicarboxylic acids possessed very poor to no antifungal activity against all six fungi. The fungitoxicity of the dimethyl esters to A. niger, T. viride, and M. verrucaria was C8 = C9 greater than C7 greater than C6 = C5 greater than C10 greater than C4 greater than C11 and to C. albicans, T. mentagrophytes, and M. mucedo C9 greater than C10 greater than C11 greater than C12 = C8 greater than C7 greater than C6 greater than C5 greater than C4 greater than C3. The fungitoxicity of the esters of fatty acids and alpha-omega-alkanedicarboxylic acids was influenced by chain length and not by the pH of the medium or the absence or presence of beef serum.

  10. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  11. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    Science.gov (United States)

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  12. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2016-06-01

    Full Text Available A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica, which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2, malonic (C3, succinic (C4 and maleic (C4 acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  13. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C5- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C2), malonic (C3), succinic (C4) and maleic (C4) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin–Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  14. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies. PMID:27338349

  15. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  16. Zum thermischen Verhalten einiger Kohlensäure[(methylphenylsilyl)methyl]ester-Derivate

    OpenAIRE

    Tacke, Reinhold; Link, Matthias; Bentlage-Felten, Anke; Zilch, Harald

    2016-01-01

    The synthesis and the thermal behaviour of the (methylphenylsilyl)methyl carbonates \\(CH_3(C_6H_5)Si(H)CH_2OC(O)X (6: X = OCH_3; 7: X = Cl; 8: X = N(CH_3)_2)\\) is described. 8 rearranges in toluene solution at 100 °C quantitatively to give the carbam oyloxysilane \\(C_6H_5(CH_3)_2SiOC(O)N(CH_3)_2\\) (11), whereas neat 6 and 7 at 135 °C undergo quantitative formation of \\(C_6H_5(CH_3)_2SiOCH_3\\) (12) and \\(C_6H_5(CH_3)_2SiCl\\) (13), respectively. The formation of 12 and 13 is explained by a rear...

  17. Antibacterial properties of soap containing some fatty acid esters.

    Science.gov (United States)

    Pandey, N K; Natraj, C V; Kalle, G P; Nambudiry, M E

    1985-02-01

    Synopsis Chemical microbial inhibitors compatible with formulations of soaps and deodorant perfumes are more effective if they are substantive to the skin. However, highly effective inhibitors are toxic and their substantivity on skin may accentuate the toxicity. Natural compounds such as short to medium chain fatty acids and their derivatives, which are known to be germicidal, offer a viable alternative to chemical inhibitors. We report here the synthesis of sodium 2-lauroyloxy propionate and an in vivo method to test its substantivity on skin following its incorporation in soaps. Among several compounds tested, sodium 2-lauroyloxy propionate was found to be highly substantive in soap formulation. PMID:19460009

  18. Improvement of foaming properties of cuttlefish skin gelatin by modification with N-hydroxysuccinimide esters of fatty acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2011-01-01

    Conformation and foaming properties of cuttlefish skin gelatin modified by N-hydroxysuccinimide esters of different saturated fatty acids including capric acid (C10:0), lauric acid (C12:0) and myristic acid (C14:0) at different molar ratios (0.25, 0.50, 1.00 and 2.00) were investigated. Covalent att

  19. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    OpenAIRE

    Abinaya Gurunathan; Jamuna Senguttuvan; S Paulsamy

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. Th...

  20. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  1. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Indian Academy of Sciences (India)

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang

    2013-09-01

    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  2. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    OpenAIRE

    Cheng-Fang Tsai; Yueh-Hsiung Kuo; Wei-Lan Yeh; Caren Yu-Ju Wu; Hsiao-Yun Lin; Sheng-Wei Lai; Yu-Shu Liu; Ling-Hsuan Wu; Jheng-Kun Lu; Dah-Yuu Lu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current ...

  3. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Institute of Scientific and Technical Information of China (English)

    Yue Ying HE; Cong Ming XIAO

    2006-01-01

    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  4. COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE WITH NEEM OIL METHYL ESTER AND ITS DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    L. Prabhu

    2013-01-01

    Full Text Available Biodiesel, an alternative fuel is derived from the fats of animals and plants. As energy demands increase and fossil fuels are limited, research is directed towards alternative renewable fuels. The main advantages of using this alternative fuel are its renewability, biodegradability and better quality of exhaust gases. It is technically competitive and environmentally friendly alternative to conventional petro-diesel fuel for use in Compression Ignition (CI engines. The use of biodiesel reduces the dependence on imported fossil fuels which continue to decrease in availability and affordability. An experimental investigation has been carried out to evaluate the combustion, performance and emission characteristics of a diesel engine with the effect of using neem oil methyl ester and its diesel blends at different loads. The results showed that maximum cylinder pressure and maximum rate of heat release increased with the increase in bio diesel blends. The carbon monoxide (CO and smoke emissions were found significantly lower when operating on biodiesel-diesel blends, but Nitrogen Oxide (NOx emissions are found to be higher at full load.

  5. Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Bryan R. [United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604 (United States); Williams, Aaron; McCormick, Robert L. [United States Department of Energy, National Renewable Energy Laboratory, ReFUEL Laboratory, 1617 Cole Blvd, Golden, CO 80401 (United States); Haas, Michael J. [United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E Mermaid Ln, Wyndmoor, PA 19038 (United States)

    2009-09-15

    Important fuel properties and emission characteristics of blends (20 vol.%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes were observed for B20 blends of SME and PHSME versus neat ULSD: improved lubricity, higher kinematic viscosity and cetane number, lower sulfur content, and inferior low-temperature properties and oxidative stability. With respect to exhaust emissions, B20 blends of PHSME and SME exhibited lower PM and CO emissions in comparison to those of neat ULSD. The PHSME blend also showed a significant reduction in THC emissions. Both SME and PHSME B20 blends yielded small increases in NO{sub x} emissions. The reduction in double bond content of PHSME did not result in a statistically significant difference in NO{sub x} emissions versus SME at the B20 blend level. The test engine consumed a greater amount of fuel operating on the SME and PHSME blends than on neat ULSD, but the increase was smaller for the PHSME blend. (author)

  6. Combustion characteristics of diesel engine using producer gas and blends of Jatropha methyl ester with diesel in mixed fuel mode

    Directory of Open Access Journals (Sweden)

    Hifjur Raheman

    2014-12-01

    Full Text Available An experimental investigation was performed to study the combustion characteristics of diesel engine fuelled with producer gas-biodiesel in dual fuel mode. Three different fuel blends of Jatropha methyl ester with high speed diesel (HSD (B10, B20 and B100 were used with producer gas obtained from the gasification of briquettes made from de-oiled Jatropha seed cake. The increments in load on the engine increased the brake thermal efficiency, exhaust gas temperature and lowered the brake specific energy consumption. The ignition delays in dual-fuel mode of operation for both the fuels were longer than for single-fuel mode of operation. Combustion pressure and heat release rate (HRR patterns at different engine loads were found to be similar for biodiesel and HSD. In dual-fuel mode, the peak pressure and HRR for producer gas–biodiesel dual-fuel were slightly lower than those of producer gas–diesel combustion at full load condition. Significantly lower NOx emissions were obtained under the dual fuel mode of operation for both pilot fuels compared to the single-fuel mode especially HSD under all test conditions.

  7. A study of production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends as a potential biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    A.E. Atabani

    2014-12-01

    Full Text Available Globally, more than 350 oil-bearing crops are known as potential biodiesel feedstocks. This study reports on production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends with diesel. The effect of Manketti biodiesel (B5 on engine and emissions performance was also investigated. The cloud, pour and cold filter plugging points of the produced biodiesel were measured at 1, 3 and 5 °C, respectively. However, the kinematic viscosity of the biodiesel generated was found to be 8.34 mm2/s which was higher than the limit described by ASTM D6751 and EN 14214. This can be attributed to the high kinematic viscosity of the parent oil (132.75 mm2/s. Nevertheless, blending with diesel improved this attribute. Moreover, it is observed that at all engine speeds, B5 produced lower brake power (1.18% and higher brake specific fuel consumption (2.26% compared to B0 (neat diesel. B5 increased the CO and HC emissions by 32.27% and 37.5%, respectively, compared to B0. However, B0 produced 5.26% higher NO emissions than B5.

  8. M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product

    OpenAIRE

    Raphael Caio Tamborelli Garcia; Livia Mendonça Munhoz Dati; Larissa Helena Torres; Mariana Aguilera Alencar da Silva; Mariana Sayuri Berto Udo; Fernando Maurício Francis Abdalla; José Luiz da Costa; Renata Gorjão; Solange Castro Afeche; Mauricio Yonamine; Niswender, Colleen M.; P. Jeffrey Conn; Rosana Camarini; Maria Regina Lopes Sandoval; Tania Marcourakis

    2015-01-01

    The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hipp...

  9. The effects of N omega-nitro-L-arginine methyl ester, sodium nitroprusside and noradrenaline on venous return in the anaesthetized cat.

    OpenAIRE

    Bower, E. A.; Law, A. C.

    1993-01-01

    1. The vascular actions of N omega-nitro-L-arginine methyl ester (L-NAME), sodium nitroprusside and noradrenaline were investigated in cats under chloralose anaesthesia with controlled vascular tone and ventilation. Cardiac output, heart rate, vascular pressures and mean circulatory filling pressure (MCFP) were measured. Total peripheral resistance (TPR) and resistance to venous return (Rvr) were calculated from steady-state readings. 2. L-NAME (37 mumol kg-1, i.v.) administered to ten cats r...

  10. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal.

    Science.gov (United States)

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2015-01-01

    The fruits of Withania coagulans Dunal (family: Solanaceae) are sweet, sedative, emetic, alterative and diuretic; used to treat asthma, biliousness, strangury, wounds, dyspepsia, flatulent colic, liver complaints and intestinal infections in the indigenous system of medicine. Phytochemical investigation of the methanolic extract of W. coagulans fruits led to the isolation of a new fatty acid, an aromatic ester and a monoterpenic benzyl glucoside characterised as n-octatriacont-17-enoic acid (3), geranilan-10-olyl dihydrocinnamoate (4) and geranilan-8-oic acid-10-olyl salicyloxy-2-O-β-D-glucofuranosyl-(6″→1‴)-O-β-D-glucofuranosyl-6‴-n-octadec-9‴',11‴'-dienoate (5) along with two known fatty acids, n-dotriacont-21-enoic acid (1) and n-tetratriacontanoic acid (2). The structures of isolated phytoconstituents were established on the basis of 1D and 2D NMR, FT-IR, UV, and MS data and chemical means.

  11. Simultaneous determination of shanzhiside methyl ester, 8-O-acetylshan- zhiside methyl ester and luteolin-7-O-β-D-glucopyranoside in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study after oral administration of Lamiophlomis rotata Pill.

    Science.gov (United States)

    Chen, Jing; Wang, Yang; Liang, Xinlei; Sun, Tingting; Luo, Jinghan; Guo, Xingjie; Zhao, Longshan

    2016-05-01

    A rapid, sensitive and specific ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of shanzhiside methyl ester, 8-O-acetylshanzhiside methyl ester and luteolin-7-O-β-D-glucopyranoside of Lamiophlomis rotata Pill in rat plasma was developed and validated. After liquid-liquid extraction with n-butyl alcohol/ethyl acetate (70:30, v/v), analytes and paeoniflorin (internal standard, IS) were separated on an Acquity BEH UPLC C18 column (100 × 2.1 mm, 1.7 μm) with gradient elution at a flow rate of 0.2 mL/min. All calibration curves had good linearity (r>0.9929) over the concentration ranges of 1-1000 ng/mL for shanzhiside methyl ester and 8-O-acetylshanzhiside methyl ester, 0.3-150 ng/mL for luteolin-7-O-β-D-glucopyranoside. The intra- and inter-day precisions were all within 11.1% and the accuracy (relative error, RE%) all ranged from -13.6% to 5.3%. The method also guaranteed an acceptable selectivity, recovery and stability, which was successfully applied to a pharmacokinetic study of the three analytes in rats after oral administration of Lamiophlomis rotata Pill. PMID:27023158

  12. Scientific Opinion on the re-evaluation of montan acid esters (E 912 as a food additive

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2013-06-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS was asked to deliver a scientific opinion re-evaluating the safety of montan acid esters (E 912 when used as a food additive. Montan acids are extracted from oxidised montan wax and esterified with ethylene glycol, 1,3-butanediol or triols, to form montan acid esters. Montan acid esters are authorised only for the surface treatment of fresh fruits. No data, specifically for montan acid esters, on toxicokinetics and reproductive and developmental toxicity were available. The available data on short-term and subchronic toxicity, genotoxicity and chronic toxicity and carcinogenicity were limited. Important deficiencies in the available studies on chronic toxicity and carcinogenicity were noticed. The data requested in the 1990s (i.e. chromosomal aberration in vitro, reproduction and teratogenicity studies, material characteristics, impurities, presence of PAHs were not submitted. Furthermore no data were submitted following an EFSA public call for data in 2012. The Panel identified some summary data in the European Chemicals Agency database (ECHA on registered substances that might have been relevant for the assessment of montan acid esters but the original study reports were not made available to EFSA. Based on these limitations in the toxicological database the Panel concluded that montan acid esters as a food additive could not be evaluated.

  13. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  14. Effective methylation of phosphonic acids related to chemical warfare agents mediated by trimethyloxonium tetrafluoroborate for their qualitative detection and identification by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Valdez, Carlos A; Leif, Roald N; Alcaraz, Armando

    2016-08-24

    The effective methylation of phosphonic acids related to chemical warfare agents (CWAs) employing trimethyloxonium tetrafluoroborate (TMO·BF4) for their qualitative detection and identification by gas chromatography-mass spectrometry (GC-MS) is presented. The methylation occurs in rapid fashion (1 h) and can be conveniently carried out at ambient temperature, thus providing a safer alternative to the universally employed diazomethane-based methylation protocols. Optimization of the methylation parameters led us to conclude that methylene chloride was the ideal solvent to carry out the derivatization, and that even though methylated products can be observed surfacing after only 1 h, additional time was not found to be detrimental but beneficial to the process particularly when dealing with analytes at low concentrations (∼10 μg mL(-1)). Due to its insolubility in methylene chloride, TMO·BF4 conveniently settles to the bottom during the reaction and does not produce additional interfering by-products that may further complicate the GC-MS analysis. The method was demonstrated to successfully methylate a variety of Schedule 2 phosphonic acids, including their half esters, resulting in derivatives that were readily detected and identified using the instrument's spectral library. Most importantly, the method was shown to simultaneously methylate a mixture of the organophosphorus-based nerve agent hydrolysis products: pinacolyl methylphosphonate (PMPA), cyclohexyl methylphosphonate (CyMPA) and ethyl methylphosphonate (EMPA) (at a 10 μg mL(-1) concentration each) in a fatty acid ester-rich organic matrix (OPCW-PT-O3) featured in the 38th Organisation for the Prohibition of Chemical Weapons (OPCW) Proficiency Test. In addition, the protocol was found to effectively methylate N,N-diethylamino ethanesulfonic acid and N,N-diisopropylamino ethanesulfonic acid that are products arising from the oxidative degradation of the V-series agents VR and VX respectively. The

  15. Pengaruh Katalis H2SO4 pada Reaksi Epoksidasi Metil Ester PFAD (Palm Fatty Acid Distillate)

    OpenAIRE

    Sinaga, Mersi Suriani

    2010-01-01

    Ester epoksi selain sebagai pelunak juga dapat memperbaiki ketahanan komponen polivinil klorida (PVC) terhadap panas dan cahaya. Penelitian ini dilakukan untuk merumuskan kondisi katalis yang sesuai bagi pembuatan senyawa epoksi metil ester PFAD dari senyawa metil ester PFAD. Metil ester PFAD terdiri dari ester lemak jenuh dan tidak jenuh., metode pemisahan kristalisasi dengan pelarut metanol untuk memisahkan ester lemak jenuh dari ester lemak tak jenuh, yang bertujuan meningkatkan kemamp...

  16. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    Science.gov (United States)

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  17. Lipase-catalyzed synthesis of L-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters%脂肪酶催化合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯

    Institute of Scientific and Technical Information of China (English)

    郑大贵; 祝显虹; 余泗莲; 彭化南; 张小兰

    2012-01-01

    The lipase-catalyzed synthesis of L.-ascorbyl fatty acid esters and D-isoascorbyl fatty acid esters were studied by direct es-terification and transesterification,respectively. The structures of products were confirmed by IR,1H NMR,13C NMR and MS. It was found that the yield of the direct esterification were higher than that of the corresponding transesterification under the similar synthetic conditions. The raw material fatty acids and fatty acid methyl esters could be recycled and reused.%用固定化脂肪酶Lipozyme 435作催化剂,分别用直接酯化法和酯交换法合成L-抗坏血酸脂肪酸酯和D-异抗坏血酸脂肪酸酯.产物结构经IR、1HNMR、13CNMR和MS表征.结果表明,对于同一目标化合物,相似条件下,直接酯化法的效果优于酯交换法,原料脂肪酸和脂肪酸甲酯均可回收循环使用.

  18. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    Science.gov (United States)

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. PMID:21723268

  19. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, C. H.; Byun, M. W.; Jeong, I. Y.; Kim, D. H

    2006-01-15

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals.

  20. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    International Nuclear Information System (INIS)

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals

  1. Antifungal properties of halofumarate esters.

    Science.gov (United States)

    Gershon, H; Shanks, L

    1978-04-01

    Alkyl esters (C1--C4) of the four halofumaric acids were tested for antifungal activity against Candida albicans, Aspergillus niger, Mucor mucedo, and Trichophyton mentagrophytes at pH 5.6 and 7.0 in the absence and presence of 10% beef serum in Sabouraud dextrose agar. The most toxic compound to each organism was: C. albicans, ethyl iodofumarate (0.054 mmole/liter); A. niger, methyl bromofumarate (0.090 mmole/liter); M. mucedo, methyl fluorofumarate (0.037 mmole/liter); and T. mentagrophytes, ethyl iodofumarate (0.020 mmole/liter). The order of overall activity of the six most toxic compounds was: ethyl iodofumarate greater than ethyl chlorofumarate greater than methyl iodofumarate = methyl bromofumarate greater than methyl chlorofumarate greater than bromofumarate.

  2. New radioiodinated methyl-branched fatty acids for cardiac studies

    International Nuclear Information System (INIS)

    The effects of 3-methyl-substitution on the heart retention and metabolism of 3-R,S-methyl-(BMIPP) and 3,3-dimethyl-(DMIPP) analogues of 15-(p-iodophenyl)-pentadecanoic acid (IPP) have been studied in rats. Methyl-substitution considerably increased the myocardial half-time values in fasted rats: IPP, 5 to 10 min; BMIPP, 30 to 45 min; DMIPP, 6 to 7 h. Because of the observed differences in the relative myocardial uptake and retention of these agents, an evaluation of the subcellular distribution profiles and the distribution of radioactivity within various lipid pools extracted from cell components was performed. Studies with DMIPP in fasted rats have shown high levels of the free fatty acid and only slow conversion to triglycerides. These data are in contrast to the rapid clearance of the straight chain IPP analogue and rapid incorporation into triglycerides. These data suggest that the prolonged myocardial retention observed with DMIPP in vivo may result from inhibition of β-oxidation. Subcellular distribution studies have shown predominate association of DMIPP and BMIPP with the mitochondrial and microsomal fractions, while IPP was primarily found in the cytoplasm. Because of the unique ''trapping'' properties and the high heart:blood ratios, [123I]DMIPP should be useful for evaluation of aberrations in regional myocardial uptake. 7 refs., 9 figs., 1 tab

  3. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  4. Integrated process of distillation with side reactors for synthesis of organic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  5. CHEMOTHERAPEUTIC POLYMERS ⅩⅩⅢ SYNTHESIS AND ANTITUMOR ACTIVITY OF POLYPHOSPHATES CONTAINING BOTH NUCLEIC ACID BASE AND PHOSPHONOACETIC ACID ETHYL ESTER

    Institute of Scientific and Technical Information of China (English)

    ZHUO Renxi; LIU Zhenghua; LI Li

    1989-01-01

    Eight new polyphosphates containing both nucleic acid base and phosphonoacetic acid ethyl ester were synthesized by the polycondensation of P, P- dichloride of phosphonoacetic acid ethyl ester with 1, 3-dihydroxyalkyl - 5 - fluorouracil, 1,3 - dihydroxyalkyl - uracil and 1, 3 - dihydroxyalkylthymine. These polyphosphates were tested against Ehrlich Ascites Carcinoma in mice. Polymer Ⅱa and Ⅱc exhibited excellent antitumor activity. Ⅱc also showed lower toxicity.

  6. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.

    Science.gov (United States)

    Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2014-09-01

    In recent years, significant advances have been made to engineer robust microbes for overproducing biochemical products from renewable resources. These accomplishments have to a large extend been based on plasmid based methods. However, plasmid maintenance may cause a metabolic burden on the host cell and plasmid-based overexpression of genes can result in genetically unstable strains, which contributes to loss in productivity. Here, a chromosome engineering method based on delta integration was applied in Saccharomyces cerevisiae for the production of fatty acid ethyl esters (FAEEs), which can be directly used as biodiesel and would be a possible substitute for conventional petroleum-based diesel. An integration construct was designed and integrated into chromosomal delta sequences by repetitive transformation, which resulted in 1-6 copies of the integration construct per genome. The corresponding FAEE production increased up to 34 mg/L, which is an about sixfold increase compared to the equivalent plasmid-based producer. The integrated cassette in the yeast genome was stably maintained in nonselective medium after deletion of RAD52 which is essential for efficient homologous recombination. To obtain a further increase of FAEE production, genes encoding endogenous acyl-CoA binding protein (ACB1) and a bacterial NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) were overexpressed in the final integration strain, which resulted in another 40% percent increase in FAEE production. Our integration strategy enables easy engineering of strains with adjustable gene copy numbers integrated into the genome and this allows for an easy evaluation of the effect of the gene copy number on pathway flux. It therefore represents a valuable tool for introducing and expressing a heterologous pathway in yeast. PMID:24752598

  7. [Allosteric regulation of glucosamine synthetase activity by naphthoquinone derivatives and ethyl ester of di-(4-oxycumarinyl-3)-acetic acid].

    Science.gov (United States)

    Sharaev, P N; Bogdanov, N G; Sarycheva, I K; Zhukova, E E

    1981-02-01

    The effects of derivatives of naphthoquinone, e.g. 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K1), 2-methyl-1,4-naphthoquinone (vitamin K3), 3-dihydro-2-methyl-1,4-naphthoquinone-2-sodium sulfonate (vicasol), derivatives of naphthohydroxyquinone, e.g. 2-methyl-1,4-naphthohydroxyquinone 1-monoacetate, 2-methyl-1,4-naphthohydroxyquinone 1,4-diacetate and the oxycumarine derivative di-(4-oxycumarinyl-3)-acetate ethyl ester (pelentan) on the activity of purified glutamine synthetase (EC 5.3.1.19) from rat liver were studied. The enzyme activity was increased under effects of vitamins K1 and K3 and was inhibited by pelentan. The data obtained are indicative of the allosteric effect of these compounds on the enzyme. PMID:7195738

  8. Development and evaluation of optimized sucrose ester stabilized oleanolic acid nanosuspensions prepared by wet ball milling with design of experiments.

    Science.gov (United States)

    Li, Wenji; Ng, Ka-yun; Heng, Paul Wan Sia

    2014-01-01

    The aim of this study was to develop optimized sucrose ester (SE) stabilized oleanolic acid (OA) nanosuspensions (NS) for enhanced delivery via wet ball milling by design of experiments (DOE). In this study, SEOA NS batches were prepared by wet ball milling method. Mean particle sizes and polydispersity indices were determined using a nanosizer. The percent encapsulation efficiency, saturation solubility and in vitro dissolution rate were obtained with analyses using HPLC. Preparation methods were optimized by DOE using the Minitab software. The in vitro bioefficacy was obtained by methyl thiazolyl tetrazolium (MTT) measurements in A549 human non small cell lung cancer cell line. The in vivo pharmacokinetics profile was determined using LC-electrospray ionization (ESI)-MS/MS. The study produced spherical SEOA NS particles (ca. 100 nm in diameter) which were found to be able to increase OA saturation solubility considerably. Optimized SEOA-GBD NS (milled at 600 rpm for 3 h, sucrose monolaurate (SEL) : sucrose monopalmitate (SEP) at 9 : 1, w/w; SE : OA at 1 : 1, w/w) was found to be physically stable over 14 d at 4°C. The NS showed much higher dissolution rate, cytotoxicity and bioavailability when compared with the free drug. Thus, the prepared OA as SE stabilized NS particles by wet ball milling enhanced the saturation solubility, in vitro dissolution rate, bioefficacy and in vivo bioavailability of OA. The use of sugar esters may also be potentially applied to other hydrophobic drugs. PMID:24882406

  9. Asymmetric transesterification of ibuprofen methyl ester catalyzed by Novozym 435%Novozym435催化布洛芬甲酯的不对称醇解反应

    Institute of Scientific and Technical Information of China (English)

    徐景侠; 李立标; 孙建华

    2011-01-01

    目的 制备S(+)-布洛芬.方法 以布洛芬甲酯为原料,利用酶催化的 不对称转酯反应,将R(-)-布洛芬甲酯转化为R(-)-布洛芬丁酯,反应条件:布洛芬甲酯,10 g(100 mmol);Novozym 435,10 g;正丁醇,5.9 g(80 mmol);温度,39℃;时间,8~10 h.结果 不对称转酯反应的收率为83%,将得到的S(+)-布洛芬甲酯进行水解得S(+)-布洛芬,其收率为90%,光学纯为93%ee.结论 该本反应体系下,酶可以被回收利用,绿色经济,该方法有工业放大的潜力.%Aim To prepare S( + )-ibuprofen. Methods R( - )-ibuprofen methyl ester was transferred to R( - )-ibuprofen butyl ester catalyzed by enzyme. The reaction was performed as follows : Ibuprofen methyl ester, 10 g , 100 mmol; Novozym 435 , 10 g; 1-butanol, 5. 9 g,80 mmol;Temperature , 39℃ ; Time.8 - 10 h. Results The yield of asymmetric transesterification was 83% . The S( + )-ibuprofen methyl ester was then hydrolyzed. The yield of S( + )-ibuprofen with 93% ee was 90℃ . Conclusion The enzyme can be used repeatedly in these methods. The procedure has potential to be applied in industrial scale which was economic and environmental friendly.

  10. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chai...

  11. Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Joelda; Santos, Jakeline Raiane D.; Cunha, Rodrigo Bruno L.; Costa, Ana Cristina F.M., E-mail: joeldadantas@yahoo.com.br [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Dept. de Engenharia de Materiais. Lab. de Sintese de Materiais Ceramicos; Kiminami, Ruth Herta G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Engenhria de Materiais

    2013-11-01

    The purpose of this work is to evaluate the performance of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite doped with 0.1 and 0.4 mol of Cu as a catalyst for the transesterification of soybean oil to biodiesel, using methanol. The samples were characterized by X-ray diffraction, nitrogen adsorption and scanning electron microscopy. The reaction was performed for 2 hours at a temperature of 160 Degree-Sign C, using 10 g of soybean oil, a molar ratio of oil: alcohol of 1:20, and 4% (w/w) of catalyst. The product of the reaction was characterized by gas chromatography, which confirmed conversion to methyl esters. The diffraction patterns showed the presence only of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite phase with a crystallite size of 29 nm. The samples doped with 0.1 and 0.4 mol of Cu showed a surface area and particle size of 22.17 {sup m2}g{sup -1} and 50.47 nm; and 23.49 m{sup 2}g{sup -1} and 47.64 nm, respectively. The morphology of both samples consisted of brittle block-shaped agglomerates with a wide particle size distribution. A comparative analysis of the two catalysts indicated that the catalyst doped with 0.4 mol of Cu showed the better performance, with a conversion rate of 50.25%, while the catalyst doped with 0.1 mol of Cu showed 42.71% conversion. (author)

  12. A limited LCA comparing large- and small-scale production of rape methyl ester (RME) under Swedish conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, S.; Nilsson, D.; Hansson, P.A. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Biometry and Engineering

    2004-06-01

    Production of rape methyl ester (RME) can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The purpose of this study was to analyse whether the use of a small-scale RME production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three plant sizes. For small plants and physical allocation, the global warming potential was 40.3 g CO{sub 2}-eq/MJ{sub fuel}, the acidification potential 236 mg SO{sub 2}-eq/MJ{sub fuel}, the eutrophication potential 39.1 mg PO{sub 4}{sup 3-}eq/MJ{sub fuel}, the photochemical oxidant creation potential 3.29 mg C{sub 2}H{sub 4}-eq/MJ{sub fuel} and the energy requirement 295 kJ/MJ{sub fuel}. It was shown that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible. The higher oil extraction efficiency and the more efficient use of machinery and buildings in the large-scale system were, to a certain degree, outweighed by the longer transport distances. The dominating production step was the cultivation, in which production of fertilisers, soil emissions and tractive power made major contributions to the environmental load. The results were, however, largely dependent on the method used for allocation of the environmental burden between the RME and the by-products meal and glycerine. This indicates that when different biofuels or production strategies are to be compared, it is important that the results are calculated with the same allocation strategies and system limitations. (author)

  13. Interaction of L-Arginine-methyl ester and Sonic hedgehog in liver ischemia-reperfusion injury in the rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the role of Sonic hedgehog (Shh) on the course of liver ischemia and repeffusion (I/R) in rats,and the interaction between treatment with nitric oxide donor L-Arginine-methyl ester (L-Arg) and up-regulation of Shh expression.METHODS: A total of 30 male Sprague-Dawley rats weighing 220-240 g were used in this study. Sham-control group (G1, n = 10): a sham operation was performed (except for liver I/R). I/R-untreated group (G2,n = 10): rats underwent liver ischemia for 1 h followed by reperfusion for 45 min. I/R-L-Arg group (G3, n =10): after performing the same surgical procedure as in group 2, animals were treated with L-Arg. Liver tissues were taken for determination of malondialdehyde (MDA)levels, and biochemical and histological evaluations were made.RESULTS: Plasma alanine aminotransferase (ALT),aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and γ-glutamyltranspeptidase (GGT) activities were higher in group 2 than in group 3. MDA values and the hepatic injury score decreased in the L-Arg treated group compared to the I/R-untreated group. In group 2,the hepatocytes were swollen with marked vacuolization.Group 3 rats showed well-preserved liver parenchyma,with hepatocytes extending from the central vein. The morphology of the hepatocytes and the sinusoidal structures was normal, without any signs of congestion.Mild Shh positive immunostaining was detected in group 2 animals. The expression of immunoreactive cells was increased markedly in liver tissue from I/R-L-Arg rats.CONCLUSION: Our findings suggest that Shh molecules are critical factors in the pathophysiology of inflammatory liver injury induced by I/R. In addition, NO plays an important role in the immunohistochemical expression of these molecules.

  14. Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters

    Directory of Open Access Journals (Sweden)

    Joelda Dantas

    2013-06-01

    Full Text Available The purpose of this work is to evaluate the performance of Ni0.5Zn0.5Fe2O4 ferrite doped with 0.1 and 0.4 mol of Cu as a catalyst for the transesterification of soybean oil to biodiesel, using methanol. The samples were characterized by X-ray diffraction, nitrogen adsorption and scanning electron microscopy. The reaction was performed for 2 hours at a temperature of 160 °C, using 10 g of soybean oil, a molar ratio of oil: alcohol of 1:20, and 4% (w/w of catalyst. The product of the reaction was characterized by gas chromatography, which confirmed conversion to methyl esters. The diffraction patterns showed the presence only of Ni0.5Zn0.5Fe2O4 ferrite phase with a crystallite size of 29 nm. The samples doped with 0.1 and 0.4 mol of Cu showed a surface area and particle size of 22.17 m²g- 1 and 50.47 nm; and 23.49 m²g- 1 and 47.64 nm, respectively. The morphology of both samples consisted of brittle block-shaped agglomerates with a wide particle size distribution. A comparative analysis of the two catalysts indicated that the catalyst doped with 0.4 mol of Cu showed the better performance, with a conversion rate of 50.25%, while the catalyst doped with 0.1 mol of Cu showed 42.71% conversion.

  15. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Science.gov (United States)

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils,...

  16. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    Science.gov (United States)

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed.

  17. Dehydrogenative Cross-Coupling Reaction between N-Aryl α-Amino Acid Esters and Phenols or Phenol Derivative for Synthesis of α-Aryl α-Amino Acid Esters.

    Science.gov (United States)

    Salman, Muhammad; Zhu, Zhi-Qiang; Huang, Zhi-Zhen

    2016-04-01

    A novel dehydrogenative cross-coupling (DCC) reaction between N-arylglycine esters and phenols or 1,3,5-trimethoxybenzene was developed by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant. Under optimized conditions, a range of N-arylglycine esters 1 underwent the DCC reaction smoothly with various phenols 2 or 1,3,5-trimethoxybenzene 4 to give desired α-aryl α -amino acid esters 3 or 5, respectively, with high ortho regioselectivities in a moderate to excellent yield. A possible mechanism involving aromatic electrophilic substitution is proposed. PMID:26984111

  18. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  19. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  20. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  1. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    Science.gov (United States)

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes. PMID:25224149

  2. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  3. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases.

    Science.gov (United States)

    Porto, Anthony F

    2014-09-01

    Lysosomal acid lipase (LAL) is responsible for the hydrolysis of cholesterol esters and triglycerides. LAL is coded by the LIPA gene on chromosome 10q23.31. Its deficiency leads to two autosomal recessive disorders, Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD). WD has an estimated incidence of 1 in 500,000 live births and is the result of a complete loss of LAL and presents in infancy with vomiting, diarrhea, poor weight gain and hepatomegaly subsequently leading to death. CESD is the result of partial loss of LAL and its presentation is more variable. Patients may be asymptomatic or present with nonspecific gastrointestinal symptoms, hepatomegaly, elevated transaminases and dystipidemia which may be confused with the diagnosis of Non-alcoholic Fatty Liver Disease. CESD is currently underdiagnosed and has an estimated prevalence as high as I in 40,000 individuals. Radiologic findings in WD is calcification of the adrenal glands. Hepatomegaly is noted on CT scan in both WD and CESD. MRI may demonstrate accumulation of cholesterol esters and may be useful to study effects of potential medical therapies. The diagnosis of WD and CESD is based on LIPA gene sequencing and the measurement of LAL levels in peripheral blood leukocytes. Treatment of LAL deficiency is currently limited to control of cholesterol levels and to prevent premature atherosclerosis. Use of enzyme replacement therapy with recombinant human LAL in short-term studies has shown to be safe and effective. PMID:25345094

  4. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  5. Time-resolved EPR investigation of potential model systems for acrylate polymer main chain radicals based on esters of Kemp's tri-acid.

    Science.gov (United States)

    Lebedeva, Natalia V; Gorelik, Elena V; Magnus-Aryitey, Damaris; Hill, Terence E; Forbes, Malcolm D E

    2009-05-14

    Methyl esters of Kemp's tri-acid and cyclohexanetricarboxylic acid are structurally similar to acrylate polymers, having the same functionalities and stereoregularities as poly(methylmethacrylate) and poly(methylacrylate), respectively. The photochemistry and free radicals from these model systems have been studied using time-resolved electron paramagnetic resonance spectroscopy with laser flash photolysis at 248 nm. Chemically induced electron spin polarization from the triplet mechanism (net emission) is observed. Well-resolved spectra are obtained at all temperatures for the model system radicals, which are determined to be in the slow motion condition, that is, there is no interconversion of chair conformations. The temperature dependence of the spectra is minimal; some hyperfine lines shift as the temperature increases, but without much broadening. Density functional theory calculations are presented and discussed in support of the experimental data.

  6. Prevention and Treatment of Experimental Estrogen Receptor – Negative Mammary Carcinogenesis by the Synthetic Triterpenoid CDDO-Methyl Ester and the Rexinoid LG100268

    Science.gov (United States)

    Liby, Karen; Risingsong, Renee; Royce, Darlene B.; Williams, Charlotte R.; Yore, Mark M.; Honda, Tadashi; Gribble, Gordon W.; Lamph, William W.; Vannini, Nicola; Sogno, Ilaria; Albini, Adriana; Sporn, Michael B.

    2016-01-01

    Purpose To test whether the triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and the rexinoid LG100268 (268) prevent the formation of estrogen receptor (ER) – negative mammary tumors or either arrest the growth or cause regression of established tumors in MMTV-neu mice. Experimental Design For prevention, mice were fed control diet, CDDO-Me (60 mg/kg diet), 268 (20 mg/kg diet), or the combination for 45 weeks. For treatment, mice with established tumors at least 4 mm in diameter were fed control diet, CDDO-Me (100 mg/kg diet), 268 (60 mg/kg diet), or the combination for 4 weeks. Results CDDO-Me and 268 significantly delayed the development of ER-negative tumors, with a 14- and 24-week delay, respectively, compared with the control group for the time required to reach 50% tumor incidence. The combination of CDDO-Me and 268 was significantly more potent than the individual drugs, as only one tumor was found in the combination group, after 45 weeks on diet, at which time all control animals had tumors. Treating established tumors with CDDO-Me arrested the growth of 86% of the tumors, and 268 induced tumor regression in 85% of tumors. CDDO-Me and 268 target different signaling pathways and cell types. CDDO-Me inhibited constitutive STAT3 phosphorylation and the degradation of IKBα in ER-negative breast cancer cells, whereas 268 blocked IKBα degradation and the release of interleukin-6 in RAW264.7 macrophage-like cells, inhibited the ability of endothelial cells to organize into networks, and blocked angiogenesis in vivo. Conclusions CDDO-Me and 268 are useful as individual drugs to prevent ER-negative mammary tumorigenesis and to treat established tumors. They synergize when used in combination for prevention. PMID:18628471

  7. Combination of angiotensin II and l-NG-nitroarginine methyl ester exacerbates mitochondrial dysfunction and oxidative stress to cause heart failure.

    Science.gov (United States)

    Hamilton, Dale J; Zhang, Aijun; Li, Shumin; Cao, Tram N; Smith, Jessie A; Vedula, Indira; Cordero-Reyes, Andrea M; Youker, Keith A; Torre-Amione, Guillermo; Gupte, Anisha A

    2016-03-15

    Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.

  8. Valyl benzyl ester chloride

    Directory of Open Access Journals (Sweden)

    Grzegorz Dutkiewicz

    2010-02-01

    Full Text Available In the title compound (systematic name: 1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride, C12H18NO2+·Cl−, the ester group is approximately planar, with a maximum deviation of 0.040 (2 Å from the least-squares plane, and makes a dihedral angle of 28.92 (16° with the phenyl ring. The crystal structure is organized by N—H...Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged antiparallel are interconnected by further N—H...Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

  9. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  10. Noncytotoxic and Antitumour-Promoting Activities of Garcinia Acid Esters from Garcinia atroviridis Griff. ex T. Anders (Guttiferae

    Directory of Open Access Journals (Sweden)

    Mukram M. Mackeen

    2012-01-01

    Full Text Available The in vitro antitumour-promoting, cytotoxic, and antioxidant activities of two ester derivatives of garcinia acid, that is, 2-(butoxycarbonylmethyl-3-butoxycarbonyl-2-hydroxy-3-propanolide (1 and 1′,1′′-dibutyl methyl hydroxycitrate (2, that had been previously isolated from the fruits of Garcinia atroviridis Griff. ex T. Anders (Guttiferae, were examined. Based on the inhibition of Epstein-Barr virus early antigen (EBV-EA activation, compound 1 (IC50: 70 μM showed much higher (8-fold antitumour-promoting activity than compound 2 (IC50: 560 μM. In addition, both compounds were nontoxic towards CEM-SS (human T-lymphoblastic leukemia cells (CD50: >100 μM, Raji (human B-lymphoblastoid cells (CD50: >600 μM, and brine shrimp (LD50: >300 μM. Although the antitumour-promoting activity of compound 1 is moderate compared with the known antitumour promoter genistein, its non-toxicity suggests the potential of compound 1 and related structures as chemopreventive agents. The weak antioxidant activity displayed by both compounds also suggested that the primary antitumour-promoting mechanism of compound 1 did not involve oxidative-stress quenching.

  11. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents.

    Science.gov (United States)

    Sekhar, Kuruva Chandra; Janardhan, Avilala; Kumar, Yellapu Nanda; Narasimha, Golla; Raju, Chamarthi Naga; Ghosh, S K

    2014-07-01

    Owing to the promising antiviral activity of amino acid ester-substituted phosphorylated nucleosides in the present study, a series of phosphorylated derivatives of emtricitabine and didanosine substituted with bioactive amino acid esters at P-atom were synthesized. Initially, molecular docking studies were screened to predict their molecular interactions with hemagglutinin-neuraminidase protein of Newcastle disease virus and E2 protein of human papillomavirus. The title compounds were screened for their antiviral ability against Newcastle disease virus (NDV) by their in ovo study in embryonated chicken eggs. Compounds 5g and 9c exposed well mode of interactions with HN protein and also exhibited potential growth of NDV inhibition. The remaining compounds exhibited better growth of NDV inhibition than their parent molecules, i.e., emtricitabine (FTC) and didanosine (ddI). In addition, the in vitro anticancer activity of all the title compounds were screenedagainst HeLa cell lines at 10 and 100 μg/mL concentrations. The compounds 5g and 9c showed an effective anticancer activity than that of the remaining title compounds with IC50 values of 40 and 60 μg/mL, respectively. The present in silico and in ovo antiviral and in vitro anticancer results of the title compounds are suggesting that the amino acid ester-substituted phosphorylated FTC and ddI derivatives, especially 5g and 9c, can be used as NDV inhibitors and anticancer agents for the control and management of viral diseases with cancerous condition. PMID:24789416

  12. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    OpenAIRE

    Sumeyya Akyol; Veli Ugurcu; Aynur Altuntas; Rukiye Hasgul; Ozlem Cakmak; Omer Akyol

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury ...

  13. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  14. Development of a New Environment-conscious Transformer Impregnated with Palm Fatty Acid Ester (PFAE)

    Science.gov (United States)

    Hikosaka, Tomoyuki; Yamazaki, Akina; Hatta, Yasunori; Koide, Hidenobu; Kanoh, Takaaki; Suzuki, Takashi; Yamada, Junichi; Uemura, Shingo

    We have developed a new environment-conscious transformer impregnated with vegetable based insulating oil which called PFAE (Palm Fatty Acid Ester). PFAE has 0.6 times less viscosity and 1.3 times higher dielectric constant compared to mineral oil. This means that a PFAE immersed transformer has better cooling efficiency and better insulating performance in paper-and-oil composite insulation systems, resulting in size reduction in comparison to conventional mineral oil immersed transformers. In this paper, insulating performance of lead to plane electrode models, cooling performance of a PFAE immersed transformer, and the result of analytical study of dissolved gas for abnormal diagnosis are described.

  15. Synthesis ,Structure and Biological Activities of Some Novel Anthranilic Acid Esters Containing N-Pyridyl-pyrazole

    Institute of Scientific and Technical Information of China (English)

    DONG,Weili; XU,Junying; XIONG,Lixia; LIU,Xinghai; LI,Zhengming

    2009-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low residue,a novel series of anthranilic acid esters containing N-pyridylpyrazole were designed and synthesized.All of the compounds were characterized and confirmed by IR,1H NMR,MS and elemental analysis.The single crystal structure of 14d was determined by X-ray diffraction.The bioassay tests showed that the synthesized compounds exhibited good insecti-tidal activities against Mythimna separata Walker and Culex pipiens pallens.

  16. Synthesis and Antitumor Activity of Amino Acid Ester Derivatives Containing 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Jing Xiong

    2009-08-01

    Full Text Available A series of amino acid ester derivatives containing 5-fluorouracil were synthesized using 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC•HCl and N-hydroxybenzotriazole (HOBt as a coupling agent. The structures of the products were assigned by NMR, MS, IR etc. The in vitro antitumor activity tests against leukaemia HL-60 and liver cancer BEL-7402 indicated that (R-ethyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H-ylacetamido-3-(4-hydroxyphenyl propanoate showed more inhibitory effect against BEL-7402 than 5-FU.

  17. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  18. Research on Particle Size of Organic Semiconductor Materials Poly(3-hexylthiophene) and [6,6]-Phenyl-C60-butyric Acid Methyl Ester in Chlorobenzene Solution%有机半导体材料聚(3-己基噻吩)及[6,6]-苯基-C60丁酸甲酯在氯苯溶液中粒径研究

    Institute of Scientific and Technical Information of China (English)

    李晨希; 董兵超; 李萌; 王金淼; 蔡雯君; 牛贺莹; 马恒

    2014-01-01

    The mixture of organic semiconductor electron donor poly(3-hexylthiophene) (P3HT) and acceptor [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) is dissolved in chlorobenzene for measuring the solute particle diameter. By comparing the performance of solar cells and the surface morphology of the active layer, the dispersion law of the mixed solutes in chlorobenzene is analyzed. The influence of temperature and concentration on particle size, furthermore, the impact of particle size on device performance are discussed. The results show that most of the particle sizes in the solution are populated at about 4000 nm, and both the concentration and the temperature of the solution have a significant effect on the particle size of the solution. For low concentration solution, the particle sizes are greatly influenced by temperature. On the contrary, the effect of temperature on the particle size in the solution concentration is less apparent when the concentration becomes higher. When the solution concentration reaches 12.67 mg/mL, it has a preferably dispersion and optimal fill factor. When the concentration reaches 19.00 mg/mL, the solar cell made by the solution shows a well property on power conversion efficiency and short-circuits current.%以聚(3-己基噻吩)(P3HT)为电子给体,[6,6]-苯基-C60丁酸甲酯(PCBM)为电子受体材料,制备了不同浓度活性层材料(P3HT:PCBM)的聚合物太阳能电池.通过对比电池性能参数,活性层表面形貌,进一步分析了氯苯溶剂中有机半导体材料的分散规律,并讨论了溶液温度和浓度对溶质粒径的影响,以及粒径大小对器件性能的影响.结果表明,溶液中溶质直径在4000 nm左右的粒子占有较大比例,溶液的浓度和温度对溶液中粒子的粒径有明显的影响,浓度较低时,溶质粒径受温度影响较大.相反,温度对高浓度溶液中的溶质粒径的影响作用减小.溶液浓度为12.67 mg/mL 时,分散效果最好,具有最

  19. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Science.gov (United States)

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). PMID:26989983

  20. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    Science.gov (United States)

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296