WorldWideScience

Sample records for acid metabolizing cytochrome

  1. Identification and induction of cytochrome P450s involved in the metabolism of flavone-8-acetic acid in mice

    OpenAIRE

    Pham, Minh Hien; Rhinn, Hervé; Auzeil, Nicolas; Regazzetti, Anne; Harami, Djamel Eddine; Scherman, Daniel; Chabot, Guy G.

    2011-01-01

    The metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly responsible for its potent anticancer activity in mice. The purpose of this study was to identify the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3′,4′-dihydrodiol-FAA, 5,6-epoxy-FAA, 4′-OH-FAA, 3′-OH-FAA, 3′,4′-epoxy-FAA and 6-OH-FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone...

  2. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat

    International Nuclear Information System (INIS)

    Gueguen, Y.; Souidi, M.; Baudelin, C.; Dudoignon, N.; Grison, S.; Dublineau, I.; Marquette, C.; Voisin, P.; Gourmelon, P.; Aigueperse, J.

    2006-01-01

    The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system, and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism of cholesterol and xenobiotics in the rat liver. The effects of depleted uranium (DU) contamination on Sprague-Dawley were measured at 1 and 3 days after exposure. Biochemical indicators characterizing liver and kidney functions were measured in the plasma. The DU affected bile acid CYP activity: 7α-hydroxycholesterol plasma level decreased by 52% at day 3 whereas microsomal CYP7A1 activity in the liver did not change significantly and mitochondrial CYP27A1 activity quintupled at day 1. Gene expression of the nuclear receptors related to lipid metabolism (FXR and LXR) also changed, while PPARα mRNA levels did not. The increased mRNA levels of the xenobiotic-metabolizing CYP3A enzyme at day 3 may be caused by feedback up-regulation due to the decreased CYP3A activity at day 1. CAR mRNA levels, which tripled on day 1, may be involved in this up-regulation, while mRNA levels of PXR did not change. These results indicate that high levels of depleted uranium, acting through modulation of the CYP enzymes and some of their nuclear receptors, affect the hepatic metabolism of bile acids and xenobiotics. (orig.)

  3. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  4. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...... to rationalize what metabolites these enzymes generate. In recent years, many different in silico approaches have been developed to predict binding or regioselective product formation for the different CYP isoforms. These comprise ligand-based methods that are trained on experimental CYP data and structure...

  5. Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans.

    Science.gov (United States)

    Attar, Mayssa; Dong, Dahai; Ling, Kah-Hiing John; Tang-Liu, Diane D-S

    2003-04-01

    Upon oral administration, tazarotene is rapidly converted to tazarotenic acid by esterases. The main circulating agent, tazarotenic acid is subsequently oxidized to the inactive sulfoxide metabolite. Therefore, alterations in the metabolic clearance of tazarotenic acid may have significant effects on its systemic exposure. The objective of this study was to identify the human liver microsomal enzymes responsible for the in vitro metabolism of tazarotenic acid. Tazarotenic acid was incubated with 1 mg/ml pooled human liver microsomes, in 100 mM potassium phosphate buffer (pH 7.4), at 37 degrees C, over a period of 30 min. The microsomal enzymes that may be involved in tazarotenic acid metabolism were identified through incubation with microsomes containing cDNA-expressed human microsomal isozymes. Chemical inhibition studies were then conducted to confirm the identity of the enzymes potentially involved in tazarotenic acid metabolism. Reversed-phase high performance liquid chromatography was used to quantify the sulfoxide metabolite, the major metabolite of tazarotenic acid. Upon incubation of tazarotenic acid with microsomes expressing CYP2C8, flavin-containing monooxygenase 1 (FMO1), or FMO3, marked formation of the sulfoxide metabolite was observed. The involvement of these isozymes in tazarotenic acid metabolism was further confirmed by inhibition of metabolite formation in pooled human liver microsomes by specific inhibitors of CYP2C8 or FMO. In conclusion, the in vitro metabolism of tazarotenic acid to its sulfoxide metabolite in human liver microsomes is mediated by CYP2C8 and FMO.

  6. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  7. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  8. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  9. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines.

    Science.gov (United States)

    Zhuang, Xiao-Mei; Chen, Lin; Tan, Yan; Yang, Hai-Ying; Lu, Chuang; Gao, Yue; Li, Hua

    2017-09-01

    Ferulic acid (FA) is an active component of herbal medicines. One of the best documented activities of FA is its antioxidant property. Moreover, FA exerts antiallergic, anti-inflammatory, and hepatoprotective effects. However, the metabolic pathways of FA in humans remain unclear. To identify whether human CYP or UGT enzymes are involved in the metabolism of FA, reaction phenotyping of FA was conducted using major CYP-selective chemical inhibitors together with individual CYP and UGT Supersomes. The CYP- and/or UGT-mediated metabolism kinetics were examined simultaneously or individually. Relative activity factor and total normalized rate approaches were used to assess the relative contributions of each major human CYPs towards the FA metabolism. Incubations of FA with human liver microsomes (HLM) displayed NADPH- and UDPGA-dependent metabolism with multiple CYP and UGT isoforms involved. CYPs and UGTs contributed equally to the metabolism of FA in HLM. Although CYP1A2 and CYP3A4 appeared to be the major contributors in the CYP-mediated clearance, their contributions to the overall clearance are still minor (medicines because multiple phase I and phase II enzymes are involved in its metabolism. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...... calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90...

  11. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations

    DEFF Research Database (Denmark)

    Capoferri, Luigi; Leth, Rasmus; Ter Haar, Ernst

    2016-01-01

    of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way...... active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain...... of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD...

  12. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  13. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  14. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  15. Comparative study of hop-containing products on human cytochrome p450-mediated metabolism.

    Science.gov (United States)

    Foster, Brian C; Kearns, Nikia; Arnason, John T; Saleem, Ammar; Ogrodowczyk, Carolina; Desjardins, Suzanne

    2009-06-10

    Thirty-five national and international brands of beer were examined for their potential to affect human cytochrome P450 (CYP)-mediated metabolism. They represented the two main categories of beer, ales and lagers, and included a number of specialty products including bitter (porter, stout), coffee, ice, wheat, Pilsner, and hemp seed. Aliquots were examined for nonvolatile soluble solids, effect on CYP metabolism and P-glycoprotein (Pgp) transport, and major alpha- and beta-hop acids. Wide variance was detected in contents of alcohol, nonvolatile suspended solids, and hop acids and in the potential to affect CYP-mediated metabolism and Pgp-mediated efflux transport. Many of the products affected CYP2C9-mediated metabolism, and only two (NRP 306 and 307) markedly affected CYP3A4; hence, some products have the capacity to affect drug safety. CYP3A4, CYP3A5, CYP3A7, and CYP19 (aromatase) inhibition to the log concentration of beta-acid content was significant with r(2) > 0.37, suggesting that these components can account for some of the variation in inhibition of CYP metabolism.

  16. Differences in renal metabolism of insulin and cytochrome c

    International Nuclear Information System (INIS)

    Herrman, J.; Simmons, R.E.; Frank, B.H.; Rabkin, R.

    1988-01-01

    Kidneys degrade small proteins such as cytochrome c (CYT c) by the classic lysosomal pathway. However, because alternate routes for the transport and degradation of protein hormones have been identified in other tissues, the authors set out to determine whether extralysosomal sites might participate in the renal degradation of insulin. First, they compared the effect of the lysosomal inhibitor NH 4 Cl on insulin and CYT c degradation by isolated perfused rat kidneys. After kidneys were loaded with radiolabeled proteins to allow for absorption and transport to lysosomes, degradation was measured in the presence or absence of inhibitors. Next they followed the subcellular distribution of 125 I-labeled insulin in kidneys exposed to 125 I-labeled insulin in vivo or when isolated and perfused. Under both circumstances the distribution of insulin on a linear sucrose gradient differed from that of the lysosomal enzyme N-acetyl-β-glucosaminidase. In contrast, [ 14 CH 3 ]CYT c, injected in vivo, distributed over a density similar to the lysosomal marker. Thus important differences exist between the renal metabolism of CYT c, which proceeds in lysosomes, and the renal metabolism of insulin. These include rate of degradation, sensitivity to NH 4 Cl, and subcellular sites of localization. Accordingly, they suggest that insulin degradation may occur, at least in part, in a different compartment from the classic lysosomal site of protein degradation

  17. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  18. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    Science.gov (United States)

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  20. Hepatic Metabolism of Sakuranetin and Its Modulating Effects on Cytochrome P450s and UDP-Glucuronosyltransferases

    Directory of Open Access Journals (Sweden)

    Hyesoo Jeong

    2018-06-01

    Full Text Available Sakuranetin (SKN, found in cherry trees and rice, is a flavanone with various pharmacological activities. It is biosynthesized from naringenin in rice or cherry trees, and the metabolism of SKN has been studied in non-human species. The present study aimed to investigate the metabolic pathways of SKN in human liver microsomes and identify the phase I and phase II metabolites, as well as evaluate the potential for drug–herb interactions through the modulation of drug metabolizing enzymes (DMEs. HPLC-DAD and HPLC-electrospray mass spectrometry were used to study the metabolic stability and identify the metabolites from human liver microsomes incubated with SKN. The potential of SKN to inhibit the DMEs was evaluated by monitoring the formation of a DME-specific product. The cytochrome P450 2B6 and 3A4-inductive effects were studied using promoter reporter assays in human hepatocarcinoma cells. The major pathways for SKN metabolism include B-ring hydroxylation, 5-O-demethylation, and conjugation with glutathione or glucuronic acid. The phase I metabolites were identified as naringenin and eriodictyol. SKN was found to be a UDP-glucuronosyltransferases (UGT 1A9 inhibitor, whereas it induced transactivation of the human pregnane X receptor-mediated cytochrome P450 (CYP 3A4 gene.

  1. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  2. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  3. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    Science.gov (United States)

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  4. The amino acid sequence of cytochrome c from Cucurbita maxima L. (pumpkin)

    Science.gov (United States)

    Thompson, E. W.; Richardson, M.; Boulter, D.

    1971-01-01

    The amino acid sequence of pumpkin cytochrome c was determined on 2μmol of protein. Some evidence was found for the occurrence of two forms of cytochrome c, whose sequences differed in three positions. Pumpkin cytochrome c consists of 111 residues and is homologous with mitochondrial cytochromes c from other plants. Experimental details are given in a supplementary paper that has been deposited as Supplementary Publication SUP 50005 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1971), 121, 7. PMID:5131733

  5. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation assay...... B1 and 4-nitrobiphenyl, did not inhibit metabolic cooperation in either V79 cells expressing or cells not expressing cytochrome P450. We conclude that cytochrome P450-associated metabolism plays an important role in the inhibition of gap junctional intercellular communication of some tumour...... promoters. The modified metabolic cooperation assay presented here is valuable for detecting some inhibitory chemicals which have been 'false negative' in previous assays for gap junctional intercellular communication. The assay also discloses that cytochrome P450 metabolism alters intercellular...

  6. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    OpenAIRE

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme...

  7. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  9. Novel metabolic pathways for linoleic and arachidonic acid metabolism.

    Science.gov (United States)

    Moghaddam, M; Motoba, K; Borhan, B; Pinot, F; Hammock, B D

    1996-08-13

    Mouse liver microsomes oxidized linoleic acid to form 9,10- or 12,13-epoxyoctadecenoate. These monoepoxides were subsequently hydrolyzed to their corresponding diols in the absence of the microsomal epoxide hydrolase inhibitor, 1,2-epoxy-3,3,3-trichloropropane. Furthermore, both 9,10- and 12,13-epoxyoctadecenoates were oxidized to diepoxyoctadecanoate at apparently identical rates by mouse liver microsomal P-450 epoxidation. Both epoxyoctadecanoates and diepoxyoctadecanoates were converted to tetrahydrofuran-diols by microsomes. Tetrahydroxides of linoleate were produced as minor metabolites. Arachidonic acid was metabolized to epoxyeicosatrienoates, dihydroxyeicosatrienoates, and monohydroxyeicosatetraenoates by the microsomes. Microsomes prepared from clofibrate (but not phenobarbital) -treated mice exhibited much higher production rates for epoxyeicosatrienoates and vic-dihydroxyeicosatrienoates. This indicated an induction of P-450 epoxygenase(s) and microsomal epoxide hydrolase in mice by clofibrate and not by phenobarbital. Incubation of synthetic epoxyeicosatrienoates with microsomes led to the production of diepoxyeicosadienoates. Among chemically generated diepoxyeicosadienoate isomers, three of them possessing adjacent diepoxides were hydrolyzed to their diol epoxides which cyclized to the corresponding tetrahydrofuran-diols by microsomes as well as soluble epoxide hydrolase at a much higher rate. Larger cyclic products from non-adjacent diepoxides were not observed. The results of our in vitro experiments suggest that linoleic and arachidonic acid can be metabolized to their tetrahydrofuran-diols by two consecutive microsomal cytochrome P-450 epoxidations followed by microsomal or soluble epoxide hydrolase catalyzed hydrolysis of the epoxides. Incubation experiments with the S-9 fractions indicate that the soluble epoxide hydrolase is more important in this conversion. This manuscript is the first report of techniques for the separation and

  10. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    Science.gov (United States)

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  11. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    International Nuclear Information System (INIS)

    Ohhira, Shuji; Enomoto, Mitsunori; Matsui, Hisao

    2006-01-01

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats

  12. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    Science.gov (United States)

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC 50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC 50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  13. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations

    Science.gov (United States)

    von Moltke, Lisa L; Greenblatt, David J; Granda, Brian W; Duan, Su Xiang; Grassi, Jeffrey M; Venkatakrishnan, Karthik; Harmatz, Jerold S; Shader, Richard I

    1999-01-01

    Aims To determine the human cytochromes mediating biotransformation of the imidazopyridine hypnotic, zolpidem, and the clinical correlates of the findings. Methods Kinetic properties of zolpidem biotransformation to its three hydroxylated metabolites were studied in vitro using human liver microsomes and heterologously expressed individual human cytochromes. Results The metabolic product termed M-3 accounted for more than 80% of net intrinsic clearance by liver microsomes in vitro. Microsomes containing human cytochromes CYP1A2, 2C9, 2C19, 2D6, and 3 A4 expressed by cDNA-transfected human lymphoblastoid cells mediated zolpidem metabolism in vitro. The kinetic profile for zolpidem metabolite formation by each individual cytochrome was combined with estimated relative abundances based on immunological quantification, yielding projected contributions to net intrinsic clearance of: 61% for 3 A4, 22% for 2C9, 14% for 1A2, and less than 3% for 2D6 and 2C19. These values were consistent with inhibitory effects of ketoconazole and sulfaphenazole on zolpidem biotransformation by liver microsomes. Ketoconazole had a 50% inhibitory concentration (IC50) of 0.61 μm vs formation of the M-3 metabolite of zolpidem in vitro; in a clinical study, ketoconazole coadministration reduced zolpidem oral clearance by ≈40%, somewhat less than anticipated based on the IC50 value and total plasma ketoconazole levels, but much more than predicted based on unbound plasma ketoconazole levels. Conclusions The incomplete dependence of zolpidem clearance on CYP3A activity has clinical implications for susceptibility to metabolic inhibition. PMID:10383565

  14. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  15. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  16. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Offord, E.A.; Brouwer, C.

    2002-01-01

    Human and mouse liver microsomes And membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin...... were hydroxylated at the 3'-position to yield their corresponding analogs quercetin, luteolin and eriodietyol, whereas hesperetin and tamarixetin were demethylated at the 4'-position to yield eriodictyol and quercetin. respectively, Microsomal flavonoid metabolism as potently inhibited by the CYP1A2...... inhibitors. fluvoxamine and alpha-naphthoflavone. Recombinant CYP1A2 as capable of metabolizing all five investigated flavonoids. CYP3A4 recombinant protein did not catalyze hesperetin demethylation. but showed similar metabolic profiles for the remaining compounds, as did human microsomes and recombinant...

  17. The contribution of atom accessibility to site of metabolism models for cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rostkowski, M.; Gloriam, D.E.

    2013-01-01

    Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...... coordinates. The method was implemented in the SMARTCyp site of metabolism prediction models and improved the results by up to 4 percentage points for nine cytochrome P450 isoforms. The final models are made available at http://www.farma.ku.dk/smartcyp.......Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...

  18. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    Science.gov (United States)

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  19. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  20. Comparative study of hops-containing products on human cytochrome P450-mediated metabolism.

    Science.gov (United States)

    Foster, Brian C; Arnason, John T; Saleem, Ammar; Tam, Teresa W; Liu, Rui; Mao, Jingqin; Desjardins, Suzanne

    2011-05-11

    The potential for 15 different ales (6), ciders (2 apple and 1 pear), and porters (6) and 2 non-alcoholic products to affect cytochrome P450 (CYP)-mediated biotransformation and P-glycoprotein-mediated efflux of rhodamine was examined. As in our previous study, a wide range of recovered nonvolatile suspended solids dry weights were noted. Aliquots were also found to have varying effects on biotransformation and efflux. Distinct differences in product ability to affect the safety and efficacy of therapeutic products confirmed our initial findings that some porters (stouts) have a potential to affect the safety and efficacy of health products metabolized by CYP2D6 and CYP3A4 isozymes. Most products, except 2 of the ciders and the 2 non-alcoholic products, also have the potential to affect the safety of CYP2C9 metabolized medications and supplements. Further studies are required to determine the clinical significance of these findings.

  1. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Olsen, Lars

    2016-01-01

    In recent years, synthetic cannabinoids have emerged in the illicit drug market, in particular via the Internet, leading to abuse of these drugs. There is currently limited knowledge about the specific enzymes involved in the metabolism of these drugs. In this study, we investigated the cytochrome...... of UR-144 and XLR-11, while inhibition of the other CYP enzymes in HLM had only minor effects. Thus, CYP3A4 is the major contributor to the CYP mediated metabolism of UR-144 and XLR-11 with minor contributions from CYP1A2. Users of UR-144 and XLR-11 are thus subject to the influence of potential drug-drug...... interactions, if they are concomitantly medicated with CYP3A4 inducers (e.g. some antiepileptics) or inhibitors (e.g. some antifungal drugs). Copyright © 2015 John Wiley & Sons, Ltd....

  2. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  3. Metabolism of bilirubin by human cytochrome P450 2A6

    International Nuclear Information System (INIS)

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-01-01

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K i of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2A6

  4. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  5. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes

    International Nuclear Information System (INIS)

    Stanley, Lesley A.; Skare, Julie A.; Doyle, Edward; Powrie, Robert; D'Angelo, Diane; Elcombe, Clifford R.

    2005-01-01

    p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14 C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to ≥4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine

  6. Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex.

    Science.gov (United States)

    Taylor, Ryan M; Sallans, Larry; Frankel, Laurie K; Bricker, Terry M

    2018-01-29

    The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10-20 fold higher than that observed for the analogous respiratory cytochrome bc 1 complex. The types of ROS produced (O 2 •-, 1 O 2 , and, possibly, H 2 O 2 ) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p •- (possible sources for O 2 •- ), the Rieske iron-sulfur cluster (possible source of O 2 •- and/or 1 O 2 ), Chl a (possible source of 1 O 2 ), and heme c n (possible source of O 2 •- and/or H 2 O 2 ). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.

  7. Cytochrome C effect on gamma-ray efficiency on barley seeds at different metabolic states

    International Nuclear Information System (INIS)

    Yankulov, M.

    1981-01-01

    Radiobiological studies of the effect of gamma-rays on the barley seeds were performed. It was shown that the different metabolic states of the seeds do not modify the effect of the independent treatment with cytochrome C, while the action of the gamma-rays is markedly modified. With the increase in the preliminary seed soaking time in H 2 O, the total lethality in the case of irradiated treatments rises from 54.10% to 91.00% and that of sterility to 13.13 and 57.44% for 12 and 72 hrs, respectively. The preliminary and post-irradiation treatment of seeds with cytochrome C markedly reduces the effect of gamma-rays, calculated by the criteria of general lethality and sterility, the trend towards an increase in the sensitivity with the increase in the extention of the preliminary soaking time of seeds in water being preserved. Preliminary soaking in the seeds in water also modifies the mutagenic effect of gamma-rays to a considerable extent. (author)

  8. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    Science.gov (United States)

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  9. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    Science.gov (United States)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  10. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1

    Science.gov (United States)

    Lafferty Doty, Sharon; Shang, Tanya Q.; Wilson, Angela M.; Tangen, Jeff; Westergreen, Aram D.; Newman, Lee A.; Strand, Stuart E.; Gordon, Milton P.

    2000-06-01

    Chlorinated solvents, especially trichloroethylene (TCE), are the most widespread groundwater contaminants in the United States. Existing methods of pumping and treating are expensive and laborious. Phytoremediation, the use of plants for remediation of soil and groundwater pollution, is less expensive and has low maintenance; however, it requires large land areas and there are a limited number of suitable plants that are known to combine adaptation to a particular environment with efficient metabolism of the contaminant. In this work, we have engineered plants with a profound increase in metabolism of the most common contaminant, TCE, by introducing the mammalian cytochrome P450 2E1. This enzyme oxidizes a wide range of important pollutants, including TCE, ethylene dibromide, carbon tetrachloride, chloroform, and vinyl chloride. The transgenic plants had a dramatic enhancement in metabolism of TCE of up to 640-fold as compared with null vector control plants. The transgenic plants also showed an increased uptake and debromination of ethylene dibromide. Therefore, transgenic plants with this enzyme could be used for more efficient remediation of many sites contaminated with halogenated hydrocarbons.

  11. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    Science.gov (United States)

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  12. Increased risk of hospitalization for ultrarapid metabolizers of cytochrome P450 2D6

    Directory of Open Access Journals (Sweden)

    Takahashi PY

    2017-02-01

    Full Text Available Paul Y Takahashi,1 Euijung Ryu,2 Jyotishman Pathak,2 Gregory D Jenkins,2 Anthony Batzler,2 Matthew A Hathcock,2 John Logan Black,3 Janet E Olson,2 James R Cerhan,2 Suzette J Bielinski2 1Division of Primary Care Internal Medicine, Department of Medicine, 2Department of Health Sciences Research, 3Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA Background: Cytochrome P450 2D6 (CYP2D6 is responsible for the metabolism of clinically used drugs and other environmental exposures, but it is unclear whether the CYP2D6 phenotype is associated with adverse health outcomes. The aim was to determine the association of CYP2D6 phenotype with the risk of hospitalization or an emergency department (ED visit among a group of primary care patients. Methods: In this study, 929 adult patients underwent CYP2D6 testing. The primary outcome was risk of hospitalization or an ED visit from January 2005 through September 2014. CYP2D6 genotypes were interpreted as 1 of 7 clinical phenotypes, from ultrarapid to poor metabolizer, and patients with the extensive metabolizer phenotype were used as the reference group. The hazard ratios (HRs and 95% confidence intervals (CIs were estimated for finding the association of CYP2D6 phenotypes with the risk of hospitalization or an ED visit by using Cox proportional hazard models and adjusting for age and sex. Results: The median age was 49 years (interquartile range, 46–52 years; 74% of patients had 3 or fewer chronic conditions, 285 had at least 1 hospitalization, and 496 had at least 1 ED visit. The risk of hospitalization was higher among patients who were ultrarapid metabolizers compared to extensive metabolizers (47% vs 30%; HR, 1.69; 95% CI, 1.11–2.57, as was the risk of an ED visit (62% vs 49%; HR, 1.50; 95% CI, 1.05–2.14. For poor metabolizers compared to extensive metabolizers, there was no difference in the risk of hospitalization (HR

  13. Relationship between CNS metabolism and cytoarchitecture: a review of 14C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry

    International Nuclear Information System (INIS)

    Di Rocco, R.J.; Kageyama, G.H.; Wong-Riley, M.T.

    1989-01-01

    Since the inception of the 14 C-deoxyglucose method and its extension to in vivo imaging of regional cerebral glucose metabolism in humans by positron emission tomography, uncertainty has persisted concerning the type of work to which regional metabolism is coupled, as well as the distribution of this work within the neuron. 14 C-deoxyglucose studies indicate that functionally-coupled neural metabolism is more apparent in axon terminals and perhaps dendrites than neuronal perikarya. Moreover, it appears that most of the metabolism in axon terminals is accounted for by Na+-K+-ATPase activity. Nevertheless, cytochrome oxidase histochemistry reveals the presence of intensely reactive mitochondria in soma-dendrite regions opposite presynaptic axon terminals, thereby indicating that continuous temporal and spatial summation of postsynaptic graded potentials is associated with increased metabolism. While the situation concerning the relative postsynaptic metabolic prices of EPSP's and IPSP's remains uncertain, the presence of elevated levels of cytochrome oxidase activity within certain classes of presynaptic terminals indicates that active excitation and inhibition is associated with increases in presynaptic metabolism. This observation has been confirmed in 14 C-deoxyglucose studies. Nevertheless, studies of neonatal hippocampus indicate that, before metabolic activity shifts to dendritic and telodendritic regions of electrophysiological activity, metabolism is high in somal foci of biosynthesis. 51 references

  14. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.

  15. Albendazole metabolism in patients with neurocysticercosis: antipyrine as a multifunctional marker drug of cytochrome P450

    Directory of Open Access Journals (Sweden)

    M.P. Marques

    2002-02-01

    Full Text Available The present study investigates the isoform(s of cytochrome P450 (CYP involved in the metabolism of albendazole sulfoxide (ASOX to albendazole sulfone (ASON in patients with neurocysticercosis using antipyrine as a multifunctional marker drug. The study was conducted on 11 patients with neurocysticercosis treated with a multiple dose regimen of albendazole for 8 days (5 mg/kg every 8 h. On the 5th day of albendazole treatment, 500 mg antipyrine was administered po. Blood and urine samples were collected up to 72 h after antipyrine administration. Plasma concentrations of (+-ASOX, (--ASOX and ASON were determined by HPLC using a chiral phase column and detection by fluorescence. The apparent clearance (CL/f of ASON and of the (+ and (--ASOX enantiomers were calculated and compared to total antipyrine clearance (CL T and the clearance for the production of the three major antipyrine metabolites (CLm. A correlation (P<=0.05 was obtained only between the CL T of antipyrine and the CL/f of ASON (r = 0.67. The existence of a correlation suggests the involvement of CYP isoforms common to the metabolism of antipyrine and of ASOX to ASON. Since the CL T of antipyrine is a general measure of CYP enzymes but with a slight to moderate weight toward CYP1A2, we suggest the involvement of this enzyme in ASOX to ASON metabolism in man. The study supports the establishment of a specific marker drug of CYP1A2 in the study of the in vivo metabolism of ASOX to ASON.

  16. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  17. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway.

    Science.gov (United States)

    Alecu, Irina; Othman, Alaa; Penno, Anke; Saied, Essa M; Arenz, Christoph; von Eckardstein, Arnold; Hornemann, Thorsten

    2017-01-01

    The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Biodegradation of Cosmetics Products: A Computational Study of Cytochrome P450 Metabolism of Phthalates

    Directory of Open Access Journals (Sweden)

    Fabián G. Cantú Reinhard

    2017-11-01

    Full Text Available Cytochrome P450s are a broad class of enzymes in the human body with important functions for human health, which include the metabolism and detoxification of compounds in the liver. Thus, in their catalytic cycle, the P450s form a high-valent iron(IV-oxo heme cation radical as the active species (called Compound I that reacts with substrates through oxygen atom transfer. This work discusses the possible degradation mechanisms of phthalates by cytochrome P450s in the liver, through computational modelling, using 2-ethylhexyl-phthalate as a model substrate. Phthalates are a type of compound commonly found in the environment from cosmetics usage, but their biodegradation in the liver may lead to toxic metabolites. Experimental studies revealed a multitude of products and varying product distributions among P450 isozymes. To understand the regio- and chemoselectivity of phthalate activation by P450 isozymes, we focus here on the mechanisms of phthalate activation by Compound I leading to O-dealkylation, aliphatic hydroxylation and aromatic hydroxylation processes. We set up model complexes of Compound I with the substrate and investigated the reaction mechanisms for products using the density functional theory on models and did a molecular mechanics study on enzymatic structures. The work shows that several reaction barriers in the gas-phase are close in energy, leading to a mixture of products. However, when we tried to dock the substrate into a P450 isozyme, some of the channels were inaccessible due to unfavorable substrate positions. Product distributions are discussed under various reaction conditions and rationalized with valence bond and thermodynamic models.

  19. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b.

    Science.gov (United States)

    Rottenberg, Hagai

    2014-10-01

    The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.

  20. Intestinal metabolism of sulfur amino acids

    Science.gov (United States)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  1. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2011-03-01

    Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨ(m) from -142 to -88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨ(m). However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell\\'s glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.

  2. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  3. Intestinal transport and metabolism of bile acids

    Science.gov (United States)

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  4. Patterning of electrically conductive poly(aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c

    International Nuclear Information System (INIS)

    Oh, Se Young; Oh, Il Soo; Choi, Jeong-Woo

    2004-01-01

    We have synthesized poly(aniline-co-aniline sulfonic acid) and then investigated the feasibility of application as a specific and electrically conductive binding template for biomolecules. Poly(aniline-co-aniline sulfonic acid)s were prepared by oxidation polymerization of aniline and aniline sulfonic acid under various ratios. A fine pattern of the conducting copolyaniline was obtained by using a deep UV lithographic technique. Cytochrome c was immobilized onto the photochemically patterned conducting copolyaniline with a self-assembly method. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were studied from atomic force microscopy and cyclic voltammetry. The self-assembled cytochrome c monolayer immobilized onto the copolyaniline with a high electrical conductivity showed a high electrochemical activity

  5. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes.

    Science.gov (United States)

    Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K; Venkatachalam, Avanthika

    2016-01-01

    Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP's heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP's heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn ("mured burning" or "mild unrestricted burning") concept to explain heme enzymes' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying

  6. Interaction of ATP with acid-denatured cytochrome c via coupled folding-binding mechanism

    International Nuclear Information System (INIS)

    Ahluwalia, Unnati; Deep, Shashank

    2012-01-01

    Highlights: ► Interaction between ATP and cyt c takes place via coupled binding–folding mechanism. ► Binding of ATP to cyt c is endothermic. ► GTP and CTP induce similar level of helicity in acid-denatured cyt c as with ATP. ► Compactness induced by ATP is far greater than ADP or AMP. - Abstract: The non-native conformations of the cytochrome c (cyt c) are believed to play key roles in a number of physiological processes. Nucleotides are supposed to act as allosteric effectors in these processes by regulating structural transitions among different conformations of cyt c. To understand the interaction between acid denatured cytochrome c and nucleotides, spectroscopic and calorimetric techniques were utilized to observe the structural features of the induced conformation and the energetics of interaction of acid denatured cyt c with different nucleotides. Structure induction in the acid denatured cyt c was observed on the addition of the ∼1 mM nucleotide tri-phosphates (ATP/GTP/CTP) at 25 °C, however, not in the presence of 1 mM nucleotide mono and diphosphates. ATP-bound cyt c at pH 2.0 is likely to have a conformation that has intact α-helical domain. However, Met80-Fe(III) axial bond is still ruptured. Observed thermodynamics reflect interaction between nucleotide and cyt c via coupled binding–folding mechanism. DSC data suggest the preferential binding of the ATP to the folded conformation with respect to the acid denatured cyt c. ITC data indicate that the exothermic folding of cyt c was accompanied by endothermic binding of ATP to cyt c.

  7. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress.

    Science.gov (United States)

    Bhattacharyya, Sudip; Sinha, Krishnendu; Sil, Parames C

    2014-01-01

    Cytochrome monooxygenases P450 enzymes (CYPs) are terminal oxidases, belonging to the multi-gene family of heme-thiolate enzymes and located in multiple sites of ER, cytosol and mitochondria. CYPs act as catalysts in drugs metabolism. This review highlights the mitochondrial and microsomal CYPs metabolic functions, CYPs mediated ROS generation and its feedback, bioactivation of drugs and related hypersensitivity, metabolic disposition as well as the therapeutic approaches. CYPs mediated drugs bioactivation may trigger oxidative stress and cause pathophysiology. Almost all drugs show some adverse reactions at high doses or accidental overdoses. Drugs lead to hypersensitivity reactions while metabolic predisposition to drug hypersensitivity exaggerates it. Mostly different intermediate bioactive products of CYPs mediated drug metabolism is the principal issue in this respect. On the other hand, CYPs are the main source of ROS. Their generation and feedback are of major concern of this review. Besides drug metabolism, CYPs also contribute significantly to carcinogen metabolism. Ultimately other enzymes in drug metabolism and antioxidant therapy are indispensible. Importance of this field: In a global sense, understanding of exact mechanism can facilitate pharmaceutical industries' challenge of developing drugs without toxicity. Ultimate message: This review would accentuate the recent advances in molecular mechanism of CYPs mediated drug metabolism and complex cross-talks between various restorative novel strategies evolved by CYPs to sustain the redox balance and limit the source of oxidative stress.

  8. Amino acid diversity on the basis of cytochrome b gene in Kacang and Ettawa Grade goats

    Directory of Open Access Journals (Sweden)

    D. A. Lestari

    2017-08-01

    Full Text Available The objectives of study were to identify and assess the amino acid diversity of Cytochrome b (Cyt b gene, genetic marker and characteristic of specific amino acid in Kacang and Ettawa Grade goat. Nineteen heads of Kacang goat (KG and twelve heads of Ettawa Grade goat (EG were purposively sampled. The genomic DNA was isolated by Genomic DNA Mini Kit (Geneaid and amplified Cyt b using PCR method with CytbCapF and CytbCapR primers and was sequenced. The results showed that there were two specific amino acids that distinguish KG and EG goat with C. hircus and C. aegagrus and four specific amino acids that distinguish KG and EG goat with C. falconeri, but there were no specific amino acids can be used as a genetic marker to distinguish between Kacang and EG goat. In conclusion, specific amino acids in Cyt b gene can be used as a genetic marker among KG and EG goat with 3 goat others comparator.

  9. Amino acid metabolism conflicts with protein diversity

    OpenAIRE

    Krick, Teresa; Shub, David A.; Verstraete, Nina; Ferreiro, Diego U.; Alonso, Leonardo G.; Shub, Michael; Sanchez, Ignacio E.

    2014-01-01

    The 20 protein-coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build functional proteomes. Here, we present a simple model for a cost-diversity trade-off postulating that n...

  10. In vitro inhibitory effects of pulvinic acid derivatives isolated from Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 activity.

    Science.gov (United States)

    Huang, Yu-Ting; Onose, Jun-ichi; Abe, Naoki; Yoshikawa, Kunie

    2009-04-23

    Increasing attention has been focused on food-drug interactions. We have investigated the inhibitory effect of Chinese edible mushrooms, Boletus calopus and Suillus bovinus, on cytochrome P450 (CYP) 1A2, 2C9, 2D6, and 3A4, the main drug-metabolizing enzymes. Three pulvinic acid derivatives, atromentic acid (1), variegatic acid (2), and xerocomic acid (3), isolated from Boletus calopus and Suillus bovinus, revealed nonspecific inhibitory effects on all four CYPs. Using these compounds, the maximum IC50 values obtained with CYP3A4 in vitro were atromentic acid (1), 65.1+/-3.9 microM; variegatic acid (2), 2.2+/-0.1 microM; and xerocomic acid (3), 2.4+/-0.1 microM. Variegatic acid (2) and xerocomic acid (3) were effective inhibitors, comparable to cimetidine, dicoumarol, erythromycin, safrole, and uniconazole. Variegatic acid (2) and xerocomic acid (3) efficiently reduced ferryl myoglobin in CYPs. Reduction of ferryl heme to ferric heme is likely the mechanism of the nonspecific inhibitory effects of these compounds on CYPs.

  11. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases.

    Science.gov (United States)

    Laethem, R M; Koop, D R

    1992-12-01

    Microsomes prepared from COS-1 cells transiently expressing rabbit cytochromes P450 2C1 and 2C2 catalyzed the metabolism of arachidonic acid to predominantly 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) when microsomal epoxide hydrolase activity was inhibited by 0.2 mM 1,2-epoxy-3,3,3-trichloropropane. P450 2C2 catalyzed the formation of 11,12-EET and 14,15-EET at a ratio of 3.0 and also produced 19-hydroxyeicosatetraenoic acid (19-HETE). The 11,12-EET, 14,15-EET, and 19-HETE represented 48.3, 15.9, and 12.8%, respectively, of the total metabolites formed. P450 2C1 produced a similar but distinct ratio of 11,12-EET to 14,15-EET (2.0) and did not produce any detectable 19-HETE. The 11,12-EET and 14,15-EET represented 63.0 and 31.1%, respectively, of the total metabolites formed. The 8,9- and 5,6-EETs were not detected with either enzyme. The ratio of the 11,12-EET to 14,15-EET was 1.5 with P450 2CAA, a P450 arachidonic acid epoxygenase (P450 2CAA) that had an amino-terminal sequence identical to that of P450 2C2 [J. Biol. Chem. 267:5552-5559 (1992)]. P450 2C1, 2C2, and 2CAA metabolized lauric acid. The ratio of omega-1- to omega-hydroxylated laurate was 3.6, 3.4, and 2.4 for P450 2CAA, P450 2C2, and P450 2C1, respectively. Purified P450 2CAA had a slightly greater apparent molecular weight than expressed P450 2C2 on sodium dodecyl sulfate-polyacrylamide gels. The results clearly establish that rabbit P450 2C1 and 2C2 are arachidonic acid epoxygenases, and they suggest that P450 2CAA and 2C2 are very similar but may not be identical isoforms.

  12. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    Science.gov (United States)

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  13. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  14. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  15. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  16. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    Science.gov (United States)

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  18. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  19. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    International Nuclear Information System (INIS)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.; Baillie, T.A.

    1988-01-01

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction

  20. Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids.

    Science.gov (United States)

    Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A; Silva, K Ishara; Huang, Zhentai; Amoscato, Andrew A; Peterson, James; Garapati, Venkata Krishna; Saxena, Sunil; Bayir, Hülya; Atkinson, Jeffrey; Bahar, Ivet; Kagan, Valerian E

    2014-06-01

    Mitochondria have emerged as the major regulatory platform responsible for the coordination of numerous metabolic reactions as well as cell death processes, whereby the execution of intrinsic apoptosis includes the production of reactive oxygen species fueling oxidation of cardiolipin (CL) catalyzed by cytochrome (Cyt) c. As this oxidation occurs within the peroxidase complex of Cyt c with CL, the latter represents a promising target for the discovery and design of drugs with antiapoptotic mechanisms of action. In this work, we designed and synthesized a new group of mitochondria-targeted imidazole-substituted analogs of stearic acid TPP-n-ISAs with various positions of the attached imidazole group on the fatty acid (n = 6, 8, 10, 13, and 14). By using a combination of absorption spectroscopy and EPR protocols (continuous wave electron paramagnetic resonance and electron spin echo envelope modulation) we demonstrated that TPP-n-ISAs indeed were able to potently suppress CL-induced structural rearrangements in Cyt c, paving the way to its peroxidase competence. TPP-n-ISA analogs preserved the low-spin hexa-coordinated heme-iron state in Cyt c/CL complexes whereby TPP-6-ISA displayed a significantly more effective preservation pattern than TPP-14-ISA. Elucidation of these intermolecular stabilization mechanisms of Cyt c identified TPP-6-ISA as an effective inhibitor of the peroxidase function of Cyt c/CL complexes with a significant antiapoptotic potential realized in mouse embryonic cells exposed to ionizing irradiation. These experimental findings were detailed and supported by all-atom molecular dynamics simulations. Based on the experimental data and computation predictions, we identified TPP-6-ISA as a candidate drug with optimized antiapoptotic potency. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    Science.gov (United States)

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.

  2. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    International Nuclear Information System (INIS)

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD

  3. Regulation of uric acid metabolism and excretion.

    Science.gov (United States)

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. [Acid-base homeostasis: metabolic acidosis and metabolic alkalosis].

    Science.gov (United States)

    Dussol, Bertrand

    2014-07-01

    Acid-base homeostasis ensured by the kidneys, which maintain the equilibrium between proton generation by cellular metabolism and proton excretion in urine. This requirement is lifesaving because of the protons' ability to bind to anionic proteins in the extracellular space, modifying their structure and functions. The kidneys also regenerate bicarbonates. The kidney is not the sole organ in charge of maintaining blood pH in a very narrow range; lungs are also involved since they allow a large amount of volatile acid generated by cellular respiration to be eliminated. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  5. Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment

    International Nuclear Information System (INIS)

    Billi de Catabbi, Silvia C.; Faletti, Alicia; Fuentes, Federico; San Martin de Viale, Leonor C.; Cochon, Adriana C.

    2005-01-01

    Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A 2 (cPLA 2 ) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg -1 body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porhyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and ω-OH/ω-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA 2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA 2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA 2 in

  6. Ketoconazole inhibits the in vitro and in vivo metabolism of all-trans-retinoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Van Wauwe, J.P.; Coene, M.C.; Goossens, J.; Van Nijen, G.; Cools, W.; Lauwers, W.

    1988-05-01

    Ketoconazole, an antifungal agent and inhibitor of certain mammalian cytochrome P-450-dependent enzymes, was studied for its effects on the in vitro and in vivo metabolism of all-trans-retinoic acid (RA). In vitro, ketoconazole (Ki = 0.75 microM) inhibited, in an apparently competitive manner, the cytochrome P-450-mediated metabolism to 4-hydroxy- and 4-keto-retinoic acids by hamster liver microsomes. In vivo, ketoconazole suppressed the formation of polar RA metabolites by normal rats dosed intrajugularly with 200 ng of (/sup 3/H)RA. After p.o. treatment with ketoconazole (2.5-40 mg/kg) given 1 hr before the (/sup 3/H)RA injection, the radioactivity extracted from the liver consisted of 25 to 50% polar metabolites (control 66 +/- 1%) and 50 to 75% undegraded RA (control 34 +/- 1%) as evidenced by reverse-phase high-performance liquid chromatography. Time course experiments showed that ketoconazole's inhibitory effects lasted for 3 hr. Our data indicate the quantitative importance of the cytochrome P-450 enzymatic pathway in the biotransformation of RA. They also suggest that ketoconazole is capable of prolonging the biological half-life of RA and of improving the tissue levels of this compound.

  7. Cytochrome P450 2E1 participation in the pathogenesis of experimental metabolic syndrome in guinea pigs

    Directory of Open Access Journals (Sweden)

    V. V. Rushchak

    2016-04-01

    Full Text Available In this work the experimental metabolic syndrome on the basis of protamine sulfate modeling in guinea pigs was reproduced and pathological processes in the liver of experimental animals were studied. We determined the level of free radicals and markers of liver damage in the blood of experimental animals. We investigated the liver glycogen content and K+,Na+-ATPase activity in the liver of experimental animals as well as measured the cytochrome P450 2E1 (CYP2E1 expression – one of the main factors of oxidative stress. Evidence of development of hepatotoxic processes, increasing of the CYP2E1 level as well as of the free radical level in the animals with metabolic syndrome were found. Using of CYP2E1 inhibitors had shown that the free radical level in the blood of experimental animals depended on the level of the enzyme expression and activity. The obtained results suggest that the changes in the CYP2E1 expression play an important role in the development of hepatotoxic processes upon experimental metabolic syndrome. It was assumed that pharmacological correction of the enzyme expression may be an important mechanism for the influence on the metabolic syndrome clinical course.

  8. Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450

    Science.gov (United States)

    Oláh, Julianna; Mulholland, Adrian J.; Harvey, Jeremy N.

    2011-01-01

    Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical–molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism. PMID:21444768

  9. Role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    van Maanen, J.M.; de Ruiter, C.; de Vries, J.; Kootstra, P.R.; Gobas, F.; Pinedo, H.M.

    1985-09-01

    Covalent binding of /sup 3/H-labeled VP 16-213 to rat liver and HeLa cell microsomal proteins was studied in vitro. Metabolic activation by cytochrome P-450 was found to play a role in the covalent binding of VP 16-213 to rat liver microsomal proteins, as shown by the need of NADPH cofactor, the increased binding after phenobarbital pretreatment and the inhibition by SFK-525A. Addition of ascorbic acid or alpha-phenyl-N-tert. butylnitrone to the incubation mixture depressed covalent binding by about 85%, suggesting that formation of a reactive metabolite from the phenolic structure may be involved in the binding process. VP 16-213 did not inhibit aminopyrine N-demethylase at the concentration used in the binding experiments (17 microM), indicating that metabolism of its methylenedioxy group does not play a role in binding to microsomal proteins. HeLa cell microsomes were found to possess aminopyrine N-demethylase activity. Covalent binding of radiolabeled VP 16-213 to HeLa cell microsomes decreased by about 64% if NADPH was omitted.

  10. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity.

    Science.gov (United States)

    Zha, Weibin; Edin, Matthew L; Vendrov, Kimberly C; Schuck, Robert N; Lih, Fred B; Jat, Jawahar Lal; Bradbury, J Alyce; DeGraff, Laura M; Hua, Kunjie; Tomer, Kenneth B; Falck, John R; Zeldin, Darryl C; Lee, Craig R

    2014-10-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  12. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    2008-06-01

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  13. In vitro formation of metabolic-intermediate cytochrome P450 complexes in rabbit liver microsomes by tiamulin and various macrolides.

    Science.gov (United States)

    Carletti, Monica; Gusson, Federica; Zaghini, Anna; Dacasto, Mauro; Marvasi, Luigi; Nebbia, Carlo

    2003-01-01

    Tiamulin and a number of macrolides were evaluated as to their ability in forming metabolic-intermediate (MI) complexes with cytochrome P450 in liver microsomes from rabbits bred for meat production. Complex formation, which occurred only in preparations where the expression of P450 3A was increased as the result of rifampicin pre-treatment and with different kinetics, was in the order tiamulin > erythromycin > TAO approximately roxithromycin approximately tylosin and did not take place with tilmicosin and spiramycin. Most of the tested compounds underwent an oxidative N-dealkylation and a good relationship could be found between the rate of N-dealkylase activity in induced preparations and the aptitude in generating MI complexes. Although the results from in vitro studies should be interpreted with caution, it is suggested that the potential for in vivo drug interactions also exists in the rabbit for tiamulin and for four out of the six tested macrolides.

  14. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    Science.gov (United States)

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  15. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    International Nuclear Information System (INIS)

    Dračínská, Helena; Bárta, František; Levová, Kateřina; Hudecová, Alena; Moserová, Michaela; Schmeiser, Heinz H.; Kopka, Klaus; Frei, Eva; Arlt, Volker M.; Stiborová, Marie

    2016-01-01

    Highlights: • Oxidation and reduction of aristolochic acid I (AAI) dictate its (geno)toxicity in vivo. • Cytochrome P450 (CYP) 1A1 and 1A2 are induced in rats treated with Sudan I and AAI. • Induced CYP1A enzyme activity resulted in decreased AAI-DNA adduct levels in vivo. • CYP1A1 and 1A2 mainly detoxify AAI and attenuate its genotoxicity in vivo. - Abstract: Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the 32 P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts.

  16. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; de Vries, Emmely M.; van Nierop, F. Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Boelen, Anita; Romijn, Johannes A.; Mathôt, Ron A. A.

    2015-01-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug

  17. Cytochrome P450 3A expression and activity in the rabbit lacrimal gland: glucocorticoid modulation and the impact on androgen metabolism.

    Science.gov (United States)

    Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L

    2005-12-01

    Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly

  18. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Lomnicki, Slawo M., E-mail: slomni1@lsu.edu [Department of Environmental Sciences and LSU Superfund Research Center, Louisiana State University A& M College, Baton Rouge, LA 70803 (United States); Backes, Wayne L., E-mail: wbacke@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2015-12-01

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductase and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM

  19. Metabolism of 7-ethoxycoumarin, flavanone and steroids by cytochrome P450 2C9 variants.

    Science.gov (United States)

    Uno, Tomohide; Nakano, Ryosuke; Kanamaru, Kengo; Takenaka, Shinji; Uno, Yuichi; Imaishi, Hiromasa

    2017-11-01

    CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6β-hydroxylation, progesterone 6β-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Modulation of the cytochrome P450-mediated metabolism of ifosfamide by ketoconazole and rifampin

    NARCIS (Netherlands)

    Kerbusch, T.; Jansen, R. L.; Mathôt, R. A.; Huitema, A. D.; Jansen, M.; van Rijswijk, R. E.; Beijnen, J. H.

    2001-01-01

    The autoinducible metabolic transformation of the anticancer agent ifosfamide involves activation through 4-hydroxyifosfamide to the ultimate cytotoxic ifosforamide mustard and deactivation to 2- and 3-dechloroethylifosfamide with concomitant release of the neurotoxic chloroacetaldehyde. Activation

  1. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  2. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    Science.gov (United States)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism.

  3. Drug metabolism by cytochrome p450 enzymes: what distinguishes the pathways leading to substrate hydroxylation over desaturation?

    Science.gov (United States)

    Ji, Li; Faponle, Abayomi S; Quesne, Matthew G; Sainna, Mala A; Zhang, Jing; Franke, Alicja; Kumar, Devesh; van Eldik, Rudi; Liu, Weiping; de Visser, Sam P

    2015-06-15

    Cytochrome P450 enzymes are highly versatile biological catalysts in our body that react with a broad range of substrates. Key functions in the liver include the metabolism of drugs and xenobiotics. One particular metabolic pathway that is poorly understood relates to the P450 activation of aliphatic groups leading to either hydroxylation or desaturation pathways. A DFT and QM/MM study has been carried out on the factors that determine the regioselectivity of aliphatic hydroxylation over desaturation of compounds by P450 isozymes. The calculations establish multistate reactivity patterns, whereby the product distributions differ on each of the spin-state surfaces; hence spin-selective product formation was found. The electronic and thermochemical factors that determine the bifurcation pathways were analysed and a model that predicts the regioselectivity of aliphatic hydroxylation over desaturation pathways was established from valence bond and molecular orbital theories. Thus, the difference in energy of the OH versus the OC bond formed and the π-conjugation energy determines the degree of desaturation products. In addition, environmental effects of the substrate binding pocket that affect the regioselectivities were identified. These studies imply that bioengineering P450 isozymes for desaturation reactions will have to include modifications in the substrate binding pocket to restrict the hydroxylation rebound reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Role of cytochrome P450-mediated metabolism and involvement of reactive metabolite formations on antiepileptic drug-induced liver injuries.

    Science.gov (United States)

    Sasaki, Eita; Yokoi, Tsuyoshi

    2018-01-01

    Several drugs have been withdrawn from the market or restricted to avoid unexpected adverse outcomes. Drug-induced liver injury (DILI) is a serious issue for drug development. Among DILIs, idiosyncratic DILIs have been a serious problem in drug development and clinical uses. Idiosyncratic DILI is most often unrelated to pharmacological effects or the dosing amount of a drug. The number of drugs that cause idiosyncratic DILI continue to grow in part because no practical preclinical tests have emerged that can identify drug candidates with the potential for developing idiosyncratic DILIs. Nevertheless, the implications of drug metabolism-related factors and immune-related factors on idiosyncratic DILIs has not been fully clarified because this toxicity can not be reproduced in animals. Therefore, accumulated evidence for the mechanisms of the idiosyncratic toxicity has been limited to only in vitro studies. This review describes current knowledge of the effects of cytochrome P450 (CYP)-mediated metabolism and its detoxification abilities based on studies of idiosyncratic DILI animal models developed recently. This review also focused on antiepileptic drugs, phenytoin (diphenyl hydantoin, DPH) and carbamazepine (CBZ), which have rarely caused severe adverse reactions, such as fulminant hepatitis, and have been recognized as sources of idiosyncratic DILI. The studies of animal models of idiosyncratic DILIs have produced new knowledge of chronic administration, CYP inductions/inhibitions, glutathione contents, and immune-related factors for the initiation of idiosyncratic DILIs. Considering changes in the drug metabolic profile and detoxification abilities, idiosyncratic DILIs caused by antiepileptic drugs will lead to understanding the mechanisms of these DILIs.

  5. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  6. Interrelationship of dietary lipids and ascorbic acid with hepatic enzymes of cholesterol metabolic pathway.

    Science.gov (United States)

    Sen, S; Mukherjee, S

    1997-01-01

    Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.

  7. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  8. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Li Xianchun

    2007-03-01

    Full Text Available Abstract Background Transposons, i.e. transposable elements (TEs, are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements, SINEs (short interspersed nuclear elements, MITEs (miniature inverted-repeat transposable elements, one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1 implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1 involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.

  9. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450 : indications for a uniform oxidation mechanism

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Van de Straat, R; Donné-Op den Kelder, G M; Vermeulen, N P

    1989-01-01

    The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by

  10. The structures of three metabolites of the algal hepatotoxin okadaic acid produced by oxidation with human cytochrome P450

    Science.gov (United States)

    Liu, Li; Guoa, Fujiang; Crain, Sheila; Quilliam, Michael A.; Wang, Xiaotang; Rein, Kathleen S.

    2012-01-01

    Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A. PMID:22608922

  11. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Zi-Ru Dai

    2015-06-01

    Full Text Available Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s and the site(s of modification. The newly established model was applied to predict the metabolic site(s of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s of CYP3A4 on steroids with high predictive accuracy.

  12. Engineering microbial fatty acid metabolism for biofuels and biochemicals

    DEFF Research Database (Denmark)

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena

    2017-01-01

    microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining...

  13. Radioiodinated free fatty acids; can we measure myocardial metabolism

    International Nuclear Information System (INIS)

    Visser, F.C.; Eenige, M.J. van; Duwel, C.M.B.; Roos, J.P.

    1986-01-01

    To investigate the feasibility of radioiodinated free fatty acids for ''metabolic imaging'', the kinetics and distribution pattern of metabolites of heptadecanoic acid I 131 (HDA I 131) were studied in canine myocardium throughout metabolic interventions. In control dogs and in dogs during glucose/insulin and sodium lactate infusion, biopsy specimens were taken during a go-min period after HDA I 131 administration and analyzed. Clearly distinct patterns of distribution and elimination were seen during the metabolic interventions, indicating the usefulness of iodinated fatty acids for metabolic studies. (orig.)

  14. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  15. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    Science.gov (United States)

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  16. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K., E-mail: mwalker@salud.unm.edu

    2012-11-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  17. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    International Nuclear Information System (INIS)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K.

    2012-01-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  18. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Directory of Open Access Journals (Sweden)

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  19. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    OpenAIRE

    Evelien P. J. G. Neis; Cornelis H. C. Dejong; Sander S. Rensen

    2015-01-01

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous protei...

  20. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  1. Association of poor metabolizers of cytochrome P450 2C19 with head and neck cancer and poor treatment response

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Sunishtha S.; Ruwali, Munindra; Shah, Parag P. [Developmental Toxicology Division, Indian Institute of Toxicology Research, CSIR P.O. Box 80, M.G. Marg, Lucknow 226001 (India); Mathur, Neeraj [Environmental Epidemiology Division, Indian Institute of Toxicology Research, CSIR P.O. Box 80, M.G. Marg, Lucknow 226001 (India); Singh, Ram L. [Department of Biochemistry, Dr. R.M.L. Awadh University, Faizabad 224 001, U.P. (India); Pant, Mohan C. [Department of Radiotherapy, C.S.M. Medical University, Shahmina Road, Lucknow 226 001 (India); Parmar, Devendra [Developmental Toxicology Division, Indian Institute of Toxicology Research, CSIR P.O. Box 80, M.G. Marg, Lucknow 226001 (India)], E-mail: parmar_devendra@hotmail.com

    2008-09-26

    A case-control study consisting of 300 patients and an equal number of healthy controls was carried out to investigate the association of polymorphism in cytochrome P450 2C19 (CYP2C19), which results in poor and extensive metabolizers (PMs and EMs) genotypes, with squamous cell carcinoma of head and neck (HNSCC) and treatment response in patients receiving combination of chemo-radiotherapy. A higher frequency of CYP2C19*2 variants was observed in the cases resulting in significantly higher risk to HNSCC (Ad OR 3.36, 95% CI 1.94-5.82, p-value < 0.05). The PM genotype of CYP2C19*3 was also found to be slightly increased in the cases, though the increase in risk was not significant when analyzed by multivariate logistic regression model. Tobacco chewing amongst the cases resulted in almost 13-fold increase in the risk with CYP2C19*2 (OR: 12.39) and 3-fold with CYP2C19*3 genotype (OR: 2.90) when compared to the tobacco chewers amongst the controls. Likewise, cigarette smoking in the cases increased the risk approximately 9-fold and 3-fold with CYP2C19*2 (OR: 8.93) and CYP2C19*3 (OR: 2.18) genotypes respectively when compared to smokers amongst the controls. Similar increase in risk was associated with alcohol use amongst the cases carrying variant genotypes of CYP2C19*2 (OR: 7.75) or CYP2C19*3 (OR: 2.60), demonstrating the importance of gene-environment interaction in modifying susceptibility to HNSCC. Interestingly, patients with PMs of CYP2C19 (CYP2C19*2 and CYP2C19*3) exhibited little response to the respective chemotherapy than the patients carrying wild-type genotype demonstrating that functional enzyme deficiencies due to polymorphism in CYPs may not only be important in modifying the susceptibility to HNSCC but also in determining chemotherapeutic response.

  2. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  3. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus

    OpenAIRE

    Mohammed Esmail Abdalla Elzaki; Mohammad Asaduzzaman Miah; Zhaojun Han

    2017-01-01

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. T...

  4. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  5. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    Science.gov (United States)

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 2

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1982-01-01

    In an experiment with 20 15 N-labelled growing rats the excretion of amino acids as well as of metabolic fecal amino acids were investigated after feeding of soybean oil meal as sole protein source. A low, yet statistically significant increase of the excretion of amino acids and metabolic fecal amino acids was ascertained in accordance with a growing quota of soybean oil meal in the ration. The true digestibility of amino acids ascertained according to conventional methods is above 90% and, under consideration of the increase of metabolic fecal amino acids, on the average increases by 3.5 digestibility units (1.4 to 6.2). (author)

  7. Ecophysiology of Crassulacean Acid Metabolism (CAM).

    Science.gov (United States)

    Lüttge, Ulrich

    2004-06-01

    Crassulacean Acid Metabolism (CAM) as an ecophysiological modification of photosynthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the flow of carbon along various pathways and through various cellular compartments have been well documented and discussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. Input is given by a network of environmental parameters. Six major ones, CO(2), H(2)O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level ('physiological aut-ecology'). Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter including morphotypes and physiotypes. CAM genotypes largely remain 'black boxes', and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. Output is the shaping of habitats, ecosystems and communities by CAM. A number of systems are briefly surveyed, namely aquatic systems, deserts, salinas, savannas, restingas, various types of forests, inselbergs and paramós. While quantitative census data for CAM diversity and biomass are largely missing, intuition suggests that the larger CAM domains are those systems which are governed by a network of interacting stress factors requiring versatile responses and not systems where a single stress factor strongly prevails. CAM is noted to be a strategy for variable, flexible and plastic niche occupation rather than lush productivity. 'Physiological syn-ecology' reveals

  8. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  9. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.......Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  10. Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin : In silico predictions and experimental validation

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Vasilev, Nikolay P.; Schneidman-Duhovny, Dina; Muntendarn, Remco; Woerdenbag, Herman J.; Quax, Wim J.; Wolfson, Haim J.; Ionkova, Iliana; Kayser, Oliver

    Deoxypodophyllotoxin is stereoselectively converted into epipodophyllotoxin by recombinant human cytochrome P450 3A4 (CY-P3A4). Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for hydroxylation of deoxypodophyllotoxin by CYP3A4 at C7 position were 1.93 mu M and 1.48

  11. Amino acid metabolism in plant leaf, 1

    International Nuclear Information System (INIS)

    Ito, Osamu; Kumazawa, Kikuo

    1977-01-01

    14C-labelled sodium bicarbonate and 15N-labelled ammonium sulfate were simultaneously vacuum-infiltrated into detached sunflower leaves, and the incorporation of 14C and 15N into free amino acids was chased during 60-min period in the light and in the dark. In the light, the 14C specific activity of aspartic acid, alanine, serine and glycine rapidly increased for 5 min and thereafter decreased. On the other hand, that of glutamic acid continued to increase slowly during the entire 60-min period. In the dark, aspartic acid most actively incorporated 14C. The difference of changes in 14C specific activity between glutamic acid and other amino acids was also observed in the dark as in the light. These results suggest that the carbon skeleton of glutamic acid is synthesized from aspartic acid, alanine, serine and glycine. 15N content of glutamine was the highest of all amino acids investigated in the light, and it was followed by glutamic acid, alanine, aspartic acid, serine and glycine, in this order. In the dark, 15N content of glutamic acid fell remarkably and was lower than that of alanine up to 5 min. From these 15N tracer experiments, it is suggested that the incorporation of ammonium into glutamic acid is strictly dependent on light and that alanine incorporates ammonium by the direct animation besides the transamination from glutamic acid. (auth.)

  12. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

    Science.gov (United States)

    Usmani, Khawja A; Cho, Taehyeon M; Rose, Randy L; Hodgson, Ernest

    2006-09-01

    Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.

  13. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus

    Directory of Open Access Journals (Sweden)

    Mohammed Esmail Abdalla Elzaki

    2017-11-01

    Full Text Available CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide–adenine dinucleotide phosphate (NADPH-dependent depletion of buprofezin (eluting at 8.7 min and parallel formation of an unknown metabolite (eluting 9.5 min. However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p-nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin.

  14. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus.

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Han, Zhaojun

    2017-11-29

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus . This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p -nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin.

  15. Caffeine raises the serum melatonin level in healthy subjects: an indication of melatonin metabolism by cytochrome P450(CYP)1A2.

    Science.gov (United States)

    Ursing, C; Wikner, J; Brismar, K; Röjdmark, S

    2003-05-01

    Caffeine is metabolized in the liver by cytochrome P450(CYP)1A2. Recent findings imply that this enzyme may also be of importance for the metabolism of human melatonin (MT). If caffeine and MT are metabolized by the same enzyme, one may expect to find different serum MT levels after ingestion of coffee compared with placebo. Although coffee is consumed by people all over the world, few studies have focused on whether caffeine actually affects serum MT levels in normal subjects. We decided to study that particular topic. For that purpose 12 healthy individuals were tested on two occasions, one week apart. On one of these occasions they were given a capsule containing 200 mg caffeine in the evening. On the other, they received placebo. The experimental order was randomized. Serum MT levels were determined every second hour between 22:00 h and 08:00 h, and the melatonin areas under the curve (MT-AUCs) were calculated. After caffeine the serum MT level rose from 0.09 +/- 0.03 nmol/l at 22:00 h to 0.48 +/- 0.07 nmol/l at 04:00 h. The corresponding rise after placebo was less prominent (from 0.06 +/- 0.01 to 0.35 +/- 0.06 nmol/l). This was reflected by the MT-AUC which was 32% larger after ingestion of caffeine compared with placebo (MT-AUC(caffeine) 3.16 +/- 0.44 nmol/l x h vs MT-AUC(placebo) 2.39 +/- 0.40 nmol/l x h; p coffee, augments the nocturnal serum MT level, which in turn supports the notion that cytochrome P450(CYP)1A2 is involved in the hepatic metabolism of human MT.

  16. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity.

    Science.gov (United States)

    Naiman, Karel; Martínková, Markéta; Schmeiser, Heinz H; Frei, Eva; Stiborová, Marie

    2011-12-24

    N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ∼6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  19. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  20. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  1. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    Science.gov (United States)

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  2. Exogenous fatty acid metabolism in bacteria.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  4. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  5. Fatty acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Roermund, C. W. T.; Waterham, H. R.; IJlst, L.; Wanders, R. J. A.

    2003-01-01

    Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has

  6. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    Science.gov (United States)

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia. We evaluated 103 patients less than 40 years of age, from a low-income population, and without history of cardiovascular disease, in all of them the presence of metabolic syndrome was assessed in accordance with the International Diabetes Federation criteria. In all patients, fasting serum uric acid levels were measured; hyperuricaemia was defined as serum uric acid values 6.5 mg/dl in men and 5.1 mg/dl in women. Statistical analysis was performed with odds ratio. 83 of our patients (80.5%) suffered metabolic syndrome, the odds ratio for the presence of metabolic syndrome in patients with hyperuricaemia was 5.1 (p=0.002, I.C 1.8- 14.5). When patients were evaluated by gender a significantly association between hyperuricaemia and metabolic syndrome was found in women (odds ratio 3.6, p=0.048, C.I. 1.0-12.9), and men (odds ratio 10.2, p= 0.015, IC 1.5-13.2). When uric acid was correlated with the components of metabolic syndrome, we only found a positive correlation with waist circumference (r=0.483). Our results showed a significant association between hyperuricemia and metabolic syndrome in low-income young adults in Mexico. DR is associated with estimated risk of CVD in type 2 diabetic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    Science.gov (United States)

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  9. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    Science.gov (United States)

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  10. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  11. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  12. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  13. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    International Nuclear Information System (INIS)

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-01

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  14. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  15. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    International Nuclear Information System (INIS)

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A.

    1988-01-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene

  16. Treatment of Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... of amino acids. Babies with TYR I may need vitamin D, a vitamin that can help babies who ... Rickets is a condition in which too little vitamin D causes a child’s bones to be ... condition, he may need to take certain medicines. For example: Babies with ...

  17. Amino acid metabolism of Lemna minor L

    International Nuclear Information System (INIS)

    Rhodes, D.; Rich, P.J.; Brunk, D.G.

    1989-01-01

    A serious limitation to the use of N(O,S)-heptafluorobutyryl isobutyl amino acid derivatives in the analysis of 15 N-labeling kinetics of amino acids in plant tissues, is that the amides glutamine and asparagine undergo acid hydrolysis to glutamate and aspartate, respectively, during derivatization. This led us to consider an alternative procedure for derivatization of glutamine and asparagine with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide in pyridine. Gas chromatography-mass spectrometry yielded fragment ions (M-57) of mass 417 and 431 for the [ 14 N]asparagine and [ 14 N]glutamine derivatives, respectively, suitable for monitoring unlabeled, single- 15 N- and double- 15 N-labeled amide species from the ion clusters at mass to charge ratio (m/z) 415 to 423 for asparagine, and m/z 429 to 437 for glutamine. From separate analyses of the specific isotope abundance of the amino-N groups of asparagine and glutamine as their N-heptafluorobutyryl isobutyl derivatives, the specific amide-[ 15 N] abundance of these amino acids was determined

  18. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    International Nuclear Information System (INIS)

    Rosenspire, K.C.; Gelbard, A.S.

    1986-01-01

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  19. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  20. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  1. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P4503A via the formation of a stable metabolic intermediate complex. Studies in primary hepatocyte cultures and liver microsomes of the pig.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; Monshouwer, M; Van Miert, A S

    1995-05-01

    Tiamulin is a semisynthetic antibiotic frequently used in agricultural animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds that are simultaneously administered. To explain this, it has been suggested that tiamulin selectively inhibits oxidative drug metabolism via the formation of a cytochrome P450 metabolic intermediate complex. The aim of the present study was to provide further support for this hypothesis. When hepatic microsomes and cultured primary pig hepatocytes were incubated with tiamulin, a maximum in the absorbance spectrum at 455 nm was observed, which disappeared after adding KFe(CN)6. When hepatocytes were incubated with tiamulin for 72 hr, cytochrome P450 content and cytochrome P4503A apoprotein levels were increased. Tiamulin strongly inhibited and concentration dependently inhibited the hydroxylation rate of testosterone at the 6 beta-position in both microsomes and hepatocytes, and the microsomal N-demethylation rate of ethylmorphine. Other testosterone hydroxylations were inhibited to a lesser extent or not affected. The relative inhibition of the hydroxylation of testosterone at the 6 beta-position was more pronounced in microsomes from rifampicin- and triacetyloleandomycin-treated pigs. The results indicate that cytochrome P450 complex formation can at least partly explain the interactions observed with tiamulin. Tiamulin seems to be a strong, probably selective, inhibitor of the cytochrome P4503A subfamily and an interesting tool for further research.

  2. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  3. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  4. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    Science.gov (United States)

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  5. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia

    NARCIS (Netherlands)

    Häussinger, D.; Lamers, W. H.; Moorman, A. F.

    1992-01-01

    With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate

  6. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  7. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  8. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  10. Postillumination burst of carbon dioxide in crassalacean Acid metabolism plants.

    Science.gov (United States)

    Crews, C E; Vines, H M; Black, C C

    1975-04-01

    Immediately following exposure to light, a postillumination burst of CO(2) has been detected in Crassulacean acid metabolism plants. A detailed study with pineapple (Ananas comosus) leaves indicates that the postillumination burst changes its amplitude and kinetics during the course of a day. In air, the postillumination burst in pineapple leaves generally is exhibited as two peaks. The postillumination burst is sensitive to atmospheric CO(2) and O(2) concentrations as well as to the light intensity under which plants are grown. We propose that the CO(2) released in the first postillumination burst peak is indicative of photorespiration since it is sensitive to either O(2) or CO(2) concentration while the second CO(2) evolution peak is likely due to decarboxylation of organic acids involved in Crassulacean acid metabolism.In marked contrast to other higher plants, the postillumination burst in Crassulacean acid metabolism plants can be equal to or greater than the rate of photosynthesis. Photosynthesis in pineapple leaves also varies throughout a day. Both photosynthesis and the postillumination burst have a daily variation which apparently is a complex function of degree of leaf acidity, growth light intensity, ambient gas phase, and the time a plant has been exposed to a given gas.

  11. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  12. Metabolism of sialic acid by Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco; van Sinderen, Douwe

    2014-07-01

    Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3'-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Metabolism of Sialic Acid by Bifidobacterium breve UCC2003

    Science.gov (United States)

    Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco

    2014-01-01

    Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3′-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. PMID:24814790

  14. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    International Nuclear Information System (INIS)

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-01-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production

  15. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  16. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism.

    Directory of Open Access Journals (Sweden)

    Sebastiano Collino

    Full Text Available The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic (1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG and p-cresol sulfate (PCS in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.

  17. Heart and bile acids - Clinical consequences of altered bile acid metabolism.

    Science.gov (United States)

    Vasavan, Tharni; Ferraro, Elisa; Ibrahim, Effendi; Dixon, Peter; Gorelik, Julia; Williamson, Catherine

    2018-04-01

    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Structurally modified fatty acids - clinical potential as tracers of metabolism

    International Nuclear Information System (INIS)

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than β-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45 0 /14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl 3 /MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs

  19. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    Science.gov (United States)

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  20. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    Science.gov (United States)

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  1. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    Science.gov (United States)

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  2. Evaluation of the in vitro and in vivo metabolic pathway and cytochrome P450 inhibition/induction profile of Huperzine A.

    Science.gov (United States)

    Lin, Ping-Ping; Li, Xue-Ning; Yuan, Fei; Chen, Wei-Li; Yang, Meng-Jie; Xu, Hong-Rong

    2016-11-11

    Huperzine A (HupA), one of the reversible and selective acetylcholinesterase inhibitors derived from Chinese herb Huperzia Serrata, possesses affirmative action of ameliorating cognitive dysfunction of Alzheimer's disease. Up to now, the effects of HupA on human cytochrome P450s (CYPs) have not been fully elucidated. The purpose of the present study was to clarify the metabolic pathway of HupA in vitro and in vivo, and to evaluate the CYPs inhibition/induction profile of HupA in vitro. The catalytic activity of CYP enzymes (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1 and 3A4) was measured by the quantification of specific enzyme substrates using validated liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods. The in vivo metabolic pathway evaluation was performed in an open, single-dose pharmacokinetic study of HupA in fourteen elderly subjects, with urine collecting at certain intervals. In human liver microsomes, HupA (10 ng/mL) was not metabolized within 90 min, and it showed negligible inhibition against these CYP isoforms within 0.2-100 ng/mL. In human liver hepatocytes, the activities of CYP1A2 and CYP3A4 were not significantly altered when incubated at 2 or 20 ng/mL of HupA. After oral administration of 0.1 mg HupA, the total proportion of HupA excreted through urine was relatively high, accounting to 35± 9% at the limited time period of 48 h. These results suggest that HupA is substantially excreted by kidney unchanged rather than metabolized by human liver, and is unlikely to cause clinically relevant drug-drug interaction (DDI) when co-administrated with drugs that are metabolized by CYP isoenzyme system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  4. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  5. Branched chain amino acids requirements and metabolism in pigs

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham

    2015-01-01

    There is an interest to reduce the dietary crude protein (CP) level to promote the gut health of piglets, eliminate the environmental nitrogen load from intensive pig farming, and to reduce diet costs. This is possible by estimating individual amino acid (AA) requirements and by optimizing the diet...... according to the ideal protein profile that is compatible with the animal AA demand for normal body function. During the past decades, it has been tried to understand and characterize branched chain amino acids (BCAA) requirements, biological importance, and mode of actions. This is interesting for two...... of the last “-omics”, is a global analysis and interpretation of metabolome in specific health or nutritional status. Non-targeted metabolomics is used for screening the metabolic profile, and the metabolic signature could be used for hypothesis generation. The results of a non-targeted LC-MS metabolomics...

  6. Fatty acids in energy metabolism of the central nervous system.

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  7. RELATIONSHIP BETWEEN URIC ACID METABOLISM AND INSULIN RESISTANCE

    OpenAIRE

    辻本, 伸宏; 金内, 雅夫; 尾崎, 博基; 藤田, 泰三; 中嶋, 民夫; 土肥, 和紘

    1998-01-01

    To investigate the relationship between uric acid (UA) metabolism and insulin resistance, serum creatinine concentration (Scr), serum UA concentration (SuA) and the urinary excretion of creatinine and UA were determined in 25 non-diabetic patients. Creatinine clearance (Ccr) and UA clearance/creatinine clearance ratio (CuA/Ccr) were also calculated. Insulin resistance was evaluated by the euglycemic glucose clamp tech- nique and expressed as the mean value of the glucose infusion rate (M-valu...

  8. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes

  9. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    Science.gov (United States)

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  10. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea.

    Science.gov (United States)

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-08-14

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment.

  11. Effect of Short-Term Fasting on Systemic Cytochrome P450-Mediated Drug Metabolism in Healthy Subjects: A Randomized, Controlled, Crossover Study Using a Cocktail Approach.

    Science.gov (United States)

    Lammers, Laureen A; Achterbergh, Roos; van Schaik, Ron H N; Romijn, Johannes A; Mathôt, Ron A A

    2017-10-01

    Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p < 0.01), whereas S-warfarin clearance decreased by 19% (p < 0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailability.

  12. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel extrahepatic cytochrome P450s

    International Nuclear Information System (INIS)

    Karlgren, Maria; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-01-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis

  14. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.

    Science.gov (United States)

    Gates, Leah A; Lu, Ding; Peterson, Lisa A

    2012-03-01

    Furan is a liver toxicant and carcinogen in rodents. It is classified as a possible human carcinogen, but the human health effects of furan exposure remain unknown. The oxidation of furan by cytochrome P450 (P450) enzymes is necessary for furan toxicity. The product of this reaction is the reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). To determine whether human liver microsomes metabolize furan to BDA, a liquid chromatography/tandem mass spectrometry method was developed to detect and quantify BDA by trapping this reactive metabolite with N-acetyl-l-cysteine (NAC) and N-acetyl-l-lysine (NAL). Reaction of NAC and NAL with BDA generates N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine (NAC-BDA-NAL). Formation of NAC-BDA-NAL was quantified in 21 different human liver microsomal preparations. The levels of metabolism were comparable to that observed in F-344 rat and B6C3F1 mouse liver microsomes, two species known to be sensitive to furan-induced toxicity. Studies with recombinant human liver P450s indicated that CYP2E1 is the most active human liver furan oxidase. The activity of CYP2E1 as measured by p-nitrophenol hydroxylase activity was correlated to the extent of NAC-BDA-NAL formation in human liver microsomes. The formation of NAC-BDA-NAL was blocked by CYP2E1 inhibitors but not other P450 inhibitors. These results suggest that humans are capable of oxidizing furan to its toxic metabolite, BDA, at rates comparable to those of species sensitive to furan exposure. Therefore, humans may be susceptible to furan's toxic effects.

  15. Congener-specific metabolism and sequestration of dioxin-like compounds by cytochrome P450 1A induced in the liver of crows from Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M.; Iwata, H.; Tanabe, S. [Ehime Univ., Matsuyama (Japan); Yoneda, K.; Hashimoto, T. [Japan Wildlife Research Center, Tokyo (Japan)

    2004-09-15

    Jungle crow (JC; Corvus macrorhynchos) is a useful bioindicator for monitoring contaminants in urban areas, because this species is residential, occupies a same habitat as human, and feeds variety of foods including domestic waste and garbage. Therefore, JCs may accumulate environmental contaminants such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (Co-PCBs), which are released by human activities. Induction of cytochrome P450 (CYP) 1A is a responsive mechanism elicited by exposure to dioxinlike compounds including PCDDs/DFs and Co-PCBs. Toxicokinetic behavior of dioxin-like compounds in organisms is controlled by excretion, metabolism and absorption. These processes are, at least partly, dependent on CYP1A expression in addition to chemical structure and number of chlorine substitution of each congener. Low chlorinated congeners such as 2378-T{sub 4}CDD, 2378- T{sub 4}CDF, 12378-P{sub 5}CDD and 33'44'-PCB were easily metabolized by CYP1A1/2 in rat liver microsomes. PCDDs/DFs accumulate in hepatic tissue to a greater extent than adipose tissue in rats and mice. Recent study using transgenic CYP1A2 knockout mice demonstrated that CYP1A2 is responsible for the sequestration of 2378-T{sub 4}CDD and 23478-P{sub 5}CDF in hepatic tissue. Therefore, CYP1A is considered as a key factor responsible for toxicokinetics of dioxin-like compounds. However, there's no comprehensive data on the contribution of CYP1A to the toxicokinetics of dioxin-like congeners in wild populations. In this study, we investigated contamination levels of PCDDs/DFs and Co-PCBs in liver and breast muscle of JCs from Tokyo, Japan, and interactions of dioxin-like congeners with hepatic CYP to elucidate congener-specific toxicokinetics related to CYP expression in JC.

  16. Genetic polymorphisms of drug-metabolizing cytochrome P450 enzymes in cynomolgus and rhesus monkeys and common marmosets in preclinical studies for humans.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Yamazaki, Hiroshi

    2017-12-23

    Cynomolgus monkeys (Macaca fascicularis, Old World Monkeys) and common marmosets (Callithrix jacchus, New World Monkeys) have been widely, and expectedly, used as non-human primate models in drug development studies. Major drug-metabolizing cytochrome P450 (P450) enzymes information is now available that supports these primate species as animal models, and it is established that multiple forms of cynomolgus monkey and common marmoset P450 enzymes have generally similar substrate recognition functionality to human P450 enzymes. This research update provides information on genetic polymorphisms of P450 enzymes in cynomolgus monkey and common marmoset like human P450 enzymes. Information on rhesus monkeys (Macaca mulatta), another macaque species used in drug metabolism studies, is also included for comparison. Among a variety of cynomolgus monkey P450 variants investigated, typical examples include individual pharmacokinetic data for efavirenz and R-warfarin associated with cynomolgus monkey P450 2C9 (formerly 2C43) and 2C19 (2C75) variants, respectively, and for R-omeprazole and S-warfarin associated with marmoset P450 2C19 variants. These findings provide a foundation for understanding the individual pharmacokinetic and toxicological results in non-human primates as preclinical models and will help to further support understanding of molecular mechanisms of human P450 function. In addition to these polymorphic P450 enzymes, effects of aging on some drug clearances mediated by cynomolgus monkey and common marmoset P450 enzymes were found in elder animals or animals pretreated with rifampicin. This review describes genetic and acquired individual differences in cynomolgus monkey and common marmoset P450 enzymes involved in drug oxidation associated with pharmacological and/or toxicological effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Chemical-induced coordinated and reciprocal changes in heme metabolism, cytochrome P450 synthesis and others in the liver of humans and rodents.

    Science.gov (United States)

    Yoshida, Takemi; Ashino, Takashi; Kobayashi, Yasuna

    2016-01-01

    A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time- and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct

  18. Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism.

    Science.gov (United States)

    Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L

    1997-03-01

    The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure

  19. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability.

    Directory of Open Access Journals (Sweden)

    Sarah M Short

    2017-07-01

    Full Text Available The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81-92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

  20. Acylation and metabolism of (n-6) fatty acids in hepatocytes

    International Nuclear Information System (INIS)

    Voss, A.C.; Sprecher, H.

    1986-01-01

    Isolated hepatocytes (5 x 10 6 in 2ml) from chow fed rats were incubated from 20 to 60 min. with increasing concentrations of [1- 14 C] labeled 18:2 (n-6), 18:3 (n-6) or 20:3 (n-6) to define optimum conditions for measuring acylation and metabolism to other (n-6) acids with subsequent incorporation into lipids. The triglycerides (TG) and phospholipids (PL) contained 157 and 80 nmols of 18:2 (n-6) and 6.0 and 6.1 nmols of other (n-6) acids, respectively, when cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) for 40 min. When cells were incubated with 0.3mM [1- 14 C] 18:2 (n-6) plus 0.15 to 0.45mM 18:3 (n-6) or 20:3 (n-6), the metabolism of 18:2 (n-6) to other (n-6) acids was inhibited but not totally abolished. These results may suggest that (n-6) acid made from linoleate do not totally equilibrate with exogenous 18:3 (n-6) or 20:3

  1. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  2. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  3. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: the pathway and concentration dependence.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2008-04-01

    The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.

  4. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    Science.gov (United States)

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  5. Fatty acid CoA ligase-4 gene polymorphism influences fatty acid metabolism in metabolic syndrome, but not in depression.

    Science.gov (United States)

    Zeman, Miroslav; Vecka, Marek; Jáchymová, Marie; Jirák, Roman; Tvrzická, Eva; Stanková, Barbora; Zák, Ales

    2009-04-01

    The composition of polyunsaturated fatty acids (PUFAs) in cell membranes and body tissues is altered in metabolic syndrome (MetS) and depressive disorder (DD). Within the cell, fatty acid coenzyme A (CoA) ligases (FACLs) activate PUFAs by esterifying with CoA. The FACL4 isoform prefers PUFAs (arachidonic and eicosapentaenoic acid) as substrates, and the FACL4 gene is mapped to Xq23. We have analyzed the association between the common single nucleotide polymorphism (SNP) (rs1324805, C to T substitution) in the first intron of the FACL4 gene and MetS or DD. The study included 113 healthy subjects (54 Males/59 Females), 56 MetS patients (34M/22F) and 41 DD patients (7M/34F). In MetS group, T-carriers and patients with CC or C0 (CC/C0) genotype did not differ in the values of metabolic indices of MetS and M/F ratio. Nevertheless, in comparison with CC/C0, the T-allele carriers were characterized by enhanced unfavorable changes in fatty acid metabolism typical for MetS: higher content of dihomogammalinolenic acid (P phosphatidylcholine (PC) (P = 0.052), lower index of Delta5 desaturation (P insulin, conjugated dienes and index of insulin resistance, but showed no significant association with the studied SNP. The present study shows that the common SNP (C to T substitution) in the first intron of the FACL4 gene is associated with altered FA composition of plasma phosphatidylcholines in patients with MetS.

  6. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 1

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1981-01-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations in 15 N-labelled rats and the part of labelled endogenous amino acids in feces was calculated by the isotope dilution method. The excretion of amino acids and MFAA in feces are described as functions of the amino acid intake for 17 amino acids and calculated regressively. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to N-free feeding, the MFAA increase to the 2- to 4.5-fold value in feeding with pure maize (16.5% crude protein). The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below ascertained according to the 15 N method. The limiting amino acids lysine and threonine revealed the greatest difference. Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize by the isotope method is above 90%. (author)

  7. Effect of acute acid loading on acid-base and calcium metabolism

    DEFF Research Database (Denmark)

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  8. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes.

    Science.gov (United States)

    Shi, Xianbao; Yang, Shuman; Zhang, Gang; Song, Yonggui; Su, Dan; Liu, Yali; Guo, Feng; Shan, Lina; Cai, Jiqun

    2016-01-01

    1. The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes. 2. 100 μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00 μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11 μM, respectively. 3. Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83 μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75 nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey > rat > minipig > dog > human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12 mL/min/kg body weight, respectively. 4. This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.

  9. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    International Nuclear Information System (INIS)

    Ling, K.H.; Hanzlik, R.P.

    1989-01-01

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover

  10. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal

  11. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  12. 12(R)-hydroxyicosatetraenoic acid: a cytochrome P450-dependent arachidonate metabolite that inhibits Na+, K+-ATPase in the cornea

    International Nuclear Information System (INIS)

    Schwartzman, M.L.; Balazy, M.; Masferrer, J.; Abraham, N.G.; McGiff, J.C.; Murphy, R.C.

    1987-01-01

    When corneal microsomes were incubated with arachidonic acid in the presence of an NADPH-generating system, four polar metabolites (compounds A-D) were formed. Synthesis of these metabolites could be inhibited by carbon monoxide, SKF 525A, and anti-cytochrome c reductase antibodies. One of the metabolites, compound C, was found to inhibit partially purified Na + , K + -ATPase from the corneal epithelium in a dose-dependent manner. After compound C was purified by TLC and HPLC, it was found to have a UV absorption spectrum with a maximum absorbance at 236 nm suggesting the presence of a conjugated diene. Mass spectrometric analysis using positive- and negative-ionization modes was carried out on derivatized compound C. Abundant fragment ions were consistent with compound C being a monooxygenated derivative of arachidonic acid with a hydroxyl substituent at carbon-12 of the icosanoid backbone; all deuterium atoms from [ 2 H 8 ]arachidonate were retained in the structure. Compound C was characterized as a 12-hydroxyicosatetraenoic acid. However, only 12(R) isomer was found to be an inhibitor of the Na + , K + -ATPase from the corneal epithelium, suggesting that the biologically active compound C was 12(R)-hydroxyy-5,8,10,14-icosatetraenoic acid. Such an inhibitor of Na + , K + -ATPase synthesized in the cornea may have an important role in regulating ocular transparency and aqueous human secretion

  13. 12(R)-hydroxyicosatetraenoic acid: a cytochrome P450-dependent arachidonate metabolite that inhibits Na/sup +/, K/sup +/-ATPase in the cornea

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzman, M.L.; Balazy, M.; Masferrer, J.; Abraham, N.G.; McGiff, J.C.; Murphy, R.C.

    1987-11-01

    When corneal microsomes were incubated with arachidonic acid in the presence of an NADPH-generating system, four polar metabolites (compounds A-D) were formed. Synthesis of these metabolites could be inhibited by carbon monoxide, SKF 525A, and anti-cytochrome c reductase antibodies. One of the metabolites, compound C, was found to inhibit partially purified Na/sup +/, K/sup +/-ATPase from the corneal epithelium in a dose-dependent manner. After compound C was purified by TLC and HPLC, it was found to have a UV absorption spectrum with a maximum absorbance at 236 nm suggesting the presence of a conjugated diene. Mass spectrometric analysis using positive- and negative-ionization modes was carried out on derivatized compound C. Abundant fragment ions were consistent with compound C being a monooxygenated derivative of arachidonic acid with a hydroxyl substituent at carbon-12 of the icosanoid backbone; all deuterium atoms from (/sup 2/H/sub 8/)arachidonate were retained in the structure. Compound C was characterized as a 12-hydroxyicosatetraenoic acid. However, only 12(R) isomer was found to be an inhibitor of the Na/sup +/, K/sup +/-ATPase from the corneal epithelium, suggesting that the biologically active compound C was 12(R)-hydroxyy-5,8,10,14-icosatetraenoic acid. Such an inhibitor of Na/sup +/, K/sup +/-ATPase synthesized in the cornea may have an important role in regulating ocular transparency and aqueous human secretion.

  14. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  15. The initial metabolic conversion of levulinic acid in Cupriavidus necator.

    Science.gov (United States)

    Jaremko, Matt; Yu, Jian

    2011-09-20

    Levulinic acid or 4-ketovaleric acid is a potential renewable substrate for production of polyhydroxyalkanoates. In this work, the initial reactions of LA metabolism by Cupriavidus necator were examined in vitro. The organic acid was converted by membrane-bound crude enzymes obtained from the cells pre-grown on LA, while no LA activity was detected from cells pre-grown on acetic acid. Acetyl-CoA and propionyl-CoA were two major intermediates in the initial reactions of LA conversion. A mass balance on propionyl-CoA accounts for 84 mol% of LA added in vitro. It explains an interesting phenomenon that 3-hydroxbutyrate and 3-hydroxyvalerate are two major monomers of the biopolyester formed from LA, instead of 4-hydroxvalerate that has the similar chemical structure of LA as the precursor. A Monod model was used to describe the kinetics of LA utilization as a sole carbon source or a co-substrate of glucose and fructose. The μ(max) and K(m) of LA alone were 0.26 h⁻¹ and 0.01 g/L, respectively. The content and composition of PHA are also dependent on the culture conditions such as carbon to nitrogen ratio. The in vitro observation is supported by the high utilization rate of LA and the high molar percentage of 3HB and 3HV in the PHA derived from LA. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The role of bile acids in metabolic regulation.

    Science.gov (United States)

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. © 2016 Society for Endocrinology.

  17. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  18. Molecular characterization of cytochrome P450 1A and 3A and the effects of perfluorooctanoic acid on their mRNA levels in rare minnow (Gobiocypris rarus) gills

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yong; Wang Jianshe; Wei Yanhong; Zhang Hongxia; Liu Yang [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China); Dai Jiayin [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Beijing 100101 (China)], E-mail: daijy@ioz.ac.cn

    2008-07-07

    Perfluorooctanoic acid (PFOA), a potentially toxic perfluorinated compound (PFC), has been widely disseminated in the environment. In the present study, rare minnows (Gobiocypris rarus) exposed to PFOA exhibited histopathological gill damage, including epithelial hyperplasia of the lamellae, inflammatory cell infiltration, and lamellar fusion. Cytochrome P450s (CYPs) play a central role in the metabolism and biotransformation of a wide range of endogenous substrates and foreign compounds. Thus, we studied the CYPs and the effects of waterborne PFOA on their corresponding mRNA levels in the gills of rare minnows. Two novel CYP cDNAs (CYP1A and CYP3A) were identified in rare minnow and their mRNAs were ubiquitously expressed in all tissues examined. Upregulation of CYP3A mRNA was observed in the gills of male rare minnows exposed to 30 mg/L PFOA, while no significant changes occurred in exposed females. In contrast, down regulation of CYP1A mRNA was detected in the gills of male and female minnows exposed to PFOA. However, the effect of PFOA on gill mRNA levels of their potential regulators, aryl hydrocarbon receptor (AhR) for CYP1A, and pregnane X receptor (PXR) for CYP3A, were not consistent with the observed effects of PFOA on the corresponding CYP mRNA concentrations. This suggests a different or more complex transcriptional regulation of CYP expression following PFOA exposure.

  19. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    Full Text Available The cytochrome P450 monooxygenases (P450s represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.. Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA or ethephon (ETH. Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA, and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.

  20. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We

  1. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  2. [Metabolic syndrome reversion by polyunsaturated fatty acids ingestion].

    Science.gov (United States)

    Campos Mondragón, Martha Gabriela; Oliart Ros, Rosa María; Martínez Martinez, Angélica; Méndez Machado, Gustavo Francisco; Angulo Guerrero, Jesús Ofelia

    2013-12-21

    Metabolic syndrome (MS) frequency is growing and diet has an important influence on its evolution. Our objective was to study the effect of 3 sources of polyunsaturated fatty acids on MS parameters in humans. The MS was diagnosed according to the International Diabetes Federation. Three groups of individuals (n=15/group) were quasi-randomly assigned to one of the following treatments during 6 weeks: a) 1.8 g/d n-3 (1.08g eicosapentoaenoic acid+0.72 g docosahexaenoic acid); b) 2.0 g/d conjugated linoleic acid (CLA, 50:50, cis9:trans11, trans10:cis12), and c) 40 g/d walnut. The clinical and biochemical parameters were evaluated at the beginning and the end of the essay. In the group with n-3 the triglycerides level decreased from 183.9 ± 35.2mg/dl to 149.6 ± 29.0mg/dl (P=.007). In the group with walnut the HDL level rose from 41.7 ± 5.2mg/dl to 47.8 ± 5.4 mg/dl (P=.004) and the Castelli index (total cholesterol/HDL) decreased from 4.86 ± 0.97 to 3.82 ± 0.81 (P=.004). There were not significant changes in the CLA group. At the end of the essay, 46.7% of walnut group patients, 46.7% of n-3 group and 20% of CLA group, had no MS. The groups that consumed polyunsaturated fatty acids n-3 and those in walnut in moderate daily doses during 6 weeks had an improvement of the dyslipidemia component of MS, hypertriglyceridemia and low HDL level. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  3. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Participation of Arachidonic Acid Metabolism in the Aortic Aneurysm Formation in Patients with Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    María E. Soto

    2018-02-01

    Full Text Available Marfan syndrome (MFS is a pleiotropic genetic disease involving the cardiovascular system where a fibrillin-1 mutation is present. This mutation is associated with accelerated activation of transforming growth factor β (TGFβ1 which contributes to the formation of aneurysms in the root of the aorta. There is an imbalance in the synthesis of thromboxane A2 (TXA2 and prostacyclin, that is a consequence of a differential protein expression of the isoforms of cyclooxygenases (COXs, suggesting an alteration of arachidonic acid (AA metabolism. The aim of this study was to analyze the participation of AA metabolism associated with inflammatory factors in the dilation and dissection of the aortic aneurysm in patients with MFS. A decrease in AA (p = 0.02, an increase in oleic acid (OA, TGFβ1, tumor necrosis factor alpha (TNFα, prostaglandin E2 (PGE2 (p < 0.05, and COXs activity (p = 0.002 was found. The expressions of phospholipase A2 (PLA2, cytochrome P450 (CYP450 4A, 5-lipoxygenase (5-LOX, COX2 and TXA2R (p < 0.05 showed a significant increase in the aortic aneurysm of patients with MFS compared to control subjects. COX1, 6-keto-prostaglandin 1 alpha (6-keto-PG1α and 8-isoprostane did not show significant changes. Histological examination of the aortas showed an increase of cystic necrosis, elastic fibers and collagen in MFS. The results suggest that there are inflammatory factors coupled to genetic factors that predispose to aortic endothelial dysfunction in the aortic tissue of patients with MFS. There is a decrease in the percentage of AA, associated with an increase of PLA2, COX2/TXA2R, CYP450 4A, and 5-LOX which leads to a greater synthesis of PGE2 than of 6-keto-PGF1α, thus contributing to the formation of the aortic aneurysm. The evident loss of the homeostasis in these mechanisms confirms that there is a participation of the AA pathway in the aneurysm progression in MFS.

  5. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  6. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  7. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  8. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  9. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    Science.gov (United States)

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  10. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    Young, V.R.

    1981-01-01

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [ 13 ] - leucine and α- [ 15 N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15 N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  11. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    International Nuclear Information System (INIS)

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with 3 H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED 50 ) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED 50 values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM

  12. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  13. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  14. Dynamic low dose I-123-iodophenylpentadecanoic acid metabolic cardiac imaging

    International Nuclear Information System (INIS)

    Murray, G.L.; Magill, H.L.; Schad, N.C.

    1993-01-01

    Recognition of stunned and hibernating myocardium is essential in this era of cardiac revascularization. Positron emission tomography (PET) accurately identifies viability but is costly and unavailable to most patients. Dynamic low dose I-123-iodophenylpentadecanoic acid (IPPA) metabolic cardiac imaging is a potentially cost-effective alternative to PET. Using transmural myocardial biopsies obtained during coronary bypass surgery as the viability gold standard, resting IPPA imaging agreed with 39/43 (91%) biopsies, with a sensitivity for viability of 33/36(92%) and a specificity of 6/7 (86%) in patients with severe ischemic cardiomyopathy. Eighty percent of IPPA viable, infarcted segments improved wall motion postoperatively. Furthermore, when compared to reinjection thallium (SPECT-Tl) scans after myocardial infarction, there was IPPA-Tl concordance in 27/35 (77%)(Kappa=0.536, p=0.0003). Similar to PET, IPPA demonstrated more viability than SPECT-Tl, 26/35 (74%) vs. 18/35 (51%)(p=0.047). Finally, when compared to transvenous endomyocardial biopsy for detecting rejection following cardiac transplantation, IPPA sensitivity for ≥Grade II rejection was 100%, and IPPA screening assessment for the necessity of biopsy could result in a 31% cost-savings. Therefore, IPPA metabolic cardiac imaging is a safe, inexpensive technique with a promising future. (author)

  15. Stereo-selectivity and regio-selectivity in the metabolism of 7,8-dihydrobenzo[a]pyrene by cytochrome P450, epoxide hydrolase and hepatic microsomes from 3-methylcholanthrene-treated rats.

    Science.gov (United States)

    Adams, J D; Yagi, H; Levin, W; Jerina, D M

    1995-03-30

    The active site of cytochrome P450 1A1 has been probed with the substrate 7,8-dihydrobenzo[a]pyrene using a purified, reconstituted system composed of cytochrome P450 1A1, NADPH-cytochrome c reductase and lipid in the presence or absence of epoxide hydrolase. The turnover of the substrate was found to be 38 nmol/nmol of cytochrome P450/min. The metabolic products that were identified are: a phenolic 7,8-dihydrobenzo[a]pyrene (20-29%); 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (17-28%); benzo[a]pyrene (12-19%); 7-hydroxy-7,8-dihydrobenzo[a]pyrene (13-16%); 8-hydroxy-7,8-dihydrobenzo[a]pyrene (7-15%); 3-hydroxybenzo[a]pyrene (7-15%); 4,5-epoxy-4,5,7,8-tetrahydrobenzo[a]pyrene (0-4%); and a triol of 7,8,9,10-tetrahydrobenzo[a]pyrene (0-4%). 9,10-Epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene undergoes rapid hydrolysis to cis- and trans-9,10-dihydroxy-dihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (2:1) by benzylic attack of water at C-10. Approximately 71% of the trans diols are derived from (+)-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, indicating that cytochrome P450 1A1 has more than a 2:1 preference for selective epoxidation of an enantiotopic face of 7,8-dihydrobenzo[a]pyrene. This stereo-selectivity agrees with the postulated stereo-selectivity predicted by a previously described active site model for cytochrome P450 1A1. Epoxide hydrolase in pure form or in hepatic microsomes catalyzes the hydrolysis of 9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, which is inhibited by 1,1,1-trichloropropane 2,3-oxide. The (+)-(9S,10R)-isomer of the epoxide is slightly preferred as a substrate over its enantiomer and is cleaved by benzylic and nonbenzylic attack. Only benzylic attack was found with (-)-(9R,10S)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene.

  16. Uric acid in metabolic syndrome: From an innocent bystander to a central player

    Science.gov (United States)

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A.; Nakagawa, Takahiko; Johnson, Richard J.

    2016-01-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. PMID:26703429

  17. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  18. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    International Nuclear Information System (INIS)

    Abian, J.; Gelpi, E.; Pages, M.

    1991-01-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-[ 14 C]LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. α- and γ-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed

  19. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  20. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  1. Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines : in silico predictions and experimental validation

    NARCIS (Netherlands)

    Keizers, P.H.J.; de Graaf, C.; de Kanter, F.J.J.; Oostenbrink, B.C.; Feenstra, K.A.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    2005-01-01

    A series of 3,4-methylenedioxy-N-alkylamphetamines (MDAAs) were automatically docked and subjected to molecular dynamics (MD) simulations in a cytochrome P450 2D6 (CYP2D6) protein model. The predicted substrate binding orientations, sites of oxidation, and relative reactivities were compared to the

  2. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  3. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3, with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher

  4. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    OpenAIRE

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or...

  5. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism

    DEFF Research Database (Denmark)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich

    2016-01-01

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids......, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host....... Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also...

  6. Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid

    Directory of Open Access Journals (Sweden)

    Isabel Martins

    2017-07-01

    Full Text Available Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA—terpenoid found abundantly in Cistus ladanifer—producing 3β-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.

  7. Metabolic Effects of a Succinic Acid

    Directory of Open Access Journals (Sweden)

    B. N. Shakh

    2014-01-01

    Full Text Available The paper discusses promises for clinical use of substrate antihypoxants.Objective: to investigate the efficacy of succinate containing  substrate  antihypoxants  on  systemic  oxygen  consumption,  blood  buffer  capacity,  and  changes  in  the  mixed venous blood level of lactate when they are used in gravely sick patients and victims with marked metabolic posthypoxic disorders.Subjects and methods. The trial enrolled 30 patients and victims who had sustained an episode of severe hypoxia of mixed genesis, the severity of which was evaluated by the APACHE II scale and amounted to 23 to 30 scores with a 46 to 70.3% risk of death. The standard infusion program in this group involved the succinate-containing drug 1.5% reamberin solution  in  a  total  dose  of  800  ml.  A  comparison  group  included  15  patients  who  had  undergone  emergency  extensive surgery for abdominal diseases. 400 ml of 10% glucose solution was used as an infusion medium. Oxygen consumption (VO2ml/min and carbon dioxide production (VCO2ml/min were measured before infusion and monitored for 2 hours. Arterial blood gases and acid-base balance (ABB parameters and mixed venous blood lactate levels were examined. Measurements were made before and 30 minutes after the infusion of reamberin or glucose solution.Results. Infusion of 1.5% reamberin solution was followed by a significant increase in minute oxygen consumption from 281.5±21.2 to 310.4±24.4 ml/min. CO2 production declined (on average, from 223.3±6.5 to 206.5±7.59 ml/min. During infusion of 10% glucose solution, all the patients of the comparison group showed a rise in oxygen consumption from 303.6±33.86 to 443.13±32.1 ml/min, i.e. about 1.5-fold. VCO2 changed similarly. The intravenous infusion of 800 ml of 1.5% reamberin solution raised arterial blood buffer capacity, which was reflected by changes in pH, BE, and HCO3. There was a clear trend for lactate values to drop in the

  8. Investigation of cytochrome P450 inhibitory properties of maslinic acid, a bioactive compound from Olea europaea L., and its structure-activity relationship.

    Science.gov (United States)

    Sun, Min; Tang, Yu; Ding, Tonggui; Liu, Mingyao; Wang, Xin

    2015-01-15

    Maslinic acid (MA), the main pentacyclic triterpene of Olea europaea L. fruit, possesses a variety of pharmacological actions, including hypoglycemic, antioxidant, cardioprotective and antitumoral activities. Despite its importance, little is known about its effects on the cytochrome P450 (CYP) activity in both humans and animals. Therefore, the aim of this study was to investigate the effects of MA on the CYP 1A2, 2C9/11, 2D1/6, 2E1 and 3A2/4 activities by human and rat liver microsomes and specific CYP isoforms. In humans, MA only weakly inhibited CYP3A4 activity in human liver microsomes and specific CYP3A4 isoform with IC50 value at 46.1 and 62.3µM, respectively. In rats, MA also exhibited weak inhibition on CYP2C11, CYP2E1 and CYP3A2 activities with IC50 values more than 100µM. Enzyme kinetic studies showed that the MA was not only a competitive inhibitor of CYP3A4 in humans, but also a competitive inhibitor of CYP2C11 and 3A2 in rats, with Ki of 18.4, 98.7 and 66.3µM, respectively. Moreover, the presence of hydroxyl group at C-2 position of triterpenic acid in MA compared with oleanolic acid could magnify its competitive inhibition on human CYP3A4 activity. The relatively high Ki values of MA would have a low potential to cause the possible toxicity and drug interactions involving CYP enzymes, thus suggesting a sufficient safety for its putative use as a nutraceutical taken together with drugs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Directory of Open Access Journals (Sweden)

    Blanka Stibůrková

    Full Text Available Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals.The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables.The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations.Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  10. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  11. Regulation of glycolysis and level of the Crassulacean acid metabolism.

    Science.gov (United States)

    Pierre, J N; Queiroz, O

    1979-01-01

    Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase - 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.

  12. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Science.gov (United States)

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (pbreve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (pbreve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (pbreve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (pbreve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (pbreve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  13. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  14. Metabolic Profile of Obeticholic Acid and Endogenous Bile Acids in Rats with Decompensated Liver Cirrhosis.

    Science.gov (United States)

    Roda, A; Aldini, R; Camborata, C; Spinozzi, S; Franco, P; Cont, M; D'Errico, A; Vasuri, F; Degiovanni, A; Maroni, L; Adorini, L

    2017-07-01

    Obeticholic acid (OCA) is a semisynthetic bile acid (BA) analog and potent farnesoid X receptor agonist approved to treat cholestasis. We evaluated the biodistribution and metabolism of OCA administered to carbon tetrachloride-induced cirrhotic rats. This was to ascertain if plasma and hepatic concentrations of OCA are potentially more harmful than those of endogenous BAs. After administration of OCA (30 mg/kg), we used liquid chromatography-mass spectrometry to measure OCA, its metabolites, and BAs at different timepoints in various organs and fluids. Plasma and hepatic concentrations of OCA and BAs were higher in cirrhotic rats than in controls. OCA and endogenous BAs had similar metabolic pathways in cirrhotic rats, although OCA hepatic and intestinal clearance were lower than in controls. BAs' qualitative and quantitative compositions were not modified by a single administration of OCA. In all the matrices studied, OCA concentrations were significantly lower than those of endogenous BAs, potentially much more cytotoxic. © 2017 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  15. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  16. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load

    Directory of Open Access Journals (Sweden)

    Lucio Della Guardia

    2018-05-01

    Full Text Available Recent epidemiological findings suggest that high levels of dietary acid load can affect insulin sensitivity and glucose metabolism. Consumption of high protein diets results in the over-production of metabolic acids which has been associated with the development of chronic metabolic disturbances. Mild metabolic acidosis has been shown to impair peripheral insulin action and several epidemiological findings suggest that metabolic acid load markers are associated with insulin resistance and impaired glycemic control through an interference intracellular insulin signaling pathways and translocation. In addition, higher incidence of diabetes, insulin resistance, or impaired glucose control have been found in subjects with elevated metabolic acid load markers. Hence, lowering dietary acid load may be relevant for improving glucose homeostasis and prevention of type 2 diabetes development on a long-term basis. However, limitations related to patient acid load estimation, nutritional determinants, and metabolic status considerably flaws available findings, and the lack of solid data on the background physiopathology contributes to the questionability of results. Furthermore, evidence from interventional studies is very limited and the trials carried out report no beneficial results following alkali supplementation. Available literature suggests that poor acid load control may contribute to impaired insulin sensitivity and glucose homeostasis, but it is not sufficiently supportive to fully elucidate the issue and additional well-designed studies are clearly needed.

  17. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Uric Acid, Metabolic Syndrome and Atherosclerosis: The Chicken or the Egg, Which Comes First?

    Science.gov (United States)

    De Pergola, Giovanni; Cortese, Francesca; Termine, Gaetano; Meliota, Giovanni; Carbonara, Rossella; Masiello, Michele; Cortese, Anna M; Silvestris, Francesco; Caccavo, Domenico; Ciccone, Marco Matteo

    2018-01-01

    A great debate in literature exists nowadays on the role of uric acid as a marker of cardiovascular and metabolic organ damage or a risk factor for cardiovascular and metabolic disease. The study aimed to determine the relationship among serum uric acid and metabolic syndrome and atherosclerosis, by means of carotid intima media-thickness, in a cohort of 811 otherwise healthy overweight/obese subjects, without overt atherosclerosis not using any kind of drug. Uric acid levels were positively related to male gender, waist circumference, BMI, systolic and diastolic pressure levels, fasting insulin, fasting glucose, HOMA-IR, triglycerides, total cholesterol, LDL cholesterol, the presence of metabolic syndrome and the number of the components of metabolic syndrome and negatively related to HDL cholesterol levels. No correlation was found between uric acid and carotid intima media thickness. At the multiple regression analysis, only waist circumference and triglycerides (positively) and HDL-cholesterol (negatively) maintained an independent association with uric acid as dependent variable, while age, female gender and uric acid showed a significant independent association with metabolic syndrome as dependent variable. Moreover, the analysis of the odd ratios showed that the risk of developing metabolic syndrome was consistent with uric acid levels ranging from 3 mg/dl to 8 mg/dl. The presence of metabolic syndrome does not seem to provide hyperuricemia. By contrast, higher serum uric acid level may predict the risk of metabolic syndrome. Moreover, our results suggest that uric acid cannot be considered a risk factor for early atherosclerosis, at least when assessed using carotid ultrasound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Vaughan Roger A

    2012-10-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We evaluated the effects of conjugated linoleic acid (CLA or combination omega 3 on metabolic characteristics in muscle cells. Methods Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega 3 for 24 or 48 hours. RNA was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Mitochondrial content was determined using flow cytometry and immunohistochemistry. Metabolism was quantified by measuring extracellular acidification and oxygen consumption rates. Results Omega 3 significantly induced metabolic genes as well as oxidative metabolism (oxygen consumption, glycolytic capacity (extracellular acidification, and metabolic rate compared with control. Both treatments significantly increased mitochondrial content. Conclusion Omega 3 fatty acids appear to enhance glycolytic, oxidative, and total metabolism. Moreover, both omega 3 and CLA treatment significantly increase mitochondrial content compared with control.

  20. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    Science.gov (United States)

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.

  1. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  2. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    Science.gov (United States)

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  3. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  4. Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    David Grünig

    2018-04-01

    Full Text Available Impairment of hepatic fatty acid metabolism can lead to liver steatosis and injury. Testing drugs for interference with hepatic fatty acid metabolism is therefore important. To find out whether HepG2 cells are suitable for this purpose, we investigated the effect of three established fatty acid metabolism inhibitors and of three test compounds on triglyceride accumulation, palmitate metabolism, the acylcarnitine pool and dicarboxylic acid accumulation in the cell supernatant and on ApoB-100 excretion in HepG2 cells. The three established inhibitors [etomoxir, methylenecyclopropylacetic acid (MCPA, and 4-bromocrotonic acid (4-BCA] depleted mitochondrial ATP at lower concentrations than cytotoxicity occurred, suggesting mitochondrial toxicity. They inhibited palmitate metabolism at similar or lower concentrations than ATP depletion, and 4-BCA was associated with cellular fat accumulation. They caused specific changes in the acylcarnitine pattern and etomoxir an increase of thapsic (C18 dicarboxylic acid in the cell supernatant, and did not interfere with ApoB-100 excretion (marker of VLDL export. The three test compounds (amiodarone, tamoxifen, and the cannabinoid WIN 55,212-2 depleted the cellular ATP content at lower concentrations than cytotoxicity occurred. They all caused cellular fat accumulation and inhibited palmitate metabolism at similar or higher concentrations than ATP depletion. They suppressed medium-chain acylcarnitines in the cell supernatant and amiodarone and tamoxifen impaired thapsic acid production. Tamoxifen and WIN 55,212-2 decreased cellular ApoB-100 excretion. In conclusion, the established inhibitors of fatty acid metabolism caused the expected effects in HepG2 cells. HepG cells proved to be useful for the detection of drug-associated toxicities on hepatocellular fatty acid metabolism.

  5. alpha-Ketoglutarate application in hemodialysis patients improves amino acid metabolism.

    Science.gov (United States)

    Riedel, E; Nündel, M; Hampl, H

    1996-01-01

    In hemodialysis patients, free amino acids and alpha-ketoacids in plasma were determined by fluorescence HPLC to assess the effect of alpha-ketoglutarate administration in combination with the phosphate binder calcium carbonate on the amino acid metabolism. During 1 year of therapy in parallel to inorganic phosphate, urea in plasma decreased significantly, histidine, arginine and proline as well as branched chain alpha-ketoacids, in particular alpha-ketoisocaproate, a regulator of protein metabolism, increased. Thus, administration of alpha-ketoglutarate with calcium carbonate effectively improves amino acid metabolism in hemodialysis patients as it decreases hyperphosphatemia.

  6. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  7. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  8. The influence of lactate and dipyridamole on myocardial fatty acid metabolism in man, traced with 123I-17-iodoheptadecanoic acid

    International Nuclear Information System (INIS)

    Duwel, C.M.B.; Visser, F.C.; Eenige, M.J. van; Roos, J.P.; Westera, G.

    1990-01-01

    Changes in myocardial metabolism can be detected externally by registration of time-activity curves after administration of radioiodinated fatty acids. In this scintigraphic study the influence of lactate on fatty acid metabolism was investigated in the normal human myocardium, traced with 123 I-17-iodoheptadecanoic acid ( 123 I-17-HDA). In patients (paired, n=7) lactate loading decreased the uptake of 123 I-17-HDA significantly from 27 (control:22-36) to 20 counts/min/pixel (16-31; p 123 I-17-HDA scintigraphy of the heart. (orig.) [de

  9. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  10. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    The still growing obesity epidemic is a major risk for our society, as it is associated with the development of the so called metabolic syndrome, which is a clinical diagnosis correlated to development of metabolic disorders. Lack of physical activity, excess energy intake, and nutritional factors...... addition of phytanic acid. Third, we investigated butter and phytanic acid effects on human T-cell polarization, both by in vitro incubation with phytanic acid, and by a 12 weeks intervention with intake of butter. Finally, we performed two human interventions, first one with intake of butter and cheese...... fatty acids are raised in dairy fat along with the amount of green plant material intake of the cattle. Phytanic acid is one of these minor fatty acids, due to agonist activities for nuclear receptors with central roles in among others the lipid and glucose metabolism. To determine the effects of both...

  11. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  12. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis.

    Science.gov (United States)

    Chen, Rui; Han, Su; Liu, Xuefeng; Wang, Kunpeng; Zhou, Yong; Yang, Chundong; Zhang, Xi

    2018-05-15

    Osteoarthritis (OA) is a degenerative synovial joint disease affecting people worldwide. However, the exact pathogenesis of OA remains unclear. Metabolomics analysis was performed to obtain insight into possible pathogenic mechanisms and diagnostic biomarkers of OA. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQ-MS), followed by multivariate statistical analysis, was used to determine the serum amino acid profiles of 32 OA patients and 35 healthy controls. Variable importance for project values and Student's t-test were used to determine the metabolic abnormalities in OA. Another 30 OA patients were used as independent samples to validate the alterations in amino acids. MetaboAnalyst was used to identify the key amino acid pathways and construct metabolic networks describing their relationships. A total of 25 amino acids and four biogenic amines were detected by UPLC-TQ-MS. Differences in amino acid profiles were found between the healthy controls and OA patients. Alanine, γ-aminobutyric acid and 4-hydroxy-l-proline were important biomarkers distinguishing OA patients from healthy controls. The metabolic pathways with the most significant effects were involved in metabolism of alanine, aspartate, glutamate, arginine and proline. The results of this study improve understanding of the amino acid metabolic abnormalities and pathogenic mechanisms of OA at the molecular level. The metabolic perturbations may be important for the diagnosis and prevention of OA. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].

    Science.gov (United States)

    Chong, Hong-Heng; An, Geng

    2009-02-15

    To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.

  14. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  15. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  16. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  17. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  18. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  19. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  20. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  1. Gut microbiota and nuclear receptors in bile acid and lipid metabolism : bile acids, more than soaps

    NARCIS (Netherlands)

    Out, Carolien

    2014-01-01

    Metabolic syndrome refers to the combination of obesity, hypertension, dyslipidemia and insulin resistance. Metabolic syndrome increases the chance on cardiovascular disease and type 2 diabetes. Strategies to prevent and treat these metabolic derangements are therefore urgently needed. For this

  2. Docosahexaenoic acid levels in blood and metabolic syndrome in obese children: is there a link?

    OpenAIRE

    Lassandro, C.; Banderali, G.; Radaelli, G.; Borghi, E.; Moretti, F.; Verduci, E.

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DH...

  3. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  4. Mechanism of long chain monoenoic fatty acids acting on the energy metabolism of heart

    Energy Technology Data Exchange (ETDEWEB)

    Buddecke, E; Filipovic, I; Wortberg, B; Seher, A

    1975-01-01

    The oxidation of 1-/sup 14/C-erucic (Csub(22:1)) and 1-/sup 14/C-nervonic (Csub(24:1)) acid was studied compared to 1-/sup 14/C-palmitic and -oleic acid in isolated rat and pig heart mitochondria. After mitochondrial incubation with the albumin-bound fatty acids only small amounts of /sup 14/CO/sub 2/ developed from the oxidation of the long chain monoenoic acids as compared to palmitic or oleic acid. The slow down of the oxidation rate was more pronounced in rat than in pig heart mitochondria. The oxidation of palmitic or oleic acid was not found to be inhibited by the C/sub 20/-C/sub 24/-monoeneic acids, whereas palmitic or oleic acid inhibited the oxidation of erucic acid competitively. From present findings an idea may be developed of the interference on fatty acid metabolism in heart muscle by erucic and other long chain monenoic acids.

  5. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  6. CPT1A Missense Mutation Associated with Fatty Acid Metabolism and Reduced Height in Greenlanders

    DEFF Research Database (Denmark)

    Skotte, Line; Koch, Anders; Yakimov, Victor

    2017-01-01

    Background - Inuit have lived for thousands of years in an extremely cold environment on a diet dominated by marine-derived fat. To investigate how this selective pressure has affected the genetic regulation of fatty acid metabolism, we assessed 233 serum metabolic phenotypes in a population-base...

  7. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism

    Science.gov (United States)

    C.C. Black; J.-Q. Chen; R.L. Doong; M.N. Angelov; Shi-Jean S. Sung

    1996-01-01

    Each day a massive interlocked biochemical cycle occurs in the green tissues of crassulacean acid metabolism plants.The function of this interlocked cycle, in its simplest context, is to furnish most of the CO2 for CAM plant photosynthesis.In this unified presentation our aims are (1) to divide CAM plants into two metabolic groups, (2) to...

  8. The role of energy & fatty acid metabolism in obesity and insulin resistance

    NARCIS (Netherlands)

    Heemskerk, Mattijs Maria

    2015-01-01

    In today’s world, more people die from complications of overweight than from underweight. But not all individuals are equally prone to develop metabolic complications, such as obesity and insulin resistance. This thesis focuses on the differences in the energy and fatty acid metabolism that play a

  9. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome

    NARCIS (Netherlands)

    Krzystek-Korpacka, Malgorzata; Patryn, Eliza; Bednarz-Misa, Iwona; Mierzchala, Magdalena; Hotowy, Katarzyna; Czapinska, Elzbieta; Kustrzeba-Wojcicka, Irena; Gamian, Andrzej; Noczynska, Anna

    2011-01-01

    Adipocyte fatty acid-binding protein (A-FABP) links obesity and metabolic syndrome (MetS) and might be targeted in future therapies. Its utility as a MetS biomarker has been suggested in adults but has not been examined in children/adolescents. Our objectives were to identify metabolic parameters

  10. Metabolism of 2-deoxyglyconic acid in plants and bakers yeast

    International Nuclear Information System (INIS)

    Gakhokidze, R.A.; Beriashvili, L.T.; Chigvinadze, T.D.

    1996-01-01

    During photosynthesis in Phaseolus vulgaris haricot bean and Zea mays leaves, assimilated carbon 14 CO 2 is rapidly incorporated into aldonic acids including 2-deoxygluconic acid whose radioactivity was relatively high. In these plants, radioactive carbon of 2-deoxy-D-gluconic acid prepared from 1-6 14 C-D-glucose is actively involved in the formation of sugars, organic acids, and amino acids. In baking yeast Saccharomyces cerevisiae, the rate of respiration-dependent oxidation of 2-deoxy-D-gluconic acid differs versus the rate of D-glucose oxidation [ru

  11. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  12. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors

    Science.gov (United States)

    Filannino, Pasquale; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-01-01

    ABSTRACT Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid. IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance

  13. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    Science.gov (United States)

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  14. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    Science.gov (United States)

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Science.gov (United States)

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  16. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  17. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  18. Genetic defects of cytochrome c oxidase assembly

    Czech Academy of Sciences Publication Activity Database

    Pecina, Petr; Houšťková, H.; Hansíková, H.; Zeman, J.; Houštěk, Josef

    2004-01-01

    Roč. 53, Suppl. 1 (2004), s. S213-S223 ISSN 0862-8408 R&D Projects: GA ČR GA303/03/0749 Institutional research plan: CEZ:AV0Z5011922 Keywords : cytochrome c oxidase * mitochondrial disorders Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.140, year: 2004

  19. Alteration of tricarboxylic acid cycle metabolism in rat brain slices by halothane

    International Nuclear Information System (INIS)

    Cheng, S.C.; Brunner, E.A.

    1978-01-01

    Metabolism of [2- 14 C] pyruvate, [1- 14 C] acetate and [5- 14 C] citrate in rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamineγ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloracetic acid insoluble precipitate and its lipid extract were also studied. In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labelled ACh, but to a lesser extent than pyruvate. Acetate also labelled lipids and glutamine. Citrate labelled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism. Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine. Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the large metabolic compartment which includes the nerve endings. Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloroacetic acid extract. Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased. The differential effects of halothane on acetate and citrate utilization suggest that the small metabolic compartment should be subdivided. Therefore, at least three metabolic compartments are demonstrated. Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle. (author)

  20. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  1. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    DEFF Research Database (Denmark)

    Chen, Xiao

    -based processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which......Saccharomyces cerevisiae is widely used in microbial production of chemicals, metabolites and proteins, mainly because genetic manipulation of S. cerevisiae is relatively easy and experiences from its wide application in the existing industrial fermentations directly benefit new S. cerevisiae...

  2. Simultaneous analysis of amino acid and organic acid by NMR spectrometry, 2. Diagnostic aids for inborn error of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Koda, Naoya; Yamaguchi, Shuichi; Mori, Takeshi.

    1987-09-01

    Analysis of urine from patients with inborn error of metabolism were studied by /sup 1/H-nuclear magnetic resonance (NMR) spectrometry. Diseases studied were as follows; phenylketonuria, biotin responsive multiple carboxylase deficiency, non-ketotic hyperglycinemia, 3-ketothiolase deficiency, alkaptonuria, methylmalonic acidemia, isovaleric acidemia, glutaric aciduria, argininosuccinic aciduria and hyperornithinemia. In each disease, specific metabolites in urine were recognized by NMR spectrometry. This method is accomplished within 10 minutes with non-treated small volume of urine and will be successfully available for the screening andor diagnosis of inherited metabolic diseases of amino acid and organic acid.

  3. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  4. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M

    2017-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohep......The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...... enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes...... such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus...

  5. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  6. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    NARCIS (Netherlands)

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; Maerz, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J. F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By

  7. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  8. Uric acid, an important screening tool to detect inborn errors of metabolism: a case series.

    Science.gov (United States)

    Jasinge, Eresha; Kularatnam, Grace Angeline Malarnangai; Dilanthi, Hewa Warawitage; Vidanapathirana, Dinesha Maduri; Jayasena, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike; Chandrasiri, Nambage Dona Priyani Dhammika; Indika, Neluwa Liyanage Ruwan; Ratnayake, Pyara Dilani; Gunasekara, Vindya Nandani; Fairbanks, Lynette Dianne; Stiburkova, Blanka

    2017-09-06

    Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. CASE 1: A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. CASE 2: An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. CASE 3: A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine-guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch-Nyhan syndrome. CASE 4: A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.

  9. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  10. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  11. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.

    Science.gov (United States)

    Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi

    2015-07-01

    Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with

  12. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polycholorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1993-01-14

    I14JAN93 Annual Technical Report 15DEC91-1ý+JAN9 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hepatic Metabolism of Perfluorinated Carboxylic Acids and G-FS...13. ABSTRACT (Maximum 200 words) This report describes our studies of the effects of perfluorooctanoic acid (PFOA) and perfluorodecanolc acid (PFDA) on...metabolism. 31 p NMR was used to examine the effects of PFDA. PFOA. and clofibrate (C LOF) in both rats and guinea pigs. A unique effect is revealed in

  13. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    DEFF Research Database (Denmark)

    Hoeft, B.; Linseisen, J.; Beckmann, L.

    2010-01-01

    as contributing factor to colon carcinogenesis. We examined the association between genetic variability in 43 fatty acid metabolism-related genes and colorectal risk in 1225 CRC cases and 2032 controls participating in the European Prospective Investigation into Cancer and Nutrition study. Three hundred......Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...... variants with CRC risk. Our results support the key role of prostanoid signaling in colon carcinogenesis and suggest a relevance of genetic variation in fatty acid metabolism-related genes and CRC risk....

  14. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly

  15. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Science.gov (United States)

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-08-21

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  16. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  17. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias

    2015-01-01

    , liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism...... conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon....... To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences...

  18. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  19. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics

    Science.gov (United States)

    2013-01-01

    Background Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders. Methods The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes. Results Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%. Conclusions This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation. PMID:24088297

  1. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  2. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  3. New insights into the metabolism of aspartate-family amino acids in plant seeds.

    Science.gov (United States)

    Wang, Wenyi; Xu, Mengyun; Wang, Guoping; Galili, Gad

    2018-02-05

    Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.

  4. Study on the metabolism of 15 p-131iodine phenyl pentadecanoic acid [p-iodine phenyl pentadecanoic acid] as a tracer of free fatty acids in comparison to 1-14C-palmitic acid (C-palmitic acid)

    International Nuclear Information System (INIS)

    Sauer, J.W.

    1986-01-01

    In an animal experiment under identical metabolic influences the metabolism of a new radiopharmaceutical, 15 p- 131 iodine phenyl pentadecanoic acid (IPPA), was compared to the marked physiological fatty acid, 1- 14 C-palmitic acid (PA). The pharmacological kinetics of both tracers in tissues with widely varied turnover rates of fatty acids (heart, lung, liver, kidney, spleen, small intestine, skeletal muscle) was studied. By alkali extraction of the tissue lipids and then a chromatographic separation of the lipid fractions quantitatively comparable statements about the metabolism of PA and IPPA were made possible. The analyses of autoradiographs of the chromatographically separated lipids show a qualitatively congruous assimilation of both markers in the major lipid fractions. The quantitative evaluation shows minor differences as a result of a preferred assimilation of IPPA in triglycerides and of PA in phospholipids. The fractionated separation of tissue lipids which had been marked with PA and IPPA in vivo agrees very well with values which have been determined by other authors using 14 C- or 3 H-marked fatty acids. The close correlation of the tissue-specific metabolism kinetics of both markers makes it clear that both fatty acids are metabolized by similar, respectively, primarily identical metabolic pathyways. In conclusion, this study makes clear the extensive congruence of the metabolism kinetics of IPPA and the kinetics of the physiological palmitic acid. As a result of the presented results of the γ-radiating radiopharmaceutical IPPA as a free fatty acid analog new possibilities for the non-invasive external comprehension of lipid metabolism are opened up, whose use especially in the diagnostic of heart diseases promises success. (orig./MG) [de

  5. Arachidonic Acid Metabolism Pathway Is Not Only Dominant in Metabolic Modulation but Associated With Phenotypic Variation After Acute Hypoxia Exposure

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-03-01

    Full Text Available Background: The modulation of arachidonic acid (AA metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS model.Methods: Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and RNA sequencing were separately performed for metabolomic and transcriptomic profiling, respectively. Influential modules comprising essential metabolites and genes were identified by weighted gene co-expression network analysis (WGCNA after integrating metabolic information with phenotypic and transcriptomic datasets, respectively.Results: Enrolled subjects exhibited diverse response manners to hypoxia. Combined with obviously altered heart rate, oxygen saturation, hemoglobin, and Lake Louise Score (LLS, metabolomic profiling detected that 36 metabolites were highly related to clinical features in hypoxia responses, out of which 27 were upregulated and nine were downregulated, and could be mapped to AA metabolism pathway significantly. Integrated analysis of metabolomic and transcriptomic data revealed that these dominant molecules showed remarkable association with genes in gas transport incapacitation and disorders of hemoglobin metabolism pathways, such as ALAS2, HEMGN. After detailed description of AA metabolism pathway, we found that the molecules of 15-d-PGJ2, PGA2, PGE2, 12-O-3-OH-LTB4, LTD4, LTE4 were significantly up-regulated after hypoxia stimuli, and increased in those with poor response manner to hypoxia particularly. Further analysis in another cohort showed that genes in AA metabolism pathway such as PTGES, PTGS1, GGT1, TBAS1 et al. were excessively

  6. Assessment of myocardial metabolism with iodine-123 heptadecanoic acid: effect of decreased fatty acid oxidation on deiodination

    International Nuclear Information System (INIS)

    Luethy, P.C.; Chatelain, P.; Papageorgiou, I.; Schubiger, A.; Lerch, R.A.

    1988-01-01

    Terminally radioiodinated fatty acid analogs are of potential use for the noninvasive delineation of regional alterations of fatty acid metabolism by gamma imaging. Since radioactivity from extracted iodine-123 heptadecanoic acid [( 123I]HDA) is released from the myocardium in form of free radioiodide (123I-) the present study was performed to determine whether deiodination of [123I]HDA is related to free fatty acid metabolism. Myocardial production of free radioiodide was measured in rat hearts in vitro and in vivo both under control conditions and after inhibition of fatty acid oxidation. In isolated rat hearts perfused at constant flow with a medium containing [123I]HDA, release of 123I- was markedly reduced during cardioplegia and pharmacologic inhibition of mitochondrial fatty acid transfer with POCA by 67% (p less than 0.005) and 72% (p less than 0.005), respectively. In fasted rats in vivo, 1 min after i.v. injection of [123I]HDA, 51 +/- 5% of myocardial radioactivity was recovered in the aqueous phase, containing free iodide, of myocardial lipid extracts. Aqueous activity was significantly decreased in fed (20 +/- 2%; p less than 0.002) and POCA pretreated (30 +/- 3.7%; p less than 0.05) animals exhibiting reduced oxidation of [14C]palmitate. Thus, deiodination of [123I]HDA was consistently reduced during inhibition of fatty acid oxidation in vitro and in vivo. The results apply to the interpretation of myocardial clearance curves of terminally radioiodinated fatty acid analogs

  7. Cytochrome P450s and molecular epidemiology

    Science.gov (United States)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  8. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    International Nuclear Information System (INIS)

    Meier, U.T.; Meyer, U.A.

    1987-01-01

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single [ 125 I]-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme

  9. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  10. Metabolism of methyl-branched iodo palmitic acids in cultured hepatocytes

    International Nuclear Information System (INIS)

    Thomas, G.; Pepin, D.; Loriette, C.; Chambaz, J.; Bereziat, G.; Vidal, M.; Apparu, M.; Coornaert, S.

    1989-01-01

    The metabolic fate of methyl-branched iodo fatty acids was studied in primary culture of rat hepatocytes. We compared 16-iodo-2-R,S-methyl palmitic acid (2-Me), which can be β oxidized, with 16-iodo-3-R,S-methyl palmitic acid (3-Me) which can be β oxidized only after an initial α oxydation and with 16-iodo-2,2-dimethyl palmitic acid (2,2-Me 2 ) and 16-iodo-3,3-dimethyl palmitic acid (3,3-Me 2 ) which cannot be β oxidized at all. The normal fate of natural fatty acids was given by comparative experiments with [1- 14 C] palmitic acid. Monomethyl-branched iodo fatty acids were taken up in the same range as palmitic acid but more than dimethyl-branched iodo fatty acids. After a 15-h incubation, acido-soluble products (ASP) accounted for 75% of the radioactivity taken up as 16-iodo-2-methyl palmitic acid, 50% as other methyl-branched iodo fatty acids and only 30% as palmitic acid. Cultured hepatocytes, labelled for 3 h with the various fatty acids and reincubated for 12 h without fatty acid, secreted large amounts of free dimethyl-branched iodo fatty acids as compared to the monomethyl ones and palmitic acid. Only hepatocytes prelabelled with 16-[ 125 I]iodo-2,2-dimethyl palmitic acid exhibited an appreciable secretion of labeled triglycerides, but at a lower rate than with [1- 14 C] palmitic acid. Conversely, the 16-iodo-monomethyl palmitic acids remained chiefly in hepatocyte triglycerides. Minute amounts of 16-iodo-methyl-branched palmitic acids were found in hepatocyte or secreted phospholipids as compared with palmitic acid. (orig.)

  11. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  12. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    International Nuclear Information System (INIS)

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T.

    1991-01-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of 14 C oleic, 14 C linoleic, and 3H arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and 3 H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations

  13. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health

    Directory of Open Access Journals (Sweden)

    J. Bruce German

    2011-07-01

    Full Text Available This article focuses on the role of omega-3 fatty acids as precursors for lipid signaling molecules known as oxylipins. Although omega-3 fatty acids are beneficial in autoimmune disorders, inflammatory diseases and heart disease, they are generally underrepresented in the American diet. A literature review confirms that the consumption of omega-3 fatty acids - whether in food sources such as walnuts, flax seeds and fatty fish (including salmon and sardines, or in supplements - is associated with decreased morbidity and mortality. This growing body of evidence, including the results of a recent study of patients with kidney disease, highlights the need to measure omega-3 fatty acids and their oxylipin products as markers of metabolic health and biomarkers of disease. In addition, there is substantial evidence of the need to increase the omega-3 fatty acid content of American diets to optimize metabolic health.

  14. Relationship between polychlorinated biphenyl 126 treatment and cytochrome P4501A activity in chickens, as measured by in vivo caffeine and ex vivo ethoxyresorufin metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Feyk, L.A.; Giesy, J.P.; Lambert, G.H.

    1999-09-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons (PHDHs) and is usually measured ex vivo in liver tissue. A caffeine breath test with radiolabeled substrate ({sup 14}C-CBT) has been developed to measure in vivo avian CYPIA activity. Research goals were to develop stable isotope methods ({sup 13}C-CBT), determine dose-response relationships between caffeine N-demethylation (CNDM) and PHDH exposure, and assess the relative utility of the CBT and ex vivo ethoxyresorufin-O-deethylase (EROD) assay. The {sup 13}C-CBT methods were developed with 20 chickens (Gallus domesticus). Chickens received three intraperitoneal injections of 0, 1, 5, or 50 {micro}g 3,3{prime},4,4{prime},5-pentachlorobiphenyl (PCB 126)/kg body weight, and CNDM was quantified by measurement of {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in expired breath. The {sup 13}C-CBT was not as sensitive or specific as the EROD assay as an indicator of PHDH exposure and effect in birds. Constitutive CNDM of great interindividual variability was observed, and the magnitude of induction was greater for EROD activity than for CNDM (approximately 1,000- and 2-fold, respectively). Variability associated with baseline {sup 13}CO{sub 2}/{sup 12}CO{sub 2} ratios in expired breath reduced the sensitivity of the {sup 13}C-CBT method.

  15. Seasonal variability of metallothioneins, cytochrome P450, Bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae).

    Science.gov (United States)

    Gorbi, Stefania; Baldini, Chiara; Regoli, Francesco

    2005-07-01

    The European eel Anguilla anguilla (Anguillidae) and the striped mullet Mugil cephalus (Mugilidae) are typical inhabitants of Mediterranean brackish lagoons, and their utility as bioindicator organisms has already been suggested. The seasonal variability of several potential biomarkers was investigated during a field study carried out in the Orbetello lagoon (Tuscany, Italy). Organisms were sampled on a seasonal basis, and analyzed parameters included the levels of hepatic metallothioneins, the activity of cytochrome P450 1A (EROD), and the presence of biliary PAH metabolites. Special attention was also paid to antioxidant defenses, including catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferases, and total glutathione concentration. Total Oxyradical Scavenging Capacity (TOSC-assay) was measured as an indication of the overall biological resistance to toxicity of different forms of oxyradicals (peroxynitrite, peroxyl and hydroxyl radicals). Obtained results suggest that natural variations of analyzed responses are associated with seasonality of both environmental and biological factors, mainly temperature and reproductive cycle which, however, have a different influence in these two species. Striped mullets exhibited the strongest variations in October when spawning occurs; eels are not influenced by a seasonal sexual maturation and showed more marked changes during the summer, likely related to the elevated seawater temperature and light irradiance in the lagoon. This study confirms the importance of characterizing seasonal variations and the influence of different factors on biological responses that can be used as biomarkers in monitoring programs.

  16. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

    Science.gov (United States)

    Nauen, Ralf; Wölfel, Katharina; Lueke, Bettina; Myridakis, Antonis; Tsakireli, Dimitra; Roditakis, Emmanouil; Tsagkarakou, Anastasia; Stephanou, Euripides; Vontas, John

    2015-06-01

    Cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is a major sucking pest in many agricultural and horticultural cropping systems globally. The frequent use of insecticides of different mode of action classes resulted in populations resisting treatments used to keep numbers under economic damage thresholds. Recently it was shown that resistance to neonicotinoids such as imidacloprid is linked to the over-expression of CYP6CM1, a cytochrome P450 monooxygenase detoxifying imidacloprid and other neonicotinoid insecticides when recombinantly expressed in insect cells. However over-expression of CYP6CM1 is also known to confer cross-resistance to pymetrozine, an insecticide not belonging to the chemical class of neonicotinoids. In addition we were able to demonstrate by LC-MS/MS analysis the metabolisation of pyriproxyfen by recombinantly expressed CYP6CM1. Based on our results CYP6CM1 is one of the most versatile detoxification enzymes yet identified in a pest of agricultural importance, as it detoxifies a diverse range of chemical classes used to control whiteflies. Therefore we developed a field-diagnostic antibody-based lateral flow assay which detects CYP6CM1 protein at levels providing resistance to neonicotinoids and other insecticides. The ELISA based test kit can be used as a diagnostic tool to support resistance management strategies based on the alternation of different modes of action of insecticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Arachidonic acid metabolism in fibroblasts derived from canine myocardium

    International Nuclear Information System (INIS)

    Weber, D.R.; Prescott, S.M.

    1986-01-01

    Canine fibroblasts from normal or healing infarcted myocardium were grown in culture. The cells were morphologically indistinguishable, but the doubling time of cells from healing myocardium was 39.6 +/- 3.5 hr whereas that of normals was 24 +/- 3.7 (n=5, p 3 H]arachidonate (AA) into phospholipids. Calcium ionophore A23187 (10 μM) caused release and metabolism of [ 3 H] AA. A23187 or AA (10μM) induced production of 6-keto PGF1α, PGE2, and a hydroxy metabolite of AA. RIA of 6-keto PGF1α showed that subconfluent cells from healing myocardium produced 1202 +/- 354 pg/mg protein whereas that of normals was 551 +/- 222 (n=7, p 3 H]AA released but did not metabolize [ 3 H]AA. In coincubations, fibroblasts incorporated myocyte-derived AA. Subsequent stimulation of the fibroblasts with A23187 induced the synthesis of 6-keto PGF1α, PGE2 and a hydroxy metabolite. The fibroblast content of healing myocardium was 35-1000 times that of normal tissue (n=7). Thus even a moderate change in AA metabolism, amplified by the AA released from deteriorating myocytes, may be a significant physiologic or pathologic event

  18. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  19. Metabolism and excretion of orally and intraperitoneally administered methylarsonic acid in the hamster

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Yamato, N.; Yamamura, Y.

    1988-02-01

    A number of investigators have demonstrated that when inorganic arsenic is administered to humans and experimental animals, methylarsonic acid (MAA) is formed in vivo. Low concentrations of MAA have been detected in human organs and urine. Few studies of the metabolism and elimination of MAA have been published. Following administration of a single oral dose of MAA to human subject, it was reported that MAA was rapidly metabolized to dimethylarsinic acid (DMAA) in vivo and excreted in urine. While the elimination of MAA has been investigated experimentally in animals, nothing is known of MAA metabolism and distribution in vivo. In the present study, the metabolism of MAA was investigated following its administration to hamsters. Arsenic species deposited in selected organs and blood, and the amounts and chemical species of arsenic excreted in urine and feces were determined.

  20. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS)

    OpenAIRE

    Lee, C. Christine; Watkins, Steve M.; Lorenzo, Carlos; Wagenknecht, Lynne E.; Il?yasova, Dora; Chen, Yii-Der I.; Haffner, Steven M.; Hanley, Anthony J.

    2016-01-01

    OBJECTIVE Recent studies using untargeted metabolomics approaches have suggested that plasma branched-chain amino acids (BCAAs) are associated with incident diabetes. However, little is known about the role of plasma BCAAs in metabolic abnormalities underlying diabetes and whether these relationships are consistent across ethnic populations at high risk for diabetes. We investigated the associations of BCAAs with insulin sensitivity (SI), acute insulin response (AIR), and metabolic clearance ...

  1. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    Science.gov (United States)

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.

  2. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  3. Kynurenine acid - metabolism and regulation of kynurenine pathway

    Directory of Open Access Journals (Sweden)

    Piotr Kozłowski

    2017-07-01

    Full Text Available Kynurenic acid (KYNA was first isolated from the dog's urine in 1853 by german chemist Justus von Liebig. KYNA probably plays an important role in the pathogenesis of many neurodegenerative and psychiatric diseases. Its elevated concentration were found in the brain (post mortem or in the cerebrospinal fluid patients  with schizophrenia, bipolar disorder, Alzheimer's disease, meningitis, autoimmune diseases, inflammatory processes and memory and learning disorders. The reduced KYNA concentration is characteristic for multiple sclerosis, Parkinson's disease, Huntington's disease and epilepsy. KYNA is an organic compound naturally occurring in nature. This amino acid belongs to the group of exogenous amino acids and can be synthesized by plants and bacteria alone. The largest amount of tryptophan about 95%is  metabolised by the kynurenine pathway. Only 1% of tryptophan supplied in the diet serves to produce serotonin in the brain. The process of regulation of KYNA synthesis in both the CNS and the periphery is complicated.

  4. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Leth-Petersen, Sebastian

    2017-01-01

    )ethylamino]methyl]phenol (25I-NBOH) and to characterize the metabolites. The following approaches were used to identify the main enzymes involved in primary metabolism: incubation with a panel of CYP and monoamine oxidase (MAO) enzymes and incubation in pooled human liver microsomes (HLM) with and without specific CYP...

  5. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

    Science.gov (United States)

    Papa, S; Lorusso, M; Izzo, G; Capuano, F

    1981-02-15

    1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi

  7. Free fatty acids and their metabolism affect function and survival of podocytes

    Directory of Open Access Journals (Sweden)

    Jonas eSieber

    2014-10-01

    Full Text Available Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney diseases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free fatty acid (FFA metabolism is a characteristic of metabolically unhealthy obesity and type 2 diabetes and likely contributes to end-stage kidney disease irrespective of the underlying kidney disease. In the current review we summarize recent findings related to FFAs and altered renal FFA metabolism with a special focus on podocytes. We will outline the opposing effects of saturated and monounsaturated FFAs and a particular emphasis will be given to the underlying molecular mechanisms involving insulin resistance and endoplasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA metabolism to adapt to an altered lipid environment will be discussed.

  8. Effect of some metabolic inhibitors on citric acid production Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.K.; Bhatt, C.S.; Viswanathan, L.

    1983-09-01

    Stationary cultures of Aspergillus niger grown on a synthetic medium have been used to study the effect of some metabolic inhibitors on citric acid production. Addition of 0.05 to 1 mM sodium malonate or 0.01 to 0.1 mM potassium ferricyanide, iodoacetate, sodium azide, soldium arsenate or sodium fluoride stimulated citric acid production (3.6 to 45%), but not total titratable acids. Addition of higher concentrations (0.2 to 10 mM) of later inhibitors caused a marked inhibition of fungal growth and citric acid production. The implications of these preliminary findings are discussed. (Refs. 25).

  9. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  10. Correlation of lipid metabolism characteristics with bile acid metabolism and placental hypoxia injury in patients with intrahepatic cholestasis of pregnancy

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2017-05-01

    Full Text Available Objective: To study the correlation of lipid metabolism characteristics with bile acid metabolism and placental hypoxia injury in patients with intrahepatic cholestasis of pregnancy (ICP. Methods: ICP pregnant women and healthy pregnant women who received antenatal care and delivered in Obstetrics Department of Panzhihua Maternal and Child Health Care Hospital between May 2013 and October 2016 were collected and included in ICP group and control group respectively. Serum lipid metabolism and bile acid metabolism indexes were measured at 20 weeks, 24 weeks, 28 weeks, 32 weeks and 36 weeks of gestation; mitochondria damage molecule expression levels in placenta were determined after childbirth. Results: Serum TC, LDL-C and HDL-C levels were not different between two groups of pregnant women at 20 weeks of gestation, and serum TC and LDL-C levels of ICP group at 24 weeks, 28 weeks, 32 weeks and 36 weeks of gestation were significantly higher than those of control group while HDL-C levels were significantly lower than those of control group; serum TBA, ALT and AST levels were not different between two groups of pregnant women at 20 weeks, 24 weeks and 28 weeks of gestation, and serum TBA, ALT and AST levels of ICP group at 32 weeks and 36 weeks of gestation were significantly higher than those of control group; CCO, ATPase, SDH and Bcl-2 protein expression in placenta tissue of ICP group were significantly lower than those of control group while Bax and Caspase-3 protein expression were significantly higher than those of control group. Serum LDL-C levels at 24 weeks, 28 weeks, 32 weeks and 36 weeks of gestation were positively correlated with TBA, ALT and AST levels in serum as well as Bax and Caspase-3 protein expression in placental tissue, and negatively correlated with CCO, ATPase, SDH and Bcl-2 protein expression in placental tissue. Conclusion: Midtrimester lipid metabolism characteristics can early predict the risk of ICP and evaluate the

  11. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    Science.gov (United States)

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  12. Nucleic acid metabolism in hemopoietic tissues of polycythemic rats during long-term fractionated irradiation

    International Nuclear Information System (INIS)

    Mushkacheva, G.S.; Murzina, L.D.

    1980-01-01

    A study was made of the effect of long-term fractionated exposure with a daily dose of 50 R on the nucleic acid metabolism in hemopoietic tissues (bone marrow and spleen) of rats with erythropoiesis selectively inhibited by posttransfusion polycythemia. The comparison of present and previously obtained results enables us to conclude that the pathways of changes in the nucleic acid metabolism, which is responsible for hemopoiesis compensation during long-term exposure, are, in the main, similar for both white and red compartments of hemopoiesis

  13. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  14. In search of druggable targets for GBM amino acid metabolism

    NARCIS (Netherlands)

    Panosyan, Eduard H.; Lin, Henry J.; Koster, Jan; Lasky, Joseph L.

    2017-01-01

    Background: Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database (http://r2.amc.nl) analyses were carried out to screen for such targets among 95 AA related enzymes. Methods: First, we identified the genes that were differentially

  15. Studies of citric acid metabolism in heart muscle

    NARCIS (Netherlands)

    Meduski, J.W.

    1950-01-01

    1. The pentabromoacetone method for the determination of citric acid was studied; a modification of the procedure of Natelson, Lugovoy and Pincus was used. 2. Two tissue preparations were obtained. The first by washing with water, the second by washing with water and then with 0.5% sodium

  16. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    Science.gov (United States)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  17. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    OpenAIRE

    Anthony Samsel; Stephanie Seneff

    2013-01-01

    Glyphosate, the active ingredient in Roundup[superscript ®], is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Th...

  18. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice

    International Nuclear Information System (INIS)

    El Hadri, L.; Chanas, B.; Ghanayem, B.I.

    2005-01-01

    Methacrylonitrile (MAN) and acrylonitrile (AN) are metabolized via glutathione (GSH) conjugation or epoxide formation. We have recently shown that CYP2E1 is essential for AN epoxidation and subsequent cyanide liberation. Current studies were designed to compare the enzymatic basis of MAN vs. AN metabolism to cyanide using wild-type (WT), CYP2E1-, and mEH-null mice. Mice received a single gavage dose of 0.047, 0.095, 0.19, or 0.38 mmol/kg of MAN or AN, and blood cyanide was measured at 1 or 3 h later. Blood cyanide levels in WT mice treated with AN or MAN were dose and time dependent. At equimolar doses, significantly higher levels of cyanide were detected in the blood of MAN- vs. AN-treated mice. Further, while significant reduction in blood cyanide levels occurred in MAN-treated CYP2E1-null vs. WT mice, AN metabolism to cyanide was largely abolished in CYP2E1-null mice. Pretreatment of mice with 1-aminobenzotriazole (ABT, CYP inhibitor) demonstrated that CYPs other than CYP2E1 also contribute to MAN metabolism to cyanide. Blood cyanide levels in mEH-null mice treated with aliphatic nitriles are generally lower than levels in similarly treated WT mice. Western blot analysis showed that expression of sEH was greater in male vs. female mice. The role of various epoxide hydrolases (EHs) in the production of cyanide from aliphatic nitriles is apparently structure and dose dependent. Regardless of genotype, significantly higher levels of cyanide were measured in the blood of male vs. female mice treated with MAN or AN. In conclusion, these data showed that (1) at equimolar doses, higher blood cyanide levels were detected in mice treated with MAN vs. AN; (2) while CYP2E1 is the only enzyme responsible for AN metabolism to cyanide, other CYPs also contribute to MAN metabolism; and (3) significantly higher levels of cyanide were measured in the blood of male vs. female treated with either nitrile. Higher blood cyanide levels in male vs. female mice and in MAN- vs. AN

  19. Folic acid, one-carbon metabolism & childhood cancer

    Directory of Open Access Journals (Sweden)

    Nirmalya Roy Moulik

    2017-01-01

    Full Text Available Folate has been studied in relation to many diseases, especially cancer. Although it has been postulated to exert a dual effect on development of cancer, its role remains to be clearly defined. Its effect on cancer is the result of gene-nutrient interaction between the genes in folate metabolic pathway and dietary folate availability; mutations in genes of folate metabolism have been shown to alter individual susceptibility to certain childhood cancers as well as response to cancer chemotherapy. Although mandatory fortification of food items with folate has been initiated in some countries, many countries are yet to adopt this due to concerns about undesired adverse effects of high folate levels on health, especially cancer. However, initial reports suggest that folate fortification has led to reduction in incidence of certain childhood cancers such as neuroblastoma, wilms tumour and leukaemias. Despite studies showing folate depletion during antifolate chemotherapy and higher toxicity of chemotherapy in folate-depleted individuals, folate supplementation during cancer chemotherapy is not routinely recommended. Studies investigating the precise effect of folate supplementation during chemotherapy on both short- and long-term outcomes of cancer are needed to arrive at a consensus guideline.

  20. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  1. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    Science.gov (United States)

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  2. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    Science.gov (United States)

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  3. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  4. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Ferreri

    2016-12-01

    Full Text Available Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1; and (ii the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  5. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Hingorani, V.; Brecher, P.

    1987-01-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6- 14 C]glucose or [1- 14 C]oleic acid and the incorporation of radioactivity into 14 CO 2 , lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO 2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14 CO 2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO 2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  6. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Dalbach, Kristine Foged; Larsen, Mogens; Raun, Birgitte Marie Løvendahl

    2011-01-01

    The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated by differ......The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated...

  7. The Cytochrome P450-Mediated Metabolism Alternation of Four Effective Lignans From Schisandra chinensis in Carbon Tetrachloride-Intoxicated Rats and Patients With Advanced Hepatocellular Carcinoma.

    Science.gov (United States)

    Wu, Rongrong; Xiao, Zhiyong; Zhang, Xiaorui; Liu, Feng; Zhou, Wenxia; Zhang, Yongxiang

    2018-01-01

    It is highly valuable to study the pharmacokinetics of herbal components under the pathological condition of liver dysfunction for safe and rational use of herbal medicines. In this study, the pharmacokinetic profiles of four effective lignans from Schisandra chinensis (SC) , schisandrin, schisantherin A, deoxyshisandrin and γ-schisandrin, were investigated in carbon tetrachloride (CCl 4 )-intoxicated rats. The metabolism of the four lignans was also studied using microsomes from patients with advanced hepatocellular carcinoma. In situ intestinal and hepatic perfusions were conducted to clarify the contributions from impairments of gut and liver on the pharmacokinetics of the four schisandra lignans in CCl 4 -intoxicated rats. The metabolism in rat and human liver microsomes and transport in Caco-2 monolayer cell model were studied to reveal the key factors for the in vivo disposition of the four lignans. When SC alcoholic extract was orally administrated to CCl 4 -intoxicated rat for a short term (4 days), the pharmacokinetics of four active SC lignans was significantly changed while its hepatotherapeutic effect was not obviously observed. The plasma concentrations of the four schisandra lignans were dramatically elevated compared with the control. The Cmax, AUC and MRT were all increased or prolonged significantly while parameter CLz/F was obviously reduced in rat pretreated with CCl 4 . In hepatic perfusion study and liver microsomes incubation, it was found that the hepatic metabolism of the four lignans was markedly decreased mainly due to the activity reduction of multiple CYP450 isoenzymes involved the metabolism, which, eventually, might lead to the alternation of their pharmacokinetic profiles in CCl 4 -intoxicated rats or patients with advanced hepatocellular carcinoma. The pharmacokinetic studies of SC components in pathological situation of liver dysfunction are expected to provide useful data for rational and safe application of SC preparations in

  8. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  9. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  10. Metabolism of nonparticulate phosphorus in an acid bog lake

    International Nuclear Information System (INIS)

    Koenings, J.P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied

  11. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  12. Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely

    International Nuclear Information System (INIS)

    Koopmann, E.; Hahlbrock, K.

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H

  13. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.

    Science.gov (United States)

    Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N

    2014-06-01

    In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron

  14. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  15. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  16. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  17. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  18. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  19. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    International Nuclear Information System (INIS)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-01-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH 4 Cl x 100 g body wt -1 x day -1 . Epitrochlearis muscles were incubated with L-[1- 14 C]-valine and L-[1- 14 C]leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain α-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain α-keto acid dehydrogenase

  20. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles.

    Science.gov (United States)

    Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F

    2017-07-01

    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic changes in rat serum after administration of suberoylanilide hydroxamic acid and discriminated by SVM.

    Science.gov (United States)

    Yu, J; Wu, H; Lin, Z; Su, K; Zhang, J; Sun, F; Wang, X; Wen, C; Cao, H; Hu, L

    2017-12-01

    Suberoylanilide hydroxamic acid (SAHA) exerts marked anticancer effects via promotion of apoptosis, cell cycle arrest, and prevention of oncogene expression. In this study, serum metabolomics and artificial intelligence recognition were used to investigate SAHA toxicity. Forty rats (220 ± 20 g) were randomly divided into control and three SAHA groups (low, medium, and high); the experimental groups were treated with 12.3, 24.5, or 49.0 mg kg -1 SAHA once a day via intragastric administration. After 7 days, blood samples from the four groups were collected and analyzed by gas chromatography-mass spectrometry, and pathological changes in the liver were examined using microscopy. The results showed that increased levels of urea, oleic acid, and glutaconic acid were the most significant indicators of toxicity. Octadecanoic acid, pentadecanoic acid, glycerol, propanoic acid, and uric acid levels were lower in the high SAHA group. Microscopic observation revealed no obvious damage to the liver. Based on these data, a support vector machine (SVM) discrimination model was established that recognized the metabolic changes in the three SAHA groups and the control group with 100% accuracy. In conclusion, the main toxicity caused by SAHA was due to excessive metabolism of saturated fatty acids, which could be recognized by an SVM model.

  2. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    Directory of Open Access Journals (Sweden)

    Zhimin Yang

    Full Text Available The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA, could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera, was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1 weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid, amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid, and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose. ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense.

  3. Study of metabolism of hydrazoic acid in the purex process

    International Nuclear Information System (INIS)

    Violet, A.

    1988-03-01

    The transfer of HN 3 between different phases has been studied - It has been found that the transfer of HN 3 from aqueous solution of the reprocessing to gaz phase is a physical mechanism of desorbtion. - The limiting phenomena of the transfer of HN 3 fromt the organic to the gaseous phase, is the decomplexation of this specy with tributyl phosphate (TBP). - Chemical reactions of hydrazoic acid occurring with nitrogen oxides in the gaseous flow has shown that it is rapidly destroyed in the presence of nitrogen dioxide [fr

  4. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  5. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling.

    Science.gov (United States)

    Upton, Daniel J; McQueen-Mason, Simon J; Wood, A Jamie

    2017-01-01

    Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger , ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering.

  6. Fatty acid metabolism and deposition in subcutaneous adipose tissue of pasture and feedlot finished cattle

    Science.gov (United States)

    An experiment was conducted to evaluate the effects of pasture finishing versus high-concentrate finishing, over time, on fatty acid metabolism in Angus crossbred (n = 24) steers. Ruminal fluid, serum, and adipose tissue biopsies were obtained on d 0, 28, 84, and 140. Pasture forages and diet ingr...

  7. Metabolic syndrome in patients with morbid obesity, according to different levels of serum uric acid.

    OpenAIRE

    Hordonho, Ana Adélia Cavalcante

    2009-01-01

    Although uric acid has a character antioxidant, when in increased serum levels, has been associated in several studies with various pathological conditions, particularly with obesity, cardiovascular disease, diabetes mellitus, dyslipidemia, hyperinsulinemia and insulin resistance, this being identified as the primary change of the metabolic syndrome. However, these studies were not performed on samples formed specifically for morbid obeses, where hyperuricemia is a common findi...

  8. Metabolic Disruption Early in Life is Associated With Latent Carcinogenic Activity of Dichloroacetic Acid in Mice

    Science.gov (United States)

    Early-life environmental factors can influence later-life susceptibility to cancer. Recent evidence suggests that metabolic pathways may mediate this type of latency effect. Previously, we reported that short-term exposure to dichloroacetic acid (DCA) increased liver cancer in mi...

  9. Metabolic Interaction between Urea Cycle and Citric Acid Cycle Shunt: A Guided Approach

    Science.gov (United States)

    Pesi, Rossana; Balestri, Francesco; Ipata, Piero L.

    2018-01-01

    This article is a guided pedagogical approach, devoted to postgraduate students specializing in biochemistry, aimed at presenting all single reactions and overall equations leading to the metabolic interaction between ureagenesis and citric acid cycle to be incorporated into a two-three lecture series about the interaction of urea cycle with other…

  10. Effect of folic acid on methionine and homocysteine metabolism in end-stage renal disease

    NARCIS (Netherlands)

    Stam, F.; van Guldener, C.; ter Wee, P.M.; Jakobs, C.A.J.M.; van der Meer, K.; Stehouwer, C.D.A.

    2005-01-01

    Background. The pathogenesis of hyperhomocysteinemia in end-stage renal disease (ESRD) is unclear. Folic acid lowers, but does not normalize, the plasma homocysteine level in patients with ESRD, but its effect on whole body metabolism of homocysteine is unknown. Methods We studied the effect of 3

  11. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined

  12. EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSE

    Science.gov (United States)

    EFFECT OF DOSE ON THE EXCRETION AND METABOLISM OF MONOMETHYLARSONIC ACID IN THE MOUSEM F Hughes1, V Devesa2, B C Edwards1, C T Mitchell1, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hill, NCMonomethylar...

  13. Cardiac metabolism of 15 (p-I-123 phenyl-) pentadecanoic acid after intracoronary tracer application

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Reichmann, K.; Knopp, R.; Winkler, C.; Koischwitz, D.; Machulla, H.J.; Simon, H.

    1984-05-01

    Myocardial turnover of ..omega..-(p/sup 123/I-Phenyl-) pentadecanoic acid and release of its metabolites into the coronary sinus and peripheral blood has been studied in patients with coronary artery and valvular heart disease. After intracoronary tracer injection myocardial extraction fractions of 45-53% in control subjects were observed. In patients with coronary artery disease (CAD) normal to reduced values (34-61%) were established. Hydrophilic catabolites of I-PPA, probably p/sup 123/I-benzoic and -hippuric acid as well as small amounts of the non-metabolized tracer were found in coronary sinus and peripheral blood. Myocardial tracer uptake and clearance patterns were clearly different in normal myocardium when compared to that obtained in patients with CAD. Thus, evaluation of myocardial I-PPA metabolism might provide a new diagnostic tool for assessment of integrity of the heart's muscular metabolic function.

  14. The metabolism of phytanic acid and pristanic acid in man: a review

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Poll-The, B. T.; Saudubray, J. M.; Jakobs, C.

    1998-01-01

    The branched-chain fatty acid phytanic acid is a constituent of the diet, present in diary products, meat and fish. Degradation of this fatty acid in the human body is preceded by activation to phytanoyl-CoA and starts with one cycle of alpha-oxidation. Intermediates in this pathway are

  15. Changes in the isozymic pattern of phosphoenolpyruvate : An early step in photoperiodic control of crassulacean acid metabolism level.

    Science.gov (United States)

    Brulfert, J; Arrabaça, M C; Guerrier, D; Queiroz, O

    1979-01-01

    Two major isofunctional forms of phosphoenolpyruvate carboxylase (EC 4.1.1.31) have been separated from the leaves of Kalanchoe blossfeldiana Poelln. Tom Thumb by acrylamide gel electrophoresis and diethylaminoethyl cellulose techniques: one of the forms prevails under long-day treatment (low crassulacean acid metabolism level), the other develops under short-day treatment (high Crassulacean acid metabolism level). Molecular weights are significantly different: 175·10(3) and 186·10(3), respectively. These results indicate that two populations of phosphoenolyruvate carboxylase are present in the plant, one of which is responsible for Crassulacean acid metabolism activity under the control of photoperiod.The Crassulacean acid metabolism appears to depend on the same endogenous clock that governs other photoperiodically controlled events (e.g. flowering). The metabolic and energetic significance of this feature is discussed. It is suggested that modification in isozymic composition could be an early step in the response to photoperiodism at the metabolic level.

  16. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  17. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana

    2014-01-01

    .i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...... (pinsulin sensitivity (p... of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid...

  18. Radioiodinated PHIPA`s; metabolically trapped fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhut, M. [Heidelberg Univ. (Germany). Radiopharmaceutical Chemistry Lab.

    1998-12-31

    Radioiodinated PHIPA 3-10 [13-(4`-iodophenyl)-3-(p-phenylene)tridecanoic acid] has been developed for nuclear-cardiological investigation of coronary artery disease or cardiomyopathies of various origin. The compound features a phenylene group located within the backbone of a long-chain fatty acid. In spite of its bulky structure [{sup 123}I]PHIPA 3-10 is extracted by the myocardium in a manner similar to that for the unmodified fatty acid analogue, [{sup 123}I]IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group which prevents more than one {beta}-oxidation cycle. Only one single, rapidly formed metabolite was found in rat-heart extracts. According to comparative HPLC with synthetic metabolites and mass spectrometric analysis this metabolite was identified as [{sup 123}I]PHIPA 1-10, a by two methylene groups shortened PHIPA derivative. Formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl fransferase I inhibitor, indicating {beta}-oxidation of [{sup 123}I]PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of [{sup 123}I]PHIPA 3-10 was obtained performing density-gradient centrifugation with homogenized rat heart tissue. Labeled free PHIPA 3-10 and free metabolite peaked with the fraction containing mitochondria. With respect to its biochemical characteristics, [{sup 123}I]PHIPA 3-10 may be considered as a useful tool for nuclear cardiological investigations. (orig.) [Deutsch] Radioiodierte PHIPA 3-10 [13-(4`-Iodophenyl)-3-(p-phenylene)tridecanoic acid] wurde fuer Untersuchungen von koronaren Herzerkrankungen und Kardiomyopathien unterschiedlicher Genese entwickelt. Die Verbindung enthaelt eine in der Fettsaeurekette lokalisierte Phenylengruppe. Obwohl dieses Strukturelement raumfordernd ist, wird [{sup 123}I]PHIPA 3-10 aehnlich gut vom Herzmuskel aufgenommen, wie die unmodifizierte Fettsaeure [{sup 123}I]IPPA. Die auffallende

  19. The association between concentration of Uric Acid and metabolic syndrome among adolescents

    Directory of Open Access Journals (Sweden)

    Homeira Rashidi

    2015-11-01

    Full Text Available Background: Metabolic syndromes are known as a set of risk factors for the development of cardio-vascular disease and diabetes in the individual. The association between concentration of uric acid and metabolic syndrome in adolescents has yet to be established thoroughly. The aim of this study was to investigate the relationship between uric acid and metabolic syndrome in a sample of adolescents. Methods: This cross-sectional study was conducted from September 23, 2009 to September 22, 2010 in Jundishapur University of Medical Sciences, Ahvaz, Iran. In this study, 240 individuals aged 10-19 years were randomly selected among participants of the Ahvaz MetS study (120 subjects normal and 120 subjects MetS. The serum levels of UA were measured by a colorimetric method. In the normal group, anyone with abdominal obesity, high systolic or diastolic blood pressure, High-density lipoprotein (HDL≤40 mg/dl, TG≤110 mg/dl, fasting blood sugar (FBS≤100 mg/dl or diabetes was excluded from the study. History of Anticonvulsive drugs or steroids use was the criteria for exclusion for both groups. Results: Of the 240 subjects aged a mean of 14.95±2.64 years, mean of uric acid in metabolic syndrome group was 4.8±1.4 mg/dl and in the control group was 4.18±1.01 mg/d (P=0.001. Participants were divided into three groups based on uric acid levels: ≤4.9 mg/dl, 4.9-5.7 mg/dl and >5.7 mg/dl. The risk of metabolic syndrome was significantly higher in third group of uric acid than the second and first group (odds ratio [OR], 3.7; 95% confidence interval [CI], 1.70 - 8.04 and (OR, 5.9; 95% CI, 2.42-14.35, P<0.001. In addition, uric acid level was inversely associated with hyperglycemia. The ORs of hypertriglyceridemia for the second and third group of uric acid were 4.36 (95% CI, 2.01- 9.47 5.75 (95% CI, 2.43-13.61 respectively, compared with lowest group of UA. Conclusion: The results showed that hyperuricemia was significantly linked with increased risk for

  20. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  1. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity.

    Science.gov (United States)

    Mueller, Michaela; Thorell, Anders; Claudel, Thierry; Jha, Pooja; Koefeler, Harald; Lackner, Carolin; Hoesel, Bastian; Fauler, Guenter; Stojakovic, Tatjana; Einarsson, Curt; Marschall, Hanns-Ulrich; Trauner, Michael

    2015-06-01

    Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  3. Hyperlipidaemia is associated with increased insulin-mediated glucose metabolism, reduced fatty acid metabolism and normal blood pressure in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Koopmans, S.J.; Jong, M.C.; Que, I.; Dahlmans, V.E.H.; Pijl, H.; Radder, J.K.; Frölich, M.; Havekes, L.M.

    2001-01-01

    Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial

  4. Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Cicerchi, Christina; Li, Nanxing; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Le, Myphuong; Garcia, Gabriela E.; Thomas, Jeffrey B.; Rivard, Christopher J.; Andres-Hernando, Ana; Hunter, Brandi; Schreiner, George; Rodriguez-Iturbe, Bernardo; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Excessive dietary fructose intake may have an important role in the current epidemics of fatty liver, obesity and diabetes as its intake parallels the development of these syndromes and because it can induce features of metabolic syndrome. The effects of fructose to induce fatty liver, hypertriglyceridemia and insulin resistance, however, vary dramatically among individuals. The first step in fructose metabolism is mediated by fructokinase (KHK), which phosphorylates fructose to fructose-1-phosphate; intracellular uric acid is also generated as a consequence of the transient ATP depletion that occurs during this reaction. Here we show in human hepatocytes that uric acid up-regulates KHK expression thus leading to the amplification of the lipogenic effects of fructose. Inhibition of uric acid production markedly blocked fructose-induced triglyceride accumulation in hepatocytes in vitro and in vivo. The mechanism whereby uric acid stimulates KHK expression involves the activation of the transcription factor ChREBP, which, in turn, results in the transcriptional activation of KHK by binding to a specific sequence within its promoter. Since subjects sensitive to fructose often develop phenotypes associated with hyperuricemia, uric acid may be an underlying factor in sensitizing hepatocytes to fructose metabolism during the development of fatty liver. PMID:23112875

  5. beta-Methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart.

    Science.gov (United States)

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1989-01-01

    The use of 15-p-iodophenyl-beta-methyl-pentadecanoic acid (beta Me-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both beta Me-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In contrast, beta Me-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond beta Me-IPPA-CoA in the oxidative pathway.

  6. β-methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart

    International Nuclear Information System (INIS)

    DeGrado, T.R.; Holden, J.E.; Ng, C.K.; Raffel, D.M.; Gatley, S.J.

    1989-01-01

    The use of 15-p-iodophenyl-β-methyl-pentadecanoic acid (βMe-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both βMe-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In contrast, βMe-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond βMe-IPPA-CoA in the oxidative pathway. (orig.)

  7. beta. -methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart

    Energy Technology Data Exchange (ETDEWEB)

    DeGrado, T.R.; Holden, J.E.; Ng, C.K.; Raffel, D.M.; Gatley, S.J.

    1989-02-01

    The use of 15-p-iodophenyl-..beta..-methyl-pentadecanoic acid (..beta..Me-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both ..beta..Me-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2(5(4-chlorophenyl)pentyl)oxirane-2-carboxylate (POCA). In contrast, ..beta..Me-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond ..beta..Me-IPPA-CoA in the oxidative pathway.

  8. L-[4-11C]aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism

    International Nuclear Information System (INIS)

    Barrio, J.R.; Egbert, J.E.; Henze, E.; Schelbert, H.R.; Baumgartner, F.J.

    1982-01-01

    Sterile, pyrogen-free L-[4- 11 C]aspartic acid was prepared from 11 CO 2 using phosphoenolpyruvate carboxylase and glutamic/oxaloacetic acid transaminase immobilized on Sepharose supports to determine if it is a useful indicator for in vivo, noninvasive determination of myocardial metabolism. An intracoronary bolus injection of L-[4- 11 C]aspartic acid into dog myocardium showed a triexponential clearance curve with maximal production of 11 CO 2 100 s after injection. Inactivation of myocardial transaminase activity modified the tracer clearance and inhibited the production of 11 CO 2 . Positron-computed tomography imaging showed that the 11 C activities retained in rhesus monkey myocardium are higher than those observed in dog heart after intravenous injection of L-[4- 11 C]aspartic acid. These findings demonstrated the rapid incorporation of the carbon skeleton of L-aspartic acid into the tricarboxylic acid cycle after enzymatic transamination in myocardium and suggested that L-[4- 11 C]aspartic acid could be of value for in vivo, noninvasive assessment of local myocardial metabolism

  9. The metabolism of tritiated oleic acid in the rat. A radiological protection study

    International Nuclear Information System (INIS)

    Jeanmaire, Lucien; Vernois, Yvette; Nazard, Raymonde.

    1979-04-01

    The metabolism of 3 H-labelled oleic acid has been studied in the rat during 600 days. The results of urinary and fecal excretions, of the retention of the total and fixed activities in 25 tissues or organs and the cumulative activity from day 4 to 616 are discussed. Oleic acid is more widely spread than other labelled molecules studied previously both as regard excretion or retention. During the first 4 days one can grossly admit that half the activity is fixed to water and half is stored in the adipose tissues which it leaves quickly first, then more slowly with a half-life of 200 days about. For some ten tissues, the cumulative activity due to the fixed fraction exceeds the cumulative activity due to tritiated water obtained by metabolism of oleic acid [fr

  10. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.

    Science.gov (United States)

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M; Nachtmann, C

    1999-09-01

    Monensin (MON) is an ionophore antibiotic widely used in veterinary practice as a coccidiostatic or a growth promoter. The aims of this study were to characterize the P-450 isoenzyme(s) involved in the biotransformation of the ionophore and to investigate how this process may be affected by tiamulin and other chemotherapeutic agents known to produce toxic interactions with MON when administered concurrently in vivo. In liver microsomes from untreated rats (UT) or from rats pretreated, respectively, with ethanol (ETOH), beta-naphthoflavone (betaNAF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), or dexamethasone (DEX), the rate of MON O-demethylation was the following: DEX > PCN > PB > UT = ETOH > betaNAF; similar results were obtained by measuring total MON metabolism. In addition, the extent of triacetyloleandomycin-mediated P-450 complexes was greatly reduced by the prior addition of 100 microM MON. In DEX-treated microsomes, MON O-demethylation was found to fit monophasic Michaelis-Menten kinetics (K(M) = 67.6 +/- 0.01 microM; V(max) = 4.75 +/- 0.76 nmol/min/mg protein). Tiamulin markedly inhibited this activity in an apparent competitive manner, with a calculated K(i) (Dixon plot) of 8.2 microM and an IC(50) of about 25 microM. At the latter concentration, only ketoconazole or metyrapone, which can bind P-450 3A, inhibited MON O-demethylase to a greater extent than tiamulin, whereas alpha-naphthoflavone, chloramphenicol, or sulphametasine was less effective. These results suggest that P-450 3A plays an important role in the oxidative metabolism of MON and that compounds capable of binding or inhibiting this isoenzyme could be expected to give rise to toxic interactions with the ionophore.

  11. Metabolic labeling of sialic acids in tissue culture cell lines: methods to identify substituted and modified radioactive neuraminic acids

    International Nuclear Information System (INIS)

    Diaz, S.; Varki, A.

    1985-01-01

    The parent sialic acid N-acetylneuraminic acid can be modified or substituted in various ways, giving rise to a family of more than 25 compounds. The definitive identification of these compounds has previously required isolation of nanomole amounts for mass spectrometry or NMR. We have explored the possibility of using the known metabolic precursors of the sialic acids, particularly N-acetyl-[6-3H]mannosamine, to label and identify various forms of sialic acids in tissue culture cells. Firstly, we defined several variables that affect the labeling of sialic acids with N-acetyl-[6-3H]mannosamine. Secondly, we have devised a simple screening method to identify cell lines that synthesize substituted or modified sialic acids. We next demonstrate that it is possible to definitively identify the natures of the various labeled sialic acids without the use of mass spectrometry, even though they are present only in tracer amounts. The methods used include paper chromatography, analytical de-O-acetylation, periodate release of the 9-3H as [3H]formaldehyde (which is subsequently converted to a specific 3H-labeled chromophore), acylneuraminate pyruvate lyase treatment with identification of [3H]acylmannosamines, gas-liquid chromatography with radioactive detection, and two new high-pressure liquid chromatography methods utilizing the amine-adsorption:ion suppression and ion-pair principles. The use of an internal N-acetyl-[4-14C]neuraminic acid standard in each of these methods assures precision and accuracy. The combined use of these methods now allows the identification of radioactive tracer amounts of the various types of sialic acids in well-defined populations of tissue culture cells; it may also allow the identification of hitherto unknown forms of sialic acids

  12. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    Science.gov (United States)

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  13. Lysophosphatidic acid metabolism and elimination in cardiovascular disease

    Science.gov (United States)

    Salous, Abdelghaffar Kamal

    The bioactive lipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are present in human and mouse plasma at a concentration of ~0.1-1 microM and regulate physiological and pathophysiological processes in the cardiovascular system including atherothrombosis, intimal hyperplasia, and immune function, edema formation, and permeability. PPAP2B, the gene encoding LPP3, a broad activity integral membrane enzyme that terminates LPA actions in the vasculature, has a single nucleotide polymorphism that been recently associated with coronary artery disease risk. The synthesis and signaling of LPA and S1P in the cardiovascular system have been extensively studied but the mechanisms responsible for their elimination are less well understood. The broad goal of this research was to examine the role of LPP3 in the termination of LPA signaling in models of cardiovascular disease involving vascular wall cells, investigate the role of LPP3 in the elimination of plasma LPA, and further characterize the elimination of plasma LPA. The central hypothesis is that LPP3 plays an important role in attenuating the pathological responses to LPA signaling and that it mediates the elimination of exogenously applied bioactive lipids from the plasma. These hypotheses were tested using molecular biological approaches, in vitro studies, synthetic lysophospholipid mimetics, modified surgical procedures, and mass spectrometry assays. My results indicated that LPP3 played a critical role in attenuating LPA signaling mediating the pathological processes of intimal hyperplasia and vascular leak in mouse models of disease. Additionally, enzymatic inactivation of lysophospholipids by LPP and PLA enzymes in the plasma was not a primary mechanism for the rapid elimination of plasma LPA and S1P. Instead, evidence strongly suggested a transcellular uptake mechanism by hepatic non-parenchymal cells as the predominant mechanism for elimination of these molecules. These results support a model in

  14. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

    Science.gov (United States)

    de Souza, Camila O; Teixeira, Alexandre A S; Biondo, Luana A; Lima Junior, Edson A; Batatinha, Helena A P; Rosa Neto, Jose C

    2017-08-01

    Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. /sup 1/H-NMR urinalysis. Simultaneous screening of inborn errors of metabolism of amino acid and organic acid disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hideaki; Yamaguchi, Shuichi

    1988-02-01

    In an effort to examine the usefulness of /sup 1/H-nuclear magnetic resonance (NMR) urinalysis in the diagnosis of congenital metabolic disorders, 70 kinds of urinary metabolites were analysed in relation to the diagnosis of inborn errors of amino acid and organic acid disorders. Homogated decoupling (HMG) method failed to analyze six metabolites within the undetectable range. When non-decoupling method (NON), in which the materials are dissolved in dimethyl sulfoxide, was used, the identification of signals became possible. The combination of HMG and NON methods was, therefore, considered to identify all of the metabolites. When the urine samples, which were obtained from patients with hyperglycerolemia, hyperornithinemia, glutaric acidemia type II, or glycerol kinase deficiency, were analysed by using both HMG and NON methods, abnormally increased urinary metabolites were detected. /sup 1/H-NMR urinalysis, if used in the combination of HMG and NON methods, may allow simultanenous screening of inborn errors of metabolism of amino acid and organic acid disorders. (Namekawa, K.).

  16. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  17. Ascorbic acid (AA) metabolism in protection against radiation damage

    International Nuclear Information System (INIS)

    Rose, R.C.; Koch, M.J.

    1986-01-01

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with 14 C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the 14 C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of 14 C-AFR disproportionate, with the net effect of 14 C-dehydroascorbic acid formation from 14 C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23 0 C in the presence of 15 μM 14 C-AA. Samples of supernatant maintained at 100 0 C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues

  18. Fatty acid metabolism, energy expenditure and insulin resistance in muscle.

    Science.gov (United States)

    Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W; Bruce, Clinton R

    2014-02-01

    Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.

  19. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    Science.gov (United States)

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  20. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  1. A diagnostic algorithm for metabolic myopathies.

    Science.gov (United States)

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  2. Roles of renal ammonia metabolism other than in acid-base homeostasis.

    Science.gov (United States)

    Weiner, I David

    2017-06-01

    The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid-base roles of renal ammonia metabolism is discussed in this review.

  3. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach.

    Science.gov (United States)

    Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2015-01-01

    Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation.

    Science.gov (United States)

    Ramírez-Rodríguez, Alejandra M; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Acuña Ortega, Natalhie

    2017-09-01

    To evaluate the effect of ursolic acid on metabolic syndrome, insulin sensitivity, and inflammation, a randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (30-60 years) with a diagnosis of metabolic syndrome without treatment. They were randomly assigned to two groups of 12 patients, each to receive orally 150 mg of ursolic acid or homologated placebo once a day for 12 weeks. Before and after the intervention, the components of metabolic syndrome, insulin sensitivity (Matsuda index), and inflammation profile (interleukin-6 and C-reactive protein) were evaluated. After ursolic acid administration, the remission of metabolic syndrome occurred in 50% of patients (P = .005) with significant differences in body weight (75.7 ± 11.5 vs. 71 ± 11 kg, P = .002), body mass index (BMI) (29.9 + 3.6 vs. 24.9 ± 1.2 kg/m 2 , P = .049), waist circumference (93 ± 8.9 vs. 83 + 8.6 cm, P = .008), fasting glucose (6.0 ± 0.5 vs. 4.7 ± 0.4 mmol/L, P = .002), and insulin sensitivity (3.1 ± 1.1 vs. 4.2 ± 1.2, P = .003). Ursolic acid administration leads to transient remission of metabolic syndrome, reducing body weight, BMI, waist circumference and fasting glucose, as well as increasing insulin sensitivity.

  5. Association of Branched and Aromatic Amino Acids Levels with Metabolic Syndrome and Impaired Fasting Glucose in Hypertensive Patients

    OpenAIRE

    Weng, Liming; Quinlivan, Eoin; Gong, Yan; Beitelshees, Amber L.; Shahin, Mohamed H.; Turner, Stephen T.; Chapman, Arlene B.; Gums, John G.; Johnson, Julie A.; Frye, Reginald F.; Garrett, Timothy J.; Cooper-DeHoff, Rhonda M.

    2015-01-01

    Background: The three branched amino acids (valine, leucine, and isoleucine) and two aromatic amino acids (tyrosine and phenylalanine) have been associated with many adverse metabolic pathways, including diabetes. However, these associations have been identified primarily in otherwise healthy Caucasian populations. We aimed to investigate the association of this five-amino-acid signature with metabolic syndrome and impaired fasting glucose (IFG) in a hypertensive cohort of Caucasian and Afric...

  6. Research progress in roles of gut microbiota and bile acid metabolism in development and progression of NAFLD

    Directory of Open Access Journals (Sweden)

    LU Xu

    2014-11-01

    Full Text Available With the prevalence of obesity and metabolic syndrome, the incidence of nonalcoholic fatty liver disease (NAFLD is increasing year by year. Studies have uncovered the important roles of gut microbiota and bile acid metabolism in the development and progression of NAFLD. The roles of gut microbiota, as well bile acid and bile acid receptors, in the development and progression of NAFLD are highlighted.

  7. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  8. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Science.gov (United States)

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  9. Retinoic Acid-Related Orphan Receptors (RORs: Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Directory of Open Access Journals (Sweden)

    Donald N. Cook

    2015-12-01

    Full Text Available In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs. We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.

  10. Metabolism of 15(p123I iodophenyl-)pentadecanoic acid in heart muscle and noncardiac tissues

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Winkler, C.; Machulla, H.J.; Knust, J.

    1985-01-01

    The uptake and turnover of W(p 123 I iodophenyl-)pentadecanoic acid (I-PPA), a radioiodinated free-fatty-acid analog, was examined in the heart, lung, liver, kidneys, spleen, and skeletal muscle of rats. At 2 min post injection, a high cardiac uptake of 4.4% dose per gram had already been achieved; this was followed by a rapid, two-component, tracer clearance. The kinetics of tissue concentrations of labeled hydrophilic catabolites indicated a rapid oxidation of I-PPA and the subsequent washout of I-PPA catabolites from heart-muscle tissue. The fractional distribution of the labeled cardiac lipids compared favorably with previously reported values for 3 H-oleic- or 14 C-palmitic-acid-labeled myocardial lipids. Typical patterns of I-PPA metabolism were observed in tissues; dedpending on primary fatty-acid oxidation, lipid metabolism regulation, or I-PPA-catabolite excretion. The tissue concentrations and kinetics of I-PPA and its metabolites in the heart muscle indicated that general pathways of cardiac-lipid metabolism are traced by this new γ-emitting isotope-labeled radiopharmaceutical. (orig.)

  11. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    Science.gov (United States)

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  12. Differential stimulation of luminol-enhanced chemiluminescence (CL) and arachidonic acid metabolism in rat peritoneal neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, R.J.; Adams, L.M.; Cullinan, C.A.; Berkenkopf, J.W.; Weichman, B.M.

    1986-03-05

    Phorbol 12-myristate, 13-acetate (PMA) induced the production of radical oxygen species (ROS) from rat peritoneal neutrophils as assessed by CL. ROS generation occurred in a time- (maximum at 13.5 min) and dose- (concentration range of 1.7-498 nM) related fashion. However, 166 nM PMA did not induce either cyclooxygenase (CO) or lipoxygenase (LPO) product formation by 20 min post-stimulation. Conversely, A23187, at concentrations between 0.1 and 10 ..mu..M, stimulated both pathways of arachidonic acid metabolism, but had little or no effect upon ROS production. When suboptimal concentrations of PMA (5.5 nM) and A23187 (0.1-1 ..mu..M) were coincubated with the neutrophils, a synergistic ROS response was elicited. However, arachidonic acid metabolism in the presence of PMA was unchanged relative to A12187 alone. Nordihydroguaiaretic acid (NDGA) inhibited both PMA-induced CL (IC/sub 50/ = 0.9 ..mu..M) and A23187-induced arachidonic acid metabolism (IC/sub 50/ = 1.7 ..mu..M and 6.0 ..mu..M for LPO and CO, respectively). The mixed LPO-CO inhibitor, BW755C, behaved in a qualitatively similar manner to NDGA, whereas the CO inhibitors, indomethacin, piroxicam and naproxen had no inhibitory effect on ROS generation at concentrations as high as 100 ..mu..M. These results suggest that NDGA and BW755C may inhibit CL and arachidonic acid metabolism by distinct mechanisms in rat neutrophils.

  13. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    International Nuclear Information System (INIS)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-01-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E 2 (PGE 2 ) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B 4 (LTB 4 ). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser 241 ), phospho-Akt (Thr 308 ), phospho-Bad (Ser 136 ), and Bcl-x L expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE 2 , LTB 4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr 308 ). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in

  14. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Biochemical studies on the effect of fluoride on higher plants. I. Metabolism of carbohydrates, organic acids and amino acids. [Glycine max var. Hawkeye

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    Metabolic processes associated with free sugars, organic acids and amino acids in higher plants subjected to fluoride fumigation were studied quantitatively. Fluoride-fumigated leaves contained more reducing sugars and less sucrose than the normal leaves. This result suggested inhibition of sucrose synthesis by fluoride. Necrotic leaves contained increased total concentrations of organic acids, which were mostly attributable to malic acid, malonic acid and citric acid. The greater increase in malic acid relative to that of citric acid was the reverse of results observed in chlorotic tissue. Necrotic leaves contained enhanced amounts of free amino acids. The greatest increase occurred in the concentration of asparagine and might be related to the increased respiratory rate of necrotic leaves. Pipecolic acid accumulated in large quantities in nicrotic tissue and was not detected in normal leaves. The accumulation of organic acids and amino acids in leaves during fluoride fumigation was evidenced by a lowered respiratory quotient.

  16. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads

    DEFF Research Database (Denmark)

    Koistinen, Ville M; Nordlund, Emilia; Katina, Kati

    2017-01-01

    in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only......Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation...

  17. A complex of cardiac cytochrome c1 and cytochrome c.

    Science.gov (United States)

    Chiang, Y L; Kaminsky, L S; King, T E

    1976-01-10

    The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of

  18. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  19. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    International Nuclear Information System (INIS)

    Popova, L.P.; Tsonev, T.D.; Vaklinova, S.G.

    1987-01-01

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14 CO 2 into glycolic acid, glycine, and serine, while 14 C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO -6 molar while the CO 2 -compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  20. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  1. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  2. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Ke, Hangjun; Lewis, Ian A; Morrisey, Joanne M; McLean, Kyle J; Ganesan, Suresh M; Painter, Heather J; Mather, Michael W; Jacobs-Lorena, Marcelo; Llinás, Manuel; Vaidya, Akhil B

    2015-04-07

    New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Metabolic variations of fatty acid in isolated rat heart reperfused after a transient global ischemia

    International Nuclear Information System (INIS)

    Huang Gang; Michel Comet; Zhao Huiyang; Zhu Cuiying; Yuan Jimin

    1998-01-01

    Purpose: The fatty acid metabolism and the effect of glucose on it were studied in isolated and reperfused rat heat. Methods: 32 isolated working rat hearts were perfused in Langengdorff device with modified Krebs and were divided into normal and ischemia-reperfused group. Each group was also classified into two subgroups, modified krebs with or without glucose subgroup. 131 I-HA was injected into aorta of isolated working rat heart and then the radio-residue curves were acquired. Results: When the isolated rat hearts were perfused with krebs plus glucose, the catabolism of fatty acid was significantly decreased in normal group, but a remarkable increase of fatty acid catabolism was found in ischemia-reperfused group. While the isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat heart was less than that in normal group. Conclusions: Transient ischemia damages the catabolism of myocardial fatty acid in mitochondria in some degree. In normal isolated working rat heart, the principal energy source is glucose. However, the major energy source is switched to catabolism of fatty acid in ischemia-reperfused isolated rat heart. This phenomenon may be related to compensative increase of fatty acid catabolism for replenishing the loss of energy during ischemia

  4. Amino Acid Metabolism in Acute Renal Failure: Influence of Intravenous Essential L-Amino Acid Hyperalimentation Therapy

    Science.gov (United States)

    Abel, Ronald M.; Shih, Vivian E.; Abbott, William M.; Beck, Clyde H.; Fischer, Josef E.

    1974-01-01

    A solution of 8 essential I-amino acids and hypertonic dextrose was administered to 5 patients in acute postoperative renal failure in a program of hyperalimentation designed to decrease the patient's catabolic state and to accrue certain metabolic benefits. A sixth patient receiving intravenous glucose alone served as a control. The pretreatment plasma concentrations of amino acids in all 6 patients did not differ significantly from normal; following intravenous essential amino acids at a dose of approximately 12.6 gm/24 hours, no significant elevations out of the normal range of these substances occurred. Since urinary excretion rates did not dramatically increase, urinary loss was excluded as a possible cause for the failure of increase of plasma concentrations. The results suggest that the administration of an intravenous solution of 1-amino acids and hypertonic dextrose is associated with rapid clearance from the blood of these substances and, with a failure of increased urinary excretion, indirect evidence of amino acid utilization for protein synthesis has been obtained. Histidine supplementation in patients with acute renal failure is probably unnecessary based on the lack of significant decreases in histidine concentrations in these patients. PMID:4850497

  5. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR

    Directory of Open Access Journals (Sweden)

    Kavita Jadhav

    2018-03-01

    Full Text Available Objectives: Activation of the bile acid (BA receptors farnesoid X receptor (FXR or G protein-coupled bile acid receptor (GPBAR1; TGR5 improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. Methods: Wild-type (WT, Tgr5−/−, Fxr−/−, Apoe−/− and Shp−/− mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. Results: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD. Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (CEBPα as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP whereas the inhibition of CEBPα by FXR was SHP-independent. Conclusions: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders. Keywords: Farnesoid X receptor, TGR5, Atherosclerosis, Obesity, NAFLD

  6. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    Science.gov (United States)

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate

  7. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  8. Metabolism of very long-chain Fatty acids: genes and pathophysiology.

    Science.gov (United States)

    Sassa, Takayuki; Kihara, Akio

    2014-02-01

    Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.

  9. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Directory of Open Access Journals (Sweden)

    Jiana Chen

    Full Text Available A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  10. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-08-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid /sup 14/C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides.

  11. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    International Nuclear Information System (INIS)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-01-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid 14 C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides. (orig.)

  12. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Science.gov (United States)

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  13. Angiotensin-converting enzyme inhibition improves cardiac fatty acid metabolism in patients with congestive heart failure.

    Science.gov (United States)

    Yamauchi, S; Takeishi, Y; Minamihaba, O; Arimoto, T; Hirono, O; Takahashi, H; Miyamoto, T; Nitobe, J; Nozaki, N; Tachibana, H; Watanabe, T; Fukui, A; Kubota, I

    2003-08-01

    This study aimed to examine whether angiotensin-converting enzyme (ACE) inhibition improved cardiac fatty acid metabolism in patients with congestive heart failure (CHF). Myocardial 123I-beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging was performed in 25 patients with CHF and in 10 control subjects. Myocardial 123I-BMIPP images were obtained 30 min and 4 h after tracer injection. The heart-to-mediastinum (H/M) ratio of 123I-BMIPP uptake and the washout rate of 123I-BMIPP from the myocardium were calculated. Patients were given enalapril for 6 months, and 123I-BMIPP imaging was repeated. H/M ratios on early and delayed images were lower in CHF patients than in normal controls (Pacid metabolism by ACE inhibition may represent a new mechanism for the beneficial effect of this therapy in heart failure.

  14. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Maria Faltynowicz

    2014-01-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  15. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  16. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    2014-01-01

    (NCFM) on the intestinal metabolome (jejunum, caecum, and colon) in mice by comparing NCFM mono-colonized (MC) mice with GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice...... by deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α...

  17. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-01-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  18. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants.

    Science.gov (United States)

    Zhu, Guangxu; Xiao, Huayun; Guo, Qingjun; Zhang, Zhongyi; Zhao, Jingjing; Yang, Dan

    2018-08-30

    Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg -1 ) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalum crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Are polyamines involved in the induction and regulation of the Crassulacean acid metabolism?

    Science.gov (United States)

    Morel, C; Villanueva, V R; Queiroz, O

    1980-10-01

    Leaves of plants with Crassulacean acid metabolism (CAM) were analyzed for variation in the content of polyamines in connection with the metabolism of malic acid in the dark and in the light, and with the induction of full-CAM activity. Under conditions (long days) resulting in extremely low CAM activity, young leaves of K. blossfeldiana have very low content in the polyamine-precursor arginine and in putrescine. The content in these two substances was increased dramatically by full-CAM induction with short days. During the course of the night/day cycle two peaks of putrescine content were observed in leaves of Kalanchoe blossfeldiana Poelln. Tom Thumb performing full-CAM operation: a large increase occurs toward the end of the day and the first half of the night, and its kinetics corresponds to the increase in the rate of malic acid synthesis; another peak, very sharp, appears during the first hours of the day, concomitant with the time of release of malic acid from the vacuole into the cytoplasm. In the case of Bryophyllum daigremontianum Berger similar variations were observed for the content in spermidine. These results support the hypothesis that polyamines could be involved in countering the tendency toward acidification of the cytoplasm at those moments of CAM operation at which the local concentration of malic acid is increased (i.e., during active synthesis in the dark and during the efflux from the vacuole in the light).

  20. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  1. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  2. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  3. Free fatty acid receptors and their role in regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  4. Time-course of myocardial perfusion and fatty acid metabolism after coronary reperfusion

    International Nuclear Information System (INIS)

    Sochor, H.; Pachinger, O.; Ogris, E.; Probst, P.; Kaindl, F.

    1985-01-01

    To investigate the relationship and time-course of myocardial perfusion and behaviour of fatty acid uptake and clearance following reperfusion, the authors studied 19 patients after successful intracoronary thrombolysis with Tl-201 and I-123 hepta-decanoic acid (HDA) and planar imaging. Pts were studied acute (A: 48 hours), early (E:6-8 days) and late (L:6-12 months). %-defect size and relative tracer uptake were determined for both markers as well as t1/2 of the early clearance phase for HDA. Late Tl was done as stress test study after dipyridamole infusion. As in a previous report acute HDA uptake-defects were larger than Tl (38 +- 10% vs 24 +- 9%, p<0.05) suggesting a larger area of metabolic impairment than outlined by perfusion. HDA and Tl uptake at A correlated significantly (p<0.01, r=0.86) but HDA uptake was 19% lower than Tl and not different at E and L. Tl stress studies exhibited in 74% reversible ischemia in the area of ''metabolic recovery''. The authors conclude that early after reperfusion uptake of HDA is frequently impaired despite improved perfusion suggesting metabolic derangement showing a slow recovery over time. A multiple tracer approach including metabolic markers may improve the characterization of reperfused myocardium

  5. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.