WorldWideScience

Sample records for acid metabolic genes

  1. Analysis of the aspartic acid metabolic pathway using mutant genes.

    Science.gov (United States)

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  2. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  3. [Gene mining of sulfur-containing amino acid metabolic enzymes in soybean].

    Science.gov (United States)

    Qiu, Hongmei; Hao, Wenyuan; Gao, Shuqin; Ma, Xiaoping; Zheng, Yuhong; Meng, Fanfan; Fan, Xuhong; Wang, Yang; Wang, Yueqiang; Wang, Shuming

    2014-09-01

    The genes of sulfur-containing amino acid synthetases in soybean are essential for the synthesis of sulfur-containing amino acids. Gene mining of these enzymes is the basis for the molecular assistant breeding of high sulfur-containing amino acids in soybean. In this study, using software BioMercator2.1, 113 genes of sulfur-containing amino acid enzymes and 33 QTLs controlling the sulfur-containing amino acids content were mapped onto Consensus Map 4.0, which was integrated by genetic and physical maps of soybean. Sixteen candidate genes associated to the synthesis of sulfur-containing amino acids were screened based on the synteny between gene loci and QTLs, and the effect values of QTLs. Through a bioinformatic analysis of the copy number, SNP information, and expression profile of candidate genes, 12 related enzyme genes were identified and mapped on 8 linkage groups, such as D1a, M, A2, K, and G. The genes corresponding to QTL regions can explain 6%?38.5% genetic variation of sulfur-containing amino acids, and among them, the indirect effect values of 9 genes were more than 10%. These 12 genes were involved in sulfur-containing amino acid metabolism and were highly expressed in the cotyledons and flowers, showing an abundance of SNPs. These genes can be used as candidate genes for the development of functional markers, and it will lay a foundation for molecular design breeding in soybean.

  4. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Science.gov (United States)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  5. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Science.gov (United States)

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes.

  6. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil.

    Science.gov (United States)

    Gillies, Peter J; Bhatia, Sujata K; Belcher, Leigh A; Hannon, Daniel B; Thompson, Jerry T; Vanden Heuvel, John P

    2012-08-01

    Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation.

  7. Regulation of inflammatory and lipid metabolism genes by eicosapentaenoic acid-rich oil[S

    Science.gov (United States)

    Gillies, Peter J.; Bhatia, Sujata K.; Belcher, Leigh A; Hannon, Daniel B.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2012-01-01

    Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation. PMID:22556214

  8. The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2014-01-01

    Full Text Available Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs of genes in the folic acid pathway on homocysteine (Hcy metabolism. Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA and support vector machine (SVM regressions were used to analyze the joint effects of SNPs on the Hcy level. Results. SNPs of MTHFR (rs1801133 and rs3733965 were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133, SNPs of RFC1 (rs1051266, TCN2 (rs9606756, BHMT (rs3733890, and CBS (rs234713 and rs2851391 were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC (r=0.247. The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P=0.000. Moreover, this difference was even more significant in moderate and high levels of folic acid. Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid.

  9. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-10-31

    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  10. The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism.

    Science.gov (United States)

    Brämer, C O; Steinbüchel, A

    2001-08-01

    From Ralstonia eutropha HF39 null-allele mutants were created by Tn5 mutagenesis and by homologous recombination which were impaired in growth on propionic acid and levulinic acid. From the molecular, physiological and enzymic analysis of these mutants it was concluded that in this bacterium propionic acid is metabolized via the methylcitric acid pathway. The genes encoding enzymes of this pathway are organized in a cluster in the order prpR, prpB, prpC, acnM, ORF5 and prpD, with prpR transcribed divergently from the other genes. (i) prpC encodes a 2-methylcitric acid synthase (42720 Da) as shown by the measurement of the respective enzyme activity, complementation of a prpC mutant of Salmonella enterica serovar Typhimurium and high sequence similarity. (ii) For the translational product of acnM the function of a 2-methyl-cis-aconitic acid hydratase (94726 Da) is proposed. This protein and also the ORF5 translational product are essential for growth on propionic acid, as revealed by the propionic-acid-negative phenotype of Tn5-insertion mutants, and are required for the conversion of 2-methylcitric acid into 2-methylisocitric acid as shown by the accumulation of the latter, which could be purified as its calcium salt from the supernatants of these mutants. In contrast, inactivation of prpD did not block the ability of the cell to use propionic acid as carbon and energy source, as shown by the propionic acid phenotype of a null-allele mutant. It is therefore unlikely that prpD from R. eutropha encodes a 2-methyl-cis-aconitic acid dehydratase as proposed recently for the homologous prpD gene from S. enterica. (iii) The translational product of prpB encodes 2-methylisocitric acid lyase (32314 Da) as revealed by measurement of the respective enzyme activity and by demonstrating accumulation of methylisocitric acid in the supernatant of a prpB null-allele mutant. (iv) The expression of prpC and probably also of the other enzymes is regulated and is induced during

  11. Increased expression of fatty-acid and calcium metabolism genes in failing human heart.

    Directory of Open Access Journals (Sweden)

    Vanessa García-Rúa

    Full Text Available BACKGROUND: Heart failure (HF involves alterations in metabolism, but little is known about cardiomyopathy-(CM-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA uptake and oxidation or in calcium-(Ca(2+-handling in the human heart. METHODS: RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36 without diabetes mellitus of ischaemic (ICM, n = 16 or dilated (DCM, n = 20 cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6. RESULTS: Significant increases in mRNA of genes regulating FA uptake (CD36 and intracellular transport (Heart-FA-Binding Protein (HFABP were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA, PPAR-gamma coactivator-1-alpha (PGC1A and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+-handling genes (Two-Pore-Channel 1 (TPCN1, Two-Pore-Channel 2 (TPCN2, and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1 increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL: three were common to and three distinct from ICM. CONCLUSION: DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2

  12. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    Science.gov (United States)

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.

  13. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets

    Directory of Open Access Journals (Sweden)

    John J. Shin

    2016-09-01

    Full Text Available A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV, mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln amidotransferase complex], histone methylation (Set1C–COMPASS, lysosome biogenesis (AP-3 adapter complex, and mRNA processing and P-body formation (PAN complex. We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial

  14. The Leu7Pro polymorphism of the neuropeptide Y gene regulates free fatty acid metabolism.

    Science.gov (United States)

    Pihlajamäki, Jussi; Karhapää, Pauli; Vauhkonen, Ilkka; Kekäläinen, Päivi; Kareinen, Anu; Viitanen, Laura; Pesonen, Ullamari; Kallio, Jaana; Uusitupa, Matti; Laakso, Markku

    2003-05-01

    The Leu7Pro polymorphism in the signal peptide of the preproneuropeptide Y (NPY) has been associated with dyslipidemias and free fatty acid (FFA) levels during exercise. The association of this polymorphism with insulin sensitivity has not been studied. In this study, the Leu7Pro polymorphism was determined in 2 groups of nondiabetic middle-aged subjects (n = 266 and n = 295). Insulin sensitivity was measured with the hyperinsulinemic euglycemic clamp (n = 266) or with an intravenous glucose tolerance test (IVGTT, n = 295). First-phase insulin secretion was determined as insulin area under the curve (AUC) during the first 10 minutes of the IVGTT. FFAs were measured both in the fasting state and during the hyperinsulinemic clamp. The Leu7Pro polymorphism of the NPY gene was not associated with the rates of whole body glucose uptake, insulin sensitivity index, insulin secretion during the IVGTT, or insulin AUC during the oral glucose tolerance test. However, the Pro7 allele was associated with low FFA levels both in the fasting state (P =.043) and during the hyperinsulinemic clamp (P =.003). In conclusion, the Leu7Pro polymorphism of the NPY gene associates with alterations in FFA metabolism but does not have an impact on insulin sensitivity, insulin secretion, or glucose metabolism. Copyright 2003 Elsevier Inc. All rights reserved.

  15. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  16. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.).

    Science.gov (United States)

    Cohen, S; Tzuri, G; Harel-Beja, R; Itkin, M; Portnoy, V; Sa'ar, U; Lev, S; Yeselson, L; Petrikov, M; Rogachev, I; Aharoni, A; Ophir, R; Tadmor, Y; Lewinsohn, E; Burger, Y; Katzir, N; Schaffer, A A

    2012-07-01

    Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of 6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.

  17. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    Directory of Open Access Journals (Sweden)

    Sofía Arriarán

    2015-11-01

    Full Text Available Background and Objectives. White adipose tissue (WAT shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism.Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities.Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT.Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.

  18. The effect of trans-10, cis-12 conjugated linoleic acid on gene expression profiles related to lipid metabolism in human intestinal-like Caco-2 cells

    NARCIS (Netherlands)

    Murphy, E.F.; Hooiveld, G.J.E.J.; Müller, M.R.; Calogero, R.A.; Cashman, K.D.

    2009-01-01

    We conducted an in-depth investigation of the effects of conjugated linoleic acid (CLA) on the expression of key metabolic genes and genes of known importance in intestinal lipid metabolism using the Caco-2 cell model. Cells were treated with 80 mu mol/L of linoleic acid (control), trans-10, cis-12

  19. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2005-10-01

    Full Text Available Abstract Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns

  20. The rice OsLpa1 gene encodse a novel protein involved in phytic acid metabolism

    Science.gov (United States)

    The rice low phytic acid 1 (OsLpa1) gene was originally identified using a forward genetics approach. Mutation of this gene resulted in a 45% reduction in rice seed phytic acid with a molar-equivalent increase in inorganic phosphorus; however, the rice lpa1 mutant does not appear to differ significa...

  1. Expression of genes participating in regulation of fatty acid and glucose utilization and energy metabolism in developing rat hearts.

    Science.gov (United States)

    Lavrentyev, Eduard N; He, Daifen; Cook, George A

    2004-11-01

    The heart is a unique organ that can use several fuels for energy production. During development, the heart undergoes changes in fuel supply, and it must be able to respond to these changes. We have examined changes in the expression of several genes that regulate fuel transport and metabolism in rat hearts during early development. At birth, there was increased expression of fatty acid transporters and enzymes of fatty acid metabolism that allow fatty acids to become the major source of energy for cardiac muscle during the first 2 wk of life. At the same time, expression of genes that control glucose transport and oxidation was downregulated. After 2 wk, expression of genes for glucose uptake and oxidation was increased, and expression of genes for fatty acid uptake and utilization was decreased. Expression of carnitine palmitoyltransferase I (CPT I) isoforms during development was different from published data obtained from rabbit hearts. CPT Ialpha and Ibeta isoforms were both highly expressed in hearts before birth, and both increased further at birth. Only after the second week did CPT Ialpha expression decrease appreciably below the level of CPT Ibeta expression. These results represent another example of different expression patterns of CPT I isoforms among various mammalian species. In rats, changes in gene expression followed nutrient availability during development and may render cardiac fatty acid oxidation less sensitive to factors that influence malonyl-CoA content (e.g., fluctuations in glucose concentration) and thereby favor fatty acid oxidation as an energy source for cardiomyocytes in early development.

  2. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration.

    Science.gov (United States)

    Xu, C S; Chang, C F

    2008-01-01

    Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and

  3. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  4. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  5. Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae.

    Science.gov (United States)

    Boglino, Anaïs; Ponce, Marian; Cousin, Xavier; Gisbert, Enric; Manchado, Manuel

    2017-01-01

    The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients.

  6. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2010-10-01

    Full Text Available Abstract Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.

  7. Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid.

    NARCIS (Netherlands)

    Oijen, M.G.H. van; Huybers, S.; Peters, W.H.M.; Drenth, J.P.H.; Laheij, R.J.F.; Verheugt, F.W.A.; Jansen, J.B.M.J.

    2005-01-01

    BACKGROUND: As acetylsalicylic acid is metabolized by UDP-glucuronosyltransferase 1A6 (UGT1A6) and cytochrome P450 2C9 (CYP2C9), interindividual differences in activity of these enzymes may modulate the effects and side-effects of acetylsalicylic acid. The objective of this study was to assess wheth

  8. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  9. Common variation in fatty acid metabolic genes and risk of incident sudden cardiac arrest

    NARCIS (Netherlands)

    R.N. Lemaitre (Rozenn ); C.O. Johnson (Catherine); S. Hesselson (Stephanie); N. Sotoodhenia (Nona); B. McKnight (Barbara); C.M. Sitlani (Colleen); D. Rea (Dan); I.B. King (Irena); P.-Y. Kwok (Pui-Yan); A. Mak (Angel); G. Li (Guo); J. Brody (Jennifer); E.B. Larson (Eric); D. Mozaffarian (Dariush); B.M. Psaty (Bruce); A. Huertas-Vazquez (Adriana); J.-C. Tardif (Jean-Claude); C.M. Albert (Christine); L.-P. Lyytikäinen (Leo-Pekka); D.E. Arking (Dan); S. Kääb (Stefan); H.V. Huikuri (Heikki); B.P. Krijthe (Bouwe); M. Eijgelsheim (Mark); Y.A. Wang (Ying); K. Reinier (Kyndaron); T. Lehtimäki (Terho); S.L. Pulit (Sara); R. Brugada (Ramon); M. Müller-Nurasyid (Martina); C. Newton-Cheh (Christopher); P.J. Karhunen (Pekka); B.H.Ch. Stricker (Bruno); P. Goyette (Philippe); J.I. Rotter (Jerome); S.S. Chugh (Sumeet); A. Chakravarti (Aravinda); X. Jouven (Xavier); D.S. Siscovick (David)

    2014-01-01

    textabstractBackground There is limited information on genetic factors associated with sudden cardiac arrest (SCA). Objective To assess the association of common variation in genes in fatty acid pathways with SCA risk. Methods We selected 85 candidate genes and 1155 single nucleotide polymorphisms (

  10. Transcriptome atlas of aromatic amino acid family metabolism-related genes in eight liver cell types uncovers the corresponding metabolic pathways in rat liver regeneration.

    Science.gov (United States)

    Chang, Cuifang; Xu, CunShuan

    2010-10-01

    To explore gene expression of aromatic amino acid family metabolism and their metabolic pathways of eight liver cell types in rat liver regeneration, eight kinds of rat regenerating liver cells were isolated by using the combination of percoll density gradient centrifugation and immunomagnetic bead methods. Rat Genome 230 2.0 Array was used to detect the expression changes of genes associated with aromatic amino acid family metabolism. The transcriptome atlas showed that the metabolic pathway of phenylalanine was mainly catalyzed into tyrosine in hepatic stellate cells in the initiation stage, tyrosine was oxidized into dopa and norepinephrine in biliary epithelia cells and dendritic cells, and norepinephrine was finally catalyzed into adrenaline in biliary epithelia cells and pit cells in the progress stage. Thyroid hormone of tyrosine catabolites was synthesized from tyrosine in almost all cells in different stage of LR, among which genes of T3 biosynthesis were increased in HCs, BECs, SECs and DCs in the progress stage. Tryptophan was decarboxylated to 5-hydroxytryptamine in dendritic cells in the progress stage. Based on the results as above, we concluded that phenylalanine is the major source of tyrosine, proliferation of biliary epithelia cells and dendritic cells maybe promote by tyrosine catabolites-dopa and norepinephrine, biliary epithelia cells and pit cells maybe promote by adrenaline. T3 maybe play a major role on proliferation of HCs, BECs, SECs and DCs in the progress stage. The proliferation of dendritic cells maybe promote by tryptophan catabolites-5-hydroxytryptamine. Copyright 2010. Published by Elsevier Ltd.

  11. Effect of non-esterified fatty acids on fatty acid metabolism-related genes in calf hepatocytes cultured in vitro.

    Science.gov (United States)

    Li, Peng; Liu, Yiming; Zhang, Yi; Long, Miao; Guo, Yang; Wang, Zhe; Li, Xinwei; Zhang, Cai; Li, Xiaobing; He, Jianbin; Liu, Guowen

    2013-01-01

    NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB) during early lactation. In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L) on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL), carnitine palmitoyltransferase IA (CPT IA), long chain acyl-CoA dehydrogenase (ACADL), and acetyl-CoA carboxylase (ACC). The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes. © 2014 S. Karger AG, Basel.

  12. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  13. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  14. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport.

    Directory of Open Access Journals (Sweden)

    Pricilla E Day

    Full Text Available Maternal environment and lifestyle factors may modify placental function to match the mother's capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content on a selection of metabolic and amino acid transporter genes and their associations with fetal growth.RNA was extracted from 102 term Southampton Women's Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR.Increased placental LAT2 (p = 0.01, y+LAT2 (p = 0.03, aspartate aminotransferase 2 (p = 0.02 and decreased aspartate aminotransferase 1 (p = 0.04 mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01, ASCT1 (p = 0.03, mitochondrial branched chain aminotransferase (p = 0.02 and glutamine synthetase (p = 0.05 was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05 associated with higher maternal diet quality (prudent dietary pattern pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05 and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01 associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01. Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001.A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking

  15. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport.

    Science.gov (United States)

    Day, Pricilla E; Ntani, Georgia; Crozier, Sarah R; Mahon, Pam A; Inskip, Hazel M; Cooper, Cyrus; Harvey, Nicholas C; Godfrey, Keith M; Hanson, Mark A; Lewis, Rohan M; Cleal, Jane K

    2015-01-01

    Maternal environment and lifestyle factors may modify placental function to match the mother's capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content) on a selection of metabolic and amino acid transporter genes and their associations with fetal growth. RNA was extracted from 102 term Southampton Women's Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR. Increased placental LAT2 (p = 0.01), y+LAT2 (p = 0.03), aspartate aminotransferase 2 (p = 0.02) and decreased aspartate aminotransferase 1 (p = 0.04) mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01), ASCT1 (p = 0.03), mitochondrial branched chain aminotransferase (p = 0.02) and glutamine synthetase (p = 0.05) was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05) associated with higher maternal diet quality (prudent dietary pattern) pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05) and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01) associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01). Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001). A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking

  16. Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis

    Directory of Open Access Journals (Sweden)

    Braunstein Evan M

    2009-05-01

    Full Text Available Abstract Background In vertebrates, the inner ear is comprised of the cochlea and vestibular system, which develop from the otic vesicle. This process is regulated via inductive interactions from surrounding tissues. Tbx1, the gene responsible for velo-cardio-facial syndrome/DiGeorge syndrome in humans, is required for ear development in mice. Tbx1 is expressed in the otic epithelium and adjacent periotic mesenchyme (POM, and both of these domains are required for inner ear formation. To study the function of Tbx1 in the POM, we have conditionally inactivated Tbx1 in the mesoderm while keeping expression in the otic vesicle intact. Results Conditional mutants (TCre-KO displayed malformed inner ears, including a hypoplastic otic vesicle and a severely shortened cochlear duct, indicating that Tbx1 expression in the POM is necessary for proper inner ear formation. Expression of the mesenchyme marker Brn4 was also lost in the TCre-KO. Brn4-;Tbx1+/-embryos displayed defects in growth of the distal cochlea. To identify a potential signal from the POM to the otic epithelium, expression of retinoic acid (RA catabolizing genes was examined in both mutants. Cyp26a1 expression was altered in the TCre-KO, while Cyp26c1 showed reduced expression in both TCre-KO and Brn4-;Tbx1+/- embryos. Conclusion These results indicate that Tbx1 expression in the POM regulates cochlear outgrowth potentially via control of local retinoic acid activity.

  17. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  18. Effects of receptor-selective retinoids on CYP26 gene expression and metabolism of all-trans-retinoic acid in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-05-01

    Retinoids mediate most of their function via interaction with retinoid receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)], which act as ligand-activated transcription factors controlling the expression of a number of target genes. The complex mechanistic pattern of retinoid-induced effects on gene expression of CYP26 and intestinal metabolism of all-trans-retinoic acid (RA) was investigated here by studying the effects of retinoid ligands with relative selectivity for binding and transactivation of the retinoid acid receptors, RARs and RXRs, in human intestinal Caco-2 cells. We show here that CYP26 is expressed in human duodenum and colon. In Caco-2 cells not only all-trans-RA but also synthetic agonists of the RAR induced intestinal CYP26 gene expression and all-trans-RA metabolism as well. The RARalpha ligand Am580 induced the CYP26 gene expression more than the RARbeta ligand CD2019 or the RARgamma ligand CD437 suggesting the highest specificity for RARalpha on intestinal CYP26 gene regulation. RXR ligands alone did not induce CYP26 gene expression or RA metabolism in Caco-2 cells at all. But together with the RARalpha ligand, Am580, there were enhanced effects on the induction of CYP26 gene expression and on the induction of the metabolism of all-trans-RA. We conclude that gene regulation of CYP26 and the metabolism of all-trans-RA in intestinal cells is regulated through RXR and RAR heterodimerization. When coadministered, RAR agonists showed the highest potency for CYP26 gene regulation. Receptor-selective retinoids showed enhanced effects on induction of CYP26 gene expression and all-trans-retinoic acid metabolism.

  19. Novel genes in LDL metabolism

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Tybjærg-Hansen, Anne

    2015-01-01

    -exome sequencing and 'exome chip' studies have additionally suggested several novel genes in LDL metabolism including insulin-induced gene 2, signal transducing adaptor family member 1, lysosomal acid lipase A, patatin-like phospholipase domain-containing protein 5 and transmembrane 6 superfamily member 2. Most......PURPOSE OF REVIEW: To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS: The genetic loci for ATP-binding cassette...... transporters G5 and G8, Niemann-Pick C1-Like protein 1, sortilin-1, ABO blood-group glycosyltransferases, myosin regulatory light chain-interacting protein and cholesterol 7α-hydroxylase have all consistently been associated with LDL cholesterol levels and/or coronary artery disease in GWAS. Whole...

  20. Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism.

    Science.gov (United States)

    Zhang, Xuzhen; Wang, Man; Li, Tuanjie; Fu, Lixia; Cao, Wei; Liu, Hao

    2016-12-01

    Biosynthesis of polysaccharide hyaluoronic acid (HA) by Streptococcus zooepidemicus is a carbon-intensive process. The carbon flux and factor(s) restricting HA yield were not well understood. Here, we investigated the function of genes involved in sucrose metabolism and identified targets limiting HA yield, which were exploited to construct efficient S. zooepidemicus strains for HA production. The sucrose uptake was addressed by deletion of scrA and scrB, which encodes sucrose-PTS permease and sucrose-6-phosphate hydrolase, respectively. We found that scrB was essential for the growth of S. zooepidemicus and HA biosynthesis, and accumulation of sucrose-6-phosphate was toxic. ΔscrB could not grow in THY-sucrose medium, while ΔscrA and ΔscrAΔscrB showed negligible growth defects. Overexpression of scrA significantly reduced biomass and HA production, while overexpression of scrB resulted in 26% increase of biomass and 30% increase of HA yield. We revealed that fructose-6-phosphate for HA biosynthesis mainly originates from glucose-6-phosphate. Deletion of scrK, a gene encoding hexokinase, led to 11% reduction of biomass and 12% decrease of HA yield, while deletion of hasE, a gene encoding phosphoglucoisomerase, resulted in the abolishment of HA biosynthesis and a significantly slow growth. We found that HA biosynthesis could be improved by directing carbon flux to fructose-6-phosphate. Deletion of fruA encoding the EII of fructose-PTS and fruK encoding phosphofructokinase showed no apparent effect on cell growth, but resulted in 22 and 27% increase of HA yield, respectively. Finally, a strain with 55% increase of HA was constructed by overexpression of scrB in ΔfruK. These results provide a solid foundation for further metabolic engineering of S. zooepidemicus for highly efficient HA production.

  1. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    Science.gov (United States)

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  2. Effects of rice bran on performance, egg quality, oxidative status, yolk fatty acid composition, and fatty acid metabolism-related gene expression in laying ducks.

    Science.gov (United States)

    Ruan, D; Lin, Y C; Chen, W; Wang, S; Xia, W G; Fouad, A M; Zheng, C T

    2015-12-01

    The study was designed to evaluate the effects of different dietary levels of rice bran (RB) in laying duck diets on performance, egg quality, oxidation status, egg yolk fatty acid composition, and hepatic expression of fatty acid metabolism-related genes. Longyan females (1080) with similar BW at 19 wk of age were randomly assigned to 6 dietary treatments, each consisting of 6 replicates of 30 birds. The basal diet (I) was a typical corn-soybean ration while the experimental diets (II to VI) substituted RB for corn and wheat bran and a small reduction of soybean meal. The level of substitution in diets (II to VI) was 6%, 12%, 18%, 24%, and 30%, respectively. The experiment lasted for 12 wks. Average egg weight and daily egg mass decreased linearly as the level of RB inclusion increased (Pegg yolk linearly decreased with increasing RB, and many of the key polyunsaturated fatty acids (PUFA), like C18:2 n-6 and C18:3 n-3, linearly increased (Pegg yolk cholesterol or triglyceride content (P>0.05). In conclusion, the current study suggests that ducks from 19 to 31 wk could be fed diets with up to about 18% RB without effect on the number of eggs produced, egg quality, and oxidative status. Increasing amounts of RB linearly increased egg yolk concentrations of key fatty acids like C18:2 n-6 and C18:3 n-3 and decreased the hepatic abundance of FAS and SREBP-1 transcripts.

  3. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    Science.gov (United States)

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

  4. Retinoic acid and iron metabolism

    DEFF Research Database (Denmark)

    Chakraborty, Surajit; Bhattacharyya, Rajasri; Sayal, Kirtimaan

    2014-01-01

    tuberculosis controlling molecules in the days to come. Iron has proven to be essential for pathogenesis of tuberculosis and retinoic acid is known to influence the iron metabolism pathway. Retenoic acid is also known to exhibit antitubercular effect in in vivo system. Therefore there is every possibility...... that retinoic acid by affecting the iron metabolism pathway exhibits its antimycobacterial effect. These aspects are reviewed in the present manuscript for understanding the antimycobacterial role of retinoic acid in the context of iron metabolism and other immunological aspects....

  5. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Svetlana Uzbekova

    2015-03-01

    Full Text Available In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs. Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.

  6. Phylogenomic reconstruction of archaeal fatty acid metabolism

    Science.gov (United States)

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  7. Additive effect of polymorphisms in the IL-6, LTA, and TNF-{alpha} genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components

    OpenAIRE

    2010-01-01

    Context: Cytokine polymorphisms and dietary fat composition may influence the risk of the metabolic syndrome (MetS). Objective: The objective of the study was to determine the relationship between lymphotoxin-α (LTA), TNF-α, and IL-6 gene polymorphisms with MetS risk and investigate whether plasma fatty acid composition, a biomarker of dietary fat intake, modulated these associations. Design: Polymorphisms (LTA rs915654, TNF-α rs1800629, IL-6 rs1800797), biochemical measurements, and plasma f...

  8. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  9. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica.

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-08-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  10. Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-α activation.

    Science.gov (United States)

    Bionaz, Massimo; Thering, Betsy J; Loor, Juan J

    2012-01-01

    Madin-Darby Bovine Kidney cells cultured with 150 μm of Wy-14 643 (WY, PPARα agonist) or twelve long-chain fatty acids (LCFA; 16 : 0, 18 : 0, cis-9-18 : 1, trans-10-18 : 1, trans-11-18 : 1, 18 : 2n-6, 18 : 3n-3, cis-9, trans-11-18 : 2, trans-10, cis-12-18 : 2, 20 : 0, 20 : 5n-3 and 22 : 6n-3) were used to uncover PPAR-α target genes and determine the effects of LCFA on expression of thirty genes with key functions in lipid metabolism and inflammation. Among fifteen known PPAR-α targets in non-ruminants, ten had greater expression with WY, suggesting that they are bovine PPAR-α targets. The expression of SPP1 and LPIN3 was increased by WY, with no evidence of a similar effect in the published literature, suggesting that both represent bovine-specific PPAR-α targets. We observed the strongest effect on the expression of PPAR-α targets with 16 : 0, 18 : 0 and 20 : 5n-3.When considering the overall effect on expression of the thirty selected genes 20 : 5n-3, 16 : 0 and 18 : 0 had the greatest effect followed by 20 : 0 and c9t11-18 : 2. Gene network analysis indicated an overall increase in lipid metabolism by WY and all LCFA with a central role of PPAR-α but also additional putative transcription factors. A greater increase in the expression of inflammatory genes was observed with 16 : 0 and 18 : 0. Among LCFA, 20 : 5n-3, 16 : 0 and 18 : 0 were the most potent PPAR-α agonists. They also affected the expression of non-PPAR-α targets, eliciting an overall increase in the expression of genes related to lipid metabolism, signalling and inflammatory response. Data appear to highlight a teleological evolutionary adaptation of PPAR in ruminants to cope with the greater availability of saturated rather than unsaturated LCFA.

  11. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    Science.gov (United States)

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism.

  12. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  13. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.

    Science.gov (United States)

    Ishida, Nobuhiro; Saitoh, Satoshi; Tokuhiro, Kenro; Nagamori, Eiji; Matsuyama, Takashi; Kitamoto, Katsuhiko; Takahashi, Haruo

    2005-04-01

    We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2microm plasmid-based vectors and two genome-integrated strains.

  14. Dietary Conjugated Linoleic Acid and Hepatic Steatosis: Species-Specific Effects on Liver and Adipose Lipid Metabolism and Gene Expression

    Directory of Open Access Journals (Sweden)

    Diwakar Vyas

    2012-01-01

    Full Text Available Objective. To summarize the recent studies on effect of conjugated linoleic acid (CLA on hepatic steatosis and hepatic and adipose lipid metabolism highlighting the potential regulatory mechanisms. Methods. Sixty-four published experiments were summarized in which trans-10, cis-12 CLA was fed either alone or in combination with other CLA isomers to mice, rats, hamsters, and humans were compared. Summary and Conclusions. Dietary trans-10, cis-12 CLA induces a severe hepatic steatosis in mice with a more muted response in other species. Regardless of species, when hepatic steatosis was present, a concurrent decrease in body adiposity was observed, suggesting that hepatic lipid accumulation is a result of uptake of mobilized fatty acids (FA from adipose tissue and the liver's inability to sufficiently increase FA oxidation and export of synthesized triglycerides. The potential role of liver FA composition, insulin secretion and sensitivity, adipokine, and inflammatory responses are discussed as potential mechanisms behind CLA-induced hepatic steatosis.

  15. Dietary linseed oil in the maternal diet affects immunoglobulins, tissue fatty acid composition and expression of lipid metabolism-related genes in piglets.

    Science.gov (United States)

    Chen, X L; Wang, N; Tian, M L; Wang, L; Liu, T; Zhang, X W; Shi, B M; Shan, A S

    2016-11-21

    This experiment investigated the effects of supplementing the maternal diet with linseed oil (LSO) and soya bean oil (SBO) on immunoglobulins, the fatty acid composition and hepatic expression of lipid metabolism-related genes in piglets. Multiparous sows (twenty-four per diet) were fed on diets containing a supplement of either SBO or LSO during last week of gestation and lactation. The results indicated that supplementation of maternal diet with LSO could improve the weaning weight of piglets and average daily gain (ADG) (p plasma, colostrum and milk by the addition of LSO (p plasma IgG, IgA and the tissues n-3 polyunsaturated fatty acid (PUFA) in piglets (p composition and affects the gene of D5D and D6D expression of piglets.

  16. Carnosic acid attenuates obesity-induced glucose intolerance and hepatic fat accumulation by modulating genes of lipid metabolism in C57BL/6J-ob/ob mice.

    Science.gov (United States)

    Park, Mi-Young; Sung, Mi-Kyung

    2015-03-15

    Carnosic acid (CA), a major bioactive component of rosemary (Rosmarinus officinalis) leaves, is known to possess antioxidant and anti-adipogenic activities. In this study it was hypothesized that CA would ameliorate obesity-induced glucose intolerence and hepatic fat accumulation, and possible mechanisms are suggested. It was observed that a 0.02% (w/w) CA diet effectively decreased body weight, liver weight and blood triglyceride (TG) and total cholesterol levels (P gene (L-FABP, SCD1 and FAS) expression decreased whereas lipolysis-related gene (CPT1) expression increased in animals fed the 0.02% CA diet (P obese control group (P obesity agent that regulates fatty acid metabolism in C57BL/6J-ob/ob mice. © 2014 Society of Chemical Industry.

  17. NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Blair Therit

    Full Text Available Among many other virulence factors, Clostridium perfringens produces three sialidases NanH, NanI and NanJ. NanH lacks a secretion signal peptide and is predicted to be an intracellular enzyme, while NanI and NanJ are secreted. Previously, we had identified part of an operon encoding NanE (epimerase and NanA (sialic acid lyase enzymes. Further analysis of the entire operon suggests that it encodes a complete pathway for the transport and metabolism of sialic acid along with a putative transcriptional regulator, NanR. The addition of 30 mM N-acetyl neuraminic acid (Neu5Ac to a semi-defined medium significantly enhanced the growth yield of strain 13, suggesting that Neu5Ac can be used as a nutrient. C. perfringens strain 13 lacks a nanH gene, but has NanI- and NanJ-encoding genes. Analysis of nanI, nanJ, and nanInanJ mutants constructed by homologous recombination revealed that the expression of the major sialidase, NanI, was induced by the addition of Neu5Ac to the medium, and that in separate experiments, the same was true of a nanI-gusA transcriptional fusion. For the nanI and nanJ genes, primer extension identified three and two putative transcription start sites, respectively. Gel mobility shift assays using purified NanR and DNA from the promoter regions of the nanI and nanE genes showed high affinity, specific binding by NanR. We propose that NanR is a global regulator of sialic acid-associated genes and that it responds, in a positive feedback loop, to the concentration of sialic acid in the cell.

  18. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Subrat K. Bhanja

    2015-04-01

    Full Text Available Due to their physicochemical and biological properties, silver nanoparticles (NanoAg have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α and interleukin-6 (IL-6 did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10 expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2 expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4 expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken.

  19. Hepatic Metabolic, Inflammatory, and Stress-Related Gene Expression in Growing Mice Consuming a Low Dose of Trans-10, cis-12-Conjugated Linoleic Acid

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-01-01

    Full Text Available Dietary trans-10, cis-12-conjugated linoleic acid (trans-10, cis-12-CLA fed to obese and nonobese rodents reduces body fat but leads to greater liver mass due to steatosis. The molecular mechanisms accompanying such responses remain largely unknown. Our study investigated the effects of chronic low trans-10, cis-12-CLA supplementation on hepatic expression of 39 genes related to metabolism, inflammation, and stress in growing mice. Feeding a diet supplemented with 0.3% trans-10, cis-12-CLA (wt/wt basis for 6 weeks increased liver mass and concentration of long-chain fatty acids (LCFAs in liver, while adipose tissue mass decreased markedly. These changes were accompanied by greater expression of genes involved in LCFA uptake (Cd36, lipogenesis, and triacylglycerol synthesis (Acaca, Gpam, Scd, Pck1, Plin2. Expression of these genes was in line with upregulation of the lipogenic transcription factor Srebf1. Unlike previous studies where higher >0.50% of the diet doses of trans-10, cis-12-CLA were fed, we found greater expression of genes associated with VLDL assembly/secretion (Mttp, Cideb, ketogenesis (Hmgcs2, Bdh1, and LCFA oxidation (Acox1, Pdk4 in response to trans-10, cis-12-CLA. Dietary CLA, however, did not affect inflammation- and stress-related genes. Results suggested that a chronic low dose of dietary CLA increases liver mass and lipid accumulation due to activation of lipogenesis and insufficient induction of LCFA oxidation and VLDL assembly/secretion.

  20. Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer

    Directory of Open Access Journals (Sweden)

    Ramenghi Ugo

    2009-09-01

    Full Text Available Abstract Background Diamond-Blackfan anaemia (DBA is a rare inherited red cell hypoplasia characterised by a defect in the maturation of erythroid progenitors and in some cases associated with malformations. Patients have an increased risk of solid tumors. Mutations have been found in several ribosomal protein (RP genes, i.e RPS19, RPS24, RPS17, RPL5, RPL11, RPL35A. Studies in haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and fibroblasts display abnormal rRNA processing and impaired proliferation. Results To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that 421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism, as well as genes associated to cell death, cancer and tissue development. Conclusion This analysis reports for the first time an abnormal gene expression profile in a non-haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a defect in general or specific protein synthesis.

  1. Transcriptional coordination and abscisic acid mediated regulation of sucrose transport and sucrose-to-starch metabolism related genes during grain filling in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Mukherjee, Shalini; Liu, Aihua; Deol, Kirandeep K; Kulichikhin, Konstanin; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-11-01

    Combining physiological, molecular and biochemical approaches, this study investigated the transcriptional coordination and abscisic acid (ABA) mediated regulation of genes involved in sucrose import and its conversion to starch during grain filling in wheat. Sucrose import appears to be mediated by seed localized TaSUT1, mainly TaSUT1D, while sucrose cleavage by TaSuSy2. Temporal overlapping of the transcriptional activation of AGPL1 and AGPS1a that encode AGPase with that of the above genes suggests their significance in the synthesis of ADP-glucose; TaAGPL1A and TaAGPL1D contributing the majority of AGPL1 transcripts. ABA induced repressions of TaSUT1, TaSuSy2, TaAGPL1 and TaAGPS1a imply that ABA negatively regulates sucrose import into the endosperm and its subsequent metabolism to ADP-glucose, the substrate for starch synthesis. The formations of amyloses and amylopectin from ADP-glucose appear to be mediated by specific members of GBSS, and SS, SBE and DBE gene families, and the ABA-induced transcriptional change in most of these genes implies that ABA regulates amylose and amylopectin synthesis. The findings provide insights into the molecular mechanisms underlying the coordination and ABA mediated regulation of sucrose transport into the developing endosperm and its subsequent metabolism to starch during grain filling in wheat.

  2. Gene polymorphisms as risk factors for predicting the cardiovascular manifestations in Marfan syndrome. Role of folic acid metabolism enzyme gene polymorphisms in Marfan syndrome.

    Science.gov (United States)

    Benke, Kálmán; Ágg, Bence; Mátyás, Gábor; Szokolai, Viola; Harsányi, Gergely; Szilveszter, Bálint; Odler, Balázs; Pólos, Miklós; Maurovich-Horvat, Pál; Radovits, Tamás; Merkely, Béla; Nagy, Zsolt B; Szabolcs, Zoltán

    2015-10-01

    Folic acid metabolism enzyme polymorphisms are believed to be responsible for the elevation of homocysteine (HCY) concentration in the blood plasma, correlating with the pathogenesis of aortic aneurysms and aortic dissection. We studied 71 Marfan patients divided into groups based on the severity of cardiovascular involvement: no intervention required (n=27, Group A); mild involvement requiring intervention (n=17, Group B); severe involvement (n=27, Group C) subdivided into aortic dilatation (n=14, Group C1) and aortic dissection (n=13, Group C2), as well as 117 control subjects. We evaluated HCY, folate, vitamin B12 and the polymorphisms of methylenetetrahydrofolate reductase (MTHFR;c.665C>T and c.1286A>C), methionine synthase (MTR;c.2756A>G) and methionine synthase reductase (MTRR;c.66A>G). Multiple comparisons showed significantly higher levels of HCY in Group C2 compared to Groups A, B, C1 and control group (pMarfan patients, and especially aortic dissection, is associated with higher HCY plasma levels and prevalence of homozygous genotypes of folic acid metabolism enzymes than mild or no cardiovascular involvement. These results suggest that impaired folic acid metabolism has an important role in the development and remodelling of the extracellular matrix of the aorta.

  3. Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

    Directory of Open Access Journals (Sweden)

    Linyi Li

    Full Text Available Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK, a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg and TNK high-dose (3.24 g/kg groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1 and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α and forkhead transcription factor 1 (FOXO1, and induced the phosphorylation of AMP-activated protein kinase (AMPK and acetyl-CoA carboxylase (ACC in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch

  4. Effects of different dwarfing interstocks on key enzyme activities and the expression of genes related to malic acid metabolism in Red Fuji apples.

    Science.gov (United States)

    Shi, J; Li, F F; Ma, H; Li, Z Y; Xu, J Z

    2015-12-22

    In this experiment, the test materials were 'Red Fuji' apple trees grafted onto three interstocks (No. 53, No. 111, and No. 236), which were chosen from SH40 seeding interstocks. The content of malic acid, the enzyme activities, and the expression of genes related to malic acid metabolism were determined during fruit development.The results showed that malic acid content in the ripe fruit on interstock No. 53 was higher than that in the interstock No. 111 fruit. The malate dehydrogenase (NAD-MDH) activity in apples on interstock No. 53 was highest on Day 30, Day 100, and Day 160 after bloom, and the malic enzyme (NADP-ME) activity in apples on interstock No. 111 was higher than in the interstock No. 53 fruit from Day 70 to Day 100 after bloom. The relative expression of NAD-MDH genes in interstock No. 53 fruit was higher than in No. 236 fruit on Day 100 after bloom, but the relative expression of NADP-ME in No. 236 interstock fruit was lower than in No. 53 fruit. The relative expression of NAD-MDH genes in No. 53 interstock fruit was highest on Day 160 after bloom. This might have been the main reason for the difference in the accumulation of malic acid in the ripe apples.There was a positive correlation between the relative expression of phosphoenolpyruvate carboxylase (PEPC) and the malic acid content of the fruit, and the content of malic acid in the apples was affected by the PEPC activity during the early developmental stage.

  5. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  6. Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis.

    Science.gov (United States)

    Fang, Jing Yuan; Xiao, Shu Dong

    2003-01-01

    DNA methylation is the main epigenetic modification after replication in humans. DNA (cytosine-5)-methyltransferase (DNMT) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to C5 of cytosine within CpG dinucleotide sequences in the genomic DNA of higher eukaryotes. There is considerable evidence that aberrant DNA methylation plays an integral role in carcinogenesis. Folic acid or folate is crucial for normal DNA synthesis and can regulate DNA methylation, and through this, it affects cellular SAM levels. Folate deficiency results in DNA hypomethylation. Epidemiological studies have indicated that folic acid protects against gastrointestinal (GI) cancers. Methylene-tetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are the enzymes involved in folate metabolism and are thought to influence DNA methylation. MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level. Two common MTHFR polymorphisms, 677CT (or 677TT) and A1298C, and an MS polymorphism, A-->G at 2756, have been identified. Most studies support an inverse association between folate status and the rate of colorectal adenomas and carcinomas. During human GI carcinogenesis, MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level, as well as aberrant methylation.

  7. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes

    Science.gov (United States)

    Naranjo-Ortíz, Miguel A.; Brock, Matthias; Brunke, Sascha; Hube, Bernhard; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role. PMID:28066338

  8. CACODYLIC ACID (DMAV): METABOLISM AND ...

    Science.gov (United States)

    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.

  9. Influence of the unsaturated fatty acids on body weight, glucose, and lipids metabolism in obese women with Pro12Pro genotype in PPARγ2 gene

    Directory of Open Access Journals (Sweden)

    Márcia Fófano do Lago

    Full Text Available Background: The type of dietary fatty acid may have different effects on obesity and its complications, however, these effects can be influenced by genes and polymorphisms, such as peroxisome proliferator-activated receptor γ isoform 2 (PPARγ2. Moreover, it is unclear whether the degree of unsaturation of the fat has different effects on lipid and glucose metabolism, and particularly the loss of body weight. Objective: To evaluate the influence of diets rich in polyunsaturated fatty acids (PUFA and monounsaturated fatty acids (MUFA on anthropometric and biochemical variables in obese woman with genotype Pro12Pro on PPARγ2 gene on body weight, glycemic and lipemic profile. Methods: Eighteen obese women with Pro12Pro genotype in PPARγ2 gene were randomized into groups to receive a high PUFAs (PUFA-diet, n = 8 or MUFAs (MUFA-diet, n = 10 diets. Anthropometrics (body mass index [BMI] and waist circumference and biochemical variables (glucose, insulin, HOMA-IR, total cholesterol, LDL-cholesterol, and HDL-cholesterol and triglycerides were evaluated at baseline and after 45 days. Results: Anthropometric and biochemical variables were similar between groups at baseline and after intervention (p > 0.05. BMI decrease only in PUFA-diet (p = 0.01, probably due to the lower lipid content in this diet. MUFA-diet decrease fasting glucose (p = 0.03, insulin (p = 0.03, and HOMA-IR (p = 0.02. Conclusion: Compared to PUFA, MUFA was more efficient to reduce the insulin resistance in obese women with Pro12Pro genotype in PPARγ2, even in high saturated fatty acids and total fat diet.

  10. Mining the bitter melon (momordica charantia l. seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Directory of Open Access Journals (Sweden)

    Shipp Matthew J

    2010-11-01

    Full Text Available Abstract Background Seeds of Momordica charantia (bitter melon produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological transfer of conjugated fatty acid production to existing oilseed crops. It is expected that these studies will also provide basic information regarding the metabolism of other high-value novel fatty acids. Results Deep sequencing using 454 technology with non-normalized and normalized cDNA libraries prepared from bitter melon seeds at 18 DAP resulted in the identification of transcripts for the vast majority of known genes involved in fatty acid and triacylglycerol biosynthesis. The non-normalized library provided a transcriptome profile of the early stage in seed development that highlighted the abundance of transcripts for genes encoding seed storage proteins as well as for a number of genes for lipid metabolism-associated polypeptides, including Δ12 oleic acid desaturases and fatty acid conjugases, class 3 lipases, acyl-carrier protein, and acyl-CoA binding protein. Normalization of cDNA by use of a duplex-specific nuclease method not only increased the overall discovery of genes from developing bitter melon seeds, but also resulted in the identification of 345 contigs with homology to 189 known lipid genes in Arabidopsis. These included candidate genes for eleostearic acid metabolism such as diacylglycerol acyltransferase 1 and 2, and a phospholipid:diacylglycerol acyltransferase 1-related enzyme. Transcripts were also identified for a novel FAD2 gene encoding a functional Δ12 oleic acid desaturase with potential implications for eleostearic acid biosynthesis. Conclusions 454 deep sequencing, particularly with normalized cDNA populations, was an effective method for mining of genes associated with eleostearic acid metabolism in

  11. Regulation of the expression and activity of glucose and lactic acid metabolism-related genes by protein kinase C in skeletal muscle cells.

    Science.gov (United States)

    Otake, Sho; Kobayashi, Masaki; Narumi, Katsuya; Sasaki, Shotaro; Kikutani, Yurika; Furugen, Ayako; Watanabe, Meguho; Takahashi, Natsuko; Ogura, Jiro; Yamaguchi, Hiroaki; Iseki, Ken

    2013-01-01

    Protein kinase C (PKC) modulators are very attractive therapeutic targets in cancer. Since most cancer cells display increased glycolysis, elucidations of the effects of PKC activation on glycolysis is necessary for the development of effective medicine. In the present study, to clarify the role of PKC in the regulation of glycolysis, we examined the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, on the expression and activity of glucose and lactic acid metabolism-related genes in human rhabdomyosarcoma cells (RD cells). In parallel to increases in glucose uptake and mRNA levels of glucose transporters (GLUTs) induced by PMA treatment for 6 h, the hexokinase (HK) mRNA level and activity were also significantly increased in RD cells. On the other hand, a significant increase in lactate dehydrogenase (LDH) mRNA level and activity was seen when the cells were incubated with PMA for 24 h, but not for 6 or 12 h, and was associated with lactic acid production. These effects by PMA treatment were markedly suppressed by Bisindolylmaleimide (BIM), a PKC inhibitor. Furthermore, chetomin, a hypoxia-inducible factor 1 (HIF-1) inhibitor, completely abrogated the increment of LDH mRNA level and activity as well as monocarboxylate transporter (MCT) 4, a lactic acid efflux transporter. In conclusion, we found that HK and LDH activity induced by PKC activation was associated with the glucose uptake and lactic acid level and that LDH and MCT4 are modulated by a common factor, HIF-1.

  12. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  13. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose

    Science.gov (United States)

    Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, ove...

  14. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    Directory of Open Access Journals (Sweden)

    Zeeshan Muhammad Iqbal

    Full Text Available The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON or high-energy (OVE diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA did not differ, among the polyunsaturated fatty acids (PUFA, the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation.

  15. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome

    NARCIS (Netherlands)

    Dijk, van S.J.; Feskens, E.J.M.; Bos, M.B.; Hoelen, D.W.; Heijligenberg, R.; Bromhaar, M.G.; Groot, de C.P.G.M.; Vries, de J.H.M.; Müller, M.R.; Afman, L.A.

    2009-01-01

    Background: Changes in dietary fat composition could lower the risk of developing metabolic syndrome. Adipose tissue is an interesting tissue in this respect because of its role in lipid metabolism and inflammation. Objective: Our objective was to investigate the effect of a saturated fatty acid (SF

  16. In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos

    DEFF Research Database (Denmark)

    Bhanja, Subrat K.; Hotowy, Anna Malgorzata; Mehra, Manish

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers but...... alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken....

  17. Amino acids: metabolism, functions, and nutrition.

    Science.gov (United States)

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  18. Genes involved in fatty acid metabolism: molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides.

    Science.gov (United States)

    Tang, Zhiguo; Sun, Caiyun; Yan, Aifen; Wu, Shuge; Qin, Chaobin; Zhang, Yanhong; Li, Wensheng

    2013-08-25

    As in mammals, fatty acid (FA) metabolism plays diverse and vital roles in regulating food intake in fish. Multiple lines of evidence suggest that the effect of FA metabolism on food intake is linked to changes in the level of neuropeptide Y (NPY) in the hypothalamus of the rainbow trout. In mammals, the evidence suggests that FA metabolism regulates feeding via hypothalamic NPY. NPY is therefore considered an important factor that mediates the modulation of food intake by FA metabolism in vertebrates. The stimulatory effect of NPY on food intake is well known. However, to the best of our knowledge, the effect of NPY on FA metabolism in the hypothalamus has not been examined. In this study, we cloned the cDNA of four key enzymes involved in FA metabolism and assessed the effect of energy status and NPY on their mRNA expression in the hypothalamus of grouper. The full-length cDNAs of UCP2 and CPT1a and the partial coding sequence (CDS) of ACC1 and FAS were isolated from the grouper hypothalamus. These genes are expressed in the hypothalamus and during the organogenetic stage of embryogenesis. A feeding rhythm study showed that the hypothalamic expression level of NPY and CPT1a was highly correlated with feeding rhythm. Long-term fasting was found to significantly induce the hypothalamic mRNA expression of NPY, CPT1a and UCP2. An in vitro study demonstrated that NPY strongly stimulated CPT1a and UCP2 mRNA expression in a time- and dose-dependent manner. Collectively, these results suggest that these four genes related to FA metabolism may play a role in regulating food intake in grouper and, that NPY modulates FA metabolism in the grouper hypothalamus. This study showed, for the first time in vertebrates, the effect of NPY on the gene expression of FA metabolism-related enzymes.

  19. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  20. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis[C][W

    Science.gov (United States)

    Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan

    2011-01-01

    Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693

  1. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  2. Dexamethasone exposure of neonatal rats modulates biliary lipid secretion and hepatic expression of genes controlling bile acid metabolism in adulthood without interfering with primary bile acid kinetics

    NARCIS (Netherlands)

    Liu, Yan; Havinga, Rick; Van der Leij, Feike R.; Boverhof, Renze; Sauer, Pieter J. J.; Kuipers, Folkert; Stellaard, Frans

    2008-01-01

    Literature suggests that glucocorticoid (GC) exposure during early life may have long-term consequences into adult life. GCs are known to influence hepatic bile acid synthesis and their transport within the enterohepatic circulation. This study addresses effects of early postnatal exposure to GC on

  3. Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Regenberg, Birgitte; Nielsen, Jens

    2005-01-01

    and a grr1 Delta strain and adding citrulline in the exponential phase. Whole-genome transcription analyses were performed on samples from each cultivation, both immediately before and 30 min after citrulline addition. Transcriptional induction of the AAP genes AGP1, BAP2, BAP3, DIP5, GNP1 and TAT1 is fully...

  4. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    Science.gov (United States)

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Branched-chain amino acid ratios in low-protein diets regulate the free amino acid profile and the expression of hepatic fatty acid metabolism-related genes in growing pigs.

    Science.gov (United States)

    Duan, Y H; Li, F N; Wen, C Y; Wang, W L; Guo, Q P; Li, Y H; Yin, Y L

    2017-03-06

    Liver metabolism is affected by nutrients. The aim of this study was to explore the effects of low-protein diets (17% crude protein, CP) supplemented with branched-chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile) and valine (Val), on hepatic amino acid profile and lipid metabolism in growing pigs. The ratio of Leu : Ile : Val in all groups was 1 : 0.51 : 0.63 (20% crude protein, CP), 1 : 1 : 1 (17% CP), 1 : 0.75 : 0.75 (17% CP), 1 : 0.51 : 0.63 (17% CP) and 1 : 0.25 : 0.25 (17% CP) respectively. Results revealed that compared to the positive control group (1 : 0.51 : 0.63, 20% CP), the low-protein diets significantly augmented the concentrations of most essential amino acids and non-essential amino acids (p < .05), with the greatest values observed in the 1 : 0.25 : 0.25 group. Moreover, relative to the control, the low-protein diets with the Leu : Ile : Val ratio ranging from 1 : 0.75 : 0.75 to 1 : 0.25 : 0.25 markedly downregulated the mRNA abundance of acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP-4) (p < .05), and upregulated the mRNA expression of hormone-sensitive lipase (HSL), peroxisome proliferator-activated receptor-g coactivator-1α (PGC-1α), uncoupling protein 3 (UCP3) and liver carnitine palmitoyltransferase 1 (L-CPT-1) (p < .05). Therefore, our data suggest that protein-restricted diets supplemented with optimal BCAA ratio, that is, 1 : 0.75 : 0.75-1 : 0.25 : 0.25, induce a shift from fatty acid synthesis to fatty acid oxidation in the liver of growing pigs. These effects may be associated with increased mitochondrial biogenesis.

  6. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  7. MITOCHONDRIAL AND METABOLIC GENE EXPRESSION IN THE AGED RAT HEART

    Directory of Open Access Journals (Sweden)

    Gregory P Barton

    2016-08-01

    Full Text Available Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function and AMP-activated protein kinase (AMPK activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo, Old (33 mo, and old exercise trained (Old + EXE (34 mo FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05 expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α, peroxisome proliferator activated receptor alpha (PPARα, and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function are superfluous and decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity and mitochondrial function in the heart.

  8. Gene therapy in disorders of lipoprotein metabolism

    NARCIS (Netherlands)

    Vaessen, Stefan F C; Twisk, Jaap; Kastelein, John J P; Kuivenhoven, Jan Albert

    2007-01-01

    Current pharmacologic interventions in lipid metabolism are insufficient in a subset of patients at increased risk of cardiovascular disease. In particular, several monogenetic disorders of lipid metabolism with diverse clinical complications are beyond treatment to date. Somatic gene transfer is a

  9. Metabolic and inflammatory genes in schizophrenia.

    Science.gov (United States)

    Chase, Kayla A; Rosen, Cherise; Gin, Hannah; Bjorkquist, Olivia; Feiner, Benjamin; Marvin, Robert; Conrin, Sean; Sharma, Rajiv P

    2015-01-30

    Energy metabolism and immunity are characterized as abnormal in schizophrenia. Because these two systems are highly coordinated, we measured expression of prototypic obesogenic and immunogenic genes in freshly harvested PBMC from controls and participants with schizophrenia. We report significant increases in PPARγ, SREBP1, IL-6 and TNFα, and decreases in PPARα and C/EPBα and mRNA levels from patients with schizophrenia, with additional BMI interactions, characterizing dysregulation of genes relating to metabolic-inflammation in schizophrenia.

  10. Regulation of energy metabolism by long-chain fatty acids.

    Science.gov (United States)

    Nakamura, Manabu T; Yudell, Barbara E; Loor, Juan J

    2014-01-01

    In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.

  11. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  12. Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism.

    Science.gov (United States)

    Ross, A Catharine; Cifelli, Christopher J; Zolfaghari, Reza; Li, Nan-Qian

    2011-01-01

    Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.

  13. Regulation of uric acid metabolism and excretion.

    Science.gov (United States)

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition

    National Research Council Canada - National Science Library

    Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing

    2015-01-01

    Fatty acid desaturase ( FADS ) genes and their variants have been associated with multiple metabolic phenotypes, including liver enzymes and hepatic fat accumulation, but the detailed mechanism remains unclear...

  15. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...

  16. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  17. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism

    National Research Council Canada - National Science Library

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-01-01

    .... We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells...

  18. High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle.

    Science.gov (United States)

    Acs, Zoltan; Bori, Zoltan; Takeda, Masaki; Osvath, Peter; Berkes, Istvan; Taylor, Albert W; Yang, Hu; Radak, Zsolt

    2014-06-01

    We hypothesized that high altitude exposure and physical activity associated with the attack to Mt Everest could alter mRNA levels of DNA repair and metabolic enzymes and cause oxidative stress-related challenges in human skeletal muscle. Therefore, we have tested eight male mountaineers (25-40 years old) before and after five weeks of exposure to high altitude, which included attacks to peaks above 8000m. Data gained from biopsy samples from vastus lateralis revealed increased mRNA levels of both cytosolic and mitochondrial superoxide dismutase. On the other hand 8-oxoguanine DNA glycosylase (OGG1) mRNA levels tended to decrease while Ku70 mRNA levels and SIRT6 decreased with altitude exposure. The levels of SIRT1 and SIRT3 mRNA did not change significantly. However, SIRT4 mRNA level increased significantly, which could indicate decreases in fatty acid metabolism, since SIRT4 is one of the important regulators of this process. Within the limitations of this human study, data suggest that combined effects of high altitude exposure and physical activity climbing to Mt. Everest, could jeopardize the integrity of the particular chromosome. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos

    DEFF Research Database (Denmark)

    Bhanja, Subrat K.; Hotowy, Anna Malgorzata; Mehra, Manish;

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers...... but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control...... embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, Nano...

  20. Dietary fat source affects metabolism of fatty acids in pigs as evaluated by altered expression of lipogenic genes in liver and adipose tissues

    DEFF Research Database (Denmark)

    Duran-Montge, P; Theil, Peter Kappel; Lauridsen, Charlotte

    2009-01-01

    ), linseed oil (LO), blend (FB) (55% T, 35% SFO and 10% LO) and fish oil (FO) blend (40% FO and 60% LO). Pigs were slaughtered at 100 kg BW and autopsies from liver, adipose tissue and muscle semimembranousus were collected for qPCR. The messenger ribonucleic acid (mRNA) abundances of genes related...... of seven dietary treatments (eight animals per treatment): a semi-synthetic diet containing a very low level of fat (no fat (NF)) and six fat-supplemented diets (ca. 10%) based on barley and soybean meal. The supplemental fat sources were tallow (T), high-oleic sunflower oil (HOSF), sunflower oil (SFO...

  1. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    Science.gov (United States)

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  2. Apolipoprotein gene involved in lipid metabolism

    Science.gov (United States)

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  3. Polyunsaturated fatty acid metabolism in prostate cancer.

    Science.gov (United States)

    Berquin, Isabelle M; Edwards, Iris J; Kridel, Steven J; Chen, Yong Q

    2011-12-01

    Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

  4. Metabolism of dicarboxylic acids in rat hepatocytes.

    Science.gov (United States)

    Bergseth, S; Poisson, J P; Bremer, J

    1990-02-06

    [carboxyl-14C]Dodecanedioic acid (DC12) is metabolized in hepatocytes at a rate about two thirds that of [1-14C]palmitate. Shorter dicarboxylates (sebacic (DC10), suberic (DC8), and adipic (DC6) acid) are formed, mainly DC6, less DC8 and only a little DC10. In hepatocytes from clofibrate-treated rats, more polar products account for most of the breakdown products, presumably because the beta-oxidation proceeds all the way to succinate and acetyl-CoA. [carboxyl-14C]Suberic acid (DC8) is oxidized at a rate only one fifth that of dodecanedioic acid. (+)-Decanoylcarnitine inhibits palmitate oxidation but not the oxidation of dodecanedioic acid. At low concentrations of [carboxyl-14C]dodecanedioic acid or of [1-14C]palmitate, acetylsulfanilamide is more efficiently labeled by the former. High concentrations of dodecanedioic acid inhibit palmitate oxidation and the acetylation of sulfanilamide, presumably because their CoA-esters accumulate in the cytosol. These results indicate that medium-chain dicarboxylic acids are beta-oxidized mainly in the peroxisomes.

  5. Metabolic gene polymorphism frequencies in control populations

    DEFF Research Database (Denmark)

    Garte, Seymour; Gaspari, Laura; Alexandrie, Anna-Karin

    2001-01-01

    Using the International Project on Genetic Susceptibility to Environmental Carcinogens (GSEC) database containing information on over 15,000 control (noncancer) subjects, the allele and genotype frequencies for many of the more commonly studied metabolic genes (CYP1A1, CYP2E1, CYP2D6, GSTM1, GSTT...

  6. Pleiotropic genes for metabolic syndrome and inflammation

    DEFF Research Database (Denmark)

    Kraja, Aldi T; Chasman, Daniel I; North, Kari E

    2014-01-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factor...

  7. 鼠PVRL-2慢病毒载体的构建及其在3T3-L1细胞中的表达%Potential role of mouse PVRL-2 gene in the fatty acid metabolism

    Institute of Scientific and Technical Information of China (English)

    马静; 刘晓萌; 张传海; 郑宗基; 赵倩伟; 杨鸣琦; 张雷

    2013-01-01

    Excess fat and cholesterol in food such as meat,eggs or milk could lead to hyperlipoidemia in human.Currently,to explore genes expression and their mechanisms associated with lipid metabolism has been a major focus in veterinary science.Growing bodies of evidence indicated that molecular functions of fatty acid metabolism related genes such as ApoE,ApoC1 and Tomm40 were very well characterized; however,function of their chromosomal neighbor such as PVRL-2 gene in the fatty acid metabolism remains unclear.Present study was aim to investigate potential role of mouse PVRL-2 gene in regulation of fatty acid related gene expression using preadipogenic 3T3-L1 cells.The cells were infected by Lentiviral particles which was produced by lentiviral plasmid containing Pvrl2 gene,and RNA were extracted 48h post viral infection.Quantitative real-time PCR analysis confirmed that PVRL-2 overexpressed more than 100 folds upon PVRL-2 virus transformation compared to the control.Notably,the expression of PPARα gene which is a key player in the fatty acid oxidation was strongly induced (4.5 fold increase) post PVRL-2 viral infection,but not other genes that related to the fatty acid metabolism such as CPT1A,FASN,COX7A,PGC1B,ASADM showed similar changes.Furthermore,bioinformatics analyses revealed that Nectin-2,coded by PVRL-2,should be a transmembrane protein with a signal peptide.In conclusion,the present study demonstrated that overexpression of PVRL-2 induce the expression of PPARα,which highlight the potential roles of PVRL-2 gene in fatty acid metabolism.Future studies are needed to determine detailed molecular function of PVRL-2 gene in fatty acid metabolism.%过多的脂肪和胆固醇随着肉蛋奶被人体摄入是导致人类高血脂等各种疾病诱发的原因之一,而探索脂代谢通路相关基因的表达变化及其调控机制已经成为分子生物学技术在兽医学领域中的研究热点.与高血脂有关的ApoE、ApoC1和Tomm40等基因研究较多,

  8. Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development.

    Science.gov (United States)

    Liang, Dong; Zhu, Tingting; Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui

    2017-01-01

    To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.

  9. Phytanic acid metabolism in health and disease.

    Science.gov (United States)

    Wanders, Ronald J A; Komen, Jasper; Ferdinandusse, Sacha

    2011-09-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.

  10. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  11. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  12. Linking uric acid metabolism to diabetic complications

    Institute of Scientific and Technical Information of China (English)

    Akifumi; Kushiyama; Kentaro; Tanaka; Shigeko; Hara; Shoji; Kawazu

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.

  13. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    Science.gov (United States)

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.

  14. Pleiotropic genes for metabolic syndrome and inflammation

    Science.gov (United States)

    Kraja, Aldi T.; Chasman, Daniel I.; North, Kari E.; Reiner, Alexander P.; Yanek, Lisa R.; Kilpeläinen, Tuomas O.; Smith, Jennifer A.; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D.; Feitosa, Mary F.; Tekola-Ayele, Fasil; Chu, Audrey Y.; Nolte, Ilja M.; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A.; Sun, Yan V.; Ritchie, Marylyn D.; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A.; Im, Hae Kyung; Schnabel, Renate B.; Jørgensen, Torben; Jørgensen, Marit E.; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P.; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G.; Franco, Oscar H.; Ikram, M. Arfan; Richards, J. Brent; Rotimi, Charles; Wilson, James G.; Lange, Leslie; Ganesh, Santhi K.; Nalls, Mike; Rasmussen-Torvik, Laura J.; Pankow, James S.; Coresh, Josef; Tang, Weihong; Kao, W.H. Linda; Boerwinkle, Eric; Morrison, Alanna C.; Ridker, Paul M.; Becker, Diane M.; Rotter, Jerome I.; Kardia, Sharon L.R.; Loos, Ruth J.F.; Larson, Martin G.; Hsu, Yi-Hsiang; Province, Michael A.; Tracy, Russell; Voight, Benjamin F.; Vaidya, Dhananjay; O’Donnell, Christopher; Benjamin, Emelia J.; Alizadeh, Behrooz Z.; Prokopenko, Inga; Meigs, James B.; Borecki, Ingrid B.

    2014-01-01

    Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic

  15. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.

    Science.gov (United States)

    Guo, Liping; Yang, Runqiang; Gu, Zhenxin

    2016-10-01

    Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...... enzymes involved in biosynthesis of the precursor for PUFAs, or codon optimization of the heterologous genes, or expression of heterologous enzymes involved in the biosynthesis of the precursor for PUFAs....

  17. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Directory of Open Access Journals (Sweden)

    Blanka Stibůrková

    Full Text Available OBJECTIVE: Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. METHODS: The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables. RESULTS: The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations. CONCLUSION: Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  18. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  19. Characterization of genes involved in ceramide metabolism in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Timmins-Schiffman Emma

    2012-09-01

    Full Text Available Abstract Background The lipid signaling molecule, ceramide, is a key component of the vertebrate stress response, however, there is limited information concerning its role in invertebrate species. In order to identify genes involved in ceramide metabolism in bivalve molluscs, Pacific oyster genomic resources were examined for genes associated with ceramide metabolism and signaling. Results Several genes were identified including full-length sequences characterized for serine palmitoyltransferase-1, 3-ketodihydrosphingosine reductase, acid ceramidase, and ceramide glucosyltransferase. Genes involved in ceramide synthesis and metabolism are conserved across taxa in both form and function. Expression analysis as assessed by quantitative PCR indicated all genes were expressed at high levels in gill tissue. The role of the ceramide pathway genes in the invertebrate stress response was also explored by measuring expression levels in adult oysters exposed to Vibrio vulnificus. Two genes demonstrated increased expression during the bacterial challenge: a gene involved in hydrolytic breakdown of ceramide (acid ceramidase and a gene involved in de novo generation of ceramide (3-ketodihydrosphingosine reductase, suggesting a possible role of ceramide in the invertebrate stress and immune responses. Conclusions In silico and laboratory results support that Pacific oysters have the basic components of the ceramide metabolism pathway. These results also indicate that ceramide may have analogous functions in vertebrates and invertebrates. The gene expression pattern of acid ceramidase and 3-kethodihydrosphingosine reductase in response to bacterial exposure especially supports that ceramide and sphingolipid metabolism may be involved in the oyster’s stress and/or immune responses.

  20. Characterization of genes involved in ceramide metabolism in the Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Timmins-Schiffman, Emma; Roberts, Steven

    2012-09-13

    The lipid signaling molecule, ceramide, is a key component of the vertebrate stress response, however, there is limited information concerning its role in invertebrate species. In order to identify genes involved in ceramide metabolism in bivalve molluscs, Pacific oyster genomic resources were examined for genes associated with ceramide metabolism and signaling. Several genes were identified including full-length sequences characterized for serine palmitoyltransferase-1, 3-ketodihydrosphingosine reductase, acid ceramidase, and ceramide glucosyltransferase. Genes involved in ceramide synthesis and metabolism are conserved across taxa in both form and function. Expression analysis as assessed by quantitative PCR indicated all genes were expressed at high levels in gill tissue. The role of the ceramide pathway genes in the invertebrate stress response was also explored by measuring expression levels in adult oysters exposed to Vibrio vulnificus. Two genes demonstrated increased expression during the bacterial challenge: a gene involved in hydrolytic breakdown of ceramide (acid ceramidase) and a gene involved in de novo generation of ceramide (3-ketodihydrosphingosine reductase), suggesting a possible role of ceramide in the invertebrate stress and immune responses. In silico and laboratory results support that Pacific oysters have the basic components of the ceramide metabolism pathway. These results also indicate that ceramide may have analogous functions in vertebrates and invertebrates. The gene expression pattern of acid ceramidase and 3-kethodihydrosphingosine reductase in response to bacterial exposure especially supports that ceramide and sphingolipid metabolism may be involved in the oyster's stress and/or immune responses.

  1. Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid Fatty Acid composition in a muscle type specific manner in sheep.

    Directory of Open Access Journals (Sweden)

    Lei Hou

    Full Text Available We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD and biceps femoris (BF and in the cardiac muscle (ventriculus sinister cordis (VSC of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM or 50% (LOW of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty, twin offspring received a high-carbohydrate-high-fat (HCHF or a moderate-conventional (CONV diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults. The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4 protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced

  2. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism.

    Science.gov (United States)

    Germain, Arnaud; Ruppert, David; Levine, Susan M; Hanson, Maureen R

    2017-01-31

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remains a continuum spectrum disease without biomarkers or simple objective tests, and therefore relies on a diagnosis from a set of symptoms to link the assortment of brain and body disorders to ME/CFS. Although recent studies show various affected pathways, the underlying basis of ME/CFS has yet to be established. In this pilot study, we compare plasma metabolic signatures in a discovery cohort, 17 patients and 15 matched controls, and explore potential metabolic perturbations as the aftermath of the complex interactions between genes, transcripts and proteins. This approach to examine the complex array of symptoms and underlying foundation of ME/CFS revealed 74 differentially accumulating metabolites, out of 361 (P metabolism and glycerophospholipid metabolism, combined with primary bile acid metabolism, as well as glyoxylate and dicarboxylate metabolism and a few other pathways, all involved broadly in fatty acid metabolism. Purines, including ADP and ATP, pyrimidines and several amino acid metabolic pathways were found to be significantly disturbed. Finally, glucose and oxaloacetate were two main metabolites affected that have a major effect on sugar and energy levels. Our work provides a prospective path for diagnosis and understanding of the underlying mechanisms of ME/CFS.

  3. Metabolic flux analysis on arachidonic acid fermentation

    Institute of Scientific and Technical Information of China (English)

    JIN Mingjie; HUANG He; ZHANG Kun; YAN Jie; GAO Zhen

    2007-01-01

    The analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid (AA) synthesis in Mortierella alpina ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source.During the exponential,decelerating and stationary phase,carbon fluxes to AA were 3.28%,8.80% and 6.97%,respectively,with sufficient N-source broth based on the flux of glucose uptake,and those were increased to 3.95%,19.21% and 39.29%,respectively,by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05%NaNO3 at 96 h.Eventually AA yield was increased from 1.3 to 3.5 g.L-1.These results suggest a way to improve AA fermentation,that is,fermentation with limited N-source broth and adding low concentration N-source during the stationary phase.

  4. Altered cholesterol and fatty acid metabolism in Huntington disease.

    Science.gov (United States)

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  5. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    Science.gov (United States)

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-07-01

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism.

    Science.gov (United States)

    Payyavula, Raja S; Singh, Rajesh K; Navarre, Duroy A

    2013-11-01

    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.

  7. Hydrochloric acid for treating metabolic alkalosis.

    Science.gov (United States)

    Korkmaz, A; Yildirim, E; Aras, N; Ercan, F

    1989-09-01

    Six patients with severe metabolic alkalosis were treated with intravenous hydrochloric acid (HCl) infusion. HCl was given through a central venous catheter, at a concentration of 0.1 mEq per ml. At least two of the following criteria were considered for initiation of the therapy: An arterial pH of greater than 7.45, a base excess (BE) of greater than +7 mmol/L, a PaCO2 of greater than 50 mmHg. The HCl amount was calculated using the BE formula, however, two thirds was infused for avoiding excessive acid loading. Patients were monitored by the blood gases, serum electrolytes, hemoglobin, hematocrit, bilirubin determinations and blood smear findings. While a significant decrease was noticed in pH and BE values, moderate changes were detected in PaCO2 due to different ventilatory status of the cases. All laboratory test results remained within normal limits and no complication was encountered. The advantage of the therapy is that less volume is needed for the correction of alkalosis, particularly in the cases requiring fluid restriction. HCl therapy, moreover, is a safe and time-saving method because of having rapid response to the treatment in the critically ill surgical patients.

  8. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    Science.gov (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  9. Bile acid signaling in metabolic disease and drug therapy.

    Science.gov (United States)

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  10. The diagnosis of inherited metabolic diseases by microarray gene expression profiling

    Directory of Open Access Journals (Sweden)

    Taanman Jan-Willem

    2010-12-01

    Full Text Available Abstract Background Inherited metabolic diseases (IMDs comprise a diverse group of generally progressive genetic metabolic disorders of variable clinical presentations and severity. We have undertaken a study using microarray gene expression profiling of cultured fibroblasts to investigate 68 patients with a broad range of suspected metabolic disorders, including defects of lysosomal, mitochondrial, peroxisomal, fatty acid, carbohydrate, amino acid, molybdenum cofactor, and purine and pyrimidine metabolism. We aimed to define gene expression signatures characteristic of defective metabolic pathways. Methods Total mRNA extracted from cultured fibroblast cell lines was hybridized to Affymetrix U133 Plus 2.0 arrays. Expression data was analyzed for the presence of a gene expression signature characteristic of an inherited metabolic disorder and for genes expressing significantly decreased levels of mRNA. Results No characteristic signatures were found. However, in 16% of cases, disease-associated nonsense and frameshift mutations generating premature termination codons resulted in significantly decreased mRNA expression of the defective gene. The microarray assay detected these changes with high sensitivity and specificity. Conclusion In patients with a suspected familial metabolic disorder where initial screening tests have proven uninformative, microarray gene expression profiling may contribute significantly to the identification of the genetic defect, shortcutting the diagnostic cascade.

  11. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  12. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population

    NARCIS (Netherlands)

    Lu, Y.; Feskens, E.J.M.; Boer, J.M.A.; Müller, M.R.

    2010-01-01

    The liver is currently known to be the major organ to eliminate excess cholesterol from our body. It accomplishes this function in two ways: conversion of cholesterol molecules into bile acids (BAs) and secretion of unesterified cholesterol molecules into bile. BAs are synthesized in the hepatocytes

  13. Dietary medium-chain saturated fatty acids induce gene expression of energy metabolism-related pathways in adipose tissue of abdominally obese subjects

    NARCIS (Netherlands)

    Matualatupauw, J.C.; Bohl, Mette; Gregersen, Søren; Hermansen, K.; Afman, L.A.

    2017-01-01

    Background:Dietary medium-chain saturated fatty acids (MC-SFAs) have been shown to reduce total body fat. Previously, we showed that MC-SFAs prevent body fat accumulation, despite weight gain. Here, we aim to explore potential molecular mechanisms underlying the protective effect of MC-SFAs on body

  14. Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.

    Science.gov (United States)

    Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter

    2016-03-07

    In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid.

  15. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism

    Science.gov (United States)

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 days leads to a progressively increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associat...

  16. Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression.

    Science.gov (United States)

    Sumantran, Venil N; Mishra, Pratik; Sudhakar, N

    2015-04-01

    A new hallmark of cancer involves acquisition of a lipogenic phenotype which promotes tumorigenesis. Little is known about lipid metabolism in melanomas. Therefore, we used BRB (Biometrics Research Branch) class comparison tool with multivariate analysis to identify differentially expressed genes in human cutaneous melanomas, compared with benign nevi and normal skin derived from the microarray dataset (GDS1375). The methods were validated by identifying known melanoma biomarkers (CITED1, FGFR2, PTPRF, LICAM, SPP1 and PHACTR1) in our results. Eighteen genes regulating metabolism of fatty acids, lipid second messengers and gangliosides were 2-9 fold upregulated in melanomas of GDS-1375. Out of the 18 genes, 13 were confirmed by KEGG pathway analysis and 10 were also significantly upregulated in human melanoma cell lines of NCI-60 Cell Miner database. Results showed that melanomas upregulated PPARGC1A transcription factor and its target genes regulating synthesis of fatty acids (SCD) and complex lipids (FABP3 and ACSL3). Melanoma also upregulated genes which prevented lipotoxicity (CPT2 and ACOT7) and regulated lipid second messengers, such as phosphatidic acid (AGPAT-4, PLD3) and inositol triphosphate (ITPKB, ITPR3). Genes for synthesis of pro-tumorigenic GM3 and GD3 gangliosides (UGCG, HEXA, ST3GAL5 and ST8SIA1) were also upregulated in melanoma. Overall, the microarray analysis of GDS-1375 dataset indicated that melanomas can become lipogenic by upregulating genes, leading to increase in fatty acid metabolism, metabolism of specific lipid second messengers, and ganglioside synthesis.

  17. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Science.gov (United States)

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  18. Polyunsaturated fatty acids in pregnancy and metabolic syndrome: a review.

    Science.gov (United States)

    Poniedzialek-Czajkowska, Elzbieta; Mierzynski, Radzislaw; Kimber-Trojnar, Zaneta; Leszczynska-Gorzelak, Bozena; Oleszczuk, Jan

    2014-01-01

    This review presents available evidence for possible application of n-3 long chain polyunsaturated fatty acids (PUFAs) in pregnant obese women with metabolic syndrome (MS) and focuses on prophylaxis of pregnancy complications associated with MS such as gestational hypertension, preeclampsia and gestational diabetes. Dietary supplementation with n-3 PUFAs has recently become popular and their adequate intake during pregnancy and early childhood is of clinical importance. The results of experimental and epidemiological investigations reveal that n-3 PUFAs, especially α- linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), may decrease the risk of cardiovascular diseases. It is believed that n-3 PUFAs affect a multitude of molecular pathways, involving regulation of gene expression, alteration of physical and chemical properties of cellular membranes and modulation of membrane channels and proteins. A large body of evidence focuses on anti-inflammatory properties of PUFAs which seem to be fundamental in prevention and reversing of insulin resistance, atherogenic dyslipidemia, hypertension, thromboembolism and in improving vascular function. Despite the potential PUFAs benefits of decreasing insulin resistance, their application in order to prevent preeclampsia, gestational hypertension and gestational diabetes mellitus in pregnant women with MS has not yet been established. Numerous reports have revealed that appropriate fetal development, including neuronal, retinal and immune function depends on EPA and DHA which are crucial also for prevention of preterm birth. Thus the supplementation with EPA and DHA is highly recommended during pregnancy although the optimal dosing and treatment strategies still need to be determined.

  19. Metabolic engineering as a tool for enhanced lactic acid production.

    Science.gov (United States)

    Upadhyaya, Bikram P; DeVeaux, Linda C; Christopher, Lew P

    2014-12-01

    Metabolic engineering is a powerful biotechnological tool that finds, among others, increased use in constructing microbial strains for higher lactic acid productivity, lower costs and reduced pollution. Engineering the metabolic pathways has concentrated on improving the lactic acid fermentation parameters, enhancing the acid tolerance of production organisms and their abilities to utilize a broad range of substrates, including fermentable biomass-derived sugars. Recent efforts have focused on metabolic engineering of lactic acid bacteria as they produce high yields and have a small genome size that facilitates their genetic manipulation. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating lactic acid producing organisms developed to address and overcome major challenges in the lactic acid production process.

  20. Body weight, metabolism and clock genes

    Directory of Open Access Journals (Sweden)

    Zanquetta Melissa M

    2010-08-01

    Full Text Available Abstract Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus and peripheral (located in other tissues circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.

  1. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  2. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Science.gov (United States)

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  3. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil K; Diwan, Vishal; Brown, Lindsay

    2011-10-01

    Epidemiological, human, animal, and cell culture studies show that n-3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n-3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n-3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n-3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n-3 and n-6 fatty acids as well as the interactions of n-3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n-3 fatty acids to reduce the risk factors of metabolic syndrome.

  4. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    NARCIS (Netherlands)

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  5. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  6. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  7. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    Science.gov (United States)

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  8. Correlation of uric acid levels and parameters of metabolic syndrome.

    Science.gov (United States)

    Cibičková, Ľ; Langová, K; Vaverková, H; Kubíčková, V; Karásek, D

    2017-07-18

    Hyperuricemia has been described as associated with the risk of development metabolic syndrome; however the relationship between the uric acid level and particular parameters of metabolic syndrome remained unclear. We performed a cross-sectional study on a cohort of 833 dyslipidemic patients and correlated their levels of uric acid with parameters of insulin resistance, lipid metabolism, C-reactive protein, anthropometric parameters. We also defined patients with hypertriglyceridemic waist phenotype and compered their uric acid levels with those without this phenotype. We found that levels of uric acid are associated with parameters of metabolic syndrome. Specifically, dyslipidemia characteristic for metabolic syndrome (low HDL-cholesterol and high triglycerides) correlates better with uric acid levels than parameters of insulin resistance. Also waist circumference correlates better with uric acid levels than body mass index. Patients with hypertriglyceridemic waist phenotype had higher levels of uric acid when compared with patients without this phenotype. Serum uric acid levels are even in low levels linearly correlated with parameters of metabolic syndrome (better with typical lipid characteristics than with parameters of insulin resistance) and could be associated with higher cardiovascular risk.

  9. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  10. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  11. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Nina V Chaika

    Full Text Available BACKGROUND: Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a five-year survival rate of 6%. It is characterized by extremely aggressive tumor growth rate and high incidence of metastasis. One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. However, the contribution of metabolic interrelationships between tumor cells and cells of the surrounding microenvironment to the progression of cancer is not well understood. We evaluated differential expression of metabolic genes and, hence, metabolic pathways in primary tumor and metastases of patients with pancreatic adenocarcinoma. METHODS AND FINDINGS: We analyzed the metabolic gene (those involved in glycolysis, tri-carboxylic acid pathway, pentose-phosphate pathway and fatty acid metabolism expression profiles of primary and metastatic lesions from pancreatic cancer patients by gene expression arrays. We observed two principal results: genes that were upregulated in primary and most of the metastatic lesions; and genes that were upregulated only in specific metastatic lesions in a site-specific manner. Immunohistochemical (IHC analyses of several metabolic gene products confirmed the gene expression patterns at the protein level. The IHC analyses also revealed differential tumor and stromal expression patterns of metabolic enzymes that were correlated with the metastasis sites. CONCLUSIONS: Here, we present the first comprehensive studies that establish differential metabolic status of tumor and stromal components and elevation of aerobic glycolysis gene expression in pancreatic cancer.

  12. Differential Expression of Metabolic Genes in Tumor and Stromal Components of Primary and Metastatic Loci in Pancreatic Adenocarcinoma

    Science.gov (United States)

    Chaika, Nina V.; Yu, Fang; Purohit, Vinee; Mehla, Kamiya; Lazenby, Audrey J.; DiMaio, Dominick; Anderson, Judy M.; Yeh, Jen Jen; Johnson, Keith R.; Hollingsworth, Michael A.; Singh, Pankaj K.

    2012-01-01

    Background Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a five-year survival rate of 6%. It is characterized by extremely aggressive tumor growth rate and high incidence of metastasis. One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. However, the contribution of metabolic interrelationships between tumor cells and cells of the surrounding microenvironment to the progression of cancer is not well understood. We evaluated differential expression of metabolic genes and, hence, metabolic pathways in primary tumor and metastases of patients with pancreatic adenocarcinoma. Methods and Findings We analyzed the metabolic gene (those involved in glycolysis, tri-carboxylic acid pathway, pentose-phosphate pathway and fatty acid metabolism) expression profiles of primary and metastatic lesions from pancreatic cancer patients by gene expression arrays. We observed two principal results: genes that were upregulated in primary and most of the metastatic lesions; and genes that were upregulated only in specific metastatic lesions in a site-specific manner. Immunohistochemical (IHC) analyses of several metabolic gene products confirmed the gene expression patterns at the protein level. The IHC analyses also revealed differential tumor and stromal expression patterns of metabolic enzymes that were correlated with the metastasis sites. Conclusions Here, we present the first comprehensive studies that establish differential metabolic status of tumor and stromal components and elevation of aerobic glycolysis gene expression in pancreatic cancer. PMID:22412968

  13. EFFECTS OF HYDRAZINES ON THE METABOLISM OF CERTAIN AMINES AND AMINO ACIDS.

    Science.gov (United States)

    AMINES, * AMINO ACIDS , *DIAMINE OXIDASE, TOXICITY, METABOLISM, METABOLISM, DIMETHYLHYDRAZINES, GLUTAMIC ACID, ENZYMES, PHARMACOLOGY, TRACER STUDIES, LABELED SUBSTANCES, RESPIRATION, GASTROINTESTINAL SYSTEM, RATS.

  14. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Science.gov (United States)

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  15. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Science.gov (United States)

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  16. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    Science.gov (United States)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  17. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    Science.gov (United States)

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus.

  18. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (pomega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.

  19. Citric acid cycle and role of its intermediates in metabolism.

    Science.gov (United States)

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  20. EcoCyc: Enyclopedia of Escherichia coli Genes and Metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1997-01-01

    The Encyclopedia of Genes and Metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of Escherichia coli. It describes 2970 genes of E.coli, 547 enzymes encoded by these genes, 702 metabolic reactions that occur in E.coli and the organization of these reactions into 107 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc spans the space from sequence to function to allow scientists to investigate an unusually broad range of questions. EcoCyc can be thought of as both an electronic review article because of its copious references to the primary literature, and as an in silicio model of E.coli metabolism that can be probed and analyzed through computational means.

  1. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1998-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/

  2. 基于基因芯片技术的大强度耐力训练大鼠糖脂代谢相关基因的表达%The genes expression connected with glycometabolism and fatty acid metabolism in the brain of the high-intensity endurance training rat based on gene chips

    Institute of Scientific and Technical Information of China (English)

    张婧; 熊正英; 张志琪; 战旗; 唐量; 刘荣花

    2013-01-01

    应用基因芯片检测技术研究大强度耐力训练对大鼠脑组织糖代谢和脂肪酸代谢相关基因表达的影响.将SD大鼠随机分为安静组与大强度耐力训练组,两组自由摄食和饮水,安静组安静饲养,大强度耐力训练组训练7周后处死,迅速取出脑组织提取mRNA,作逆转录为cDNA以备检测.利用基因芯片技术初步筛选出与运动能力相关的糖代谢和脂肪酸代谢有关基因分别为4和8条,均表达下调.与糖代谢相关基因表达产物分别是乳酸脱氢酶同工酶3(LDH3)、UDP-葡萄糖苷酸(基)转移酶、葡萄糖6-磷酸酶和磷酸甘油变位酶;与脂代谢相关基因表达产物分别是羧酯脂肪酶、二乙基对硝基苯磷酸酯酶、硬脂酰CoA去饱和酶、羟基类固醇磺基转移酶、芳乙酰胺脱乙酰酶、载脂蛋白A(-Ⅰ和-Ⅴ)和溶血磷脂酸△-酰基转移酶.筛选出大强度耐力训练大鼠脑组织中与糖代谢和脂肪酸代谢过程相关基因,且均表达下调,说明运动训练已经对大鼠脑组织物质代谢和能量代谢产生抑制作用,这可能也是引起运动性中枢疲劳的机制之一.%The effect of genes expression connected with glycometabolism and fatty acid metabolism in the brain of the high-intensity endurance training rat was studied using cDNA microarray.Rats were divided into the quiet group and the strong intensity endurance training group at random.The both groups freely ingest and drink.The quiet group of rats was bred quietly.The group with high-intensity endurance training was put to death after training for 7 weeks.Brains were taken quickly to extract mRNA for reverse transcription cDNA for detection.There were the 4 and 8 strips of genes connected with glycometabolism and fatty acid metabolism expressed in rats' brain,respectively,and all were down-regulation.The genetic expression product related to glycometabolism were LDH3,UDP-glucuronosyltransferase,Glucose-6phosphatase (G6pc

  3. The complex and important cellular and metabolic functions of saturated fatty acids

    OpenAIRE

    Legrand, Philippe; Rioux, Vincent

    2010-01-01

    This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The...

  4. Gene expression in plant lipid metabolism in Arabidopsis seedlings.

    Directory of Open Access Journals (Sweden)

    An-Shan Hsiao

    Full Text Available Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3, DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1 and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6 in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1 and LATE ELONGATED HYPOCOTYL (LHY from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.

  5. DIFFERENTIAL EXPRESSION OF GENES INVOLVED IN METABOLISM BETWEEN TUMORIGENITIC HUMAN LEUKEMIA CELL LINES K562 AND K562-n

    Institute of Scientific and Technical Information of China (English)

    吕书晴; 许小平; 夏放; 居小萍; 李瑶; 应康; 毛裕民

    2003-01-01

    Objective: To study the molecular mechanism of different tumorigenicity in nude mice of human leukemia cell lines K562-n and K562. Methods: To analyze the genes differently expressed between K562 and K562-n cells by using cDNA microarray technique. Results: Among the 12800 genes detected, some genes involved in material metabolism and material transport were differently expressed between K562-n and K562 cells. These genes include homo sapiens placenta-specific ATP-binding cassette transporter gene, dihydrodiol dehydrogenase gene, hepatic dihydrodiol dehydrogenase gene, NAD-dependent methylene tetrahydrofolate dehydrogenase cyclohydrolase, lysophosphatidic acid acyltransferase, alpha gene, argininosuccinate lyase gene, mitochondrial isocitrtate dehydrogenase, adhesion protein SQM1 gene, dimethylarginine dimethylamino-hydrolase gene, M1 subunit of ribonucleotide reductase and farnesyl pyrophosphate synthetase gene. Conclusion: The high tumorigenicity of K562-n cells is related to the different expression of some genes concerned with cell metabolism and material transpoert.

  6. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further ex...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...

  7. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  8. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation

    NARCIS (Netherlands)

    Lefebvre, Philippe; Cariou, Bertrand; Lien, Fleur; Kuipers, Folkert; Staels, Bart

    2009-01-01

    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 89: 147-191,2009; doi: 10.1152/physrev.00010.2008. - The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an incre

  9. Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A

    DEFF Research Database (Denmark)

    Boyles, Abee L; Wilcox, Allen J; Taylor, Jack A;

    2009-01-01

    An increased risk of facial clefts has been observed among mothers with lower intake of folic acid or vitamin A around conception. We hypothesized that the risk of clefts may be further moderated by genes involved in metabolizing folate or vitamin A. We included 425 case-parent triads in which th...

  10. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    . In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  11. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  12. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Stroeve, Johanna H. M.; Caron, Sandrine; Staels, Bart

    2007-01-01

    Purpose of review Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuc

  13. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  14. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive

  15. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive ba

  16. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Corella, D.

    2009-07-01

    Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolism-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 14C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C) metabolism; the interaction between polyunsaturated fatty acids (PUFA) and the 5G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the -1131T>C in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken. (Author) 31 refs.

  17. Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in Alpine goats fed maize silage-based diets.

    Science.gov (United States)

    Bernard, L; Bonnet, M; Leroux, C; Shingfield, K J; Chilliard, Y

    2009-12-01

    Lipid in the diet is known to enhance milk fat secretion and alter milk fatty acid composition in lactating goats. In the current experiment, the contribution of peripheral tissue and mammary gland lipid metabolism to changes in milk fat composition from plant oils was examined. Fourteen Alpine goats in midlactation were used in a 3 x 3 Latin square design with 28-d experimental periods. Treatments comprised maize silage-based diets containing no additional oil (M), sunflower-seed oil (MSO; 6.1% of diet DM), or linseed oil (MLO; 6.2% of diet DM). Compared with the control, milk yield was greater in goats fed MSO (3.37 and 3.62 kg/d, respectively), whereas MLO enhanced milk fat content (+3.9 g/kg), resulting in a 14% increase in milk fat secretion. Both MSO and MLO increased milk lactose secretion by 12 and 8%, respectively, compared with M. Relative to the control, plant oils decreased C10 to C16 secretion (32 and 24%, respectively, for MSO and MLO) and enhanced C18 output in milk (ca. 110%). Diets MSO and MLO increased cis-9 18:1 secretion in milk by 25 and 31%, respectively, compared with M. The outputs of trans-11 18:1 and cis-9, trans-11 18:2 in milk were increased 8.34- and 6.02-fold for MSO and 5.58- and 3.71-fold for MLO compared with M, and MSO increased trans-10 18:1 and trans-10, cis-12 18:2 secretion. Plant oils decreased milk fat cis-9 14:1/14:0; cis-9 16:1/16:0; cis-9 18:1/18:0; and cis-9, trans-11 18:2/trans-11 18:1 concentration ratios but had no effect on mammary stearoyl-CoA desaturase mRNA or activity. Furthermore, changes in milk fatty acid secretion were not associated with alterations in mammary acetyl-CoA carboxylase mRNA and activity, abundance of mRNA encoding for lipoprotein lipase and fatty acid synthase, or malic enzyme and glycerol-3-phosphate dehydrogenase activity in mammary tissue. Mammary lipoprotein lipase activity was increased with MSO relative to MLO. Treatments had no effect on glucose-6-phosphate dehydrogenase, malic enzyme

  18. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  19. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  20. Effects of rifampicin on hepatotoxicity and genes related to bile acid metabolism in mice%利福平对小鼠的肝毒性及胆酸代谢基因的影响

    Institute of Scientific and Technical Information of China (English)

    徐永吉; 李文楷; 刘杰; 陆远富

    2016-01-01

    Aim Toexamineliverdamagebyrifampi-cin and hepatic gene expression related to bile acid me-tabolisminmice.Methods Adultmalemicewere given rifampicin(180 mg·kg-1 ,po)daily for 30 days and(90 mg·kg-1 ,po)daily for 90 days,blood bio-chemistry,histopathology,and gene expression were examined.Results Rifampicinincreasedanimalliver index and serum enzyme activities. Histopathology showed steatosis and spotted feathery-like degenera-tion.Rifampicin increased the expression of CYP7A1 after 30 and 90 days of administration,along with in-creased FXR and SHP.Rifampicin reduced the expres-sion of BSEP after 30 days of high dose administration. Conclusion Repeatedadministrationofrifampicin may cause liver injury and intrahepatic cholestasis in mice,and these effects are associated with the altera-tion of gene expression related to bile acid metabolism.%目的观察利福平长期给药引起小鼠的肝损伤及其对胆汁酸代谢通路相关基因的影响。方法1d1次灌胃给予♂昆明种小鼠180 mg·kg-1利福平连续30 d 与90 mg· kg-1利福平连续90 d;麻醉取血、肝脏,称肝重,检测血清谷丙转氨酶(ALT),观察肝脏组织的病理变化;提取肝脏总RNA并采用RT-PCR法检测胆汁酸代谢相关基因mRNA的表达情况,提取肝脏总蛋白并采用Western blot 法检测相关蛋白的表达。结果连续给予利福平180 mg·kg-130 d和90 mg·kg-190 d,小鼠肝重系数增加,肝脏发生明显病理改变,表现为肝细胞水肿、羽毛样变性与脂肪变性,且利福平180 mg·kg-130 d病理改变较严重;连续给药180 mg·kg-1利福平30 d 可使胆酸代谢基因胆固醇7α-羟化酶(CYP7A1)、法尼醇受体(FXR)、小分子异源二聚体伴侣(SHP)表达增加,胆盐输出泵(BSEP)的表达降低;连续给药90 mg·kg-1利福平90 d,仅可发现胆酸代谢基因胆固醇7α-羟化酶(CYP7A1)表达增加。结论利福平对小鼠具有明显肝毒性,引

  1. Bile acid metabolism in ileostomy patients.

    Science.gov (United States)

    Huibregtse, K; Hoek, F; Sanders, G T; Tytgat, G N

    1977-04-01

    In ten ileostomy patients, a 14C-cholylglycine breath test was performed. The 14CO2 in the exhaled air and the 14C bile acid quantity and composition and fat content in the subsequent 24 h ileostomy effluent were determined and compared to the values in twenty healthy controls. The results show that in ileostomy patients only minor bile acid-deconjugation occurs in vivo. Deconjugation in the ileostomy bags was found to be mainly responsible for the absence of conjugated bile acids in many of the ileostomy effluent samples. Secondary bile acids were not present in these patients, as determined by TLC. The fecal fat and bile acid excretion was found to be in the normal range in ileostomy patients provided no concomitant ileum resection was present.

  2. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    Science.gov (United States)

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-08-02

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  3. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders.

    Science.gov (United States)

    Gessler, Dominic J; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.

  4. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution

    Directory of Open Access Journals (Sweden)

    E-Bin Gao

    2016-09-01

    Full Text Available Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.

  5. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    Science.gov (United States)

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  6. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  7. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    Science.gov (United States)

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia. We evaluated 103 patients less than 40 years of age, from a low-income population, and without history of cardiovascular disease, in all of them the presence of metabolic syndrome was assessed in accordance with the International Diabetes Federation criteria. In all patients, fasting serum uric acid levels were measured; hyperuricaemia was defined as serum uric acid values 6.5 mg/dl in men and 5.1 mg/dl in women. Statistical analysis was performed with odds ratio. 83 of our patients (80.5%) suffered metabolic syndrome, the odds ratio for the presence of metabolic syndrome in patients with hyperuricaemia was 5.1 (p=0.002, I.C 1.8- 14.5). When patients were evaluated by gender a significantly association between hyperuricaemia and metabolic syndrome was found in women (odds ratio 3.6, p=0.048, C.I. 1.0-12.9), and men (odds ratio 10.2, p= 0.015, IC 1.5-13.2). When uric acid was correlated with the components of metabolic syndrome, we only found a positive correlation with waist circumference (r=0.483). Our results showed a significant association between hyperuricemia and metabolic syndrome in low-income young adults in Mexico. DR is associated with estimated risk of CVD in type 2 diabetic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A Candidate Gene Study of Folate-Associated One Carbon Metabolism Genes and Colorectal Cancer Risk

    Science.gov (United States)

    Levine, A. Joan; Figueiredo, Jane C.; Lee, Won; Conti, David V.; Kennedy, Kathleen; Duggan, David J; Poynter, Jenny N.; Campbell, Peter T.; Newcomb, Polly; Martinez, Maria Elena; Hopper, John L.; Le Marchand, Loic; Baron, John A.; Limburg, Paul J.; Ulrich, Cornelia M.; Haile, Robert W.

    2010-01-01

    Background Folate-associated one carbon metabolism (FOCM) may play an important role in colorectal carcinogenesis. Variation in FOCM genes may explain some of the underlying risk of colorectal cancer. Methods This study utilized data from 1,805 population-based colorectal cancer cases and 2,878 matched sibling controls from the Colon Cancer Family Registry (C-CFR). We used a comprehensive tagSNP approach to select 395 tagSNPs in 15 genes involved in folate and vitamin B12 metabolism. Genotyping was performed using the Illumina GoldenGate or Sequenom platforms. Risk factor and dietary data were collected using self-completed questionnaires. MSI status was determined using standard techniques and tumor subsite was obtained from pathology reports. The association between SNPs and colorectal cancer was assessed using conditional logistic regression with sibships as the matching factor and assuming a log additive or co-dominant model. Results In the log additive model, two linked (r2=0.99) tagSNPs in the DHFR gene (rs1677693 and rs1643659) were associated with a significant decrease in CRC risk after correction for multiple testing (OR=0.87; 95% CI=0.71 – 0.94; P=0.029 and OR=0.87 95% CI=0.71 – 0.95, P=0.034 for rs1677693 and rs1643659 respectively. These two linked (r2=0.99) tagSNPs and one tagSNP in the MTR gene (rs4659744) were significantly associated with reduced CRC risk only among individuals not using multivitamin supplements. Conclusions Overall, we found only moderate evidence that genetic variation in 15 folate pathway genes may affect CRC risk except in non multivitamin users. Impact This study suggests that multivitamin supplement use may modify the association between folate pathway genes and CRC risk in a post folic acid supplemented population. PMID:20615890

  9. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar

    Science.gov (United States)

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-01-01

    The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic varieties. However, the molecular mechanisms behind the increased levels of free amino acids in this mutant are mostly unknown, as are the possible effects of this mutation on the overall metabolome and biosynthetic pathways in tea leaves. To gain further insight into the effects of chlorosis on the global metabolome and biosynthetic pathways in this mutant, Huangjinya plants were grown under normal and reduced sunlight, resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed using transcriptomics as well as targeted and untargeted metabolomics. Approximately 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total detected) were significantly differentially regulated, thus indicating the occurrence of marked effects of light on the biosynthetic pathways in this mutant plant. Considering primary metabolism, including that of sugars, amino acids, and organic acids, significant changes were observed in the expression of genes involved in both nitrogen (N) and carbon metabolism. The suite of changes not only generated an increase in amino acids, including glutamic acid, glutamine, and theanine, but it also elevated the levels of free ammonium, citrate, and α-ketoglutarate, and lowered the levels of mono- and di-saccharides and of caffeine as compared with the non-chlorotic leaves. Taken together, our results suggest that the increased levels of amino acids in the chlorotic vs. non-chlorotic leaves are likely due to increased protein catabolism and/or decreased glycolysis and diminished biosynthesis of nitrogen-containing compounds other than amino acids, including chlorophyll, purines, nucleotides, and alkaloids.

  10. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    Science.gov (United States)

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. ©2014 American Association for Cancer Research.

  11. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults

    Science.gov (United States)

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, andMetSrisk and whether plasma fatty acids,...

  12. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism.

    Science.gov (United States)

    Kim, Yoo; Kim, Jonggun; Whang, Kwang-Youn; Park, Yeonhwa

    2016-02-01

    Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.

  13. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  14. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    Science.gov (United States)

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  15. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    Science.gov (United States)

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-07-19

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  16. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    OpenAIRE

    Wu Liyou; Luo Feng; Harris Daniel P; Yang Yunfeng; Parsons Andrea B; Palumbo Anthony V; Zhou Jizhong

    2008-01-01

    Abstract Background Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways. Results We conducted physiological and transcriptomic studies to characterize Fur in Shewanella oneidensis, with regard to its roles in iron and acid tolerance response. A S. oneidensisf...

  17. Differential Expression of Rice Genes Under Different Nitrogen Forms and Their Relationship with Sulfur Metabolism

    Institute of Scientific and Technical Information of China (English)

    Guo-Hui Zhu; Chu-Xiong Zhuang; Yu-Qi Wang; Lin-Rong Jiang; Xin-Xiang Peng

    2006-01-01

    Microarray analysis was initially performed to screen for differentially expressed genes between nitrateand ammonium-fed rice (Oryza sativa L.) leaves. In total, 198 genes were shown to have a unique expression response to each treatment and most of the genes for which function is known were involved in signal transduction, plant stress resistance, transcriptional regulation, and basic metabolism. Northern blotting analysis confirmed that expression of the MT and PCS genes was highly upregulated in ammonium-fed leaves compared with expression in nitrate-fed leaves and it was further revealed that ammonium-fed leaves accumulated more cysteine and glutathione. The upregulated expressions of the MT and PCS genes and the higher levels of cysteine and glutathione in ammonium-fed leaves indicate that ammonium may be able to accelerate sulfur assimilation metabolism in rice leaves. Unexpectedly, Northern blotting analysis showed that the expression of the two key enzymes in the sulfur assimilation pathway, namely adenosine 5'-phosphosulfate reductase and O-acetylserine(thiol)lyase, was not upregulated by ammonium treatment.It was found that the total content of free amino acids was much higher in ammonium-fed leaves compared with nitrate-fed leaves, mainly resulting from an increase in several amino acids such as serine, asparagine,glutamine, and arginine. The increased amino acids, in particular serine (as a central substrate for the synthesis of the thiol metabolites), may have promoted sulfur assimilation metabolism under conditions of ammonium nutrition.

  18. Fatty acid metabolism studies of human epidermal cell cultures.

    Science.gov (United States)

    Marcelo, C L; Dunham, W R

    1993-12-01

    Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid metabolism of these cells. Label from acetate appeared in 14- to 20-carbon fatty acids, both saturated and monounsaturated. No label was seen in the essential fatty acid 18:2, 18:3, and 20:4. Radiolabel from [9, 10-3H]palmitic acid (16:0) was detected in 16:0, 16:1, 18:0, and 18:1. [14C]linoleic acid (18:2) was converted to 18:3, 20:2, 20:3, and 20:4, demonstrating delta 6 and delta 5 desaturase activity in keratinocytes. Label from acetate, 16:0, or 18:2 was found mostly in the cellular phospholipids while only one third of the label from [14C]arachidonic was found in the phospholipids. [14C]acetate and [14C]18:2 time course data were used to construct a model of the metabolism of these reactants, using coupled, first-order differential equations. The data show that EFA-deficient keratinocytes metabolize fatty acids using pathways previously found in liver; they suggest the positioning of 18:2 desaturase and 18:3 elongase near the plasma membrane; they indicate that for the synthesis of nonessential fatty acids the formation of 18:0 from 16:0 is the rate-determining step; and they show that the conversion of 18:2 to 20:3 is rapid. These experiments demonstrate a method to study lipid enzyme kinetics in living cells.

  19. Energy and lipid metabolism gene expression of D18 embryos in dairy cows is related to dam physiological status

    OpenAIRE

    Valour, Damien; Degrelle, Severine; Ponter, Andrew; Giraud-Delville, Corinne; Campion, Evelyne; Guyader-Joly, C; Richard, Christophe; Constant, Fabienne; Humblot, P.; Ponsart, C.; Hue, Isabelle; Grimard, Bénédicte

    2014-01-01

    We analyzed the change in gene expression related to dam physiological status in day (D)18 embryos from growing heifers (GH), early lactating cows (ELC), and late lactating cows (LLC). Dam energy metabolism was characterized by measurement of circulating concentrations of insulin, glucose, IGF-1, nonesterified fatty acids, β-hydroxybutyrate, and urea before embryo flush. The metabolic parameters were related to differential gene expression in the extraembryonic tissues by correlation analysis...

  20. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    Science.gov (United States)

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100 µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC.

  1. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    Science.gov (United States)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  2. Rat liver metabolism of dicarboxylic acids.

    Science.gov (United States)

    Vamecq, J; Draye, J P; Brison, J

    1989-04-01

    Recently, we demonstrated in rat liver that dicarboxylic acids containing more than five carbons can be activated by a microsomal dicarboxylyl-CoA synthetase (J. Vamecq, E. de Hoffmann, and F. Van Hoof. Biochem. J. 230: 683-693, 1985). The products of this reaction, dicarboxylyl-CoA esters, were found to be substrates for an H2O2-generating dicarboxylyl-CoA oxidase. In the present work we report that 1) the catalytic center or the essential domains of dicarboxylyl-CoA synthetase are located at the cytosolic aspect of the endoplasmic reticulum membrane; 2) dicarboxylyl-CoA oxidase is optimally active on dodecanedioyl-CoA and is a peroxisomal enzyme; 3) cyanide-insensitive dodecanedioyl-CoA oxidation (NADH production) is catalyzed by rat liver homogenates. Cell fractionation studies disclose that, similar to dodecanedioyl-CoA oxidase (H2O2 production), the cyanide-insensitive dodecanedioyl-CoA oxidizing activity also belongs to peroxisomes; 4) a dodecanedioyl-CoA oxidoreductase reaction can be assayed by the dichlorphenolindophenol procedure in rat liver homogenates, and the activity is abundant in peroxisomal, mitochondrial, and soluble fractions; 5) by contrast with monocarboxylyl-CoA esters, the dicarboxylyl-CoAs are apparently not substrates for mitochondrial fatty acid oxidation; however, the use of dicarboxylylcarnitine esters as direct substrate for mitochondria suggests the existence of an active beta-oxidation of dicarboxylates in these organelles, which is further confirmed by experiments in which mitochondria are permeabilized with digitonin; 6) the in vivo oxidation of infused dodecanedioic acid results in a rapid appearance in urine of medium-chain dicarboxylic acids, with only 30-50% of the infused dose recovered in urine.

  3. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Science.gov (United States)

    Renaud, Helen J; Cui, Yue Julia; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D

    2014-01-01

    The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age). The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched), Day 10-Day 20 (pre-weaning-enriched), and Day 25-Day 60 (adolescence/adulthood-enriched). Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty acids-like 3. These

  4. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  5. Dataset of the human homologues and orthologues of lipid-metabolic genes identified as DAF-16 targets their roles in lipid and energy metabolism

    Directory of Open Access Journals (Sweden)

    Lavender Yuen-Nam Fan

    2017-04-01

    Full Text Available The data presented in this article are related to the review article entitled ‘Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis’ (Saavedra-Garcia et al., 2017 [24]. Here, we have matched the DAF-16/FOXO3 downstream genes with their respective human orthologues and reviewed the roles of these targeted genes in FA metabolism. The list of genes listed in this article are precisely selected from literature reviews based on their functions in mammalian FA metabolism. The nematode Caenorhabditis elegans gene orthologues of the genes are obtained from WormBase, the online biological database of C. elegans. This dataset has not been uploaded to a public repository yet.

  6. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells.

    Science.gov (United States)

    Zheng, Ningning; Wang, Ke; He, Jiaojiao; Qiu, Yunping; Xie, Guoxiang; Su, Mingming; Jia, Wei; Li, Houkai

    2016-05-16

    Serum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.

  7. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    Science.gov (United States)

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.

  8. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  9. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  10. Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside.

    Science.gov (United States)

    Ashihara, Hiroshi; Yin, Yuling; Watanabe, Shin

    2011-03-01

    The metabolic fate of [carbonyl-(14)C]nicotinamide was investigated in 9 fern species, Psilotum nudum, Angiopteris evecta, Lygodium japonicum, Acrostichum aureum, Asplenium antiquum, Diplazium subsinuatum, Thelypteris acuminate, Blechnum orientale and Crytomium fortune. All fern species produce a large quantity of nicotinic acid glucoside from [(14)C]nicotinamide, but trigonelline formation is very low. Increases in the release of (14)CO(2) with incubation time was accompanied by decreases in [carboxyl-(14)C]nicotinic acid glucoside. There was slight stimulation of nicotinic acid glucoside formation by 250 mM NaCl in mature leaves of the mangrove fern, Acrostichum aureum, but it is unlikely that this compound acts as a compatible solute. Nicotinamide and nicotinic acid salvage for pyridine nucleotide synthesis was detected in all fern species, although this activity was always less than nicotinic acid glucoside synthesis. Predominant formation of nicotinic acid glucoside is characteristic of nicotinic acid metabolism in ferns. This reaction appears to act as a detoxication mechanism, removing excess nicotinic acid.

  11. Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid fatty acid composition in a muscle type specific manner in sheep

    DEFF Research Database (Denmark)

    Hou, Lei; Kongsted, Alice; Ghoreishi, S. M.;

    2013-01-01

    requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet...... determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein......, but increased PGC1a expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes...

  12. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: role of oxidative stress.

    Science.gov (United States)

    Castro, María C; Francini, Flavio; Gagliardino, Juan J; Massa, María L

    2014-03-01

    Fructose administration rapidly induces oxidative stress that triggers compensatory hepatic metabolic changes. We evaluated the effect of an antioxidant, R/S-α-lipoic acid on fructose-induced oxidative stress and carbohydrate metabolism changes. Wistar rats were fed a standard commercial diet, the same diet plus 10% fructose in drinking water, or injected with R/S-α-lipoic acid (35mg/kg, i.p.) (control+L and fructose+L). Three weeks thereafter, blood samples were drawn to measure glucose, triglycerides, insulin, and the homeostasis model assessment-insulin resistance (HOMA-IR) and Matsuda indices. In the liver, we measured gene expression, protein content and activity of several enzymes, and metabolite concentration. Comparable body weight changes and calorie intake were recorded in all groups after the treatments. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR and lower Matsuda indices compared to control animals. Fructose fed rats showed increased fructokinase gene expression, protein content and activity, glucokinase and glucose-6-phosphatase gene expression and activity, glycogen storage, glucose-6-phosphate dehydrogenase mRNA and enzyme activity, NAD(P)H oxidase subunits (gp91(phox) and p22(phox)) gene expression and protein concentration and phosphofructokinase-2 protein content than control rats. All these changes were prevented by R/S-α-lipoic acid co-administration. Fructose induces hepatic metabolic changes that presumably begin with increased fructose phosphorylation by fructokinase, followed by adaptive changes that attempt to switch the substrate flow from mitochondrial metabolism to energy storage. These changes can be effectively prevented by R/S-α-lipoic acid co-administration. Control of oxidative stress could be a useful strategy to prevent the transition from impaired glucose tolerance to type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transcriptome and Proteome Expression Analysis of the Metabolism of Amino Acids by the Fungus Aspergillus oryzae in Fermented Soy Sauce

    Directory of Open Access Journals (Sweden)

    Guozhong Zhao

    2015-01-01

    Full Text Available Amino acids comprise the majority of the flavor compounds in soy sauce. A portion of these amino acids are formed from the biosynthesis and metabolism of the fungus Aspergillus oryzae; however, the metabolic pathways leading to the formation of these amino acids in A. oryzae remain largely unknown. We sequenced the transcriptomes of A. oryzae 100-8 and A. oryzae 3.042 under similar soy sauce fermentation conditions. 2D gel electrophoresis was also used to find some differences in protein expression. We found that many amino acid hydrolases (endopeptidases, aminopeptidases, and X-pro-dipeptidyl aminopeptidase were expressed at much higher levels (mostly greater than double in A. oryzae 100-8 than in A. oryzae 3.042. Our results indicated that glutamate dehydrogenase may activate the metabolism of amino acids. We also found that the expression levels of some genes changed simultaneously in the metabolic pathways of tyrosine and leucine and that these conserved genes may modulate the function of the metabolic pathway. Such variation in the metabolic pathways of amino acids is important as it can significantly alter the flavor of fermented soy sauce.

  14. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  15. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  16. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Science.gov (United States)

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  17. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  18. Evolution of amino acid metabolism inferred through cladistic analysis.

    Science.gov (United States)

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  19. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids.

    Science.gov (United States)

    Ney, Denise Marie; Etzel, Mark Raymond

    2017-04-01

    Phenylketonuria and tyrosinemia are inherited metabolic disorders characterized by high blood levels of phenylalanine (Phe) or tyrosine (Tyr), due to mutations in genes affecting Phe and Tyr metabolism, respectively. The primary management is a lifelong diet restricted in protein from natural foods in combination with medical foods comprised mixtures of synthetic amino acids. Compliance is often poor after childhood leading to neuropsychological sequela. Glycomacropeptide, an intact 64 amino acid glycophosphopeptide isolated from cheese whey, provides a new paradigm for the management of phenylketonuria and tyrosinemia because glycomacropeptide contains no Phe and Tyr in its pure form, and is also a prebiotic. Medical foods made from glycomacropeptide have been used successfully for the management of phenylketonuria and tyrosinemia. Preclinical and clinical studies demonstrate that intact protein from glycomacropeptide provides a more acceptable and physiologic source of defined protein compared to amino acids in medical foods. For example, harmful gut bacteria were reduced, beneficial short chain fatty acids increased, renal workload decreased, protein utilization increased, and bone fragility decreased using intact protein versus amino acids. Advances in biotechnology will propel the transition from synthetic amino acids to intact proteins for the management of inherited metabolic disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  1. Metabolic evolution of Escherichia coli strains that produce organic acids

    Science.gov (United States)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  2. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    Directory of Open Access Journals (Sweden)

    Lei Anping

    2012-03-01

    Full Text Available Abstract Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP, 3-ketoacyl-ACP-synthase (KAS, and acyl-ACP thioesterase (FATA gene expression had significant correlations with monounsaturated FA (MUFA synthesis and polyunsaturated FA (PUFA synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  3. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors.

    Science.gov (United States)

    Lei, Anping; Chen, Huan; Shen, Guoming; Hu, Zhangli; Chen, Lei; Wang, Jiangxin

    2012-03-26

    Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.

  4. The Heparan and Heparin Metabolism Pathway is Involved in Regulation of Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang, Jennifer J. Michal, Xiao-Lin Wu, Zengxiang Pan, Michael D. MacNeil

    2011-01-01

    Full Text Available Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like, EXTL1 (exostoses (multiple-like 1, HS6ST1 (heparan sulfate 6-O-sulfotransferase 1, HS6ST3 (heparan sulfate 6-O-sulfotransferase 3, NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl 3, and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1, were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs/multiple nucleotide length polymorphisms (MNLPs were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F2 animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA, and the relative amount of saturated fatty acids (SFA and monounsaturated fatty acids (MUFA in skeletal muscle (P<0.05. In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  5. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    Science.gov (United States)

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production.

  6. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.

    Science.gov (United States)

    Xue, Zhixiong; Sharpe, Pamela L; Hong, Seung-Pyo; Yadav, Narendra S; Xie, Dongming; Short, David R; Damude, Howard G; Rupert, Ross A; Seip, John E; Wang, Jamie; Pollak, Dana W; Bostick, Michael W; Bosak, Melissa D; Macool, Daniel J; Hollerbach, Dieter H; Zhang, Hongxiang; Arcilla, Dennis M; Bledsoe, Sidney A; Croker, Kevin; McCord, Elizabeth F; Tyreus, Bjorn D; Jackson, Ethel N; Zhu, Quinn

    2013-08-01

    The availability of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is currently limited because they are produced mainly by marine fisheries that cannot keep pace with the demands of the growing market for these products. A sustainable non-animal source of EPA and DHA is needed. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica resulted in a strain that produced EPA at 15% of dry cell weight. The engineered yeast lipid comprises EPA at 56.6% and saturated fatty acids at less than 5% by weight, which are the highest and the lowest percentages, respectively, among known EPA sources. Inactivation of the peroxisome biogenesis gene PEX10 was crucial in obtaining high EPA yields and may increase the yields of other commercially desirable lipid-related products. This technology platform enables the production of lipids with tailored fatty acid compositions and provides a sustainable source of EPA.

  7. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  8. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  9. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from dietinduced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome....... by exchanging the dietary protein source from casein to salmon protein hydrolysate (SPH). Importantly, the SPH-treated rats were resistant to diet-induced obesity. SPH-treated rats had reduced fed state plasma glucose and TAG levels and lower TAG in liver. The elevated plasma BA concentration was associated...

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  11. RBSDV 侵染对水稻 ABA 代谢相关基因表达的影响%Effect of RBSDV Infection on Transcriptional Expression of Abscisic Acid Metabolism Related Genes in Rice

    Institute of Scientific and Technical Information of China (English)

    倪海平; 徐秋芳; 兰莹; 陈晴晴; 张金凤; 周益军

    2015-01-01

    expression levels of genes involved in ABA biosynthesis (OsZEP ,OsNCED1 ,OsNCED2 ,OsNCED3 ,OsNCED4 and OsNCED5 )and catabolism (OsABA8ox1 ,OsABA8ox2 and OsABA8ox3 )were analyzed in Nipponbare at 8 d,12 d, 1 6 d and 60 d after virus infection.The qRT-PCR results showed that the expression levels of the genes involved in ABA biosynthesis and catabolism in the plants than at 8 days after virus infection were higher than those in the control. The expression levels of OsNCED4 and OsNCED5 increased continuously with infection duration.At 60 d,the expression levels of OsNCED3 ,OsNCED4 and OsNCED5 in RBSDV infected plants were 3.97-,7.66-and 2.99-fold higher than those in the control,and the expression levels of OsZEP ,OsABA8ox1 and OsABA8ox2 were decreased with time extension.The data suggested that RBSDV infection affected the ABA biosynthesis and catabolism metabolism pathway,resulting in the increase of ABA content.

  12. Genome‐wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus

    Science.gov (United States)

    Medema, Marnix H.; Alam, Mohammad T.; Heijne, Wilbert H. M.; van den Berg, Marco A.; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A. L.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Summary To increase production of the important pharmaceutical compound clavulanic acid, a β‐lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome‐wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild‐type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology. PMID:21342474

  13. Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus.

    Science.gov (United States)

    Medema, Marnix H; Alam, Mohammad T; Heijne, Wilbert H M; van den Berg, Marco A; Müller, Ulrike; Trefzer, Axel; Bovenberg, Roel A L; Breitling, Rainer; Takano, Eriko

    2011-03-01

    To increase production of the important pharmaceutical compound clavulanic acid, a β-lactamase inhibitor, both random mutagenesis approaches and rational engineering of Streptomyces clavuligerus strains have been extensively applied. Here, for the first time, we compared genome-wide gene expression of an industrial S. clavuligerus strain, obtained through iterative mutagenesis, with that of the wild-type strain. Intriguingly, we found that the majority of the changes contributed not to a complex rewiring of primary metabolism but consisted of a simple upregulation of various antibiotic biosynthesis gene clusters. A few additional transcriptional changes in primary metabolism at key points seem to divert metabolic fluxes to the biosynthetic precursors for clavulanic acid. In general, the observed changes largely coincide with genes that have been targeted by rational engineering in recent years, yet the presence of a number of previously unexplored genes clearly demonstrates that functional genomic analysis can provide new leads for strain improvement in biotechnology.

  14. The complex and important cellular and metabolic functions of saturated fatty acids.

    Science.gov (United States)

    Legrand, Philippe; Rioux, Vincent

    2010-10-01

    This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The variety of their functions demonstrates that SFA should no longer be considered as a single group.

  15. Acid-base metabolism: implications for kidney stones formation.

    Science.gov (United States)

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  16. Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum.

    Science.gov (United States)

    Chen, Nanhua; LaCrue, Alexis N; Teuscher, Franka; Waters, Norman C; Gatton, Michelle L; Kyle, Dennis E; Cheng, Qin

    2014-08-01

    Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.

  17. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    Science.gov (United States)

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  19. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  20. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...

  1. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  2. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  3. Adaptations to climate in candidate genes for common metabolic disorders.

    Directory of Open Access Journals (Sweden)

    Angela M Hancock

    2008-02-01

    Full Text Available Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.

  4. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Science.gov (United States)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne

    2015-03-01

    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  5. CYP2A6 gene polymorphisms impact to nicotine metabolism

    Directory of Open Access Journals (Sweden)

    Dewi Muliaty

    2010-02-01

    Full Text Available Nicotine is a major addictive compound in tobacco cigarette smoke. After being absorbed by the lung nicotine is rapidly metabolized and mainly inactivated to cotinine by hepatic cytochrome P450 2A6 (CYP2A6 enzyme. Genetic polymorphisms in CYP2A6 may play a role in smoking behavior and nicotine dependence. CYP2A6*1A is the wild type of the CYP2A6 gene which is associated with normal or extensive nicotine metabolism. In the CYP2A6 gene, several polymorphic alleles have been reported such as CYP2A6*4, CYP2A6*7, CYP2A6*9, and CYP2A6*10 which are related to decreasing nicotine metabolism activity. The variation of nicotine metabolism activity could alter nicotine plasma levels. Smokers need a certain level of nicotine in their brain and must smoke regularly because of nicotine’s short half-life; this increases the number of smoked cigarettes in extensive metabolizers. Meanwhile, in slow metabolizers, nicotine plasma level may increase and results in nicotine toxicity. This will eventually lower the risk of dependence. (Med J Indones 2010; 19:46-51Keywords: cotinine, hepatic cytochrome P450 2A6, smoking behavior

  6. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    Science.gov (United States)

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  8. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    Science.gov (United States)

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  9. Efeito dos ácidos graxos n-3 e n-6 na expressão de genes do metabolismo de lipídeos e risco de aterosclerose Effects of n-3 and n-6 fatty acids on the expression of genes involved in the lipid metabolism and risk of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Helena Fonseca Raposo

    2010-10-01

    mortality in Western populations. Roughly 17.5 million people died from cardiovascular diseases in 2005, representing 30% of the causes of death in that year, and in 2015, another 20 million people will die of cardiovascular diseases around the world. The n-3 fatty acids, especially the long-chain n-3 found in fish, have been shown to be particularly effective in the prevention and treatment of diseases such as dyslipidemias, diabetes mellitus and obesity, presenting an important cardioprotective effect. In this context, studies have found that at least some of the cardiovascular benefits associated with eicosapentaenoic and docosahexaenoic fatty acids regard the modulation of genes that respond to the peroxisome proliferator-activated receptors involved in lipid metabolism. This review will discuss some of the mechanisms of action of some n-3 and n-6 fatty acids on the metabolism of lipids and lipoproteins. In conclusion, many aspects that contribute to the risk of cardiovascular diseases are affected by n-3 intake. N-3 fatty acids not only reduce triglycerides, but also promote factors that increase adiponectin, reduce blood cholesterol levels and improve the reverse cholesterol transport, and all of these contribute to reducing the risk of atherosclerosis. However, additional studies are still necessary to elucidate all the cellular and molecular mechanisms responsible for the cardioprotective effect of n-3 fatty acids.

  10. Comparative metabolic pathway analysis with special reference to nucleotide metabolism-related genes in chicken primordial germ cells.

    Science.gov (United States)

    Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong

    2013-01-01

    Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function

  11. Effect of the level and type of starchy concentrate on tissue lipid metabolism, gene expression and milk fatty acid secretion in Alpine goats receiving a diet rich in sunflower-seed oil.

    Science.gov (United States)

    Bernard, L; Leroux, C; Rouel, J; Bonnet, M; Chilliard, Y

    2012-04-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids (FA) in ruminant milk. The impact of the level and type of starchy concentrate added to diets supplemented with sunflower-seed oil on caprine milk FA composition and on mammary, omental and perirenal adipose, and liver lipid metabolism was examined in fourteen Alpine goats in a replicated 3 × 3 Latin square with 21 d experimental periods. Treatments were a grass hay-based diet with a high level of forage (F) or a high level of concentrate with either maize grain (CM) or flattened wheat (CW) as source of starch and supplemented with 130 g/d sunflower-seed oil. Milk yield was enhanced (Pdiets compared with the F diet, resulting in similar milk fat secretion. Both high-concentrate diets increased (Pdiet decreased (Pdiets differ between caprine and bovine ruminants.

  12. In vivo exposures to particulate matter collected from Saudi Arabia or nickel chloride display similar dysregulation of metabolic syndrome genes

    Science.gov (United States)

    Brocato, Jason; Hernandez, Michelle; Laulicht, Freda; Sun, Hong; Shamy, Magdy; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Kluz, Thomas; Chen, Lung-Chi; Costa, Max

    2016-01-01

    Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM10µm collected from Jeddah, Saudi Arabia (PMSA) altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate if Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100µg/50µl PMSA (PM-100), 50µg/50µl nickel chloride (Ni-50), or 100µg/50µl nickel chloride (Ni-100) twice a week for 4 weeks and hepatic gene expression changes determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PMSA exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders. PMID:26692068

  13. Undercover: Gene control by metabolites and metabolic enzymes

    NARCIS (Netherlands)

    J.A. van der Knaap (Jan); C.P. Verrijzer (Peter)

    2016-01-01

    textabstractTo make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expressio

  14. Sucrose metabolism gene families and their biological functions.

    Science.gov (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  15. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  16. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  17. Absorption and metabolism of benzoic acid in growing pigs

    DEFF Research Database (Denmark)

    Kristensen, N B; Nørgaard, J V; Wamberg, S

    2009-01-01

    Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact...... of BA on systemic acid-base status. Eight growing pigs (BW = 63 ± 1 kg at sampling) fitted with permanent indwelling catheters in the abdominal aorta, hepatic portal vein, hepatic vein, and mesenteric vein were allocated to 4 sampling blocks and randomly assigned to control (CON; nonsupplemented diet...... portal flux and hepatic uptake of BA was 87 ± 5% and 89 ± 15%, respectively. The recovery of dietary BA as urinary excretion of BA and HA was 0.08 ± 0.02% and 85 ± 7%, respectively. It is concluded that the small impact of BA supplementation on systemic acid-base status was caused by a protracted BA...

  18. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  19. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  20. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  1. Metabolism of amino acids in cats with severe cobalamin deficiency.

    Science.gov (United States)

    Ruaux, C G; Steiner, J M; Williams, D A

    2001-12-01

    To validate an automated chemiluminescent immunoassay for measuring serum cobalamin concentration in cats, to establish and validate gas chromatography-mass spectrometry techniques for use in quantification of methylmalonic acid, homocysteine, cysteine, cystathionine, and methionine in sera from cats, and to investigate serum concentrations of methylmalonic acid, methionine, homocysteine, cystathionine, and cysteine as indicators of biochemical abnormalities accompanying severe cobalamin (vitamin B12) deficiency in cats. Serum samples of 40 cats with severe cobalamin deficiency (serum cobalamin concentration deficiency had significant increases in mean serum concentrations bf methylmalonic acid (9,607 nmol/L), compared with healthy cats (448 nmol/L). Affected cats also had substantial disturbances in amino acid metabolism, compared with healthy cats, with significantly increased serum concentrations of methionine (133.8 vs 101.1 micromol/L) and significantly decreased serum concentrations of cystathionine (449.6 vs 573.2 nmol/L) and cysteine (142.3 vs 163.9 micromol/L). There was not a significant difference in serum concentrations of homocysteine between the 2 groups. Cats with gastrointestinal tract disease may have abnormalities in amino acid metabolism consistent with cobalamin deficiency. Parenteral administration of cobalamin may be necessary to correct these biochemical abnormalities.

  2. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    OpenAIRE

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) th...

  3. Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation

    Directory of Open Access Journals (Sweden)

    Mayu Kasubuchi

    2015-04-01

    Full Text Available During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC. Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions.

  4. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro.

    Science.gov (United States)

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro

    2015-08-01

    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses.

  5. [Gene transfer as treatment for metabolic inherited liver diseases

    Science.gov (United States)

    Godoy, J L

    2000-01-01

    OBJECTIVE: To study gene transfer looking for its future clinical application in the treatment of metabolic inherited liver diseases. METHODS: Bibliographic review about the subject. RESULTS AND CONCLUSIONS: Gene transfer into the liver would be an alternative to liver transplantation to treat some inherited metabolic diseases. Various vectors have been employed for gene transfer, including retrovirus vectors, whose integration into the chromosomal DNA would allow stable long term expression of the transgene. The integration of retrovirus vectors into the genoma of the target cell is only possible during mitosis. Therefore, these vectors must be delivered during hepatic regeneration induced by partial hepatectomy, for example. Another obstacle to be overcome is the extra hepatic dissemination of retrovirus, in particular to the germinals cells, due to the risk of changing the genetical heritage of the progeniture.

  6. Lactococcus lactis metabolism and gene expression during growth on plant tissues.

    Science.gov (United States)

    Golomb, Benjamin L; Marco, Maria L

    2015-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations.

  7. Comparative Genomics of Core Metabolism Genes of Cellulolytic and Non-cellulolytic Clostridium Species.

    Science.gov (United States)

    Lal, Sadhana; Levin, David B

    Microbial production of fuels such as ethanol, butanol, hydrogen (H2), and methane (CH4) from waste biomass has the potential to provide sustainable energy systems that can displace fossil fuel consumption. Screening for microbial diversity and genome sequencing of a wide-range of microorganisms can identify organisms with natural abilities to synthesize these alternative fuels and/or other biotechnological applications. Clostridium species are the most widely studied strict anaerobes capable of fermentative synthesis of ethanol, butanol, or hydrogen directly from waste biomass. Clostridium termitidis CT1112 is a mesophilic, cellulolytic species capable of direct cellulose fermentation to ethanol and organic acids, with concomitant synthesis of H2 and CO2. On the basis of 16S ribosomal RNA (rRNA) and chaperonin 60 (cpn60) gene sequence data, phylogenetic analyses revealed a close relationship between C. termitidis and C. cellobioparum. Comparative bioinformatic analyses of the C. termitidis genome with 18 cellulolytic and 10 non-cellulolytic Clostridium species confirmed this relationship, and further revealed that the majority of core metabolic pathway genes in C. termitidis and C. cellobioparum share more than 90% amino acid sequence identity. The gene loci and corresponding amino acid sequences of the encoded enzymes for each pathway were correlated by percentage identity, higher score (better alignment), and lowest e-value (most significant "hit"). In addition, the function of each enzyme was proposed by conserved domain analysis. In this chapter we discuss the comparative analysis of metabolic pathways involved in synthesis of various useful products by cellulolytic and non-cellulolytic biofuel and solvent producing Clostridium species. This study has generated valuable information concerning the core metabolism genes and pathways of C. termitidis CT1112, which is helpful in developing metabolic engineering strategies to enhance its natural capacity for better

  8. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli].

    Science.gov (United States)

    Li, Feng; Ma, Jiangfeng; Wu, Mingke; Ji, Yaliang; Chen, Wufang; Ren, Xinyi; Jiang, Min

    2015-04-01

    Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid.

  9. Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism.

    Science.gov (United States)

    Martin, V J; Yu, Z; Mohn, W W

    1999-09-01

    Resin acids are tricyclic diterpenoids that are found in the oleoresin of coniferous trees. Resin-acid-degrading microorganisms are ubiquitous in the environment. The bacterial isolates that grow on resin acids as sole organic substrates are physiologically and phylogenetically diverse, and include psychrotolerant, mesophilic, and thermophilic bacteria. Recent studies of the biodegradation of resin acids by these organisms have demonstrated that in gram-negative bacteria, distinct biochemical pathways exist for the degradation of abietane- and pimerane-type resin acids. One of these organisms, Pseudomonas abietaniphila BKME-9, harbors a convergent pathway that channels the nonaromatic abietanes and dehydroabietic acid into 7-oxodehydroabietic acid. This dioxygenolytic pathway is encoded by the recently cloned and sequenced dit gene cluster. The dit cluster encodes the ferredoxin and the alpha- and beta-subunits of a new class of ring-hydroxylating dioxygenases as well as an extradiol ring-cleavage dioxygenase. Although it was previously thought that resin acids are very recalcitrant under anoxic conditions, recent investigations have demonstrated that they are partially metabolized under anoxic conditions by undefined microorganisms. The anaerobic degradation of resin acids principally generates aromatized and decarboxylated products (such as retene) that are thought to persist in the environment.

  10. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  11. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid.

    Science.gov (United States)

    Song, Chan Woo; Lee, Joungmin; Ko, Yoo-Sung; Lee, Sang Yup

    2015-07-01

    A novel metabolic pathway was designed for the production of 3-aminopropionic acid (3-AP), an important platform chemical for manufacturing acrylamide and acrylonitrile. Using a fumaric acid producing Escherichia coli strain as a host, the Corynebacterium glutamicum panD gene (encoding L-aspartate-α-decarboxylase) was overexpressed and the native promoter of the aspA gene was replaced with the strong trc promoter, which allowed aspartic acid production through the aspartase-catalyzed reaction. Additional overexpression of aspA and ppc genes, and supplementation of ammonium sulfate in the medium allowed production of 3.49 g/L 3-AP. The 3-AP titer was further increased to 3.94 g/L by optimizing the expression level of PPC using synthetic promoters and RBS sequences. Finally, native promoter of the acs gene was replaced with strong trc promoter to reduce acetic acid accumulation. Fed-batch culture of the final strain allowed production of 32.3 g/L 3-AP in 39 h.

  12. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.

    Science.gov (United States)

    Loor, Juan J; Everts, Robin E; Bionaz, Massimo; Dann, Heather M; Morin, Dawn E; Oliveira, Rosane; Rodriguez-Zas, Sandra L; Drackley, James K; Lewin, Harris A

    2007-12-19

    Dairy cows are highly susceptible after parturition to developing liver lipidosis and ketosis, which are costly diseases to farmers. A bovine microarray platform consisting of 13,257-annotated oligonucleotides was used to study hepatic gene networks underlying nutrition-induced ketosis. On day 5 postpartum, 14 Holstein cows were randomly assigned to ketosis-induction (n = 7) or control (n = 7) groups. Cows in the ketosis-induction group were fed at 50% of day 4 intake until they developed signs of clinical ketosis, and cows in the control group were fed ad libitum throughout the treatment period. Liver was biopsied at 10-14 (ketosis) or 14 days postpartum (controls). Feed restriction increased blood concentrations of nonesterified fatty acids and beta-hydroxybutyrate, but decreased glucose. Liver triacylglycerol concentration also increased. A total of 2,415 genes were altered by ketosis (false discovery rate = 0.05). Ingenuity Pathway Analysis revealed downregulation of genes associated with oxidative phosphorylation, protein ubiquitination, and ubiquinone biosynthesis with ketosis. Other molecular adaptations included upregulation of genes and nuclear receptors associated with cytokine signaling, fatty acid uptake/transport, and fatty acid oxidation. Genes downregulated during ketosis included several associated with cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid desaturation. Feed restriction and ketosis resulted in previously unrecognized alterations in gene network expression underlying key cellular functions and discrete metabolic events. These responses might help explain well-documented physiological adaptations to reduced feed intake in early postpartum cows and, thus, provide molecular targets that might be useful in prevention and treatment of liver lipidosis and ketosis.

  13. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase.

    Science.gov (United States)

    Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C

    2016-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase.

  14. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  15. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  16. Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line.

    Science.gov (United States)

    Morgan, Megan J; Osorio, Sonia; Gehl, Bernadette; Baxter, Charles J; Kruger, Nicholas J; Ratcliffe, R George; Fernie, Alisdair R; Sweetlove, Lee J

    2013-01-01

    Organic acid content is regarded as one of the most important quality traits of fresh tomato (Solanum lycopersicum). However, the complexity of carboxylic acid metabolism and storage means that it is difficult to predict the best way to engineer altered carboxylic acid levels. Here, we used a biochemical analysis of a tomato introgression line with increased levels of fruit citrate and malate at breaker stage to identify a metabolic engineering target that was subsequently tested in transgenic plants. Increased carboxylic acid levels in introgression line 2-5 were not accompanied by changes in the pattern of carbohydrate oxidation by pericarp discs or the catalytic capacity of tricarboxylic acid cycle enzymes measured in isolated mitochondria. However, there was a significant decrease in the maximum catalytic activity of aconitase in total tissue extracts, suggesting that a cytosolic isoform of aconitase was affected. To test the role of cytosolic aconitase in controlling fruit citrate levels, we analyzed fruit of transgenic lines expressing an antisense construct against SlAco3b, one of the two tomato genes encoding aconitase. A green fluorescent protein fusion of SlAco3b was dual targeted to cytosol and mitochondria, while the other aconitase, SlAco3a, was exclusively mitochondrial when transiently expressed in tobacco (Nicotiana tabacum) leaves. Both aconitase transcripts were decreased in fruit from transgenic lines, and aconitase activity was reduced by about 30% in the transgenic lines. Other measured enzymes of carboxylic acid metabolism were not significantly altered. Both citrate and malate levels were increased in ripe fruit of the transgenic plants, and as a consequence, total carboxylic acid content was increased by 50% at maturity.

  17. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    Science.gov (United States)

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-04

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  18. Gene expression and metabolism preceding soft scald, a chilling injury of 'Honeycrisp' apple fruit.

    Science.gov (United States)

    Leisso, Rachel S; Gapper, Nigel E; Mattheis, James P; Sullivan, Nathanael L; Watkins, Christopher B; Giovannoni, James J; Schaffer, Robert J; Johnston, Jason W; Hanrahan, Ines; Hertog, Maarten L A T M; Nicolaï, Bart M; Rudell, David R

    2016-10-12

    'Honeycrisp' is an apple cultivar that is susceptible to soft scald, a chilling injury expressed as necrotic patches on the peel. Improved understanding of metabolism associated with the disorder would improve our understanding of soft scald and contribute to developing more effective management strategies for apple storage. It was expected that specific gene expression and specific metabolite levels in the peel would be linked with soft scald risk at harvest and/or specific time points during cold storage. Fruit from nine 'Honeycrisp' apple orchards that would eventually develop different incidences of soft scald between 4 and 8 weeks of cold air storage were used to contrast and determine differential transcriptomic and metabolomic changes during storage. Untargeted metabolic profiling revealed changes in a number of distinct pathways preceding and concurrent with soft scald symptom development, including elevated γ-aminobutryic acid (GABA), 1-hexanol, acylated steryl glycosides, and free p-coumaryl acyl esters. At harvest, levels of sesquiterpenoid and triterpenoid acyl esters were relatively higher in peel of fruit that did not later develop the disorder. RNA-seq driven gene expression profiling highlighted possible involvement of genes and associated metabolic processes with soft scald development. These included elevated expression of genes involved in lipid peroxidation and phenolic metabolism in fruit with soft scald, and isoprenoid/brassinosteroid metabolism in fruit that did not develop soft scald. Expression of other stress-related genes in fruit that developed soft scald included chlorophyll catabolism, cell wall loosening, and lipid transport while superoxide dismutases were up-regulated in fruit that did not develop the disorder. This study delineates the sequential transcriptomic and metabolomic changes preceding soft scald symptom development. Changes were differential depending on susceptibility of fruit to the disorder and could be attributed to

  19. Coupled Metabolic and Photolytic Pathway for Degradation of Pyridinedicarboxylic Acids, Especially Dipicolinic Acid

    OpenAIRE

    Amador, José A.; Taylor, Barrie F.

    1990-01-01

    Three isomers of pyridinedicarboxylic acid (PDCA) (2,3-, 2,5-, and 2,6-PDCA) were partially oxidized by marine bacteria when grown aerobically on the corresponding phthalate analogs. The metabolites, unlike the parent PDCAs, absorbed light in the solar actinic range (wavelengths greater than 300 nm) and were readily degraded in sunlight. The principal product from 2,6-PDCA (dipicolinic acid) metabolism was extracted from a culture fluid, purified by column chromatography, and analyzed by UV-v...

  20. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    Science.gov (United States)

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  1. Gene-based mapping and pathway analysis of metabolic traits in dairy cows.

    Directory of Open Access Journals (Sweden)

    Ngoc-Thuy Ha

    Full Text Available The metabolic adaptation of dairy cows during the transition period has been studied intensively in the last decades. However, until now, only few studies have paid attention to the genetic aspects of this process. Here, we present the results of a gene-based mapping and pathway analysis with the measurements of three key metabolites, (1 non-esterified fatty acids (NEFA, (2 beta-hydroxybutyrate (BHBA and (3 glucose, characterizing the metabolic adaptability of dairy cows before and after calving. In contrast to the conventional single-marker approach, we identify 99 significant and biologically sensible genes associated with at least one of the considered phenotypes and thus giving evidence for a genetic basis of the metabolic adaptability. Moreover, our results strongly suggest three pathways involved in the metabolism of steroids and lipids are potential candidates for the adaptive regulation of dairy cows in their early lactation. From our perspective, a closer investigation of our findings will lead to a step forward in understanding the variability in the metabolic adaptability of dairy cows in their early lactation.

  2. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  3. Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang; Hong-Wei Xue

    2009-01-01

    In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed pri-marily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.

  4. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid.

    Science.gov (United States)

    Song, Chan Woo; Lee, Sang Yup

    2015-10-01

    Fumaric acid is an important C4-dicarboxylic acid widely used in chemical, food, and pharmaceutical industries. Rational metabolic engineering together with flux optimization were performed for the development of an Escherichia coli strain capable of efficiently producing fumaric acid. The initial engineered strain, CWF4N overexpressing phosphoenolpyruvate carboxylase (PPC), produced 5.30 g/L of fumaric acid. Optimization of PPC flux by examining 24 types of synthetic PPC expression vectors further increased the titer up to 5.72 g/L with a yield of 0.432 g/g·glucose. Overexpression of the succinate dehydrogenase complex (sdhCDAB) led to an increase in carbon yield up to 0.493 g/g·glucose. Based on this mutant strain, citrate synthase (CS) was combinatorially overexpressed and balanced with PPC using 48 types of synthetic expression vectors. As a result, 6.24 g/L of fumaric acid was produced with a yield of 0.500 g/g·glucose. Fed-batch culture of this final strain allowed production of 25.5 g/L of fumaric acid with a yield of 0.366 g/g·glucose. Deletion of the aspA gene encoding aspartase and supplementation of aspartic acid further increased the fumaric acid titer to 35.1 g/L with a yield of 0.490 g/g·glucose.

  5. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    DEFF Research Database (Denmark)

    Chen, Xiao; Nielsen, Kristian Fog; Borodina, Irina;

    2011-01-01

    of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS: The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous...... overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase...... were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. CONCLUSIONS: Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase...

  6. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  7. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    Science.gov (United States)

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dodecanedioic acid overcomes metabolic inflexibility in type 2 diabetic subjects.

    Science.gov (United States)

    Salinari, Serenella; Bertuzzi, Alessandro; Gandolfi, Alberto; Greco, Aldo V; Scarfone, Antonino; Manco, Melania; Mingrone, Geltrude

    2006-11-01

    Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion. In healthy volunteers and in type 2 diabetic subjects, the effect of an oral C-12 load was compared with a glucose or water load during prolonged, moderate-intensity, physical exercise. C-12 metabolism was analyzed by a mathematical model. After C-12, diabetics were able to complete the 2 h of exercise. Nonesterified fatty acids increased both during and after the exercise in the C-12 session. C-12 oxidation provided 14% of total energy expenditure, and the sum of C-12 plus lipids oxidized after the C-12 meal was significantly greater than lipids oxidized after the glucose meal (P < 0.025). The fraction of C-12 that entered the central compartment was 47% of that ingested. During the first phase of the exercise ( approximately 60 min), the mean C-12 clearance from the central compartment toward tissues was 2.57 and 1.30 l/min during the second phase of the exercise. In conclusion, C-12 seems to be a suitable energy substrate during exercise, since it reduces muscle fatigue, is rapidly oxidized, and does not stimulate insulin secretion, which implies that lipolysis is not inhibited as reported after glucose ingestion.

  9. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  10. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal

  11. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases.

    Science.gov (United States)

    Chilton, Floyd H; Murphy, Robert C; Wilson, Bryan A; Sergeant, Susan; Ainsworth, Hannah; Seeds, Michael C; Mathias, Rasika A

    2014-05-21

    The "modern western" diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  12. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    Directory of Open Access Journals (Sweden)

    Floyd H. Chilton

    2014-05-01

    Full Text Available The “modern western” diet (MWD has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6 18 carbon (C18, polyunsaturated fatty acid (PUFA linoleic acid (LA; 18:2n-6, with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS cluster that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD. Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA, CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  13. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    Science.gov (United States)

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.

  14. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    Science.gov (United States)

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  15. Fatty acid metabolism and insulin secretion in pancreatic beta cells.

    Science.gov (United States)

    Yaney, G C; Corkey, B E

    2003-10-01

    Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial beta-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.

  16. [Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi Phylum representatives].

    Science.gov (United States)

    Turova, T P; Kovaleva, O L; Gorlenko, V M; Ivanovskiĭ, R N

    2014-01-01

    This work examined the feasibility of using certain genes of carbon metabolism enzymes as molecular markers adequate for studying phylogeny and ecology of green sulfur bacteria (GSB) of the Chlorobi phylum. Primers designed to amplify the genes of ATP citrate lyase (aclB) and citrate synthase (gltA) revealed the respective genes in the genomes of all of the newly studied GSB strains. The phylogenetic trees constructed based on nucleotide sequences of these genes and amino acid sequences of the conceptually translated proteins were on the whole congruent with the 16S rRNA gene tree, with the single exception of GltA of Chloroherpeton thalassium, which formed a separate branch beyond the cluster comprised by other representatives of the Chlorobi phylum. Thus, the aclB genes but not gltA genes proved to be suitable for the design of primers specific to all Chlorobi representatives. Therefore, it was the aclB gene that was further used asa molecular marker to detect GSB in enrichment cultures and environmental samples. AclB phylotypes of GSB were revealed in all of the samples studied, with the exception of environmental samples from soda lakes. The identification of the revealed phylotypes was in agreement with the identification based on the FMO protein gene (fmo), is a well-known Chlorobi-specific molecular marker.

  17. Metabolic Interactions between Vitamin A and Conjugated Linoleic Acid

    Directory of Open Access Journals (Sweden)

    Gianfranca Carta

    2014-03-01

    Full Text Available Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4. However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

  18. Metabolic interactions between vitamin A and conjugated linoleic acid.

    Science.gov (United States)

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-03-24

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

  19. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  20. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Anna M. Giudetti

    2016-05-01

    Full Text Available The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs. The citrate carrier (CiC and the carnitine/acylcarnitine transporter (CACT are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.

  1. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    Science.gov (United States)

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice.

    Science.gov (United States)

    Brown, Roslyn N; Gulig, Paul A

    2008-12-01

    The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.

  3. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  4. The initial metabolic conversion of levulinic acid in Cupriavidus necator.

    Science.gov (United States)

    Jaremko, Matt; Yu, Jian

    2011-09-20

    Levulinic acid or 4-ketovaleric acid is a potential renewable substrate for production of polyhydroxyalkanoates. In this work, the initial reactions of LA metabolism by Cupriavidus necator were examined in vitro. The organic acid was converted by membrane-bound crude enzymes obtained from the cells pre-grown on LA, while no LA activity was detected from cells pre-grown on acetic acid. Acetyl-CoA and propionyl-CoA were two major intermediates in the initial reactions of LA conversion. A mass balance on propionyl-CoA accounts for 84 mol% of LA added in vitro. It explains an interesting phenomenon that 3-hydroxbutyrate and 3-hydroxyvalerate are two major monomers of the biopolyester formed from LA, instead of 4-hydroxvalerate that has the similar chemical structure of LA as the precursor. A Monod model was used to describe the kinetics of LA utilization as a sole carbon source or a co-substrate of glucose and fructose. The μ(max) and K(m) of LA alone were 0.26 h⁻¹ and 0.01 g/L, respectively. The content and composition of PHA are also dependent on the culture conditions such as carbon to nitrogen ratio. The in vitro observation is supported by the high utilization rate of LA and the high molar percentage of 3HB and 3HV in the PHA derived from LA. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism

    NARCIS (Netherlands)

    Gilde, AJ; van der Lee, KAJM; Willemsen, PHM; Chinetti, G; van der Leij, FR; van der Vusse, GJ; Staels, B; van Bilsen, M

    2003-01-01

    Long-chain fatty acids ( FA) coordinately induce the expression of a panel of genes involved in cellular FA metabolism in cardiac muscle cells, thereby promoting their own metabolism. These effects are likely to be mediated by peroxisome proliferator-activated receptors (PPARs). Whereas the

  6. ApoM: gene regulation and effects on HDL metabolism

    DEFF Research Database (Denmark)

    Nielsen, Lars B; Christoffersen, Christina; Ahnström, Josefin;

    2009-01-01

    The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid and gluc......The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid...... changes in HDLs, and overexpression of the apoM gene reduced atherosclerosis. In conclusion, it seems that apoM plays a part in lipoprotein metabolism; however, the biological impact of apoM in humans remains to be determined....

  7. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation.

    Science.gov (United States)

    Osbourn, Anne

    2010-10-01

    Microbes and plants produce a huge array of secondary metabolites that have important ecological functions. These molecules have long been exploited in medicine as antibiotics, anticancer and anti-infective agents and for a wide range of other applications. Gene clusters for secondary metabolic pathways are common in bacteria and filamentous fungi, and examples have now been discovered in plants. Here, current knowledge of gene clusters across the kingdoms is evaluated with the aim of trying to understand the rules behind cluster existence and evolution. Such knowledge will be crucial in learning how to activate the enormous number of 'silent' gene clusters being revealed by whole-genome sequencing and hence in making available a wealth of novel compounds for evaluation as drug leads and other bioactives. It could also facilitate the development of crop plants with enhanced pest or disease resistance, improved nutritional qualities and/or elevated levels of high-value products.

  8. Fats for thoughts: An update on brain fatty acid metabolism.

    Science.gov (United States)

    Romano, Adele; Koczwara, Justyna Barbara; Gallelli, Cristina Anna; Vergara, Daniele; Micioni Di Bonaventura, Maria Vittoria; Gaetani, Silvana; Giudetti, Anna Maria

    2017-03-01

    Brain fatty acid (FA) metabolism deserves a close attention not only for its energetic aspects but also because FAs and their metabolites/derivatives are able to influence many neural functions, contributing to brain pathologies or representing potential targets for pharmacological and/or nutritional interventions. Glucose is the preferred energy substrate for the brain, whereas the role of FAs is more marginal. In conditions of decreased glucose supply, ketone bodies, mainly formed by FA oxidation, are the alternative main energy source. Ketogenic diets or medium-chain fatty acid supplementations were shown to produce therapeutic effects in several brain pathologies. Moreover, the positive effects exerted on brain functions by short-chain FAs and the consideration that they can be produced by intestinal flora metabolism contributed to the better understanding of the link between "gut-health" and "brain-health". Finally, attention was paid also to the regulatory role of essential polyunsaturated FAs and their derivatives on brain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia.

    Science.gov (United States)

    Asghari, Arvand; Marashi, Sayed-Amir; Ansari-Pour, Naser

    2017-04-01

    About 15% of couples experience difficulty in conceiving a child, of which half of the cases are thought to be male-related. Asthenozoospermia, or low sperm motility, is one of the frequent types of male infertility. Although energy metabolism is suggested to be central to the etiology of asthenozoospermia, very few attempts have been made to identify its underlying metabolic pathways. Here, we reconstructed SpermNet, the first proteome-scale model of the sperm cell by using whole-proteome data and the mCADRE algorithm. The reconstructed model was then analyzed using the COBRA toolbox. Genes were knocked-out in the model to investigate their effect on ATP production. A total of 78 genes elevated ATP production rate considerably of which most encode components of oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, and members of the solute carrier 25 family. Among them, we identified 11 novel genes which have previously not been associated with sperm cell energy metabolism and may thus be implicated in asthenozoospermia. We further examined the reconstructed model by in silico knock out of currently known asthenozoospermia implicated-genes that were not predicted by our model. The pathways affected by knocking out these genes were also related to energy metabolism, confirming previous findings. Therefore, our model not only predicts the known pathways, it also identifies several non-glycolytic genes for deficient energy metabolism in asthenozoospermia. Finally, this model supports the notion that metabolic pathways besides glycolysis such as oxidative phosphorylation and fatty acid oxidation are essential for sperm energy metabolism and if validated, may form a basis for fertility recovery.

  10. Fatty acid-gene interactions, adipokines and obesity.

    Science.gov (United States)

    Stryjecki, C; Mutch, D M

    2011-03-01

    It is now recognized that the low-grade inflammation observed with obesity is associated with the development of a wide range of downstream complications. As such, there is considerable interest in elucidating the regulatory mechanisms underlying the production of inflammatory molecules to improve the prevention and treatment of obesity and its co-morbidities. White adipose tissue is no longer considered a passive reservoir for storing lipids, but rather an important organ influencing energy metabolism, insulin sensitivity and inflammation by the secretion of proteins, commonly referred to as adipokines. Dysregulation of several adipokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and adiponectin, contributes to the low-grade inflammation that is a hallmark of obesity. Evidence now suggests that fatty acids represent a class of molecules that can modulate adipokine production, thereby influencing inflammatory status. Although the precise molecular mechanisms by which dietary fats regulate adipokine production remain unclear, recent findings indicate that diet-gene interactions may have an important role in the transcriptional and secretory regulation of adipokines. Single-nucleotide polymorphisms in the genes encoding TNF-α, IL-6 and adiponectin can modify circulating levels of these adipokines and, subsequently, obesity-related phenotypes. This genetic variation can also alter the influence of dietary fatty acids on adipokine production. Therefore, the current review will show that it is paramount to consider both genetic information and dietary fat intake to unravel the inter-individual variability in inflammatory response observed in intervention protocols targeting obesity.

  11. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases.

    Science.gov (United States)

    Cascio, Giuseppe; Schiera, Gabriella; Di Liegro, Italia

    2012-01-01

    In the last few decades, the prevalence of overweight and essential obesity has been undergoing a fast and progressive worldwide increase. Obesity has been in turn linked to type II diabetes, with the total number of diabetic patients worryingly increasing, in the last fifteen years, suggesting a pandemic phenomenon. At the same time, an increase in the prevalence of cardiovascular diseases has been also recorded. Increasing evidence suggests that the diet is involved in such escalation. In particular, the progressive globalization of food industry allowed massive supply, at a relatively low price, of a great variety of pre-packed food and bakery products, with very high energy content. Most of this food contains high amounts of saturated fatty acids (SFA) and of hydrogenated or trans fatty acids (TFA), that probably represent the prominent risk factors in the diet. Herein we will report diffusion and possible impact on health of such molecules, with reference to coronary heart disease, insulin resistance, metabolic syndrome and diabetes. We will also discuss the cellular and molecular mechanisms of action of fatty acids and fatty acid-derivatives which have been involved either in promoting or in preventing human pathologies. Free fatty acids (FFA) are not indeed only essential fuels for the organism. They also act as ligands for both membrane and nuclear receptors involved in different signaling pathways. Notably, some of these pathways can induce cell stress and apoptosis. Most important, FFA can affect glucose-induced insulin secretion and activate β-cell death. These events can be at least in part counteracted by polyunsaturated fatty acids.

  12. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    at 3 h 23 min ± 11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P ... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  13. Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria.

    Science.gov (United States)

    Shinde, Suhas; Villamor, Joji Grace; Lin, Wendar; Sharma, Sandeep; Verslues, Paul E

    2016-10-01

    Proline (Pro) accumulation is one of the most prominent changes in plant metabolism during drought and low water potential; however, the regulation and function of Pro metabolism remain unclear. We used a combination of forward genetic screening based on a Proline Dehydrogenase1 (PDH1) promoter-luciferase reporter (PDH1pro:LUC2) and RNA sequencing of the Pro synthesis mutant p5cs1-4 to identify multiple loci affecting Pro accumulation in Arabidopsis (Arabidopsis thaliana). Two mutants having high PDH1pro:LUC2 expression and increased Pro accumulation at low water potential were found to be alleles of Cytochrome P450, Family 86, Subfamily A, Polypeptide2 (CYP86A2) and Long Chain Acyl Synthetase2 (LACS2), which catalyze two successive steps in very-long-chain fatty acid (VLCFA) synthesis. Reverse genetic experiments found additional VLCFA and lipid metabolism-related mutants with increased Pro accumulation. Altered cellular redox status is a key factor in the coordination of Pro and VLCFA metabolism. The NADPH oxidase inhibitor diphenyleneiodonium (DPI) induced high levels of Pro accumulation and strongly repressed PDH1pro:LUC2 expression. cyp86a2 and lacs2 mutants were hypersensitive to diphenyleneiodonium but could be reverted to wild-type Pro and PDH1pro:LUC2 expression by reactive oxygen species scavengers. The coordination of Pro and redox metabolism also was indicated by the altered expression of chloroplast and mitochondria electron transport genes in p5cs1-4 These results show that Pro metabolism is both influenced by and influences cellular redox status via previously unknown coordination with several metabolic pathways. In particular, Pro and VLCFA synthesis share dual roles to help buffer cellular redox status while producing products useful for stress resistance, namely the compatible solute Pro and cuticle lipids. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Gene discovery of modular diterpene metabolism in nonmodel systems.

    Science.gov (United States)

    Zerbe, Philipp; Hamberger, Björn; Yuen, Macaire M S; Chiang, Angela; Sandhu, Harpreet K; Madilao, Lina L; Nguyen, Anh; Hamberger, Britta; Bach, Søren Spanner; Bohlmann, Jörg

    2013-06-01

    Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.

  15. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    2012-01-01

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We aim

  16. Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver

    OpenAIRE

    Lai Peng; Stephanie Piekos; Guo, Grace L.; Xiao-bo Zhong

    2016-01-01

    The expression of phase-I drug metabolizing enzymes in liver changes dramatically during postnatal liver maturation. Farnesoid X receptor (FXR) is critical for bile acid and lipid homeostasis in liver. However, the role of FXR in regulating ontogeny of phase-I drug metabolizing genes is not clear. Hence, we applied RNA-sequencing to quantify the developmental expression of phase-I genes in both Fxr-null and control (C57BL/6) mouse livers during development. Liver samples of male C57BL/6 and F...

  17. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  18. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Science.gov (United States)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  19. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases.

    Science.gov (United States)

    Siniossoglou, Symeon

    2013-03-01

    Phospholipids play important roles in nuclear function as dynamic building blocks for the biogenesis of the nuclear membrane, as well as signals by which the nucleus communicates with other organelles, and regulate a variety of nuclear events. The mechanisms underlying the nuclear roles of phospholipids remain poorly understood. Lipins represent a family of phosphatidic acid (PA) phosphatases that are conserved from yeasts to humans and perform essential functions in lipid metabolism. Several studies have identified key roles for lipins and their regulators in nuclear envelope organization, gene expression and the maintenance of lipid homeostasis in yeast and metazoans. This review discusses recent advances in understanding the roles of lipins in nuclear structure and function. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    Science.gov (United States)

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  1. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

    Science.gov (United States)

    Yu, Ai-Qun; Juwono, Nina Kurniasih Pratomo; Foo, Jee Loon; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-03-01

    Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.

  2. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Young Philip R

    2012-06-01

    Full Text Available Abstract Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in

  3. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  4. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  5. Conjugated linoleic acid isomers: differences in metabolism and biological effects.

    Science.gov (United States)

    Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, Maria Puy

    2009-01-01

    The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.

  6. Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.

    Science.gov (United States)

    Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi

    2012-03-01

      Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine.   Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained.   Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice.   Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.

  7. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice.

    Science.gov (United States)

    Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O

    2016-03-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.

  8. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells

    OpenAIRE

    Vaughan Roger A; Garcia-Smith Randi; Bisoffi Marco; Conn Carole A; Trujillo Kristina A

    2012-01-01

    Abstract Background Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We evaluated the effects of conjugated linoleic acid (CLA) or combination omega 3 on metabolic characteristics in muscle cells. Methods Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega 3 for 24 or 48 hours. RNA was determine...

  9. [Metabolic syndrome reversion by polyunsaturated fatty acids ingestion].

    Science.gov (United States)

    Campos Mondragón, Martha Gabriela; Oliart Ros, Rosa María; Martínez Martinez, Angélica; Méndez Machado, Gustavo Francisco; Angulo Guerrero, Jesús Ofelia

    2013-12-21

    Metabolic syndrome (MS) frequency is growing and diet has an important influence on its evolution. Our objective was to study the effect of 3 sources of polyunsaturated fatty acids on MS parameters in humans. The MS was diagnosed according to the International Diabetes Federation. Three groups of individuals (n=15/group) were quasi-randomly assigned to one of the following treatments during 6 weeks: a) 1.8 g/d n-3 (1.08g eicosapentoaenoic acid+0.72 g docosahexaenoic acid); b) 2.0 g/d conjugated linoleic acid (CLA, 50:50, cis9:trans11, trans10:cis12), and c) 40 g/d walnut. The clinical and biochemical parameters were evaluated at the beginning and the end of the essay. In the group with n-3 the triglycerides level decreased from 183.9 ± 35.2mg/dl to 149.6 ± 29.0mg/dl (P=.007). In the group with walnut the HDL level rose from 41.7 ± 5.2mg/dl to 47.8 ± 5.4 mg/dl (P=.004) and the Castelli index (total cholesterol/HDL) decreased from 4.86 ± 0.97 to 3.82 ± 0.81 (P=.004). There were not significant changes in the CLA group. At the end of the essay, 46.7% of walnut group patients, 46.7% of n-3 group and 20% of CLA group, had no MS. The groups that consumed polyunsaturated fatty acids n-3 and those in walnut in moderate daily doses during 6 weeks had an improvement of the dyslipidemia component of MS, hypertriglyceridemia and low HDL level. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  10. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.

    Science.gov (United States)

    Georgiadi, Anastasia; Boekschoten, Mark V; Müller, Michael; Kersten, Sander

    2012-03-19

    Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6 h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and peroxisome proliferator-activated receptor (PPAR)α-/- mice to allow exploration of the specific contribution of PPARα. It was found that: 1) C18:3 had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between C18:2 and C18:3. Large similarity was also observed between PPARα agonist Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPARα-dependent manner, emphasizing the importance of PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g., Acot1, Angptl4, Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for natural killer T cell function. 6) Deletion and activation of PPARα had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPARα.

  11. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  12. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    Science.gov (United States)

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals.

  13. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism.

    Directory of Open Access Journals (Sweden)

    Gareth D Westrop

    Full Text Available Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.

  14. Effects of achilline on lipid metabolism gene expression in cell culture

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2016-01-01

    Full Text Available Objective. Evaluation in vitro of the mechanisms of the hypolipidemic effect of sesquiterpene γ-lactone achilline in the hepatoma tissue culture (HTC.Materials and methods.The influence of sesquiterpene γ-lactone achilline and gemfibrozil (comparison drug on the viability, lipid content and expression of key genes of lipid metabolism in the hepatoma tissue culture. The lipid content was assessed by fluorescent method with the vital dye Nile Red, the cell viability was assessed using MTT assay.Results. Cultivation of of cell cultures of rat’s hepatoma cell line HTC for 48 h with achilline in a concentration of from 0.25 to 1.0 mm and gemfibrozil from 0,25 to 0,5 mm did not change cell viability compared to control. In these same concentrations of the test substance reduced the lipid content in the cells, assessed by fluorescent method with the vital dye Nile Red. To study the mechanism of hypolipidemicaction of achillinedetermined the expression of key genes of lipid metabolism in cell culture lines HTC. The possible mechanism of hypolipidemic action of achilline can be attributed to the increased transport and oxidation of long-chain fatty acids in mitochondria, as evidenced by the increase in the gene expression of carnitine-palmitoyltransferase 2 (Cpt2. The decrease in cholesterol level may be due to increased synthesis of bile acids from cholesterol, due to increased gene expression of 7-alphahydroxylase (Cyp7a1. Conclusion. In cell cultures of rat’s hepatoma cell line HTC sesquiterpene γ-lactone achilline reduces the accumulation of lipids in cells, as evidenced by the decrease in the fluorescence of Nile Red, increased gene expression of the carnitine-palmitoyltransferase 2 (Cpt2 gene and 7-alpha-hydroxylase (Cyp7a1.

  15. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases.

    Science.gov (United States)

    Shekhawat, Prem; Bennett, Michael J; Sadovsky, Yoel; Nelson, D Michael; Rakheja, Dinesh; Strauss, Arnold W

    2003-06-01

    The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.

  16. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.

    Science.gov (United States)

    Song, Jian; Guo, Baojian; Song, Fangwei; Peng, Huiru; Yao, Yingyin; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2011-08-15

    Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.

  17. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    Science.gov (United States)

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  18. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Science.gov (United States)

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  19. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Directory of Open Access Journals (Sweden)

    Priti Roy

    Full Text Available Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  20. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered (Pcitric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  1. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise.

    Science.gov (United States)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth T; Helge, Jørn W; Saltin, Bengt; Neufer, P Darrell

    2005-08-01

    In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9 male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% Vo2 max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained before exercise and 2, 5, 8, and 24 hours after exercise. Muscle glycogen was restored to near resting levels within 5 hours in the HC trial, but remained depressed through 24 hours in the LC trial. During the 2- to 8-hour recovery period, leg glucose uptake was 5- to 15-fold higher with HC ingestion, whereas arterial plasma free fatty acid levels were approximately 3- to 7-fold higher with LC ingestion. Exercise increased (P < .05) transcription and/or mRNA content of the pyruvate dehydrogenase kinase 4, uncoupling protein 3, lipoprotein lipase, carnitine palmitoyltransferase I, hexokinase II, peroxisome proliferator activated receptor gamma coactivator-1 alpha, and peroxisome proliferator activated receptor alpha. Providing HC during recovery reversed the activation of pyruvate dehydrogenase kinase 4, uncoupling protein 3, lipoprotein lipase, and carnitine palmitoyltransferase I within 5 to 8 hours after exercise, whereas providing LC during recovery elicited a sustained/enhanced increase in activation of these genes through 8 to 24 hours of recovery. These findings provide evidence that factors associated with substrate availability and/or cellular metabolic recovery (eg, muscle glycogen restoration) influence the transcriptional regulation of metabolic genes in skeletal muscle of humans during recovery from exercise.

  2. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Martina Galatea [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway); University of Bergen, Department of Biology, 5020 Bergen (Norway); Rusten, Marte; Goksøyr, Anders [University of Bergen, Department of Biology, 5020 Bergen (Norway); Routti, Heli, E-mail: heli.routti@npolar.no [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway)

    2014-01-15

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  3. Effects of a 3 strain -based direct-fed microbial and dietary fiber concentration on growth performance and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs.

    Science.gov (United States)

    Jaworski, N W; Owusu-Asiedu, A; Walsh, M C; McCann, J C; Loor, J J; Stein, H H

    2017-01-01

    Effects of a -based direct-fed microbial (DFM) on growth performance, plasma tumor necrosis factor ɑ (TNFɑ), relative gene expression, and intestinal VFA concentrations in weanling pigs fed low- or high-fiber diets were evaluated. Two hundred pigs (initial BW: 6.31 ± 0.73 kg) were allotted to 1 of 4 dietary treatments (5 pigs per pen and 10 pens per treatment). Treatments were arranged in a 2 × 2 factorial design with 2 diet types [low-fiber (LF) or high-fiber (HF)] and 2 concentrations of DFM (0 or 60 g DFM/t of feed). The DFM contained 1.5 × 10 cfu/g and was obtained from Danisco Animal Nutrition-DuPont Industrial Biosciences, Marlborough, UK. Phase 1 diets were fed for 2 wk post-weaning and phase 2 diets were fed over the following 29 d. Low fiber diets contained corn and soybean meal as main ingredients and HF diets contained corn, soybean meal, corn distillers dried grains with solubles (7.5 and 15.0% in phase 1 and 2, respectively), and wheat middlings (10.0%). Pigs and feed were weighed at the start and at the end of each phase, and ADG, ADFI, and G:F were calculated. At the conclusion of phase 2, blood was collected from 1 pig per pen and 1 pig per pen was sacrificed. Cecum and rectum contents were analyzed for VFA, and tissue samples were collected from the ileum, cecum, rectum, and liver to determine expression of genes related to absorption and metabolism of VFA using quantitative reverse transcription-PCR. Results indicated that feeding HF diets reduced ( ≤ 0.05) ADFI and ADG of pigs compared with feeding LF diets. Pigs fed DFM diets had improved ( ≤ 0.05) G:F compared with pigs fed non-DFM diets. Pigs fed LF diets had greater ( ≤ 0.05) BW at the end of phase 2 compared with pigs fed HF diets. The concentration of VFA in rectum contents was greater ( ≤ 0.05) in pigs fed LF diets than in pigs fed HF diets. The expression of in the rectum of pigs fed HF diets was greater ( ≤ 0.05) than for pigs fed LF diets, and pigs fed DFM

  4. Megaloblastic anaemia: Folic acid and vitamin B12 metabolism

    Directory of Open Access Journals (Sweden)

    H.B. Castellanos-Sinco

    2015-07-01

    Full Text Available Folic acid and cobalamin are B-group vitamins that play an essential role in many cellular processes. Deficiency in one or both of these vitamins causes megaloblastic anaemia, a disease characterized by the presence of megaloblasts. Megaloblasts occur when inhibition of DNA synthesis causes asynchronous maturation between the nucleus and the cytoplasm. Clinical manifestations are similar to those of other types of anaemia, with the exception of cobalamin deficiency megaloblastic anaemia, which presents distinctive neurological symptoms. An understanding of the metabolism of these vitamins will enable clinicians to make the best use and interpretation of laboratory studies and monitor therapeutic strategies, which consist mainly of administering supplements to restore body reserves.

  5. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates.

  6. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  7. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  8. Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway.

    Science.gov (United States)

    Sathiyamoorthy, S; In, J G; Gayathri, S; Kim, Y Ju; Yang, D Ch

    2010-07-01

    The roots of Panax ginseng C.A. Meyer, known as Korean ginseng have been a valuable and important folk medicine in East Asian countries. It mainly used to maintain the homeostasis of the human body, with the presence ofginsenosides and non-saponin compounds like phenol compounds, acidic polysaccharides and polyethylene compounds. Functional genomics aid to annotate based on gene ontology. In this study, we focused on the genes involving in secondary metabolic pathways and to visualize temporal changes of gene expression in ginseng hairy roots with methyl ester methyl jasmonate (MeJA) along with non-treated hairy roots. A 5.774 EST clones were clustered and assembled as 501 contigs and 2.955 singletons. Annotations categorized with molecular functions, biological processes, cellular compounds of gene ontological terms and biochemical functions, enzyme commission to sequences were assigned to metabolic pathways of Kyoto Encyclopedia of Genes and Genomes database. Comparatively, EST sequences are assigned to cellular process, metabolic process, biotic and abiotic stress stimuli, developmental and biological regulations and transports are up-regulated 2-3 fold in MeJA treated hairy roots. 46 different sub groups of enzymes found in the MeJA treated plants. These annotated ESTs represents a significant proportion of the P. ginseng and provides molecular resource for developmental of microarrays for gene expression studies concerning development, metabolism and reproduction.

  9. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  10. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  11. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    Science.gov (United States)

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  12. Susceptibility gene discovery for common metabolic and endocrine traits.

    Science.gov (United States)

    McCarthy, M I

    2002-02-01

    Almost all major causes of ill-health and premature death in human societies worldwide - including cancer, cardiovascular disease, diabetes and many infectious diseases - are, at least in part, genetically determined. Typically, risk of succumbing to one of these illnesses is thought to depend on both the individual repertoire of variation within a number of key susceptibility genes and the history of exposure to relevant environmental factors. For many of these conditions, the molecular basis of disease pathogenesis remains obscure. This represents a major obstacle to development of improved, rational strategies for disease treatment, prevention and eradication. It is easy therefore to appreciate the importance attached to efforts to deliver more comprehensive understanding of the molecular basis of disease pathogenesis. Nor is it hard to understand that identification of major susceptibility genes should highlight those components of molecular machinery that are critical for the preservation of normal health. The benefits promised are great, but progress to gene identification in multifactorial traits has been rather disappointing to date. Why is this? This review aims to answer this question by describing current and future approaches to gene discovery in multifactorial traits. The examples quoted will mostly relate to type 2 diabetes, but the issues and approaches are generic, and apply equally to other multifactorial traits in the endocrine and metabolic arena - type 1 diabetes; obesity; hyperlipidaemia; autoimmune thyroid disease; polycystic ovarian syndrome - and beyond.

  13. Uric acid in metabolic syndrome: From an innocent bystander to a central player.

    Science.gov (United States)

    Kanbay, Mehmet; Jensen, Thomas; Solak, Yalcin; Le, Myphuong; Roncal-Jimenez, Carlos; Rivard, Chris; Lanaspa, Miguel A; Nakagawa, Takahiko; Johnson, Richard J

    2016-04-01

    Uric acid, once viewed as an inert metabolic end-product of purine metabolism, has been recently incriminated in a number of chronic disease states, including hypertension, metabolic syndrome, diabetes, non-alcoholic fatty liver disease, and chronic kidney disease. Several experimental and clinical studies support a role for uric acid as a contributory causal factor in these conditions. Here we discuss some of the major mechanisms linking uric acid to metabolic and cardiovascular diseases. At this time the key to understanding the importance of uric acid in these diseases will be the conduct of large clinical trials in which the effect of lowering uric acid on hard clinical outcomes is assessed. Elevated uric acid may turn out to be one of the more important remediable risk factors for metabolic and cardiovascular diseases. Copyright © 2015 European Federation of Internal Medicine. All rights reserved.

  14. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle

    Directory of Open Access Journals (Sweden)

    Widmann Philipp

    2011-11-01

    Full Text Available Abstract Background The intramuscular fat deposition and the fatty acid profiles of beef affect meat quality. High proportions of unsaturated fatty acids are related to beef flavor and are beneficial for the nutritional value of meat. Moreover, a variety of clinical and epidemiologic studies showed that particularly long-chain omega-3 fatty acids from animal sources have a positive impact on human health and disease. Results To screen for genetic factors affecting fatty acid profiles in beef, we initially performed a microsatellite-based genome scan in a F2 Charolais × German Holstein resource population and identified a quantitative trait locus (QTL for fatty acid composition in a region on bovine chromosome 27 where previously QTL affecting marbling score had been detected in beef cattle populations. The long-chain acyl-CoA synthetase 1 (ACSL1 gene was identified as the most plausible functional and positional candidate gene in the QTL interval due to its direct impact on fatty acid metabolism and its position in the QTL interval. ACSL1 is necessary for synthesis of long-chain acyl-CoA esters, fatty acid degradation and phospholipid remodeling. We validated the genomic annotation of the bovine ACSL1 gene by in silico comparative sequence analysis and experimental verification. Re-sequencing of the complete coding, exon-flanking intronic sequences, 3' untranslated region (3'UTR and partial promoter region of the ACSL1 gene revealed three synonymous mutations in exons 6, 7, and 20, six noncoding intronic gene variants, six polymorphisms in the promoter region, and four variants in the 3' UTR region. The association analysis identified the gene variant in intron 5 of the ACSL1 gene (c.481-233A>G to be significantly associated with the relative content of distinct fractions and ratios of fatty acids (e.g., n-3 fatty acids, polyunsaturated, n-3 long-chain polyunsaturated fatty acids, trans vaccenic acid in skeletal muscle. A tentative association

  15. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  16. The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp.

    Science.gov (United States)

    Plumridge, Andrew; Melin, Petter; Stratford, Malcolm; Novodvorska, Michaela; Shunburne, Lee; Dyer, Paul S; Roubos, Johannes A; Menke, Hildegard; Stark, Jacques; Stam, Hein; Archer, David B

    2010-08-01

    The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Expression pattern of L-FABP gene in different tissues and its regulation of fat metabolism-related genes in duck.

    Science.gov (United States)

    He, Jun; Tian, Yong; Li, Jinjun; Shen, Junda; Tao, Zhengrong; Fu, Yan; Niu, Dong; Lu, Lizhi

    2013-01-01

    Liver fatty acid binding protein (L-FABP) is a member of intracellular lipid-binding proteins responsible for the transportation of fatty acids. The expression pattern of duck L-FABP mRNA was examined in this study by quantitative RT-PCR. The results showed that duck L-FABP gene was expressed in many tissues, including heart, lung, kidney, muscle, ovary, brain, intestine, stomach and adipocyte tissues, and highly expressed in liver. Several lipid metabolism-related genes were selected to detect the regulation of L-FABP in duck. The expression of L-FABP and lipoprotein lipase was promoted by oleic acid. The L-FABP knockdown decreased the expression levels of peroxisome proliferator-activated receptor α (PPARα), fatty acid synthase and lipoprotein lipase by 61.1, 42.3 and 53.7 %, respectively (P L-FABP might function through the PPARα to regulate the fat metabolism-related gene expression and play important roles in lipid metabolism in duck hepatocytes.

  18. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Science.gov (United States)

    Sin, Yuan Yan; Ballantyne, Laurel L; Mukherjee, Kamalika; St Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  20. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis.

    Science.gov (United States)

    Guichardant, Michel; Calzada, Catherine; Bernoud-Hubac, Nathalie; Lagarde, Michel; Véricel, Evelyne

    2015-04-01

    Numerous epidemiological studies and clinical trials have reported the health benefits of omega-3 polyunsaturated fatty acids (PUFA), including a lower risk of coronary heart diseases. This review mainly focuses on the effects of alpha-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on some risk factors associated with atherothrombosis, including platelet activation, plasma lipid concentrations and oxidative modification of low-density lipoproteins (LDL). Special focus is given to the effects of marine PUFA on the formation of eicosanoids and docosanoids, and to the bioactive properties of some oxygenated metabolites of omega-3 PUFA produced by cyclooxygenases and lipoxygenases. The antioxidant effects of marine omega-3 PUFA at low concentrations and the pro-oxidant effects of DHA at high concentrations on the redox status of platelets and LDL are highlighted. Non enzymatic peroxidation end-products deriving from omega-3 PUFA such as hydroxy-hexenals, neuroketals and EPA-derived isoprostanes are also considered in relation to atherosclerosis. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

  1. Metabolism of polyunsaturated fatty acids and ketogenesis: an emerging connection.

    Science.gov (United States)

    Cunnane, Stephen C

    2004-03-01

    This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.

  2. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  3. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues.

    Science.gov (United States)

    Ralston, Jessica C; Lyons, Claire L; Kennedy, Elaine B; Kirwan, Anna M; Roche, Helen M

    2017-08-21

    Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.

  4. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    Science.gov (United States)

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  5. Are the effects of nicotinic acid on insulin resistance precipitated by abnormal phosphorous metabolism?

    Directory of Open Access Journals (Sweden)

    AbuSabha Hatem S

    2004-10-01

    Full Text Available Abstract Nicotinic acid is a unique cholesterol modifying agent that exerts favorable effects on all cholesterol parameters. It holds promise as one of the main pharmacological agents to treat mixed dyslipidemia in metabolic syndrome and diabetic patients. The use of nicotinic acid has always been haunted with concerns that it might worsen insulin resistance and complicate diabetes management. We will discuss the interaction between phosphorous metabolism and carbohydrate metabolism and the possibility that worsening of insulin resistance could be related to adrug induced alteration in phosphorous metabolism, and the implications of that in medical management of diabetes and metabolic syndrome patients with mixed dyslipidemia.

  6. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

    Directory of Open Access Journals (Sweden)

    Rudock Megan E

    2011-05-01

    Full Text Available Abstract Background Arachidonic acid (AA is a long-chain omega-6 polyunsaturated fatty acid (PUFA synthesized from the precursor dihomo-gamma-linolenic acid (DGLA that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date. Results In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48 and lower DGLA levels (p = 9.80 × 10-11 than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs in the Fatty Acid Desaturase (FADS locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans. Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537, wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups. Conclusions We conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.

  7. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation.

    Science.gov (United States)

    Lin, Qiong; Wang, Chengyang; Dong, Wencheng; Jiang, Qing; Wang, Dengliang; Li, Shaojia; Chen, Ming; Liu, Chunrong; Sun, Chongde; Chen, Kunsong

    2015-01-01

    Ponkan (Citrus reticulata Blanco cv. Ponkan) is an important mandarin citrus in China. However, the low ratio of sugars to organic acids makes it less acceptable for consumers. In this work, three stages (S120, early development stage; S195, commercial harvest stage; S205, delayed harvest stage) of Ponkan fruit were selected for study. Among 28 primary metabolites analyzed in fruit, sugars increased while organic acids in general decreased. RNA-Seq analysis was carried out and 19,504 genes were matched to the Citrus clementina genome, with 85 up-regulated and 59 down-regulated genes identified during fruit maturation. A sucrose phosphate synthase (SPS) gene was included in the up-regulated group, and this was supported by the transcript ratio distribution. Expression of two asparagine transferases (AST), and a specific ATP-citrate lyase (ACL) and glutamate decarboxylase (GAD) members increased during fruit maturation. It is suggested that SPS, AST, ACL and GAD coordinately contribute to sugar accumulation and organic acid degradation during Ponkan fruit maturation. Both the glycolysis pathway and TCA cycle were accelerated during later maturation, indicating the flux change from sucrose metabolism to organic acid metabolism was enhanced, with citrate degradation occurring mainly through the gamma-aminobutyric acid (GABA) and acetyl-CoA pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Predicted Highly Expressed Genes in the Genomes of Streptomyces Coelicolor and Streptomyces Avermitilis and the Implications for their Metabolism.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang; Culley, David E.; Zhang, Weiwen

    2005-06-01

    SUMMARY-Highly expressed genes in bacteria often have a stronger codon bias than genes expressed at lower levels. In this study, a comparative analysis of predicted highly expressed (PHX) genes in the Streptomyces coelicolor and S. avermitilis genomes was performed using the codon adaptation index (CAI) as a numerical estimator of gene expression level. Although it has been suggested that there is little heterogeneity in codon usage in G+C rich bacteria, considerable heterogeneity was found among genes in two G+C rich Streptomyces genomes. Using ribosomal protein (RP) genes as references, ~10% of the genes were predicted to be PHX genes using a CAI cutoff value of greater than 0.78 and 0.75 in S. coelicolor and S. avermitilis, respectively. Most of the PHX genes were found to be located within the conserved cores of the Streptomyces linear chromosomes. The predicted PHX genes showed good agreement with the experimental data on expression levels collected by proteomic analysis (Hesketh et al., 2002). Among all PHX genes, 368 were conserved in both genomes. These represented most of the genes essential for cell growth, including those involved in protein and DNA biosynthesis, amino acid metabolism, central intermediary and energy metabolisms. Only a few genes directly involved in biosynthesis of secondary metabolites were predicted to be PHX genes. Correspondence analysis showed that the genes responsible for biosynthesis of secondary metabolites possessed different codon usage patterns from RP genes, suggesting that they were either under strong translational selection that may have driven the codon preference in another direction, or they were acquired by horizontal transfer during their origin and evolution. Nevertheless, several key genes responsible for producing precursors for secondary metabolites, such as crotonyl-CoA reductase and propionyl-CoA carboxylase, and genes necessary for initiation of secondary metabolism, such as adenosylmethionine synthetase were

  9. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  10. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Science.gov (United States)

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  11. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    Science.gov (United States)

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  12. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  13. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  14. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  15. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action.

    Science.gov (United States)

    Shin, Dong-Ju; Osborne, Timothy F

    2009-04-24

    The current studies show FGF15 signaling decreases hepatic forkhead transcription factor 1 (FoxO1) activity through phosphatidylinositol (PI) 3-kinase-dependent phosphorylation. The bile acid receptor FXR (farnesoid X receptor) activates expression of fibroblast growth factor (FGF) 15 in the intestine, which acts through hepatic FGFR4 to suppress cholesterol-7alpha hydroxylase (CYP7A1) and limit bile acid production. Because FoxO1 activity and CYP7A1 gene expression are both increased by fasting, we hypothesized CYP7A1 might be a FoxO1 target gene. Consistent with recently reported results, we show CYP7A1 is a direct target of FoxO1. Additionally, we show that the PI 3-kinase pathway is key for both the induction of CYP7A1 by fasting and the suppression by FGF15. FGFR4 is the major hepatic FGF receptor isoform and is responsible for the hepatic effects of FGF15. We also show that expression of FGFR4 in liver was decreased by fasting, increased by insulin, and reduced by streptozotocin-induced diabetes, implicating FGFR4 as a primary target of insulin regulation. Because insulin and FGF both target the PI 3-kinase pathway, these observations suggest FoxO1 is a key node in the convergence of FGF and insulin signaling pathways and functions as a key integrator for the regulation of glucose and bile acid metabolism.

  16. Acetyl-coenzyme A Carboxylase: A Key Metabolic Enzyme of Fatty Acid and Progress of Its Gene Clone%乙酰辅酶A羧化酶:脂肪酸代谢的关键酶及其基因克隆研究进展

    Institute of Scientific and Technical Information of China (English)

    李洁琼; 郑世学; 喻子牛; 张吉斌

    2011-01-01

    Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism in most living organisms. In this article, structure, types, functions and inhibitors of ACC, as well as research status of ACC gene clone are systematically discussed. ACC is a multi-subunit enzyme in most prokaryotes, whereas it is a large, multi-domain enzyme in most eukaryotes. In addition, there are two special types found from Streptomyces coelicolor and Metallosphaera sedula. All of these types contain three key domains: Biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP) and carboxyltransferase (CT). CT domain, as a candidate target, has been widely used for screening of plant herbicides and drug development against obesity, diabetes and other symptoms of the metabolic syndrome. The gene encoded ACC is also becoming an important target gene applied in the fields of transgenic oil plants and biodiesel. Previous studies showed thatβ-CT in plant plasmid was the limit factor of heteromeric ACC, and BCCP was a negative regulator of fatty acid synthesis. Lipid synthesis metabolism is a very complex network, especially feedback inhibition mechanism exists in it. As a result, cloning and expression of ACC gene may increase the activity of ACC in the host, but not necessarily could obviously promote the accumulation of fatty acid. Fig 2, Ref 52%乙酰辅酶A羧化酶( Acetyl-CoA carboxy lase,ACC)在脂肪酸合成和分解代谢中发挥着重要作用.系统介绍了该酶的结构与分类、生物学作用与应用、抑制剂的类型与作用机理以及基因克隆4个方面的进展.ACC在大多数原核生物中为多亚基型酶,而在大多数真核生物中为多功能型单亚基酶,在天蓝色链霉菌和古菌勤奋金属球菌中为另外两种特殊类型;但都具备3个关键的功能域,即生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT).CT功能域作为潜在的靶标广泛应用于植物除草剂的筛选和哺乳

  17. Triglyceride lipases alter fuel metabolism and mitochondrial gene expression.

    Science.gov (United States)

    Watt, Matthew J

    2009-06-01

    Fatty acids derived from the hydrolysis of adipose tissue and skeletal muscle triacylglycerol (TG) are an important energy substrate at rest and during prolonged moderate-intensity exercise. Hormone sensitive lipase (HSL) was long considered to be the rate-limiting enzyme for adipocyte and skeletal muscle TG lipolysis. However, the understanding of TG lipolysis regulation was recently challenged by the finding that adipose TG lipase (ATGL) is the predominant TG lipase in adipose tissue and an important regulator of TG degradation in skeletal muscle. Thus, it is now proposed that ATGL and HSL regulate lipolysis in a serial manner, with ATGL cleaving the first fatty acid and HSL the second fatty acid of TG. Further to this biochemical evaluation, the generation and metabolic characterization of ATGL-/- and HSL-/- mice have revealed distinct phenotypes. ATGL-/- mice are obese, exhibit impaired thermogenesis, oxidize more carbohydrate, and die prematurely due to cardiac dysfunction. Studies in HSL-/- mice report defective beta-adrenergic stimulated lipolysis, protection against high-fat diet-induced obesity, and possible impairments in insulin secretion. This review outlines the current understanding of the cellular regulation of TG lipases, lipolytic regulation, and the functional implications of manipulating ATGL and HSL in vivo.

  18. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    Science.gov (United States)

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-09-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data.

  19. Gene Expression Analysis of Alfalfa Seedlings Response to Acid-Aluminum

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2016-01-01

    Full Text Available Acid-Aluminum (Al is toxic to plants and greatly affects crop production worldwide. To understand the responses of plants to acid soils and Aluminum toxicity, we examined global gene expression using microarray data in alfalfa seedlings with the treatment of acid-Aluminum. 3,926 genes that were identified significantly up- or downregulated in response to Al3+ ions with pH 4.5 treatment, 66.33% of which were found in roots. Their functional categories were mainly involved with phytohormone regulation, reactive oxygen species, and transporters. Both gene ontology (GO enrichment and KEGG analysis indicated that phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis played a critical role on defense to Aluminum stress in alfalfa. In addition, we found that transcription factors such as the MYB and WRKY family proteins may be also involved in the regulation of reactive oxygen species reactions and flavonoid biosynthesis. Thus, the finding of global gene expression profile provided insights into the mechanisms of plant defense to acid-Al stress in alfalfa. Understanding the key regulatory genes and pathways would be advantageous for improving crop production not only in alfalfa but also in other crops under acid-Aluminum stress.

  20. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Directory of Open Access Journals (Sweden)

    Sá-Correia Isabel

    2010-10-01

    Full Text Available Abstract Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5. Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to

  1. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

    Science.gov (United States)

    2010-01-01

    Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are

  2. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    Science.gov (United States)

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.

  3. Valproic Acid Metabolism and its Consequences on Sexual Functions.

    Science.gov (United States)

    Verrotti, Alberto; Mencaroni, Elisabetta; Cofini, Marta; Castagnino, Miriam; Leo, Antonio; Russo, Emilio; Belcastro, Vincenzo

    2016-01-01

    Valproic acid (VPA) is a broad spectrum antiepileptic drug (AED) that is generally regarded as a first-choice agent for most forms of idiopathic and symptomatic generalised epilepsies. Available data suggest that menstrual disorders and certain endocrine manifestations of reproductive system disorders may be more common in women treated with VPA than in those treated with other AEDs. A PubMed search for MEDLINE was undertaken to look for studies using the terms "VPA metabolism", "VPA and sexual functions in men", "VPA and sexual functions in women" and "VPA metabolism and endocrine disorders" as key words. The period covered was approximately 20 years. In women, VPA medication is associated with hyperandrogenism, polycystic ovary/polycystic ovarian syndrome, menstrual disorders and ovulatory failure. Men on VPA therapy show abnormalities in androgens blood levels, sperm motility and erectile dysfunctions. VPA negatively affects the release of luteinizing hormone, follicle stimulating hormone and prolactin but also the drug interferes in peripheral endocrine hormones. Its broad inhibitory action on cytochrome and glucuronidation systems can lead to high serum concentration of testosterone, androstenedione and dehydroepiandrosterone sulfate. VPA-dependent obesity and hyperinsulinemia can further contribute to an increase in sexual dysfunctions. VPA interferes with the endocrine system at multiples levels causing several reproductive and sexual dysfunctions in women and men with epilepsy, especially when administered in pubertal age. Since VPA is a first line AED both in children and adult with epilepsy and long-term medication with this drug is sometimes necessary, it is very important for physicians to implement strict monitoring of patients taking VPA in order to identify these kinds of side effects at an early stage.

  4. Metabolic Effects of a Succinic Acid

    Directory of Open Access Journals (Sweden)

    B. N. Shakh

    2014-01-01

    Full Text Available The paper discusses promises for clinical use of substrate antihypoxants.Objective: to investigate the efficacy of succinate containing  substrate  antihypoxants  on  systemic  oxygen  consumption,  blood  buffer  capacity,  and  changes  in  the  mixed venous blood level of lactate when they are used in gravely sick patients and victims with marked metabolic posthypoxic disorders.Subjects and methods. The trial enrolled 30 patients and victims who had sustained an episode of severe hypoxia of mixed genesis, the severity of which was evaluated by the APACHE II scale and amounted to 23 to 30 scores with a 46 to 70.3% risk of death. The standard infusion program in this group involved the succinate-containing drug 1.5% reamberin solution  in  a  total  dose  of  800  ml.  A  comparison  group  included  15  patients  who  had  undergone  emergency  extensive surgery for abdominal diseases. 400 ml of 10% glucose solution was used as an infusion medium. Oxygen consumption (VO2ml/min and carbon dioxide production (VCO2ml/min were measured before infusion and monitored for 2 hours. Arterial blood gases and acid-base balance (ABB parameters and mixed venous blood lactate levels were examined. Measurements were made before and 30 minutes after the infusion of reamberin or glucose solution.Results. Infusion of 1.5% reamberin solution was followed by a significant increase in minute oxygen consumption from 281.5±21.2 to 310.4±24.4 ml/min. CO2 production declined (on average, from 223.3±6.5 to 206.5±7.59 ml/min. During infusion of 10% glucose solution, all the patients of the comparison group showed a rise in oxygen consumption from 303.6±33.86 to 443.13±32.1 ml/min, i.e. about 1.5-fold. VCO2 changed similarly. The intravenous infusion of 800 ml of 1.5% reamberin solution raised arterial blood buffer capacity, which was reflected by changes in pH, BE, and HCO3. There was a clear trend for lactate values to drop in the

  5. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  6. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  7. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  8. Tapetum Degeneration Retardation is Critical for Aliphatic Metabolism and Gene Regulation during Rice Pollen Development

    Institute of Scientific and Technical Information of China (English)

    Da-Sheng Zhang; Wan-Qi Liang; Zheng Yuan; Na Li; Jing Shi; Jue Wang; Yu-Min Liu; Wen-Juan Yu; Da-Bing Zhang

    2008-01-01

    As a complex wall system in flowering plants,the pollen outer wall mainly contains aliphatic sporopollenin;however,the mechanism for synthesizing these lipidic precursors during pollen development remains less well under-stood.Here,we report on the function of the rice tapetum-expressing TDR(Tapetum Degeneration Retardation)gene in aliphatic metabolism and its regulatory role during rice pollen development.The observations of transmission electron microscopy (TEM) and scanning electron microscopy(SEM)analyses suggested that pollen wall formation was significantly altered in the tdr mutant.The contents of aliphatic compositions of anther were greatly changed in the tdr mutant revealed by GC-MS(gas chromatography-mass spectrometry)testing,particularly less accumulated in fatty acids, primary alcohols,alkanes and alkenes,and an abnormal increase in secondary alcohols with carbon Iengths from C29 to C35 in tdr.Microarray data revealed that a group of genes putatively involved in lipid transport and metabolism were significantly altered in the tdr mutant,indicating the critical role of TDR in the formation of the pollen wall.Also,a wide range of genes tween wild-type and tdr.In addition to its function in promoting tapetum PCD,TDR possibly plays crucial regulatory roles in several basic biological processes during rice pollen development.

  9. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  10. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension

    NARCIS (Netherlands)

    Bellenger, J.; Bellenger, S.; Clement, L.; Mandard, S.J.; Diot, C.; Poisson, J.P.; Narce, M.

    2004-01-01

    Polyunsaturated fatty acids (PUFA) are known to repress SCD-1 gene expression, key enzyme of monounsaturated fatty acid biosynthesis. Alterations of the monounsaturated/saturated fatty acids ratio have been implicated in various diseases related to the metabolic syndrome, including hypertension. We

  11. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension

    NARCIS (Netherlands)

    Bellenger, J.; Bellenger, S.; Clement, L.; Mandard, S.J.; Diot, C.; Poisson, J.P.; Narce, M.

    2004-01-01

    Polyunsaturated fatty acids (PUFA) are known to repress SCD-1 gene expression, key enzyme of monounsaturated fatty acid biosynthesis. Alterations of the monounsaturated/saturated fatty acids ratio have been implicated in various diseases related to the metabolic syndrome, including hypertension. We

  12. Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis.

    Science.gov (United States)

    Funk, Georg-Christian; Doberer, Daniel; Osterreicher, Christoph; Peck-Radosavljevic, Markus; Schmid, Monika; Schneeweiss, Bruno

    2005-06-01

    Conflicting results exist with regard to metabolic acid-base status in liver cirrhosis, when the classic concept of acid-base analysis is applied. The influence of the common disturbances of water, electrolytes and albumin on acid-base status in cirrhosis has not been studied. The aim of this study was to clarify acid-base status in cirrhotic patients by analyzing all parameters with possible impact on acid-base equilibrium. Fifty stable cirrhotic patients admitted to a university hospital. Arterial acid-base status was analyzed using the principles of physical chemistry and compared with 10 healthy controls. Apart from mild hypoalbuminemic alkalosis, acid-base state was normal in Child-Pugh A cirrhosis. Respiratory alkalosis was the net acid-base disorder in Child-Pugh B and C cirrhosis with a normal overall metabolic acid-base state (Base excess-1.0 (-3.6 to 1.6) vs 1.1 (-0.2 to 1.1) mmol/l, P = 0.136, compared with healthy controls, median (interquartile range)). Absence of an apparent metabolic acid-base disorder was based on an equilibrium of hypoalbuminemic alkalosis and of dilutional acidosis and hyperchloremic acidosis. A balance of offsetting acidifying and alkalinizing metabolic acid-base disorders leaves the net metabolic acid-base status unchanged in cirrhosis.

  13. Bridging the Gap between Gene Expression and Metabolic Phenotype via Kinetic Models

    Science.gov (United States)

    2013-07-22

    Figure 2 depicts the metabolic network, which includes the glycolysis pathway, the pentose phosphate pathway, the citric acid cycle , and pathways for...metabolism and amino acids synthesis pathways of S. cerevisiae. The network includes glycolysis, the pentose phosphate pathway (PPP), the citric acid cycle ...expression changes led to observed phenotypic alterations of Saccharomyces cerevisiae treated with weak organic acids (i.e., acetate, benzoate, propionate

  14. Improving metabolic flux predictions using absolute gene expression data

    Directory of Open Access Journals (Sweden)

    Lee Dave

    2012-06-01

    Full Text Available Abstract Background Constraint-based analysis of genome-scale metabolic models typically relies upon maximisation of a cellular objective function such as the rate or efficiency of biomass production. Whilst this assumption may be valid in the case of microorganisms growing under certain conditions, it is likely invalid in general, and especially for multicellular organisms, where cellular objectives differ greatly both between and within cell types. Moreover, for the purposes of biotechnological applications, it is normally the flux to a specific metabolite or product that is of interest rather than the rate of production of biomass per se. Results An alternative objective function is presented, that is based upon maximising the correlation between experimentally measured absolute gene expression data and predicted internal reaction fluxes. Using quantitative transcriptomics data acquired from Saccharomyces cerevisiae cultures under two growth conditions, the method outperforms traditional approaches for predicting experimentally measured exometabolic flux that are reliant upon maximisation of the rate of biomass production. Conclusion Due to its improved prediction of experimentally measured metabolic fluxes, and of its lack of a requirement for knowledge of the biomass composition of the organism under the conditions of interest, the approach is likely to be of rather general utility. The method has been shown to predict fluxes reliably in single cellular systems. Subsequent work will investigate the method’s ability to generate condition- and tissue-specific flux predictions in multicellular organisms.

  15. Modulating gene function with peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E.; Crooke, Stanley T.

    2008-01-01

    A review on peptide nucleic acid (PNA) oligomers as modulators of gene expression ranging from gene silencing at the mRNAor the dsDNA (antigene) level, and redirection of mRNA splicing to gene activation through transcription bubble mimicking. PNA chem., anti-infective agents, cellular delivery, ...

  16. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.

    Science.gov (United States)

    Brown, Stephen H; Bashkirova, Lena; Berka, Randy; Chandler, Tyler; Doty, Tammy; McCall, Keith; McCulloch, Michael; McFarland, Sarah; Thompson, Sheryl; Yaver, Debbie; Berry, Alan

    2013-10-01

    Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.

  17. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.

    Science.gov (United States)

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2013-11-01

    1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC-MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production.

  18. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids1[OPEN

    Science.gov (United States)

    Deason, Nicholas; DellaPenna, Dean

    2017-01-01

    Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed’s nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. PMID:27872244

  19. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs.

  20. Fungal Community Associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and Its Role in Uric Acid Metabolism.

    Science.gov (United States)

    Vera-Ponce de León, Arturo; Sanchez-Flores, Alejandro; Rosenblueth, Mónica; Martínez-Romero, Esperanza

    2016-01-01

    We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius.

  1. Fatty Acid Desaturase 1 (FADS1) Gene Polymorphisms Control Human Hepatic Lipid Composition

    OpenAIRE

    Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing

    2014-01-01

    Fatty Acid Desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes including liver enzymes and hepatic fat accumulation but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids and ceramides among 154 human liver tissue samples. The associations between previously Genome-wide Association St...

  2. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria.

    Science.gov (United States)

    Tomoeda, K; Awata, H; Matsuura, T; Matsuda, I; Ploechl, E; Milovac, T; Boneh, A; Scott, C R; Danks, D M; Endo, F

    2000-11-01

    The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.

  3. Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids.

    Science.gov (United States)

    Arnold, Cosima; Markovic, Marija; Blossey, Katrin; Wallukat, Gerd; Fischer, Robert; Dechend, Ralf; Konkel, Anne; von Schacky, Clemens; Luft, Friedrich C; Muller, Dominik N; Rothe, Michael; Schunck, Wolf-Hagen

    2010-10-22

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J isoforms converting AA to epoxyeicosatrienoic acids (EETs) preferentially epoxidized the ω-3 double bond and thereby produced 17,18-epoxyeicosatetraenoic (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) from EPA and DHA. We found that these ω-3 epoxides are highly active as antiarrhythmic agents, suppressing the Ca(2+)-induced increased rate of spontaneous beating of neonatal rat cardiomyocytes, at low nanomolar concentrations. CYP4A/4F isoforms ω-hydroxylating AA were less regioselective toward EPA and DHA, catalyzing predominantly ω- and ω minus 1 hydroxylation. Rats given dietary EPA/DHA supplementation exhibited substantial replacement of AA by EPA and DHA in membrane phospholipids in plasma, heart, kidney, liver, lung, and pancreas, with less pronounced changes in the brain. The changes in fatty acids were accompanied by concomitant changes in endogenous CYP metabolite profiles (e.g. altering the EET/EEQ/EDP ratio from 87:0:13 to 27:18:55 in the heart). These results demonstrate that CYP enzymes efficiently convert EPA and DHA to novel epoxy and hydroxy metabolites that could mediate some of the beneficial cardiovascular effects of dietary ω-3 fatty acids.

  4. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta's actions to normalize cardiac gene expression and fuel metabolism in diabetic rats.

    Science.gov (United States)

    Arikawa, Emi; Ma, Ronald C W; Isshiki, Keiji; Luptak, Ivan; He, Zhiheng; Yasuda, Yutaka; Maeno, Yasuhiro; Patti, Mary Elizabeth; Weir, Gordon C; Harris, Robert A; Zammit, Victor A; Tian, Rong; King, George L

    2007-05-01

    High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)beta inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and (13)C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid-induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid-mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCbeta or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.

  5. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.

    Science.gov (United States)

    Bongaerts, J; Krämer, M; Müller, U; Raeven, L; Wubbolts, M

    2001-10-01

    Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.

  6. How prevalent is crassulacean acid metabolism among vascular epiphytes?

    Science.gov (United States)

    Zotz, Gerhard

    2004-01-01

    The occurrence of crassulacean acid metabolism (CAM) in the epiphyte community of a lowland forest of the Atlantic slope of Panama was investigated. I hypothesized that CAM is mostly found in orchids, of which many species are relatively small and/or rare. Thus, the relative proportion of species with CAM should not be a good indicator for the prevalence of this photosynthetic pathway in a community when expressed on an individual or a biomass basis. In 0.4 ha of forest, 103 species of vascular epiphytes with 13,099 individuals were found. As judged from the C isotope ratios and the absence of Kranz anatomy, CAM was detected in 20 species (19.4% of the total), which were members of the families Orchidaceae, Bromeliaceae, and Cactaceae. As predicted, the contribution of CAM epiphytes to the total number of individuals and to total biomass (69.6 kg ha(-1)) was considerably lower (3.6% or 466 individuals and, respectively, 3.0% or 2.1 kg ha(-1)).

  7. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism

    Directory of Open Access Journals (Sweden)

    Rost Enrique

    2008-12-01

    Full Text Available Abstract Background Members of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments. The accumulation of storage compounds permits cells to survive and metabolically adapt during fluctuating environmental conditions. The purpose of this study was to perform a genome-wide bioinformatic analysis of key genes encoding metabolism of diverse storage compounds by Rhodococcus jostii RHA1 and to examine its ability to synthesize and accumulate triacylglycerols (TAG, wax esters, polyhydroxyalkanoates (PHA, glycogen and polyphosphate (PolyP. Results We identified in the RHA1 genome: 14 genes encoding putative wax ester synthase/acyl-CoA:diacylglycerol acyltransferase enzymes (WS/DGATs likely involved in TAG and wax esters biosynthesis; a total of 54 genes coding for putative lipase/esterase enzymes possibly involved in TAG and wax ester degradation; 3 sets of genes encoding PHA synthases and PHA depolymerases; 6 genes encoding key enzymes for glycogen metabolism, one gene coding for a putative polyphosphate kinase and 3 putative exopolyphosphatase genes. Where possible, key amino acid residues in the above proteins (generally in active sites, effectors binding sites or substrate binding sites were identified in order to support gene identification. RHA1 cells grown under N-limiting conditions, accumulated TAG as the main storage compounds plus wax esters, PHA (with 3-hydroxybutyrate and 3-hydroxyvalerate monomers, glycogen and PolyP. Rhodococcus members were previously known to accumulate TAG, wax esters, PHAs and polyP, but this is the first report of glycogen accumulation in this genus. Conclusion RHA1 possess key genes to accumulate diverse storage compounds. Under nitrogen-limiting conditions lipids are the principal storage compounds. An extensive capacity to synthesize and metabolize storage compounds appears to contribute versatility to RHA1 in its

  8. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

    Science.gov (United States)

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe

    2011-07-01

    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.

  9. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    The still growing obesity epidemic is a major risk for our society, as it is associated with the development of the so called metabolic syndrome, which is a clinical diagnosis correlated to development of metabolic disorders. Lack of physical activity, excess energy intake, and nutritional factors...... dairy fat in general and phytanic acid on metabolic parameters, we performed several studies. First, we investigated effects on hepatic lipid metabolism, glucose homeostasis, and circulating metabolic markers, of high fat diets based on butter from high- or low-yield production, a diet based on high...... addition of phytanic acid. Third, we investigated butter and phytanic acid effects on human T-cell polarization, both by in vitro incubation with phytanic acid, and by a 12 weeks intervention with intake of butter. Finally, we performed two human interventions, first one with intake of butter and cheese...

  10. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review.

    Science.gov (United States)

    Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-07-01

    It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.

  11. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  12. Differential effect of fructose on fat metabolism and clock gene expression in hepatocytes vs. myotubes.

    Science.gov (United States)

    Chapnik, Nava; Rozenblit-Susan, Sigal; Genzer, Yoni; Froy, Oren

    2016-08-01

    In the liver, fructose bypasses the main rate-limiting step of glycolysis at the level of phosphofructokinase, allowing it to act as an unregulated substrate for de novo lipogenesis. It has been reported that consumption of large amounts of fructose increases de novo lipogenesis in the liver. However, the effect of fructose on ectopic deposition of muscle fat has been under dispute. Our aim was to study the effect of fructose on levels of genes and proteins involved in fatty acid oxidation and synthesis in hepatocytes vs. muscle cells. In addition, as fat accumulation leads to disruption of daily rhythms, we tested the effect of fructose treatment on clock gene expression. AML-12 hepatocytes and C2C12 myotubes were treated with fructose or glucose for 2 consecutive 24-h cycles and harvested every 6h. In contrast to glucose, fructose disrupted clock gene rhythms in hepatocytes, but in myotubes, it led to more robust rhythms. Fructose led to low levels of phosphorylated AMP-activated protein kinase (pAMPK) and high levels of LIPIN1 in hepatocytes compared with glucose. In contrast, fructose led to high pAMPK and low LIPIN1 and microsomal triacylglycerol transfer protein (MTTP) levels in myotubes compared with glucose. Analysis of fat content revealed that fructose led to less fat accumulation in myotubes compared to hepatocytes. In summary, fructose shifts metabolism towards fatty acid synthesis and clock disruption in hepatocytes, but not in myotubes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular...... protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes...... and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs’ functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear...

  14. Amino acids as regulators of gene expression

    Directory of Open Access Journals (Sweden)

    Kimball SR

    2004-08-01

    Full Text Available The role of amino acids as substrates for protein synthesis is well documented. However, a function for amino acids in modulating the signal transduction pathways that regulate mRNA translation has only recently been described. Interesting, some of the signaling pathways regulated by amino acids overlap with those classically associated with the cellular response to hormones such as insulin and insulin-like growth factors. The focus of this review is on the signaling pathways regulated by amino acids, with a particular emphasis on the branched-chain amino acid leucine, and the steps in mRNA translation controlled by the signaling pathways.

  15. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, ...

  16. Association of metabolic gene polymorphisms with tobacco consumption in healthy controls.

    NARCIS (Netherlands)

    Smits, K.M.; Benhamou, S.; Garte, S.; Weijenberg, M.P.; Alamanos, Y.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Boffetta, P.; Bouchardy, C.; Brockmoller, J.; Butkiewicz, D.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Muzi, G.; Dolzan, V.; Duzhak, T.G.; Farker, K.; Golka, K.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Katoh, T.; Kihara, M.; Ono-Kihara, M.; Kim, H.L.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Marchand, L. le; Lechner, M.C.; London, S.; Manni, J.J.; Maugard, C.M.; Morgan, G.J.; Morita, S.; Nazar-Stewart, V.; Kristensen, V.N.; Oda, Y.; Parl, F.F.; Peters, W.H.M.; Rannug, A.; Rebbeck, T.; Pinto, L.F.; Risch, A.; Romkes, M.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnett, D.; Strange, R.C.; Stucker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Zheng, W.; Pedotti, P.; Taioli, E.

    2004-01-01

    Polymorphisms in genes that encode for metabolic enzymes have been associated with variations in enzyme activity between individuals. Such variations could be associated with differences in individual exposure to carcinogens that are metabolized by these genes. In this study, we examine the associat

  17. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  18. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms.

    Science.gov (United States)

    Groussman, Ryan D; Parker, Micaela S; Armbrust, E Virginia

    2015-01-01

    Ferroproteins arose early in Earth's history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world's oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  19. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling.

    Science.gov (United States)

    Bénit, Paule; Letouzé, Eric; Rak, Malgorzata; Aubry, Laetitia; Burnichon, Nelly; Favier, Judith; Gimenez-Roqueplo, Anne-Paule; Rustin, Pierre

    2014-08-01

    Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.

  20. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-06-03

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Systematic analysis and metabolic regulation of physiological functions for lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Liu, Liming

    2012-01-01

    As cell factories, lactic acid bacteria are widely used in food, agriculture, medicine and other industries, and play a great role in industrial processes. However, lactic acid bacteria encounter various environmental stresses both in industrial processes and in the gastrointestinal tract, which impair their physiological functions and food manufacture efficiency. Recently, the development of metabolic engineering and system biology brings unprecedented opportunity for the physiological modification of lactic acid bacteria. In this review, we addresses the progress of lactic acid bacterium system biology, and based on this, the metabolic engineering strategies for manipulating and optimizing lactic acid bacteria physiological function were summarized.

  2. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M

    2016-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohep......The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...

  3. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism

    DEFF Research Database (Denmark)

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich

    2016-01-01

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids......, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host...... by altered microbiota composition....

  4. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    Science.gov (United States)

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  5. Gene expression analyses reveal metabolic specifications in acute O2 -sensing chemoreceptor cells.

    Science.gov (United States)

    Gao, Lin; Bonilla-Henao, Victoria; García-Flores, Paula; Arias-Mayenco, Ignacio; Ortega-Sáenz, Patricia; López-Barneo, José

    2017-07-17

    Glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM) are essential for reflex cardiorespiratory adaptation to hypoxia. However, the mechanisms whereby these cells detect changes in O2 tension are poorly understood. The metabolic properties of acute O2 -sensing cells have been investigated by comparing the transcriptomes of CB and AM cells, which are O2 -sensitive, with superior cervical ganglion neurons, which are practically O2 -insensitive. In O2 -sensitive cells, we found a characteristic prolyl hydroxylase 3 down-regulation and hypoxia inducible factor 2α up-regulation, as well as overexpression of genes coding for three atypical mitochondrial electron transport subunits and pyruvate carboxylase, an enzyme that replenishes tricarboxylic acid cycle intermediates. In agreement with this observation, the inhibition of succinate dehydrogenase impairs CB acute O2 sensing. The responsiveness of peripheral chemoreceptor cells to acute hypoxia depends on a 'signature metabolic profile'. Acute O2 sensing is a fundamental property of cells in the peripheral chemoreceptors, e.g. glomus cells in the carotid body (CB) and chromaffin cells in the adrenal medulla (AM), and is necessary for adaptation to hypoxia. These cells contain O2 -sensitive ion channels, which mediate membrane depolarization and transmitter release upon exposure to hypoxia. However, the mechanisms underlying the detection of changes in O2 tension by cells are still poorly understood. Recently, we suggested that CB glomus cells have specific metabolic features that favour the accumulation of reduced quinone and the production of mitochondrial NADH and reactive oxygen species during hypoxia. These signals alter membrane ion channel activity. To investigate the metabolic profile characteristic of acute O2 -sensing cells, we used adult mice to compare the transcriptomes of three cell types derived from common sympathoadrenal progenitors, but exhibiting variable

  6. Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Taha Ameer Y

    2012-10-01

    Full Text Available Abstract Background In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2 enzymes that regulate arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-6 acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases, DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases, brain-derived neurotrophic factor (BDNF, and synaptic integrity (drebrin and synaptophysin. Lipid concentrations were measured in brains subjected to high-energy microwave fixation. Results The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4 did not change. Conclusion These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.

  7. Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs

    NARCIS (Netherlands)

    Smink, W.

    2012-01-01


    The impact of variation in the composition of dietary fat on digestion, metabolism and synthesis of fatty acids was studied in broiler chickens and in pigs. In young broiler chickens, digestion of unsaturated fatty acids was substantially higher compared with that of saturated fatty acids. Po

  8. Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs

    NARCIS (Netherlands)

    Smink, W.

    2012-01-01


    The impact of variation in the composition of dietary fat on digestion, metabolism and synthesis of fatty acids was studied in broiler chickens and in pigs. In young broiler chickens, digestion of unsaturated fatty acids was substantially higher compared with that of saturated fatty acids.

  9. Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs

    NARCIS (Netherlands)

    Smink, W.

    2012-01-01


    The impact of variation in the composition of dietary fat on digestion, metabolism and synthesis of fatty acids was studied in broiler chickens and in pigs. In young broiler chickens, digestion of unsaturated fatty acids was substantially higher compared with that of saturated fatty acids. Po

  10. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2015-05-01

    Full Text Available Clinical observations suggest that gut and dietary factors transiently worsen and, in some cases, appear to improve behavioral symptoms in a subset of persons with autism spectrum disorders (ASDs, but the reason for this is unclear. Emerging evidence suggests ASDs are a family of systemic disorders of altered immunity, metabolism, and gene expression. Pre- or perinatal infection, hospitalization, or early antibiotic exposure, which may alter gut microbiota, have been suggested as potential risk factors for ASD. Can a common environmental agent link these disparate findings? This review outlines basic science and clinical evidence that enteric short-chain fatty acids (SCFAs, present in diet and also produced by opportunistic gut bacteria following fermentation of dietary carbohydrates, may be environmental triggers in ASD. Of note, propionic acid, a major SCFA produced by ASD-associated gastrointestinal bacteria (clostridia, bacteroides, desulfovibrio and also a common food preservative, can produce reversible behavioral, electrographic, neuroinflammatory, metabolic, and epigenetic changes closely resembling those found in ASD when administered to rodents. Major effects of these SCFAs may be through the alteration of mitochondrial function via the citric acid cycle and carnitine metabolism, or the epigenetic modulation of ASD-associated genes, which may be useful clinical biomarkers. It discusses the hypothesis that ASDs are produced by pre- or post-natal alterations in intestinal microbiota in sensitive sub-populations, which may have major implications in ASD cause, diagnosis, prevention, and treatment.

  11. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  12. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    Science.gov (United States)

    2010-01-01

    Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http://cgob.ucd.ie. PMID:20459735

  13. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    LENUS (Irish Health Repository)

    Fitzpatrick, David A

    2010-05-10

    Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB), an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1) and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae). Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging\\/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine) and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http:\\/\\/cgob.ucd.ie.

  14. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser

    Directory of Open Access Journals (Sweden)

    Byrne Kevin P

    2010-05-01

    Full Text Available Abstract Background Candida species are the most common cause of opportunistic fungal infection worldwide. Recent sequencing efforts have provided a wealth of Candida genomic data. We have developed the Candida Gene Order Browser (CGOB, an online tool that aids comparative syntenic analyses of Candida species. CGOB incorporates all available Candida clade genome sequences including two Candida albicans isolates (SC5314 and WO-1 and 8 closely related species (Candida dubliniensis, Candida tropicalis, Candida parapsilosis, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis, Candida guilliermondii and Candida lusitaniae. Saccharomyces cerevisiae is also included as a reference genome. Results CGOB assignments of homology were manually curated based on sequence similarity and synteny. In total CGOB includes 65617 genes arranged into 13625 homology columns. We have also generated improved Candida gene sets by merging/removing partial genes in each genome. Interrogation of CGOB revealed that the majority of tandemly duplicated genes are under strong purifying selection in all Candida species. We identified clusters of adjacent genes involved in the same metabolic pathways (such as catabolism of biotin, galactose and N-acetyl glucosamine and we showed that some clusters are species or lineage-specific. We also identified one example of intron gain in C. albicans. Conclusions Our analysis provides an important resource that is now available for the Candida community. CGOB is available at http://cgob.ucd.ie.

  15. Comparative RNA-Sequence Transcriptome Analysis of Phenolic Acid Metabolism in Salvia miltiorrhiza, a Traditional Chinese Medicine Model Plant

    Science.gov (United States)

    Song, Zhenqiao; Guo, Linlin; Liu, Tian; Lin, Caicai; Wang, Jianhua

    2017-01-01

    Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM). In this study, two S. miltiorrhiza genotypes (BH18 and ZH23) with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq). A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs) identified between BH18 and ZH23, 250 of which were upregulated in ZH23, with genes involved in the phenylpropanoid biosynthesis pathway being the most upregulated genes. Nine genes involved in the lignin biosynthesis pathway were upregulated in BH18 and thus result in higher lignin content in BH18. However, expression profiles of most genes involved in the core common upstream phenylpropanoid biosynthesis pathway were higher in ZH23 than that in BH18. These results indicated that genes involved in the core common upstream phenylpropanoid biosynthesis pathway might play an important role in downstream secondary metabolism and demonstrated that lignin biosynthesis was a putative partially competing pathway with phenolic acid biosynthesis. The results of this study expanded our understanding of the regulation of phenolic acid biosynthesis in S. miltiorrhiza. PMID:28194403

  16. Comparative RNA-Sequence Transcriptome Analysis of Phenolic Acid Metabolism in Salvia miltiorrhiza, a Traditional Chinese Medicine Model Plant

    Directory of Open Access Journals (Sweden)

    Zhenqiao Song

    2017-01-01

    Full Text Available Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM. In this study, two S. miltiorrhiza genotypes (BH18 and ZH23 with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq. A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs identified between BH18 and ZH23, 250 of which were upregulated in ZH23, with genes involved in the phenylpropanoid biosynthesis pathway being the most upregulated genes. Nine genes involved in the lignin biosynthesis pathway were upregulated in BH18 and thus result in higher lignin content in BH18. However, expression profiles of most genes involved in the core common upstream phenylpropanoid biosynthesis pathway were higher in ZH23 than that in BH18. These results indicated that genes involved in the core common upstream phenylpropanoid biosynthesis pathway might play an important role in downstream secondary metabolism and demonstrated that lignin biosynthesis was a putative partially competing pathway with phenolic acid biosynthesis. The results of this study expanded our understanding of the regulation of phenolic acid biosynthesis in S. miltiorrhiza.

  17. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes

    DEFF Research Database (Denmark)

    Bouyakdan, Khalil; Taïb, Bouchra; Budry, Lionel;

    2015-01-01

    Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diaze......Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known...... (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release...... in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA...

  18. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  19. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

    Directory of Open Access Journals (Sweden)

    van der Meijde Jolanda

    2007-08-01

    Full Text Available Abstract Background Fasting has dramatic effects on small intestinal transport function. However, little is known on expression of intestinal transport and phase I/II metabolism genes during fasting and the role the fatty acid-activated transcription factor PPARα may play herein. We therefore investigated the effects of fasting on expression of these genes using Affymetrix GeneChip MOE430A arrays and quantitative RT-PCR. Results After 24 hours of fasting, expression levels of 33 of the 253 analyzed transporter and phase I/II metabolism genes were changed. Upregulated genes were involved in transport of energy-yielding molecules in processes such as glycogenolysis (G6pt1 and mitochondrial and peroxisomal oxidation of fatty acids (Cact, Mrs3/4, Fatp2, Cyp4a10, Cyp4b1. Other induced genes were responsible for the inactivation of the neurotransmitter serotonin (Sert, Sult1d1, Dtd, Papst2, formation of eicosanoids (Cyp2j6, Cyp4a10, Cyp4b1, or for secretion of cholesterol (Abca1 and Abcg8. Cyp3a11, typically known because of its drug metabolizing capacity, was also increased. Fasting had no pronounced effect on expression of phase II metabolic enzymes, except for glutathione S-transferases which were down-regulated. Time course studies revealed that some genes were acutely regulated, whereas expression of other genes was only affected after prolonged fasting. Finally, we identified 8 genes that were PPARα-dependently upregulated upon fasting. Conclusion We have characterized the response to fasting on expression of transporters and phase I/II metabolic enzymes in murine small intestine. Differentially expressed genes are involved in a variety of processes, which functionally can be summarized as a increased oxidation of fat and xenobiotics, b increased cholesterol secretion, c increased susceptibility to electrophilic stressors, and d reduced intestinal motility. This knowledge increases our understanding of gut physiology, and may be of relevance

  20. Metabolic regulation in meagre, Argyrosomus regius (Asso, 1801: Study of gene-diet interactions on lipid metabolism

    Directory of Open Access Journals (Sweden)

    Francisca Silva-Brito

    2014-06-01

    stimulates the expression of the fads2. In contrast, Elovl5 is very efficient to convert the desaturated products of ∆6/∆8 and so Elovl5 expression is not enhanced, since the activity of this enzyme is already higher. These findings may explain the differences in the expression of two genes, between hepatic fads2 and elovl5. Furthermore, increased hepatic fads2 expression between FO-S and VO-S treatments was 114 fold. Such induction was much greater than observed in Salmo salad (Zheng et al., 2005. However, Salmo salad has separate and distinct genes for ∆6 and ∆5 desaturases (Zheng et al., 2005 and, due to genome duplication, it has two genes with ∆6 activity (Monroig et al., 2010. Moreover, lipid peroxidation in liver increases with the number of fatty acid (FA double bonds (Haggag, Elsanhoty & Ramadan, 2014. D'Aquino et al. (1991 observed that rats fed diets with fish oil had increased lipid peroxidation. Our results indicate that, in FO-S, selenium may have protected FA from peroxidation, thus dietary HUFA seemed to have been sufficient to maintain the phospholipid turnover and induction of FA metabolism genes did not occur. In FO-NS diet membranes were not protected efficiently from lipid peroxidation, and therefore a higher expression of FA metabolism genes was necessary to offset the damage, consequently, biosynthesis of HUFA was more stimulated. ROS-induced oxidative stress has been associated with expression and protein levels of transcription factors (Okuno et al., 2012. A reduction of ROS (Reactive Oxygen Species has been observed in fish fed VO with selenium, when compared to VO without selenium (data not presented. It is plausible to infer that a stimulation of expression and level of protein SREBP-1 by a reduction of ROS. SREBP-1 play a role on the regulation of genes involved in biosynthesis of HUFA, as fads2 and elovl5 (Jump, Tripathy & Depner, 2013. In conclusion, our results showed that vegetable oils have an effect on expression level of genes

  1. The role of fatty acid oxidation in the metabolic reprogramming of activated T cells

    Directory of Open Access Journals (Sweden)

    Craig Alan Byersdorfer

    2014-12-01

    Full Text Available Activation represents a significant bioenergetic challenge for T cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T cell metabolism, will be discussed.

  2. Role of bile acids in the regulation of the metabolic pathways

    Institute of Scientific and Technical Information of China (English)

    Hiroki; Taoka; Yoko; Yokoyama; Kohkichi; Morimoto; Naho; Kitamura; Tatsuya; Tanigaki; Yoko; Takashina; Kazuo; Tsubota; Mitsuhiro; Watanabe

    2016-01-01

    Recent studies have revealed that bile acids(BAs)are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions.Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs.BAs regulate their own homeostasis via signaling pathways.BAs also affect diverse metabolic pathways including glucose metabolism,lipid metabolism and energy expenditure.This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.

  3. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  4. New insights into the butyric acid metabolism of Clostridium acetobutylicum.

    Science.gov (United States)

    Lehmann, Dörte; Radomski, Nadine; Lütke-Eversloh, Tina

    2012-12-01

    Biosynthesis of acetone and n-butanol is naturally restricted to the group of solventogenic clostridia with Clostridium acetobutylicum being the model organism for acetone-butanol-ethanol (ABE) fermentation. According to limited genetic tools, only a few rational metabolic engineering approaches were conducted in the past to improve the production of butanol, an advanced biofuel. In this study, a phosphotransbutyrylase-(Ptb) negative mutant, C. acetobutylicum ptb::int(87), was generated using the ClosTron methodology for targeted gene knock-out and resulted in a distinct butyrate-negative phenotype. The major end products of fermentation experiments without pH control were acetate (3.2 g/l), lactate (4.0 g/l), and butanol (3.4 g/l). The product pattern of the ptb mutant was altered to high ethanol (12.1 g/l) and butanol (8.0 g/l) titers in pH ≥ 5.0-regulated fermentations. Glucose fed-batch cultivation elevated the ethanol concentration to 32.4 g/l, yielding a more than fourfold increased alcohol to acetone ratio as compared to the wildtype. Although butyrate was never detected in cultures of C. acetobutylicum ptb::int(87), the mutant was still capable to take up butyrate when externally added during the late exponential growth phase. These findings suggest that alternative pathways of butyrate re-assimilation exist in C. acetobutylicum, supposably mediated by acetoacetyl-CoA:acyl-CoA transferase and acetoacetate decarboxylase, as well as reverse reactions of butyrate kinase and Ptb with respect to previous studies.

  5. Tryptophan metabolism and immunogenetics in major depression: a role for interferon-γ gene.

    Science.gov (United States)

    Myint, Aye Mu; Bondy, Brigitta; Baghai, Thomas C; Eser, Daniela; Nothdurfter, Caroline; Schüle, Cornelius; Zill, Peter; Müller, Norbert; Rupprecht, Rainer; Schwarz, Markus J

    2013-07-01

    The tryptophan metabolism and immune activation play a role in pathophysiology of major depressive disorders. The pro-inflammatory cytokine interferon-γ transcriptionally induces the indoleamine 2,3-dioxygenase enzyme that degrades the tryptophan and thus induces serotonin depletion. The polymorphism of certain cytokine genes was reported to be associated with major depression. We investigated the association between interferon-γ (IFNγ) gene CA repeat polymorphism, the profile of serotonin and tryptophan pathway metabolites and clinical parameters in 125 depressed patients and 93 healthy controls. Compared to controls, serum tryptophan and 5-hydroxyindoleacetic acid (5HIAA) concentrations in the patients were significantly lower and serum kynurenine concentrations were significantly higher at baseline (p<0.0001). The presence of IFNγ CA repeat allele 2 homozygous has significant association with higher kynurenine concentrations in controls (F=4.47, p=0.038) as well as in patients (F=3.79, p=0.045). The existence of interferon-γ CA repeat allele 2 (homo- or heterozygous) showed significant association with increase of tryptophan breakdown over time during the study period (F=6.0, p=0.019). The results indicated the association between IFNγ CA repeat allele 2, tryptophan metabolism and the effect of medication.

  6. Bovine growth hormone-transgenic mice have major alterations in hepatic expression of metabolic genes.

    Science.gov (United States)

    Olsson, Bob; Bohlooly-Y, Mohammad; Brusehed, Ola; Isaksson, Olle G P; Ahrén, Bo; Olofsson, Sven-Olof; Oscarsson, Jan; Törnell, Jan

    2003-09-01

    Transgenic mice overexpressing growth hormone (GH) have been extensively used to study the chronic effects of elevated serum levels of GH. GH is known to have many acute effects in the liver, but little is known about the chronic effects of GH overexpression on hepatic gene expression. Therefore, we used DNA microarray to compare gene expression in livers from bovine GH (bGH)-transgenic mice and littermates. Hepatic expression of peroxisome proliferator-activated receptor-alpha (PPARalpha) and genes involved in fatty acid activation, peroxisomal and mitochondrial beta-oxidation, and production of ketone bodies was decreased. In line with this expression profile, bGH-transgenic mice had a reduced ability to form ketone bodies in both the fed and fasted states. Although the bGH mice were hyperinsulinemic, the expression of sterol regulatory element-binding protein (SREBP)-1 and most lipogenic enzymes regulated by SREBP-1 was reduced, indicating that these mice are different from other insulin-resistant models with respect to expression of SREBP-1 and its downstream genes. This study also provides several candidate genes for the well-known association between elevated GH levels and cardiovascular disease, e.g., decreased expression of scavenger receptor class B type I, hepatic lipase, and serum paraoxonase and increased expression of serum amyloid A-3 protein. We conclude that bGH-transgenic mice display marked changes in hepatic genes coding for metabolic enzymes and suggest that GH directly or indirectly regulates many of these hepatic genes via decreased expression of PPARalpha and SREBP-1.

  7. Effects of essential amino acids on lipid metabolism in mice and humans.

    Science.gov (United States)

    Xiao, Fei; Du, Ying; Lv, Ziquan; Chen, Shanghai; Zhu, Jianmin; Sheng, Hongguang; Guo, Feifan

    2016-11-01

    Eight amino acids are considered essential for human nutrition, and three of them, including leucine, isoleucine and valine, are called as branched-chain amino acids (BCAAs). We recently discovered that dietary deficiency of any BCAA for 7 days rapidly reduces the abdominal fat mass in mice. The goal of this study was to investigate (1) whether dietary deficiency of the other five essential amino acids (EAAs), including phenylalanine, threonine, tryptophan, methionine and lysine, would produce similar effects and (2) whether an association between serum AAs and obesity was observed in humans in Chinese Han population. Similar to BCAAs deprivation, dietary deficiency of any of these five EAAs for 7 days significantly reduced abdominal fat mass, which is likely caused by increased energy expenditure. Expression of genes and proteins related to lipolysis, however, were differentially regulated by different EAAs. These results suggest a crucial role of EAAs deprivation on lipid metabolism in mice. Our human studies revealed that levels of four EAAs (leucine, isoleucine, valine and phenylalanine) were elevated in obese humans compared with those in lean controls in Chinese Han population. Based on the results obtained from mice, we speculate that these four EAAs might play important roles in human obesity. © 2016 Society for Endocrinology.

  8. (13)C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids.

    Science.gov (United States)

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E K; Shymansky, Chris; Keasling, Jay D; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combi