WorldWideScience

Sample records for acid mediates brain-derived

  1. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  2. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    Science.gov (United States)

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  3. Copper(I) mediated cross-coupling of amino acid derived organozinc reagents with acid chlorides

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Tanner, David Ackland

    2006-01-01

    This paper describes the development of a straightforward experimental protocol for copper-mediated cross-coupling of amino acid derived beta-amido-alkylzinc iodides 1 and 3 with a range of acid chlorides. The present method uses CuCN center dot 2LiCl as the copper source and for organozinc reagent...... 1 the methodology appears to be limited to reaction with more stable acid chlorides, providing the desired products in moderate yields. When applied to organozinc reagent 3, however, the protocol is more general and provides the products in good yields in all but one of the cases tested....

  4. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  5. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  6. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells

    International Nuclear Information System (INIS)

    Yoon, Hana; Oh, Young Taek; Lee, Jung Yeon; Choi, Ji Hyun; Lee, Ju Hie; Baik, Hyung Hwan; Kim, Sung Soo; Choe, Wonchae; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug

    2008-01-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. Kainic acid (KA), a prototype excitotoxin is known to induce brain-derived neurotrophic factor (BDNF) in brain. In this study, we examined the role of AMPK in KA-induced BDNF expression in C6 glioma cells. We showed that KA and KA receptor agonist induced activation of AMPK and KA-induced AMPK activation was blocked by inhibition of Ca 2+ /calmodulin-dependent protein kinase kinase (CaMKK) β. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPKα1 blocked KA-induced BDNF mRNA and protein expression. Inhibition of AMPK blocked KA-induced phosphorylation of CaMKII and I kappaB kinase (IKK) in C6 cells. Finally, we showed that inhibition of AMPK reduced DNA binding and transcriptional activation of nuclear factor-kappaB (NF-κB) in KA-treated cells. These results suggest that AMPK mediates KA-induced BDNF expression by regulating NF-κB activation

  7. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM-Mediated Protection of Ischemic Brain.

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lin

    Full Text Available The protective value of neuron-derived conditioned medium (NCM in cerebral ischemia and the underlying mechanism(s responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO animal model, we discovered that ischemia/reperfusion (I/R-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.

  8. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    Science.gov (United States)

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  9. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  10. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    Science.gov (United States)

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can

  11. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    Science.gov (United States)

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  12. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system.

    Science.gov (United States)

    Ren, Huixia; Luo, Chuanming; Feng, Yanqing; Yao, Xiaoli; Shi, Zhe; Liang, Fengyin; Kang, Jing X; Wan, Jian-Bo; Pei, Zhong; Su, Huanxing

    2017-01-01

    Impairment of amyloid-β (Aβ) clearance leads to Aβ accumulation in the brain during the development of Alzheimer's disease (AD). Strategies that can restore or improve the clearance function hold great promise in delaying or preventing the onset of AD. Here, we show that n-3 polyunsaturated fatty acids (PUFAs), by use of fat-1 transgenic mice and oral administration of fish oil, significantly promote interstitial Aβ clearance from the brain and resist Aβ injury. Such beneficial effects were abolished in Aqp4-knockout mice, suggesting that the AQP4-dependent glymphatic system is actively involved in the promoting the effects of n-3 PUFAs on the clearance of extracellular Aβ. Imaging on clarified brain tissues clearly displayed that n-3 PUFAs markedly inhibit the activation of astrocytes and protect the AQP4 polarization in the affected brain region after Aβ injection. The results of the present study prove a novel mechanism by which n-3 PUFAs exert protective roles in reducing Aβ accumulation via mediating the glymphatic system function.-Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., Kang, J. X., Wan, J.-B., Pei, Z., Su, H. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. © FASEB.

  13. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus.

    Science.gov (United States)

    Alashmali, Shoug M; Kitson, Alex P; Lin, Lin; Lacombe, R J Scott; Bazinet, Richard P

    2017-09-13

    The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.

  15. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases.

    Science.gov (United States)

    Sun, Grace Y; Simonyi, Agnes; Fritsche, Kevin L; Chuang, Dennis Y; Hannink, Mark; Gu, Zezong; Greenlief, C Michael; Yao, Jeffrey K; Lee, James C; Beversdorf, David Q

    2017-03-10

    Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A 2 (cPLA 2 ), DHA is linked to action of the Ca 2+ -independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke

  16. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  17. Lowering dietary n-6 polyunsaturated fatty acids: interaction with brain arachidonic and docosahexaenoic acids.

    Science.gov (United States)

    Alashmali, Shoug M; Hopperton, Kathryn E; Bazinet, Richard P

    2016-02-01

    Arachidonic (ARA) and docosahexaenoic (DHA) acids are the most abundant polyunsaturated fatty acids (PUFA) in the brain, where they have many biological effects, including on inflammation, cell-signaling, appetite regulation, and blood flow. The Western diet contains a high ratio of n-6: n-3 PUFA. Although interest in lowering this ratio has largely focused on increasing intake of n-3 PUFA, few studies have examined lowering dietary n-6 PUFA. This review will evaluate the effect of lowering dietary n-6 PUFA on levels and metabolism of ARA and DHA in animal models and in humans, with a primary focus on the brain. In animal models, lowering dietary ARA or linoleic acid generally lowers levels of brain ARA and raises DHA. Lowering dietary n-6 PUFA can also modulate the levels of ARA and DHA metabolizing enzymes, as well as their associated bioactive mediators. Human studies examining changes in plasma fatty acid composition following n-6 PUFA lowering demonstrate no changes in levels of ARA and DHA, though there is evidence of alterations in their respective bioactive mediators. Lowering dietary n-6 PUFA, in animal models, can alter the levels and metabolism of ARA and DHA in the brain, but it remains to be determined whether these changes are clinically meaningful.

  18. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  19. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  20. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    Science.gov (United States)

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Lysine and pipecolic acid and some of their derivatives show anticonvulsant activity, and stimulation of benzodiazepine receptor activity

    International Nuclear Information System (INIS)

    Chang, Yung-Feng; Gao, Xue-Min

    1989-01-01

    Benzodiazepines are one of the most widely prescribed drugs in the treatment of anxiety, epilepsy and muscle tension. The natural products lysine and pipecolic acid known to be present in the animal, plant and microorganism, have been shown to be anticonvulsant against pentetrazol (PTZ)-induced seizures in mice. Methyl and ethyl esters of L-lysine and the N-isopropanol derivative of pipecolic acid appear to increase the anticonvulsant potency of the parent compounds, presumably due to their increase in hydrophobicity. Lysine and pipecolic acid showed significant stimulation of specific [ 3 H]flunitrazepam (FZ) binding to mouse brain membranes. This stimulation was enhanced by chloride ions and stereospecific with L-isomer having higher effect. The dose-dependent anticonvulsant activity of lysine and pipecolic acid, and their stimulation of [ 3 H]FZ binding appear to be correlated. The antiepileptic activity lysine, pipecolic acid and their derivatives therefore may be mediated through the γ-aminobutyric acid-benzodiazepine receptor complex

  2. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  3. Effect of intravenous administration of D-lysergic acid diethylamide on initiation of protein synthesis in a cell-free system derived from brain.

    Science.gov (United States)

    Cosgrove, J W; Brown, I R

    1984-05-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.

  4. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  5. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  6. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources.

    Science.gov (United States)

    Echeverría, Francisca; Valenzuela, Rodrigo; Catalina Hernandez-Rodas, María; Valenzuela, Alfonso

    2017-09-01

    Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  8. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Science.gov (United States)

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  9. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  10. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  11. ω-3 and ω-6 Fatty Acids Modulate Conventional and Atypical Protein Kinase C Activities in a Brain Fatty Acid Binding Protein Dependent Manner in Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2018-04-01

    Full Text Available Glioblastoma multiforme (GBM is a highly infiltrative brain cancer with a dismal prognosis. High levels of brain fatty acid binding protein (B-FABP are associated with increased migration/infiltration in GBM cells, with a high ratio of arachidonic acid (AA to docosahexaenoic acid (DHA driving B-FABP-mediated migration. Since several protein kinase Cs (PKCs are overexpressed in GBM and linked to migration, we explored a possible relationship between B-FABP and levels/activity of different PKCs, as a function of AA and DHA supplementation. We report that ectopic expression of B-FABP in U87 cells alters the levels of several PKCs, particularly PKCζ. Upon analysis of PKCζ RNA levels in a panel of GBM cell lines and patient-derived GBM neurospheres, we observed a trend towards moderate positive correlation (r = 0.624, p = 0.054 between B-FABP and PKCζ RNA levels. Analysis of PKC activity in U87 GBM cells revealed decreased typical PKC activity (23.4% in B-FABP-expressing cells compared with nonexpressing cells, with no difference in novel and atypical PKC activities. AA and DHA modulated both conventional and atypical PKC activities in a B-FABP-dependent manner, but had no effect on novel PKC activity. These results suggest that conventional and atypical PKCs are potential downstream effectors of B-FABP/fatty acid-mediated alterations in GBM growth properties.

  12. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  13. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    Science.gov (United States)

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  14. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  15. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking

    NARCIS (Netherlands)

    Barker, J.M.; Taylor, J.R.; de Vries, T.J.; Peters, J.

    2015-01-01

    Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural

  16. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  17. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  18. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  19. The multiple roles of Fatty Acid Handling Proteins in brain

    Directory of Open Access Journals (Sweden)

    Valentine SF Moullé

    2012-09-01

    Full Text Available Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several fatty acid handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36, members of fatty acid transport proteins (FATPs, and lipid chaperones fatty acid-binding proteins (FABPs. A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

  20. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    Science.gov (United States)

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Supplementation with eicosapentaenoic omega-3 fatty acid does not influence serum brain-derived neurotrophic factor in diabetes mellitus patients with major depression

    DEFF Research Database (Denmark)

    Bot, Mariska; Pouwer, Francois; Assies, Johanna

    2011-01-01

    BACKGROUND: Low brain-derived neurotrophic factor (BDNF) levels are observed in both depressed and diabetes patients. Animal research has shown that omega-3 polyunsaturated fatty acids increase BDNF levels. In this exploratory randomized double-blind placebo-controlled study in diabetes patients...... with major depression, we tested whether (a) omega- 3 ethyl-eicosapentaenoic acid (E-EPA) leads to increased serum BDNF levels and (b) whether changes in BDNF levels are associated with corresponding changes in depression. METHODS: Patients received 1 g/day E-EPA (n = 13) or placebo (n = 12) for 12 weeks...

  2. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  3. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S

    2009-01-01

    identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity...... and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein...... diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes....

  4. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  5. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II-derived

  6. Blueberry Phenolics Reduce Gastrointestinal Infection of Patients with Cerebral Venous Thrombosis by Improving Depressant-Induced Autoimmune Disorder via miR-155-Mediated Brain-Derived Neurotrophic Factor

    Science.gov (United States)

    Xu, Ning; Meng, Hao; Liu, Tianyi; Feng, Yingli; Qi, Yuan; Zhang, Donghuan; Wang, Honglei

    2017-01-01

    Cerebral venous thrombosis (CVT) often causes human depression, whereas depression-induced low immunity makes the patients susceptible to gastrointestinal infection. Blueberry possesses antidepressant properties which may improve autoimmunity and reduce gastrointestinal infection. Brain-derived neurotrophic factor (BDNF) performs antidepressant function and can be regulated by miR-155, which may be affected by blueberry. To explore the possible molecular mechanism, blueberry compounds were analyzed by high-performance liquid chromatography. Activity of compounds was tested by using HT22 cells. The present study tested 124 patients with CVT-induced mild-to-moderate depressive symptoms (Center for Epidemiologic Studies—Depression Scale [CES-D] ≥16) and gastrointestinal infection. Patients were randomly assigned to blueberry extract group (BG, received 10 mg blueberry extract daily) and placebo group (PG, received 10 mg placebo daily). After 3 months, depression, gastrointestinal infection and lipid profiles were investigated. Serum miR-155 and BDNF were measured using real-time quantitative polymerase chain reaction and or Western Blot. Blueberry treatment improved depressive symptoms and lipid profiles, and also reduced gastrointestinal infection in the BG group (P blueberry extracts were the main phenolic acids with 0.18, 0.85, 0.26, 0.72, 0.66, 0.4,1, and 1.92 mg/g of gentisic acid, chlorogenic acid, [2]-epicatechin, p-coumaric acid, benzoic acid, p-anisic acid, and quercetin in blueberry extracts, respectively. Phenolics in blueberry are possible causal agents in improving antidepressant activity and reducing gastrointestinal infection. Administration of blueberry increased BDNF expression and miR-155. Blueberry cannot affect BDNF level when miR-155 is overexpressed or inhibited. Phenolics from blueberry reduced gastrointestinal infection of patients with CVT by improving antidepressant activity via upregulation of miR-155-mediated BDNF. PMID:29230173

  7. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  8. Unesterified docosahexaenoic acid is protective in neuroinflammation

    Science.gov (United States)

    Orr, Sarah K; Palumbo, Sara; Bosetti, Francesca; Mount, Howard T; Kang, Jing X; E, Carol; Greenwood; Ma, David WL; Serhan, Charles N; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 PUFA modulation in transgenic and wildtype mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Further, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LCMS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute icv infusion of 17S-hydroperoxydocosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. PMID:23919613

  9. Edaravone Enhances Brain-Derived Neurotrophic Factor Production in the Ischemic Mouse Brain

    Directory of Open Access Journals (Sweden)

    Satoshi Okuyama

    2015-04-01

    Full Text Available Edaravone, a clinical drug used to treat strokes, protects against neuronal cell death and memory loss in the ischemic brains of animal models through its antioxidant activity. In the present study, we subcutaneously administrated edaravone to mice (3 mg/kg/day for three days immediately after bilateral common carotid artery occlusion, and revealed through an immunohistochemical analysis that edaravone (1 accelerated increases in the production of brain-derived neurotrophic factor (BDNF in the hippocampus; (2 increased the number of doublecortin-positive neuronal precursor cells in the dentate gyrus subgranular zone; and (3 suppressed the ischemia-induced inactivation of calcium-calmodulin-dependent protein kinase II in the hippocampus. We also revealed through a Western blotting analysis that edaravone (4 induced the phosphorylation of cAMP response element-binding (CREB, a transcription factor that regulates BDNF gene expression; and (5 induced the phosphorylation of extracellular signal-regulated kinases 1/2, an upstream signal factor of CREB. These results suggest that the neuroprotective effects of edaravone following brain ischemia were mediated not only by the elimination of oxidative stress, but also by the induction of BDNF production.

  10. Brain derived neurotrophic factor mediated learning, fear acquisition and extinction as targets for developing novel treatments for anxiety

    Directory of Open Access Journals (Sweden)

    Karina Soares de Oliveira

    Full Text Available ABSTRACT Anxiety and obsessive-compulsive related disorders are highly prevalent and disabling disorders for which there are still treatment gaps to be explored. Fear is a core symptom of these disorders and its learning is highly dependent on the activity of the neurotrophin brain-derived neurotrophic factor (BDNF. Should BDNF-mediated fear learning be considered a target for the development of novel treatments for anxiety and obsessive-compulsive related disorders? We review the evidence that suggests that BDNF expression is necessary for the acquisition of conditioned fear, as well as for the recall of its extinction. We describe the findings related to fear learning and genetic/epigenetic manipulation of Bdnf expression in animals and BDNF allelic variants in humans. Later, we discuss how manipulation of BDNF levels represents a promising potential treatment target that may increase the benefits of therapies that extinguish previously conditioned fear.

  11. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  12. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  13. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  14. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Cryptococcal meningoencephalitis is the most common fungal disease in the central nervous system. The mechanisms by which Cryptococcus neoformans invades the brain are largely unknown. In this study, we found that C. neoformans-derived microvesicles (CnMVs can enhance the traversal of the blood-brain barrier (BBB by C. neoformans invitro. The immunofluorescence imaging demonstrates that CnMVs can fuse with human brain microvascular endothelial cells (HBMECs, the constituents of the BBB. This activity is presumably due to the ability of the CnMVs to activate HBMEC membrane rafts and induce cell fusogenic activity. CnMVs also enhanced C. neoformans infection of the brain, found in both infected brains and cerebrospinal fluid. In infected mouse brains, CnMVs are distributed inside and around C. neoformans-induced cystic lesions. GFAP (glial fibrillary acidic protein-positive astrocytes were found surrounding the cystic lesions, overlapping with the 14-3-3-GFP (14-3-3-green fluorescence protein fusion signals. Substantial changes could be observed in areas that have a high density of CnMV staining. This is the first demonstration that C. neoformans-derived microvesicles can facilitate cryptococcal traversal across the BBB and accumulate at lesion sites of C. neoformans-infected brains. Results of this study suggested that CnMVs play an important role in the pathogenesis of cryptococcal meningoencephalitis.

  15. Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.

    Science.gov (United States)

    Genzer, Yoni; Chapnik, Nava; Froy, Oren

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection of the in vivo conversion of 2-pyrrolidinone to gamma-aminobutyric acid in mouse brain.

    Science.gov (United States)

    Callery, P S; Stogniew, M; Geelhaar, L A

    1979-01-01

    Labeled gamma-aminobutyric acid was detected in mouse brain following intravenous injections of deuterium labeled 2-pyrrolidinone. [2H6]Pyrrolidinone was prepared by the reduction of [2H4]succinimide with lithium aluminum deuteride. Quantification was accomplished by a gas chromatography mass spectrometry assay method. gamma-Aminobutyric acid and internal standard, 5-aminovaleric acid, were converted to volatile derivatives by treatment with N,N-dimethylformamide dimethyl acetal. Quantitative estimates were derived from peak area measurements obtained from monitoring the parent ions of the gamma-aminobutyric acid and internal standard derivatives by repetitive scanning during the GC run. The conversion of pyrrolidinone to gamma-aminobutyric acid may provide a method for labeling central gamma-aminobutyric acid pools.

  17. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells

    OpenAIRE

    KIM, JIN HEE

    2014-01-01

    Alzheimer’s disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25–35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymerase chain reaction. Aβ25–35 was found to induce an apoptosis, dose-dependent effect on SH-SY5Y neuro...

  18. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease

    NARCIS (Netherlands)

    Bana, Laura; Minniti, Stefania; Salvati, Elisa; Sesana, Silvia; Zambelli, Vanessa; Cagnotto, Alfredo; Orlando, Antonina; Cazzaniga, Emanuela; Zwart, Rob; Scheper, Wiep; Masserini, Massimo; Re, Francesca

    2014-01-01

    Targeting amyloid-β peptide (Aβ) within the brain is a strategy actively sought for therapy of Alzheimer's disease (AD). We investigated the ability of liposomes bi-functionalized with phosphatidic acid and with a modified ApoE-derived peptide (mApoE-PA-LIP) to affect Aβ aggregation/disaggregation

  19. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    International Nuclear Information System (INIS)

    Zimmermann, A.

    2001-03-01

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  20. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  1. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  2. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain.

    Science.gov (United States)

    Cosgrove, J W; Clark, B D; Brown, I R

    1981-03-01

    An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of d-lysergic acid diethylamide (LSD) to rabbits induced a transient inhibition of translation following a brief stimulatory period. Subfractionation of the brain cell-free system into postribosomal supernatant (PRS) and microsome fractions demonstrated that LSD in vivo induced alterations in both of these fractions. In addition to the overall inhibition of translation in the cell-free system, differential effects were noted, i.e., greater than average relative decreases in in vitro labeling of certain brain proteins and relative increases in others. The brain proteins of molecular weights 75K and 95K, which were increased in relative labeling under conditions of LSD-induced hyperthermia, are similar in molecular weight to two of the major "heat shock" proteins reported in tissue culture systems. Injection of LSD to rabbits at 4 degrees C prevented LSD-induced hyperthermia but behavioral effects of the drug were still apparent. The overall decrease in cell-free translation was still observed but the differential labeling effects were not. LSD appeared to influence cell-free translation in the brain at two dissociable levels: (a) an overall decrease in translation that was observed even in the absence of LSD-induced hyperthermia and (b) differential labeling effects on particular proteins that were dependent on LSD-induced hyperthermia.

  3. Omega-3 Fatty Acids Could Alleviate the Risks of Traumatic Brain Injury – A Mini Review

    Directory of Open Access Journals (Sweden)

    Parvathy R. Kumar

    2014-04-01

    Full Text Available Traumatic brain injury (TBI is an acquired brain trauma that occurs when any sudden trauma/injury causes damage to the brain. TBI is characterized by tissue damage and imbalance in the cerebral blood flow and metabolism. It has been established through laboratory experiments that the dietary supplementation of omega-3 fatty acids (FAs could reduce the oxidative stress developed in brain due to TBI. The inclusion of omega-3 FA in diet could normalize the levels of brain-derived neurotrophic factor (BDNF, and thus, it could restore the survival of neuronal cells. BDNF improves the synaptic transmission by regulating synapsin 1 and cyclic adenosine monophosphate (cAMP response element binding protein. The brain tissue analysis of TBI models supplemented with omega-3 polyunsaturated fatty acids (PUFAs showed significantly reduced lipid peroxidation, nucleic acid and protein oxidation, thereby promoting neuronal and glial cell survival. Thus, omega-3 FA intake could be considered as a therapeutic option to reduce the secondary neuronal damages initiated by TBI.

  4. Potential roles of cell-derived microparticles in ischemic brain disease.

    Science.gov (United States)

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  5. Isotope-labelled folic acid derivatives

    International Nuclear Information System (INIS)

    Lewin, N.; Wong, E.T.

    1976-01-01

    The suggestion deals with the production of folic acid derivatives suitable as indicators or tracers for analyses of serum folates. These folic acid derivatives contain folic acid which is bound by one or both carboxyl groups to the amino nitrogen of compounds such as, e.g., tyramine, glycyl tyrosine, tyrosine, or the methyl ester of tyrosine. The derivative obtained can be substituted by a gamma emitter, e.g. the iodine isotope I 125. The radioactive derivative is used in the method for the competitive protein bonding to determine endogenic folates in the serum. (UWI) [de

  6. The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression

    Directory of Open Access Journals (Sweden)

    Desgagnés Julie

    2006-03-01

    Full Text Available Abstract Background Chlorogenic acid (CHL, the most potent functional inhibitor of the microsomal glucose-6-phosphate translocase (G6PT, is thought to possess cancer chemopreventive properties. It is not known, however, whether any G6PT functions are involved in tumorigenesis. We investigated the effects of CHL and the potential role of G6PT in regulating the invasive phenotype of brain tumor-derived glioma cells. Results RT-PCR was used to show that, among the adult and pediatric brain tumor-derived cells tested, U-87 glioma cells expressed the highest levels of G6PT mRNA. U-87 cells lacked the microsomal catalytic subunit glucose-6-phosphatase (G6Pase-α but expressed G6Pase-β which, when coupled to G6PT, allows G6P hydrolysis into glucose to occur in non-glyconeogenic tissues such as brain. CHL inhibited U-87 cell migration and matrix metalloproteinase (MMP-2 secretion, two prerequisites for tumor cell invasion. Moreover, CHL also inhibited cell migration induced by sphingosine-1-phosphate (S1P, a potent mitogen for glioblastoma multiform cells, as well as the rapid, S1P-induced extracellular signal-regulated protein kinase phosphorylation potentially mediated through intracellular calcium mobilization, suggesting that G6PT may also perform crucial functions in regulating intracellular signalling. Overexpression of the recombinant G6PT protein induced U-87 glioma cell migration that was, in turn, antagonized by CHL. MMP-2 secretion was also inhibited by the adenosine triphosphate (ATP-depleting agents 2-deoxyglucose and 5-thioglucose, a mechanism that may inhibit ATP-mediated calcium sequestration by G6PT. Conclusion We illustrate a new G6PT function in glioma cells that could regulate the intracellular signalling and invasive phenotype of brain tumor cells, and that can be targeted by the anticancer properties of CHL.

  7. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    Science.gov (United States)

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  9. Astrocytes mediated the nootropic and neurotrophic effects of Sarsasapogenin-AA13 via upregulating brain-derived neurotrophic factor.

    Science.gov (United States)

    Dong, Dong; Mao, Yu; Huang, Cui; Jiao, Qian; Pan, Hui; Ma, Lei; Wang, Rui

    2017-01-01

    Rhizoma Anemarrhena , a widely used traditional Chinese medicine, has previously been shown to have neuroprotective effect. Sarsasapogenin-AA13 (AA13) is a novel synthetic derivative of Sarsasapogenin, which is extracted from Rhizoma Anemarrhena . The aim of this study is to investigate the nootropic and neurotrophic effects of AA13 and underlying mechanisms. In vitro , cell viability of rat primary astrocytes treated with AA13 and neurons cultured with conditioned medium of AA13-treated rat primary astrocytes was tested by MTT assays. In vivo , a pharmacological model of cognitive impairment induced by scopolamine was employed and spatial memory of the mice was assessed by Morris water maze. This study found that AA13 increased cell viability of primary astrocytes and AA13-treated astrocyte-conditioned medium enhanced the survival rate of primary neurons. Interestingly, AA13 markedly enhanced the level of BDNF in astrocytes. Furthermore, AA13 (6 mg/kg) improved the cognitive deficits in animal models (p<0.05) and BDNF and PSD95 levels were increased in brain. Therefore, we hypothesize that AA13 exerts nootropic and neurotrophic activities through astrocytes mediated upregulation of BDNF secretion. The results suggest that AA13 could be a potential compound for cognitive impairment after further research.

  10. Brain uptake of pipecolic acid, amino acids, amines following intracarotid injection in the mouse

    International Nuclear Information System (INIS)

    Nishio, H.; Giacobini, E.

    1981-01-01

    The uptake of pipecolic acid by the mouse brain was compared to that of several amino acids and amines, following an injection of a double-labeled mixture into the carotid artery. In general, BUI (brain uptake index) values were lower in the mouse than those previously reported in the rat. The only exception was proline. Lysine, a precursor of pipecolic acid biosynthesis in brain, showed a higher BUI than pipecolic acid. The BUI of D,L-[3H]pipecolic acid was found to be 3.39 (at 0.114 mM). This was saturable between a concentration of 0.114 and 3.44 mM. Kinetic analysis suggests the presence of two kinds of transport systems. Substances structurally related to pipecolic acid, such as nipecotic acid, isonipecotic acid, L-proline, and piperidine show a significant inhibitory effect. Amont the amino acids tested, only GABA showed an inhibitory effect. Data are reported which, when considered with other findings present evidence that pipecolic acid is (1) synthesized both in vitro and in vivo in the mouse brain, (2) actively transported in vivo into the brain, and (3) taken up in vitro by synaptosomal preparations

  11. Blood-brain barrier permeability and brain uptake mechanism of kainic Acid and dihydrokainic Acid

    DEFF Research Database (Denmark)

    Gynther, Mikko; Petsalo, Aleksanteri; Hansen, Steen Honoré

    2015-01-01

    tools in various in vivo central nervous system disease models in rodents, as well as being templates in the design of novel ligands affecting the glutamatergic system. Both molecules are highly polar but yet capable of crossing the blood-brain barrier (BBB). We used an in situ rat brain perfusion...... technique to determine the brain uptake mechanism and permeability across the BBB. To determine KA and DHK concentrations in the rat brain, simple and rapid sample preparation and liquid chromatography mass spectrometer methods were developed. According to our results the BBB permeability of KA and DHK...... is low, 0.25 × 10(-6) and 0.28 × 10(-6) cm/s for KA and DHK, respectively. In addition, the brain uptake is mediated by passive diffusion, and not by active transport. Furthermore, the non-specific plasma and brain protein binding of KA and DHK was determined to be low, which means that the unbound drug...

  12. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise.

    Science.gov (United States)

    Borror, Andrew

    2017-09-01

    The mechanisms causing improved cognition following acute exercise are poorly understood. This article proposes that brain-derived neurotrophic factor (BDNF) is the main factor contributing to improved cognition following exercise. Additionally, it argues that cerebral blood flow (CBF) and oxidative stress explain the release of BDNF from cerebral endothelial cells. One way to test these hypotheses is to block endothelial function and measure the effect on BDNF levels and cognitive performance. The CBF and oxidative stress can also be examined in relationship to BDNF using a multiple linear regression. If these hypotheses are true, there would be a linear relationship between CBF+oxidative stress and BDNF levels as well as between BDNF levels and cognitive performance. The novelty of these hypotheses comes from the emphasis on the cerebral endothelium and the interplay between BDNF, CBF, and oxidative stress. If found to be valid, these hypotheses would draw attention to the cerebral endothelium and provide direction for future research regarding methods to optimize BDNF release and enhance cognition. Elucidating these mechanisms would provide direction for expediting recovery in clinical populations, such as stroke, and maintaining quality of life in the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Kunikazu Moribe

    2011-01-01

    Full Text Available Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs or carrier components. Ascorbyl n-alkyl fatty acid derivatives have been formulated as antioxidants or anticancer drugs for nanoparticle formulations such as micelles, microemulsions, and liposomes. ASC-P vesicles called aspasomes are submicron-sized particles that can encapsulate hydrophilic drugs. Several transdermal and injectable formulations of ascorbyl n-alkyl fatty acid derivatives were used, including ascorbyl palmitate.

  14. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    Science.gov (United States)

    Bourre, J M

    2004-01-01

    constituents at any stage of life, will tend to accelerate ageing. The enzymatic activities of sytivities of synthesis of long-chain polyunsaturated fatty acids from linoleic and alpha-linolenic acids are very limited in the brain: this organ therefore depends on an exogenous supply. Consequently, fatty acids that are essential for the brain are arachidonic acid and cervonic acid, derived from the diet, unless they are synthesized by the liver from linoleic acid and alpha-linolenic acid. The age-related reduction of hepatic desaturase activities (which participate in the synthesis of long chains, together with elongases) can impair turnover of cerebral membranes. In many structures, especially in the frontal cortex, a reduction of cervonic and arachidonic acids is observed during ageing, predominantly associated with a reduction of phosphatidylethanolamines (mainly in the form of plasmalogens). Peroxisomal oxidation of polyunsaturated fatty acids decreases in the brain during ageing, participating in decreased turnover of membrane fatty acids, which are also less effectively protected against peroxidation by free radicals.

  15. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  16. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  17. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  18. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  19. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor

    OpenAIRE

    Szuhany, Kristin L.; Bugatti, Matteo; Otto, Michael W.

    2014-01-01

    Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1,111 participants) examining the effect of exercise on BDNF levels in three e...

  20. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  1. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    Martin-Garcia, Julio; Cao, Wei; Varela-Rohena, Angel; Plassmeyer, Matthew L.; Gonzalez-Scarano, Francisco

    2006-01-01

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  2. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review.

    Science.gov (United States)

    Petrick, Jay S; Brower-Toland, Brent; Jackson, Aimee L; Kier, Larry D

    2013-07-01

    Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor.

    Science.gov (United States)

    Taliaz, Dekel; Loya, Assaf; Gersner, Roman; Haramati, Sharon; Chen, Alon; Zangen, Abraham

    2011-03-23

    Chronic stress is a trigger for several psychiatric disorders, including depression; however, critical individual differences in resilience to both the behavioral and the neurochemical effects of stress have been reported. A prominent mechanism by which the brain reacts to acute and chronic stress is activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is inhibited by the hippocampus via a polysynaptic circuit. Alterations in secretion of stress hormones and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were implicated in depression and the effects of antidepressant medications. However, the potential role of hippocampal BDNF in behavioral resilience to chronic stress and in the regulation of the HPA axis has not been evaluated. In the present study, Sprague Dawley rats were subjected to 4 weeks of chronic mild stress (CMS) to induce depressive-like behaviors after lentiviral vectors were used to induce localized BDNF overexpression or knockdown in the hippocampus. The behavioral outcome was measured during 3 weeks after the CMS procedure, then plasma samples were taken for measurements of corticosterone levels, and finally hippocampal tissue was taken for BDNF measurements. We found that hippocampal BDNF expression plays a critical role in resilience to chronic stress and that reduction of hippocampal BDNF expression in young, but not adult, rats induces prolonged elevations in corticosterone secretion. The present study describes a mechanism for individual differences in responses to chronic stress and implicates hippocampal BDNF in the development of neural circuits that control adequate stress adaptations.

  4. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    Science.gov (United States)

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  5. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  6. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration.

    Science.gov (United States)

    Schönfeld, Peter; Reiser, Georg

    2017-10-01

    The brain uses long-chain fatty acids (LCFAs) to a negligible extent as fuel for the mitochondrial energy generation, in contrast to other tissues that also demand high energy. Besides this generally accepted view, some studies using cultured neural cells or whole brain indicate a moderately active mitochondrial β-oxidation. Here, we corroborate the conclusion that brain mitochondria are unable to oxidize fatty acids. In contrast, the combustion of liver-derived ketone bodies by neural cells is long-known. Furthermore, new insights indicate the use of odd-numbered medium-chain fatty acids as valuable source for maintaining the level of intermediates of the citric acid cycle in brain mitochondria. Non-esterified LCFAs or their activated forms exert a large variety of harmful side-effects on mitochondria, such as enhancing the mitochondrial ROS generation in distinct steps of the β-oxidation and therefore potentially increasing oxidative stress. Hence, the question arises: Why do in brain energy metabolism mitochondria selectively spurn LCFAs as energy source? The most likely answer are the relatively higher content of peroxidation-sensitive polyunsaturated fatty acids and the low antioxidative defense in brain tissue. There are two remarkable peroxisomal defects, one relating to α-oxidation of phytanic acid and the other to uptake of very long-chain fatty acids (VLCFAs) which lead to pathologically high tissue levels of such fatty acids. Both, the accumulation of phytanic acid and that of VLCFAs give an enlightening insight into harmful activities of fatty acids on neural cells, which possibly explain why evolution has prevented brain mitochondria from the equipment with significant β-oxidation enzymatic capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  8. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  9. Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI.

    Science.gov (United States)

    da Silva, N A; Lohmann, P; Fairney, J; Magill, A W; Oros Peusquens, A-M; Choi, C-H; Stirnberg, R; Stoffels, G; Galldiks, N; Golay, X; Langen, K-J; Jon Shah, N

    2018-06-01

    PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET). Eight patients with gliomas were investigated simultaneously with 18 F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B 1 average power of 1μT. B 0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTR asym ) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. A tumour-to-brain ratio derived from APT# and 18 F-FET presented no significant differences, and no correlation was found between APT# and 18 F-FET PET data. The distance between local hot spot APT# and 18 F-FET were different (average 20 ± 13 mm, range 4-45 mm). For the first time, CEST images were compared with 18 F-FET in a simultaneous MR-PET measurement. Imaging findings derived from 18 F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.

  10. Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity

    DEFF Research Database (Denmark)

    Xapelli, S; Bernardino, L; Ferreira, R

    2008-01-01

    The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-...

  11. Cinnamic Acid Derivatives as Antidiabetics Agents

    Directory of Open Access Journals (Sweden)

    Teni Ernawati

    2017-04-01

    Full Text Available Diabetes mellitus is a metabolic disorder of carbohydrate metabolism. Treatment of type II diabetes is usually done by prescribing diet and exercise for the patient however it can also be treated with antidiabetic drugs. The purpose of this paper is to illustrate some cinnamic acid derivative compounds which are either isolated from natural materials or the results of the chemical synthesis. In addition, their biological activities as an agent of α-glucosidase inhibitors have also been evaluated. Chemically, cinnamic acid has three main functional groups:  first is the substitution on the phenyl group, second is the additive reaction into the α-β unsaturated, and third is the chemical reaction with carboxylic acid functional groups. Chemical aspects of cinnamic acid derivative compounds have received much attention in the research and development of drugs, especially modifications within three functional groups are very influential. In the last 10 years, a lot of research and development of cinnamic acid derivatives as inhibitors of the α-glucosidase enzyme has been done. One example of the research done in this field is the modification of para position in the structure of cinnamic acid and addition of alkyl groups in the carboxylic group which would increase the activity of the α-glucosidase enzyme therefore the level of inhibition is 100 times higher than that of cinnamic acid compound itself. The novelty of this review article is to focus on the antidiabetic activity of cinnamic acid derivatives.

  12. Brain mediators of the effects of noxious heat on pain.

    Science.gov (United States)

    Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D

    2014-08-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Presence of abscisic acid, a phytohormone, in the mammalian brain

    International Nuclear Information System (INIS)

    Le Page-Degivry, M.T.; Bidard, J.N.; Rouvier, E.; Bulard, C.; Lazdunski, M.

    1986-01-01

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention properties and the same gas chromatography/mass spectrometry characteristics. Moreover, like (+)-cis-abscisic acid itself, the brain factor inhibits stomatal apertures of abaxial epidermis strips of Setcreasea purpurea Boom (Commelinaceae). The presence of abscisic acid conjugates that are present in plants has also been identified in brain

  14. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    Science.gov (United States)

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  15. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  16. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression

    Directory of Open Access Journals (Sweden)

    Abdi Khosro

    2008-11-01

    Full Text Available Abstract Background Experimental studies indicate that gamma linolenic acid (GLA and docosahexaenoic acid (DHA may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA, DHA oil (DHAO; 73% DHA were fed to adult wistar rats (1 mL/rat/day starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid. Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7, epidermal growth factor receptor (EGFR, peroxisome proliferator activated receptor γ (PPAR-γ and retinoid × receptor-α (RXR-α were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.

  17. Lamotrigine blocks NMDA receptor-initiated arachidonic acid signalling in rat brain: Implications for its efficacy in bipolar disorder

    Science.gov (United States)

    Ramadan, Epolia; Basselin, Mireille; Rao, Jagadeesh S.; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.

    2011-01-01

    An upregulated brain arachidonic acid (AA) cascade and a hyperglutamatergic state characterize bipolar disorder (BD). Lamotrigine (LTG), a mood stabilizer approved for treating BD, is reported to interfere with glutamatergic neurotransmission involving N-methyl-D-aspartate receptors (NMDARs). NMDARs allow extracellular calcium into the cell, thereby stimulating calcium-dependent cytosolic phospholipase A2 (cPLA2) to release arachidonic acid (AA) from membrane phospholipid. We hypothesized that LTG, like other approved mood stabilizers, would reduce NMDAR-mediated AA signaling in rat brain. An acute subconvulsant dose of NMDA (25 mg/kg) or saline was administered intraperitoneally to unanesthetized rats that had been treated p.o. daily for 42 days with vehicle or a therapeutically relevant dose of LTG (10 mg/kg/.d). Regional brain AA incorporation coefficients k* and rates Jin, AA signals, were measured using quantitative autoradiography after intravenous [1-14C]AA infusion, as were other AA cascade markers. In chronic vehicle-treated rats, acute NMDA compared to saline increased k* and Jin in widespread regions of the brain, as well as prostaglandin (PG)E2 and thromboxane B2 concentrations. Chronic LTG treatment compared to vehicle reduced brain cyclooxygenase (COX) activity, PGE2 concentration, and DNA binding activity of the COX-2 transcription factor, NF-κB. Pretreatment with chronic LTG blocked the acute NMDA effects on AA cascade markers. In summary, chronic LTG like other mood stabilizers blocks NMDA-mediated signaling involving the AA metabolic cascade. Since markers of the AA cascade and of NMDAR signaling are up-regulated in the postmortem BD brain, mood stabilizers generally may be effective in BD by dampening NMDAR signalling and the AA cascade. PMID:21733229

  18. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.

    Science.gov (United States)

    Dyall, Simon C

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer's disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.

  19. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation

    Directory of Open Access Journals (Sweden)

    Yosuke eIsobe

    2012-08-01

    Full Text Available Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programs that enable inflamed tissues to return to homeostasis. The mechanisms by which acute inflammation is resolved are of interest, and research in recent years has uncovered new endogenous anti-inflammatory and pro-resolving lipid mediators (i.e. lipoxins, resolvins, protectin, and maresin generated from polyunsaturated fatty acids (PUFAs. This review presents new insights into the cellular and molecular mechanisms of inflammatory resolution, especially the roles of eosinophils, and a series of omega-3 PUFA derived anti-inflammatory lipid mediators that they generate.

  20. Comparative analysis of amino acids and amino-acid derivatives in protein crystallization

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    New types of aggregation suppressors, such as amino acids and their derivatives, were focused on as fourth-component additives. Data were obtained that indicated that the additives promote protein crystallization. Optimal conditions for protein crystallization are difficult to determine because proteins tend to aggregate in saturated solutions. This study comprehensively evaluates amino acids and amino-acid derivatives as additives for crystallization. This fourth component of the solution increases the probability of crystallization of hen egg-white lysozyme in various precipitants owing to a decrease in aggregation. These results suggest that the addition of certain types of amino acids and amino-acid derivatives, such as Arg, Lys and esterified and amidated amino acids, is a simple method of improving the success rate of protein crystallization

  1. [Acid-base equilibrium and the brain].

    Science.gov (United States)

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of

  2. Characterization of GABA/sub A/ receptor-mediated 36chloride uptake in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-01-01

    γ-Aminobutyric acid (GABA) receptor-mediated 36 chloride ( 36 Cl - ) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36 Cl - uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36 Cl - uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36 Cl - uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br - >Cl - ≥NO 3 - >I - ≥SCN - >>C 3 H 5 OO - ≥ClO 4 - >F - , consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl - channel. 43 references, 4 figures, 3 tables

  3. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo.

    Science.gov (United States)

    Zou, Zhiyuan; Sun, Zhaolin; Li, Pan; Feng, Tao; Wu, Sen

    2016-12-14

    Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26 lacZ , we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.

  4. Mechanisms regulating brain docosahexaenoic acid uptake: what is the recent evidence?

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Lacombe, R J Scott; Bazinet, Richard P

    2018-03-01

    To summarize recent advances pertaining to the mechanisms regulating brain docosahexaenoic acid (DHA) uptake. DHA is an omega-3 polyunsaturated fatty acid highly enriched in neuronal membranes and it is implicated in several important neurological processes. However, DHA synthesis is extremely limited within the brain. There are two main plasma pools that supply the brain with DHA: the nonesterified pool and the lysophosphatidylcholine (lysoPtdCho) pool. Quantitatively, plasma nonesterified-DHA (NE-DHA) is the main contributor to brain DHA. Fatty acid transport protein 1 (FATP1) in addition to fatty acid-binding protein 5 (FABP5) are key players that regulate brain uptake of NE-DHA. However, the plasma half-life of lysoPtdCho-DHA and its brain partition coefficient are higher than those of NE-DHA after intravenous administration. The mechanisms regulating brain DHA uptake are more complicated than once believed, but recent advances provide some clarity notably by suggesting that FATP1 and FABP5 are key contributors to cellular uptake of DHA at the blood-brain barrier. Elucidating how DHA enters the brain is important as we might be able to identify methods to better deliver DHA to the brain as a potential therapeutic.

  5. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    Science.gov (United States)

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  6. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    Science.gov (United States)

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  7. Expression of Shiga toxin 2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier.

    Science.gov (United States)

    Meisen, Iris; Rosenbrück, Regina; Galla, Hans-Joachim; Hüwel, Sabine; Kouzel, Ivan U; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-06-01

    Shiga toxin (Stx) 2e, released by certain Stx-producing Escherichia coli, is presently the best characterized virulence factor responsible for pig edema disease, which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Although Stx2e-mediated brain vascular injury is the key event in development of neurologic signs, the glycosphingolipid (GSL) receptors of Stx2e and toxin-mediated impairment of pig brain endothelial cells have not been investigated so far. Here, we report on the detailed structural characterization of Stx2e receptors globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), which make up the major neutral GSLs in primary porcine brain capillary endothelial cells (PBCECs). Various Gb3Cer and Gb4Cer lipoforms harboring sphingenine (d18:1) or sphinganine (d18:0) and mostly a long-chain fatty acid (C20-C24) were detected. A notable batch-to-batch heterogeneity of primary endothelial cells was observed regarding the extent of ceramide hydroxylation of Gb3Cer or Gb4Cer species. Gb3Cer, Gb4Cer and sphingomyelin preferentially distribute to detergent-resistant membrane fractions and can be considered lipid raft markers in PBCECs. Moreover, we employed an in vitro model of the blood-brain barrier (BBB), which exhibited strong cytotoxic effects of Stx2e on the endothelial monolayer and a rapid collapse of the BBB. These data strongly suggest the involvement of Stx2e in cerebral vascular damage with resultant neurological disturbance characteristic of edema disease.

  8. Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Uutela, Päivi; Ketola, Raimo A; Piepponen, Petteri; Kostiainen, Risto

    2009-02-09

    The efficiencies of three derivatisation reagents that react with either the amine (9-fluorenylmethyl chloroformate (FMOC)) or the carboxylic acid group (butanol) of amino acid or with both types of functional groups (propyl chloroformate) were compared in the analysis of amino acids by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Separation of 20 amino acids derivatised with these three reagents was studied on reversed-phase chromatography. Linearity, repeatability and limits of detection of the LC-ESI-MS/MS method were determined by analysing FMOC-, butanol- and propyl chloroformate-derivatised lysine, beta-aminobutyric acid, threonine and glutamic acid. The limits of detection for the derivatised amino acids (7.5-75fmol) were as much as 2-60 times lower than those of the corresponding underivatised molecules. The best linearity was observed for amino acids derivatised with propyl chloroformate or butanol (r(2)=0.996-0.999, range=100-8500nmolL(-1)). Propyl chloroformate was the best suited of the reagents tested for the analysis of amino acids with LC-MS/MS and was used for the analysis of amino acids in rat brain microdialysis samples.

  9. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Brain-derived neurotrophic factor enhances conditioned taste aversion retention.

    Science.gov (United States)

    Castillo, Diana V; Figueroa-Guzmán, Yazmín; Escobar, Martha L

    2006-01-05

    Brain-derived neurotrophic factor (BDNF) has recently emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the IC, previous to CTA training, enhances the retention of this task. Recently, we found that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of adult rats in vivo. In this work, we present experimental data showing that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. These findings support the concept that BDNF may contribute to memory-related functions performed by a neocortical area, playing a critical role in long-term synaptic plasticity.

  11. Circulating Estradiol Regulates Brain-Derived Estradiol via Actions at GnRH Receptors to Impact Memory in Ovariectomized Rats.

    Science.gov (United States)

    Nelson, Britta S; Black, Katelyn L; Daniel, Jill M

    2016-01-01

    Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.

  12. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    Science.gov (United States)

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  13. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    Science.gov (United States)

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  14. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  15. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Bisht Surendra S

    2006-12-01

    Full Text Available Abstract Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  16. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Directory of Open Access Journals (Sweden)

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  17. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    Science.gov (United States)

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered.

  18. Hemopressins and other hemoglobin-derived peptides in mouse brain: Comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2010-01-01

    Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081

  19. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A.

    1990-01-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. [3H] gamma-aminobutyric acid, [14C] butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of [3H] gamma-aminobutyric acid and [113mIn] transferrin were calculated using [14C] butanol as the highly extracted reference compound. The [113mIn] transferrin data were also used to correct the brain uptake index of [3H] gamma-aminobutyric acid for intravascular retention of [3H] gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid [3H] gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy

  20. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model

    International Nuclear Information System (INIS)

    Wang, H.-E.; Wu, S.-Y.; Chang, C.-W.; Liu, R.-S.; Hwang, L.-C.; Lee, T.-W.; Chen, J.-C.; Hwang, J.-J.

    2005-01-01

    2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) has been extensively used as positron emission tomography (PET) tracer in clinical tumor imaging. This study compared the pharmacokinetics of two 18 F-labeled amino acid derivatives, O-2-[ 18 F]fluoroethyl-L-tyrosine (L-[ 18 F]FET) and 4-borono-2-[ 18 F]fluoro-L-phenylalanine-fructose (L-[ 18 F]FBPA-Fr), to that of [ 18 F]FDG in an animal brain tumor model. Methods: A self-modified automated PET tracer synthesizer was used to produce no-carrier-added (nca) L-[ 18 F]FET. The cellular uptake, biodistribution, autoradiography and microPET imaging of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG were performed with F98 glioma cell culture and F98 glioma-bearing Fischer344 rats. Results: The radiochemical purity of L-[ 18 F]FET was >98% and the radiochemical yield was 50% in average of 16 runs. The uptake of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr in the F98 glioma cells increased rapidly for the first 5 min and reached a steady-state level after 10 min of incubation, whereas the cellular uptake of [ 18 F]FDG kept increasing during the study period. The biodistribution of L-[ 18 F]FET, L-[ 18 F]FBPA-Fr and [ 18 F]FDG in the brain tumors was 1.26±0.22, 0.86±0.08 and 2.77±0.44 %ID/g at 60 min postinjection, respectively, while the tumor-to-normal brain ratios of L-[ 18 F]FET (3.15) and L-[ 18 F]FBPA-Fr (3.44) were higher than that of [ 18 F]FDG (1.44). Both microPET images and autoradiograms of L-[ 18 F]FET and L-[ 18 F]FBPA-Fr exhibited remarkable uptake with high contrast in the brain tumor, whereas [ 18 F]FDG showed high uptake in the normal brain and gave blurred brain tumor images. Conclusion: Both L-[ 18 F]FET and L-[ 18 F]FBPA-Fr are superior to [ 18 F]FDG for the brain tumor imaging as shown in this study with microPET

  1. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2015-10-01

    Full Text Available Arachidonic (AA and docosahexaenoic acid (DHA brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7, a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.

  2. "Facilitated" amino acid transport is upregulated in brain tumors.

    Science.gov (United States)

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  3. Complexes of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Tel' zhenskaya, P N; Shvarts, E M [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1977-01-01

    A generalization and systematization have been made of literature data on complexing of various elements, including beryllium, cadmium, boron, indium, rare-earth elements, actinides, and transition elements with salicylic acid and it derivatives (amino-, nitro- and halosalicylic acids). The effect of the position and nature of the substitute, in the case of salicylic acid derivatives, on the complexing process is discussed. Certain physicochemical properties of the complexes under consideration are described along with data indicative of their stability.

  4. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    Science.gov (United States)

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    Science.gov (United States)

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Pivotal Role of Brain-Derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats.

    Science.gov (United States)

    Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon

    2017-01-24

    Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.

  7. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    International Nuclear Information System (INIS)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V.; Gourand, F.; Dhilly, M.; Barre, L.; Bohn, P.; Costentin, J.; Abbas, A.

    2009-01-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [ 11 C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [ 11 C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [ 11 C]1a into the corresponding quinolinium salt [ 11 C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  8. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    Energy Technology Data Exchange (ETDEWEB)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V. [Laboratoire de Chimie Organique Fine et Heterocyclique, UMR 6014, IRCOF, CNRS, Universite et INSA de Rouen, B.P. 08 F-76131, Mont- Saint-Aignan Cedex (France); Gourand, F.; Dhilly, M.; Barre, L. [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, CEA/DSV/I2BM/CI-NAPS UMR6232, Universite de Caen Basse Normandie, Caen (France); Bohn, P.; Costentin, J. [Laboratoire de Neuropharmacologie Experimentale associe au CNRS, FRE-2735, Faculte de Medecine et de pharmacie, Universite de Rouen, F-76000 (France); Abbas, A. [Inserm-EPHE-Universite de Caen Basse-Normandie, Unite U923, GIP Cyceron, CHU Cote de Nacre, Caen (France)

    2009-07-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [{sup 11}C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [{sup 11}C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [{sup 11}C]1a into the corresponding quinolinium salt [{sup 11}C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  9. Prediction of passive blood-brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors.

    Science.gov (United States)

    Vilar, Santiago; Chakrabarti, Mayukh; Costanzi, Stefano

    2010-06-01

    The distribution of compounds between blood and brain is a very important consideration for new candidate drug molecules. In this paper, we describe the derivation of two linear discriminant analysis (LDA) models for the prediction of passive blood-brain partitioning, expressed in terms of logBB values. The models are based on computationally derived physicochemical descriptors, namely the octanol/water partition coefficient (logP), the topological polar surface area (TPSA) and the total number of acidic and basic atoms, and were obtained using a homogeneous training set of 307 compounds, for all of which the published experimental logBB data had been determined in vivo. In particular, since molecules with logBB>0.3 cross the blood-brain barrier (BBB) readily while molecules with logBB<-1 are poorly distributed to the brain, on the basis of these thresholds we derived two distinct models, both of which show a percentage of good classification of about 80%. Notably, the predictive power of our models was confirmed by the analysis of a large external dataset of compounds with reported activity on the central nervous system (CNS) or lack thereof. The calculation of straightforward physicochemical descriptors is the only requirement for the prediction of the logBB of novel compounds through our models, which can be conveniently applied in conjunction with drug design and virtual screenings. Published by Elsevier Inc.

  10. Brain sites mediating corticosteroid feedback inhibition of stimulated ACTH secretion

    International Nuclear Information System (INIS)

    Jacobson, L.

    1989-01-01

    There is substantial evidence that the brain mediates stress-induced and circadian increases in ACTH secretion and that corticosteroid concentrations which normalize basal plasma ACTH are insufficient to normalize ACTH responses to circadian or stressful stimuli in adrenalectomized rats. To identify brain sites mediating corticosteroid inhibition of stimulated ACTH secretion, two approaches were used. The first compared brain [ 14 C]-2-deoxyglucose uptake in rats with differential ACTH responses to stress. Relative to sham-adrenalectomized (SHAM) rats, adrenalectomized rats replaced with low, constant corticosterone levels via a subcutaneous corticosterone pellet (B-PELLET) exhibited elevated and prolonged ACTH responses to a variety of stimuli. Adrenalectomized rate given a circadian corticosterone rhythm via corticosterone in their drinking water exhibited elevated ACTH levels immediately after stress, but unlike B-PELLET rats, terminated stress induced ACTH secretion normally relative to SHAMS. Therefore, the abnormal ACTH responses to stress in B-PELLET rats were due to the lack of both circadian variations and stress-induced increases in corticosterone. Hypoxia was selected as a standardized stimulus for correlating brain [ 14 C]-2-deoxyglucose uptake with ACTH secretion. In intact rats, increases in plasma ACTH and decreases in arterial PO 2 correlated with the severity of hypoxia at arterial PCO 2 below 60 mm Hg. Hypoxia PELLET vs. SHAM rats. However, in preliminary experiments, although hypoxia increased brain 2-deoxyglucose uptake in most brain regions, plasma ACTH correlated poorly with 2-deoxyglucose uptake at 12% and 10% O 2

  11. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels.

    Science.gov (United States)

    Chen, Chuck T; Bazinet, Richard P

    2015-01-01

    The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  13. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  14. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  15. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  16. (-)1-(Benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain.

    Science.gov (United States)

    Knoll, J; Yoneda, F; Knoll, B; Ohde, H; Miklya, I

    1999-12-01

    1. The brain constituents beta-phenylethylamine (PEA) and tryptamine enhance the impulse propagation mediated transmitter release (exocytosis) from the catecholaminergic and serotoninergic neurons in the brain ('catecholaminergic/serotoninergic activity enhancer, CAE/SAE, effect'). (-)Deprenyl (Selegiline) and (-)1-phenyl-2-propylaminopentane [(-)PPAP] are amphetamine derived CAE substances devoid of the catecholamine releasing property. 2. By changing the aromatic ring in PPAP we developed highly potent and selective CAE/SAE substances, structurally unrelated to the amphetamines. Out of 65 newly synthetized compounds, a tryptamine derived structure, (-)1-(benzofuran-2-yl)-2-propylaminopentane [(-)BPAP] was selected as a potential follower of (-)deprenyl in the clinic and as a reference compound for further analysis of the CAE/SAE mechanism in the mammalian brain. 3. (-)BPAP significantly enhanced in 0.18 micromol 1(-1) concentration the impulse propagation mediated release of [(3)H]-noradrenaline and [(3)H]-dopamine and in 36 nmol 1(-1) concentration the release of [(3)H]-serotonin from the isolated brain stem of rats. The amount of catecholamines and serotonin released from isolated discrete rat brain regions (dopamine from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from the locus coeruleus and serotonin from the raphe) enhanced significantly in the presence of 10(-12) - 10(-14) M (-)BPAP. BPAP protected cultured hippocampal neurons from the neurotoxic effect of beta-amyloid in 10(-14) M concentration. In rats (-)BPAP significantly enhanced the activity of the catecholaminergic and serotoninergic neurons in the brain 30 min after acute injection of 0.1 microg kg(-1) s.c. In the shuttle box, (-)BPAP in rats was about 130 times more potent than (-)deprenyl in antagonizing tetrabenazine induced inhibition of performance.

  17. Valine entry into rat brain after diet-induced changes in plasma amino acids

    International Nuclear Information System (INIS)

    Tews, J.K.; Greenwood, J.; Pratt, O.E.; Harper, A.E.

    1987-01-01

    Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with [ 14 C]valine for 5 min before plasma and brain samples were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of [ 14 C]valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain

  18. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  19. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study.

    Science.gov (United States)

    Merad, M; Soufi, W; Ghalem, S; Boukli, F; Baig, M H; Ahmad, K; Kamal, Mohammad A

    2014-04-01

    Alzheimer's disease is a progressive degenerative disease of the brain marked by gradual and irreversible declines in cognitive functions. Acetylcholinesterase (AChE) plays a biological role in the termination of nerve impulse transmissions at cholinergic synapses by rapid hydrolysis of its substrate, "acetylcholine". The deficit level of acetylcholine leads to deprived nerve impulse transmission. Thus the cholinesterase inhibitors would reverse the deficit in acetylcholine level and consequently may reverse the memory impairments, which is characteristic of the Alzheimer's disease. The molecular interactions between AChE and Carnosic acid, a well known antioxidant substance found in the leaves of the rosemary plant has always been an area of interest. Here in this study we have performed in silico approach to identify carnosic acid derivatives having the potential of being a possible drug candidate against AChE. The best candidates were selected on the basis of the results of different scoring functions.

  20. Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: The role of amino acids

    International Nuclear Information System (INIS)

    Aschner, M.; Clarkson, T.W.

    1989-01-01

    Previous studies in the rat in vivo have demonstrated that co-injection of methyl mercury (MeHg) with L-cysteine into the common carotid artery enhances brain Hg levels folowing a single capillary pass through the CNS vasculature. In order to elucidate the relationship between MeHg transport and the neutral amino acid transport carrier system, regulatory aspects of MeHg transport across the bovine blood-brain barrier were investigated in isolated brain microvessel preparations. Following 1 hour co-incubations of 203 Hg-MeHgCl with 0.1 mM L-cysteine at 37 deg. C, 203 Hg uptake by suspended microvessels was significantly increased (P 203 Hg was abolished by co-incubations of microvessels with 0.1 mM L-cysteine-L-methionine, or 0.1 mM L-cysteine plus AT-125 (alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazolacetic acid), an irreversible inhibitor of gamma-glutamyl-transpeptidase. One hr co-incubations of bovine capilaries with 203 Hg-MeHgCl and 0.1 mM D-cysteine at 37 deg. C or 0.1 mM L-cysteine at 0 deg. did not increase rat of 203 Hg uptake compared with controls. These results indicate that L-cysteine enhances the rate of capillary MeHg uptake. The accumulation of 203 Hg in the bovine microvessels appears to be a carrier-mediated process. It is inhibited by L-methionin, a competitive substrate for neutral amino acid transport, and by AT-125. Capillary uptake of 203 Hg is stereospecific to the L-enantiomorph of cystine, suggesting selective uptake of MeHg across the blood-brain barrier. The data emphasize the relationship between the L-enantiomorph neutral amino acid carrier system and MeHg transport across the capillaries. (author)

  1. Synthesis of ellagic acid and its 4,4'-di-Ο-alky derivatives from gallic acid

    OpenAIRE

    Alam, Ashraful; 高口, 豊; 坪井, 貞夫

    2005-01-01

    Synthesis of ellagic acid and its 4,4'-di-Ο-alkyl derivatives from gallic acid is described. Ellagic acid is prepared by oxidative coupling of gallic acid with ο-chloranil. Functionalized methyl bormogallate underwent Ullmann coupling to give the biphenyl that upon lactonization resulted in the ellagic acid and its alkoxy derivatives.

  2. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor.

    Science.gov (United States)

    Hung, Pi-Lien; Huang, Chao-Ching; Huang, Hsiu-Mei; Tu, Dom-Gene; Chang, Ying-Chao

    2013-08-01

    Low level of thyroid hormone is a strong independent risk factor for white matter (WM) injury, a major cause of cerebral palsy, in preterm infants. Thyroxin upregulates brain-derived neurotrophic factor during development. We hypothesized that thyroxin protected against preoligodendrocyte apoptosis and WM injury in the immature brain via upregulation of brain-derived neurotrophic factor. Postpartum (P) day-7 male rat pups were exposed to hypoxic ischemia (HI) and intraperitoneally injected with thyroxin (T4; 0.2 mg/kg or 1 mg/kg) or normal saline immediately after HI at P9 and P11. WM damage was analyzed for myelin formation, axonal injury, astrogliosis, and preoligodendrocyte apoptosis. Neurotrophic factor expression was assessed by real-time polymerase chain reaction and immunohistochemistry. Neuromotor functions were measured using open-field locomotion (P11 and P21), inclined plane climbing (P11), and beam walking (P21). Intracerebroventricular injection of TrkB-Fc or systemic administration of 7,8-dihydroxyflavone was performed. On P11, the HI group had significantly lower blood T4 levels than the controls. The HI group showed ventriculomegaly and marked reduction of myelin basic protein immunoreactivities in the WM. T4 (1 mg/kg) treatment after HI markedly attenuated axonal injury, astrocytosis, and microgliosis, and increased preoligodendrocyte survival. In addition, T4 treatment significantly increased myelination and selectively upregulated brain-derived neurotrophic factor expression in the WM, and improved neuromotor deficits after HI. The protective effect of T4 on WM myelination and neuromotor performance after HI was significantly attenuated by TrkB-Fc. Systemic 7,8-dihydroxyflavone treatment ameliorated hypomyelination after HI injury. T4 protects against WM injury at both pathological and functional levels via upregulation of brain-derived neurotrophic factor-TrkB signaling in the immature brain.

  3. Turkey-hen amino acid composition of brain and eyes

    International Nuclear Information System (INIS)

    Adeyeye, E.I.

    2015-01-01

    The amino acids composition of the brain and eyes of the mature Turkey-hen (Meleagris gallopavo L.), were determined on dry weight basis. Total essential amino acids ranged from 35.1-36.0 g/100 g as 49.5-49.8% of the total amino acids. The amino acid score showed that lysine ranged from 0.76-0.91 (on whole hen.s egg comparison), 0.85-1.03 (on provisional essential amino acid scoring pattern), and 0.81-0.98 (on suggested requirement of the essential amino acid of a preschool child). The predicted protein efficiency ratio was 1.94-2.41, whilst essential amino acid index range was 1.06-1.08 and the calculated isoelectric point range was 3.97-4.18. The correlation coefficient (rxy) was positively high and significant at r = 0.01 for the total amino acids, amino acid scores (on the whole hen.s egg comparisons made) and the isoelectric point. On the whole, the eyes were better in 12/18 or 66.7% parameters of the amino acids than the brain of Turkey-Hen. (author)

  4. N-3 fatty acids, neuronal activity and energy metabolism in the brain

    Directory of Open Access Journals (Sweden)

    Harbeby Emilie

    2012-07-01

    Full Text Available The content of docosahexaenoic acid (DHA in brain membranes is of crucial importance for the optimum development of brain functions. A lack of DHA accretion in the brain is accompanied by deficits in learning behavior linked to impairments in neurotransmission processes, which might result from alteration of brain fuel supply and hence energy metabolism. Experimental data we published support the hypothesis that n-3 fatty acids may modulate brain glucose utilization and metabolism. Indeed rats made deficient in DHA by severe depletion of total n-3 fatty acid intake have 1 a lower brain glucose utilization, 2 a decrease of the glucose transporter protein content GLUT1 both in endothelial cells and in astrocytes, 3 a repression of GLUT1 gene expression in basal state as well as upon neuronal activation. This could be due to the specific action of DHA on the regulation of GLUT1 expression since rat brain endothelial cells cultured with physiological doses of DHA had an increased GLUT1 protein content and glucose transport when compared to non-supplemented cells. These experimental data highlight the impact of n-3 fatty acids on the use of brain glucose, thereby constituting a key factor in the control of synaptic activity. This emerging role suggests that dietary intake of n-3 fatty acids can help to reduce the cognitive deficits in the elderly and possibly symptomatic cerebral metabolic alterations in Alzheimer disease by promoting brain glucose metabolism.

  5. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  6. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  7. Presence of abscisic acid, a phytohormone, in the mammalian brain.

    OpenAIRE

    Le Page-Degivry, M T; Bidard, J N; Rouvier, E; Bulard, C; Lazdunski, M

    1986-01-01

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention pr...

  8. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    Wong, K.L.; Tyce, G.M.

    1983-01-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U- 14 C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  9. Serotonin: A mediator of the gut-brain axis in multiple sclerosis.

    Science.gov (United States)

    Malinova, Tsveta S; Dijkstra, Christine D; de Vries, Helga E

    2017-11-01

    The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a microbial-modulated neurotransmitter (NT) as a showcase to demonstrate that NTs regulated by the gut microbiome are potent candidates for mediators of the gut-brain axis in demyelinating disorders. Methods, Results, and Conclusion: Our comprehensive overview of literature provides evidence that 5-HT levels in the gut are controlled by the microbiome, both via secretion and through regulation of metabolites. In addition, we demonstrate that the gut microbiome can influence the formation of the serotonergic system (SS) in the brain. We also show that SS alterations have been related to MS directly-altered expression of 5-HT transporters in central nervous system (CNS) and indirectly-beneficial effects of 5-HT modulating drugs on the course of the disease and higher prevalence of depression in patients with MS. Finally, we discuss briefly the role of other microbiome-modulated NTs such as γ-aminobutyric acid and dopamine in MS to highlight a new direction for future research aiming to relate microbiome-regulated NTs to demyelinating disorders.

  10. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. J. W. H.; Buitelaar, J. K.; Kenis, G.; Prickaerts, J.; Elzinga, B. M.; Voshaar, R. C. Oude

    Background: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels

  12. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    Science.gov (United States)

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. In SilicoModel-driven Assessment of the Effects of Brain-derived Neurotrophic Factor Deficiency on Glutamate and Gamma-Aminobutyric Acid: Implications for Understanding Schizophrenia Pathophysiology.

    Science.gov (United States)

    Agrawal, Rimjhim; Kalmady, Sunil Vasu; Venkatasubramanian, Ganesan

    2017-05-31

    Deficient brain-derived neurotrophic factor (BDNF) is one of the important mechanisms underlying the neuroplasticity abnormalities in schizophrenia. Aberration in BDNF signaling pathways directly or circuitously influences neurotransmitters like glutamate and gamma-aminobutyric acid (GABA). For the first time, this study attempts to construct and simulate the BDNF-neurotransmitter network in order to assess the effects of BDNF deficiency on glutamate and GABA. Using CellDesigner, we modeled BDNF interactions with calcium influx via N-methyl-D-aspartate receptor (NMDAR)- Calmodulin activation; synthesis of GABA via cell cycle regulators protein kinase B, glycogen synthase kinase and β-catenin; transportation of glutamate and GABA. Steady state stability, perturbation time-course simulation and sensitivity analysis were performed in COPASI after assigning the kinetic functions, optimizing the unknown parameters using random search and genetic algorithm. Study observations suggest that increased glutamate in hippocampus, similar to that seen in schizophrenia, could potentially be contributed by indirect pathway originated from BDNF. Deficient BDNF could suppress Glutamate decarboxylase 67-mediated GABA synthesis. Further, deficient BDNF corresponded to impaired transport via vesicular glutamate transporter, thereby further increasing the intracellular glutamate in GABAergic and glutamatergic cells. BDNF also altered calcium dependent neuroplasticity via NMDAR modulation. Sensitivity analysis showed that Calmodulin, cAMP response element-binding protein (CREB) and CREB regulated transcription coactivator-1 played significant role in this network. The study presents in silico quantitative model of biochemical network constituting the key signaling molecules implicated in schizophrenia pathogenesis. It provides mechanistic insights into putative contribution of deficient BNDF towards alterations in neurotransmitters and neuroplasticity that are consistent with current

  14. Major involvement of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells.

    Science.gov (United States)

    Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya

    2015-07-01

    The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015

  15. Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion.

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Chen, Chuck T; Metherel, Adam H; Lacombe, R J Scott; Thies, Frank; Masoodi, Mojgan; Bazinet, Richard P

    2017-10-01

    Recent studies suggest that at least two pools of plasma docosahexaenoic acid (DHA) can supply the brain: non-esterified DHA (NE-DHA) and lysophosphatidylcholine (lysoPtdCho)-DHA. In contrast to NE-DHA, brain uptake of lysoPtdCho-DHA appears to be mediated by a specific transporter, but whether both forms of DHA supply undergo the same metabolic fate, particularly with regards to enrichment of specific phospholipid (PL) subclasses, remains to be determined. This study aimed to evaluate brain uptake of NE-DHA and lysoPtdCho-DHA into brain PL classes. Fifteen-week-old rats were infused intravenously with radiolabelled NE- 14 C-DHA or lysoPtdCho- 14 C-DHA (n=4/group) over five mins to achieve a steady-state plasma level. PLs were extracted from the brain and separated by thin layer chromatography and radioactivity was quantified by liquid scintillation counting. The net rate of entry of lysoPtdCho-DHA into the brain was between 59% and 86% lower than the net rate of entry of NE-DHA, depending on the PL class. The proportion of total PL radioactivity in the lysoPtdCho- 14 C-DHA group compared to the NE- 14 C-DHA group was significantly higher in choline glycerophospholipids (ChoGpl) (48% vs 28%, respectively) but lower in ethanolamine glycerophospholipids (EtnGpl) (32% vs 46%, respectively). In both groups, radioactivity was disproportionally high in phosphatidylinositol and ChoGpl but low in phosphatidylserine and EtnGpl compared to the corresponding DHA pool size. This suggests that DHA undergoes extensive PL remodeling after entry into the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Administration of Tauroursodeoxycholic Acid Attenuates Early Brain Injury via Akt Pathway Activation

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    2017-07-01

    Full Text Available Traumatic brain injury (TBI is one of the leading causes of trauma-induced mortality and disability, and emerging studies have shown that endoplasmic reticulum (ER stress plays an important role in the pathophysiology of TBI. Tauroursodeoxycholic acid (TUDCA, a hydrophilic bile acid, has been reported to act as an ER stress inhibitor and chemical chaperone and to have the potential to attenuate apoptosis and inflammation. To study the effects of TUDCA on brain injury, we subjected mice to TBI with a controlled cortical impact (CCI device. Using western blotting, we first examined TBI-induced changes in the expression levels of GRP78, an ER stress marker, p-PERK, PERK, p-eIF2a, eIF2a, ATF4, p-Akt, Akt, Pten, Bax, Bcl-2, Caspase-12 and CHOP, as well as changes in the mRNA levels of Akt, GRP78, Caspase-12 and CHOP using RT-PCR. Neuronal cell death was assessed by a terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end-labeling (TUNEL assay, and CHOP expression in neuronal cells was detected by double-immunofluorescence staining. Neurological and motor deficits were assessed by modified neurological severity scores (mNSS and beam balance and beam walking tests, and brain water content was also assessed. Our results indicated that ER stress peaked at 72 h after TBI and that TUDCA abolished ER stress and inhibited p-PERK, p-eIF2a, ATF4, Pten, Caspase-12 and CHOP expression levels. Moreover, our results show that TUDCA also improved neurological function and alleviated brain oedema. Additionally, TUDCA increased p-Akt expression and the Bcl-2/Bax ratio. However, the administration of the Akt inhibitor MK2206 or siRNA targeting of Akt abolished the beneficial effects of TUDCA. Taken together, our results indicate that TUDCA may attenuate early brain injury via Akt pathway activation.

  17. Early postnatal docosahexaenoic acid levels and improved preterm brain development

    OpenAIRE

    Tam, Emily W.Y.; Chau, Vann; Barkovich, A. James; Ferriero, Donna M.; Miller, Steven P.; Rogers, Elizabeth E.; Grunau, Ruth E.; Synnes, Anne R.; Xu, Duan; Foong, Justin; Brant, Rollin; Innis, Sheila M.

    2016-01-01

    Background Preterm birth has a dramatic impact on polyunsaturated fatty acid exposures for the developing brain. This study examined the association between postnatal fatty acid levels and measures of brain injury and development, as well as outcomes. Methods A cohort of 60 preterm newborns (24?32 weeks GA) was assessed using early and near-term MRI studies. Red blood cell fatty acid composition was analyzed coordinated with each scan. Outcome at a mean of 33 months corrected age was assessed...

  18. New isatin derivative inhibits neurodegeneration by restoring insulin signaling in brain.

    Science.gov (United States)

    Aftab, Meha Fatima; Afridi, Shabbir Khan; Mughal, Uzma Rasool; Karim, Aneela; Haleem, Darakhshan Jabeen; Kabir, Nurul; Khan, Khalid M; Hafizur, Rahman M; Waraich, Rizwana S

    2017-04-01

    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    Science.gov (United States)

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  20. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    Science.gov (United States)

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  1. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three...

  2. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis

    Science.gov (United States)

    Plakortide F acid (PFA) is a marine-derived polyketide endoperoxide exhibiting strong inhibitory activity against several clinically important fungal pathogens. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Sacch...

  3. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    Science.gov (United States)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  4. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Navas

    2016-08-01

    Full Text Available Objective: In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Methods: Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Results: Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Conclusions: Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD. Keywords: Obesity, N43, Palmitic acid, Linoleic acid, Central nervous system, Western diet, ω6-fatty acids

  5. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tingting Lin

    2016-07-01

    Full Text Available Brain delivery of macromolecular therapeutics (e.g., proteins remains an unsolved problem because of the formidable blood–brain barrier (BBB. Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion, a low molecular weight protamine (LMWP cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  6. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Institute of Scientific and Technical Information of China (English)

    Tingting Lin; Ergang Liu; Huining He; Meong Cheol Shin; Cheol Moon; Victor C.Yang; Yongzhuo Huang

    2016-01-01

    Brain delivery of macromolecular therapeutics(e.g., proteins) remains an unsolved problem because of the formidable blood–brain barrier(BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs,new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways(e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine(LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides(CPP)have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration.The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  7. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Betulinic acid acetate (BAAC) was most effective than other betulinic acid derivatives. It had most ... blastoma (Schmidt et al., 1997), malignant brain tumor .... 96 well plate and incubated in 37oC, 5% CO2 and 90% humidity.

  8. Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia.

    Science.gov (United States)

    Dalwadi, Dhwanil A; Kim, Seongcheol; Schetz, John A

    2017-05-01

    Glial cells play a critical role in neuronal support which includes the production and release of the neurotrophin brain-derived neurotrophic factor (BDNF). Activation of the sigma-1 receptor (S1R) has been shown to attenuate inflammatory stress-mediated brain injuries, and there is emerging evidence that this may involve a BDNF-dependent mechanism. In this report we studied S1R-mediated BDNF release from human astrocytic glial cells. Astrocytes express the S1R, which mediates BDNF release when stimulated with the prototypical S1R agonists 4-PPBP and (+)-SKF10047. This effect could be antagonized by a selective concentration of the S1R antagonist BD1063. Haloperidol is known to have high affinity interactions with the S1R, yet it was unable to facilitate BDNF release. Remarkably, however, two metabolites of haloperidol, haloperidol I and haloperidol II (reduced haloperidol), were discovered to facilitate BDNF secretion and this effect was antagonized by BD1063. Neither 4-PPBP, nor either of the haloperidol metabolites affected the level of BDNF mRNA as assessed by qPCR. These results demonstrate for the first time that haloperidol metabolites I and II facilitate the secretion of BDNF from astrocytes by acting as functionally selective S1R agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biogenic amines, amino acids and regional blood flow in rat brain after prenatal irradiation

    International Nuclear Information System (INIS)

    Deroo, J.; Gerber, G.B.; Maes, J.

    1986-01-01

    Damage to nerve cells after prenatal irradiation could affect their later ability to function normally. The concentration of several biogenic amines and amino acids was therefore determined at different times after prenatal irradiation with 0.95 Gy on day 10, 12 or 15 of pregnancy. The offspring was sacrified 0.5, 1, 3 and 6 months after birth and the following structures were dissected: Cortex, hippocampus, striatum, thalamus, hypothalamus, cerebellum and medulla. Biogenic amines isolated by HPLC and detected electrochemically were: Dopamine, DOPA, DOPAC, epinephrine, norepinephrine, serotonin and hydroxyindolacetate. Amino acids converted to their dansyl derivatives and separated by HPLC were: Aspartate, glutamate, glutamine, gamma aminobutyrate and taurine. Many neurotransmitters were found increased in brain after prenatal irradiation, particularly on day 12 and 15 p.c. Marked changes were found for serotonin in several brain structures and for dopamin in striatum. An increase was also found in glutamate, glutamine and GABA. Studies on regional blood flow using injection of labelled 15 μ microspheres did not reveal significant alterations after prenatal irradiation. (orig.)

  10. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  11. Ergosteryl 2-naphthoate, An Ergosterol Derivative, Exhibits Antidepressant Effects Mediated by the Modification of GABAergic and Glutamatergic Systems

    Directory of Open Access Journals (Sweden)

    Mingzhu Lin

    2017-03-01

    Full Text Available Phytosterols are a kind of natural component including sitosterol, campesterol, avenasterol, ergosterol (Er and others. Their main natural sources are vegetable oils and their processed products, followed by grains, by-products of cereals and nuts, and small amounts of fruits, vegetables and mushrooms. In this study, three new Er monoester derivatives were obtained from the reflux reaction with Er: organic acids (furoic acid, salicylic acid and 2-naphthoic acid, 1-Ethylethyl-3-(3-dimethyllaminopropyl carbodiimide hydrochloride (EDCI and 4-dimethylaminopyridine (DMAP in dichloromethane. Their chemical structures were defined by IR and NMR. The present study was also undertaken to investigate the antidepressant-like effects of Er and its derivatives in male adult mice models of depression, and their probable involvement of GABAergic and glutamatergic systems by the forced swim test (FST. The results indicated that Er and its derivatives display antidepressant effects. Moreover, one derivative of Er, ergosteryl 2-naphthoate (ErN, exhibited stronger antidepressant activity in vivo compared to Er. Acute administration of ErN (5 mg/kg, i.p. and a combination of ErN (0.5 mg/kg, i.p., reboxetine (2.5 mg/kg, i.p., and tianeptine (15 mg/kg, i.p. reduced the immobility time in the FST. Pretreatment with bicuculline (a competitive γ-aminobutyric acid (GABA antagonist, 4 mg/kg, i.p. and N-methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg/kg, i.p. effectively reversed the antidepressant-like effect of ErN (5 mg/kg, i.p.. However, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p. and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p. did not eliminate the reduced immobility time. Altogether, these results indicated that ErN produced antidepressant-like activity, which might be mediated by GABAergic and glutamatergic systems.

  12. Brain-derived neurotrophic factor and early-life stress

    Indian Academy of Sciences (India)

    2016-10-24

    Oct 24, 2016 ... The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and ... forms are produced by splicing individual non-coding ..... VII and. IX m. RNA. ↑. mBDNF. ↓. (MS). 5. BDNF expression was unch;.

  13. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart.

    Directory of Open Access Journals (Sweden)

    Rasmita Samal

    Full Text Available Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium.Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25 ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts.Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii repressed the cell cycle progression suggesting its potency to ameliorate heart failure.

  14. Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; James, Nicholas C E; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-03-01

    Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid

  15. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain.

    Science.gov (United States)

    Lacombe, R J Scott; Giuliano, Vanessa; Colombo, Stefanie M; Arts, Michael T; Bazinet, Richard P

    2017-10-01

    DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13 C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13 C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13 C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13 C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13 C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.; Gaffney, Eamonn A.; Gatenby, Robert A.; Maini, Philip K.

    2010-01-01

    constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several 'acid-mediated tumour invasion' models where the acidic environment facilitates normal cell death

  17. Synthesis and complex forming property of phosphor acid derivatives

    International Nuclear Information System (INIS)

    Babaev, B.N.

    2004-01-01

    Full text:With the aim to get new effective and selective extra gents of noble and non-ferrous metals from acid solution and industrial sewage, research of the dependence of 'structure effectiveness' the various phosphor acid derivatives with logical changeable structure (thio phosphor acids, derivatives of dialkoxythiophosphor, O-alkyl-methylphosphon, alkylphenylphosphon, diphenylphosphine acids also 4 methyl-1,3,2 dioxaphosphorinane) which contain different functional groups, the remains of heterocyclic amines and alkaloids, new derivatives of some analytical reagents were synthesized. The structure of synthesized compounds is approved by the results of IR-, PMR-, mass-spectrum analyze. Researching mass-spectrum decay of synthesized phosphor acid derivatives we defined that differing from O-dihexyl-S-propargyl-benzylthio phosphat, mass spectrum decay of O-dialkyl-S-(piperdynobutin-2-il)thio phosphat is characterized by the appearing [M-H] + ions and during the decay ions with high intensiveness are formed. Fragmentation of M + O-alkyl-O-(aminoalkyl)phenylphosphonate proceeds in various directions and characterized with the great number of phosphor containing ions, the possession of the second phenyl radical in the molecule of diphenylphosphon acid derivatives changes the fragmentation of molecular ion of diphenylphosphon acid derivatives. The process of extraction of noble (Au, Ag, Pt, Pd, Os) metals from hydrochloric-sulphur-nitrogen acid medium was analyzed by radioactive indicator's method. It was noticed that structure, strength, conformation of compounds, the temperature, of acid medium (0,1-10 M) and the nature of acids (HCL, H 2 SO 4 , HNO 3 ) could have strong influence to the effectiveness of metal extraction. During the research of metals extraction from pure solutions we can see the followings: 1) There are such substances, which can be used as effective group reagent towards the Au, Ag and Pd. 2) Derivatives with acetylene extract ions of gold from

  18. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  19. Folic acid derivatives for use in radioimmunoassay

    International Nuclear Information System (INIS)

    Ali, A.

    1981-01-01

    The chemical preparation of two folic acid derivatives, labelled with 125 I or 131 I, is described for use in radioimmunoassay of folic acid and its metabolites in biological fluids such as blood serum. Labelled compounds of the present invention more closely resemble folic acid in that they have glutamic acid in the terminal position. Examples of the use of these compounds in three different assays are given. (U.K.)

  20. Brain Potentials for Derivational Morphology: An ERP Study of Deadjectival Nominalizations in Spanish

    Science.gov (United States)

    Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald

    2012-01-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…

  1. Radiolabeled derivatives of folic acid

    International Nuclear Information System (INIS)

    1980-01-01

    Derivatives of folic acid are described, in which the α-carboxyl group is substituted with an amino compound having an aromatic or heterocyclic ring substituent which is capable of being radiolabelled. Particularly mentioned as a radiolabel is 125 I. (author)

  2. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  3. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain?

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Bazinet, Richard P

    2015-07-01

    Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or synthesized in the body from α-linolenic acid (ALA). Debate exists as to whether DHA synthesized from ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is β-oxidation and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tracer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4-3.8 mg/day in humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA for the adult brain by examining work in humans and animals involving estimates of DHA synthesis and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is presented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega

    2012-12-01

    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  5. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  6. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  7. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives

    Science.gov (United States)

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-01

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  8. Pro-inflammatory cytokines derived from West Nile virus (WNV-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-10-01

    Full Text Available Abstract Background WNV-associated encephalitis (WNVE is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV

  9. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    International Nuclear Information System (INIS)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-01-01

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized [ 3 H]albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized [ 3 H]albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling [ 3 H]beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The [ 3 H]beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier

  10. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  11. Brain gamma-aminobutyric acid deficiency in dialysis encephalopathy.

    Science.gov (United States)

    Sweeney, V P; Perry, T L; Price, J D; Reeve, C E; Godolphin, W J; Kish, S J

    1985-02-01

    We measured levels of gamma-aminobutyric acid (GABA) in the CSF and in the autopsied brain of patients with dialysis encephalopathy. GABA concentrations were low in the CSF of three of five living patients. Mean GABA content was reduced by 30 to 50% in five brain regions (frontal, occipital, and cerebellar cortex, caudate nucleus, and medial dorsal thalamus) in five fatal cases. GABA content was normal in brain regions where GABA is characteristically reduced in Huntington's disease. Choline acetyltransferase activity was diminished (by 25 to 35%) in cerebral cortex of the dialysis encephalopathy patients.

  12. HMGB1 mediates endogenous TLR2 activation and brain tumor regression.

    Directory of Open Access Journals (Sweden)

    James F Curtin

    2009-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1, an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2 signaling on bone marrow-derived GBM-infiltrating DCs.Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad expressing Fms-like tyrosine kinase 3 ligand (Flt3L and thymidine kinase (TK delivered into the tumor mass, we demonstrated that CD4(+ and CD8(+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV] treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti

  13. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    Science.gov (United States)

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  14. Highly Diastereoselective Indium-Mediated Allylation of Proline-Derived Hydrazones

    International Nuclear Information System (INIS)

    Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    A highly diastereoselective indium-mediated addition reaction to L-proline-derived hydrazones has been developed. The method affords an efficient and general synthesis of homoallylic amines of high optically purity in high yields and diastereomeric ratios up to 98:2. It is well known that (S)-1-amino-2-methoxymethylpyrro-lidine and (S)-4-isopropyl- or (S)-4-phenylmethyl-oxa-zolidin-2-one-derived hydrazones have been used for metal-mediated diastereoselective allylation additions to produce chiral homoallylic amines. However, the optically pure hydrazine precursors are either commercially expensive and/or involve laborious synthetic procedures employing toxic reagents for their preparation. Thus, the design of novel classes of chiral hydrazines that would further broaden the scope of asymmetric synthesis to access optically pure homoallylic amines is highly desirable

  15. (−)1-(Benzofuran-2-yl)-2-propylaminopentane, [(−)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain

    Science.gov (United States)

    Knoll, Joseph; Yoneda, Fumio; Knoll, Berta; Ohde, Hironori; Miklya, Ildikó

    1999-01-01

    The brain constituents β-phenylethylamine (PEA) and tryptamine enhance the impulse propagation mediated transmitter release (exocytosis) from the catecholaminergic and serotoninergic neurons in the brain (‘catecholaminergic/serotoninergic activity enhancer, CAE/SAE, effect'). (−)Deprenyl (Selegiline) and (−)1-phenyl-2-propylaminopentane [(−)PPAP] are amphetamine derived CAE substances devoid of the catecholamine releasing property.By changing the aromatic ring in PPAP we developed highly potent and selective CAE/SAE substances, structurally unrelated to the amphetamines. Out of 65 newly synthetized compounds, a tryptamine derived structure, (−)1-(benzofuran-2-yl)-2-propylaminopentane [(−)BPAP] was selected as a potential follower of (−)deprenyl in the clinic and as a reference compound for further analysis of the CAE/SAE mechanism in the mammalian brain.(−)BPAP significantly enhanced in 0.18 μmol 1−1 concentration the impulse propagation mediated release of [3H]-noradrenaline and [3H]-dopamine and in 36 nmol 1−1 concentration the release of [3H]-serotonin from the isolated brain stem of rats. The amount of catecholamines and serotonin released from isolated discrete rat brain regions (dopamine from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from the locus coeruleus and serotonin from the raphe) enhanced significantly in the presence of 10−12–10−14 M (−)BPAP. BPAP protected cultured hippocampal neurons from the neurotoxic effect of β-amyloid in 10−14 M concentration. In rats (−)BPAP significantly enhanced the activity of the catecholaminergic and serotoninergic neurons in the brain 30 min after acute injection of 0.1 μg kg−1 s.c. In the shuttle box, (−)BPAP in rats was about 130 times more potent than (−)deprenyl in antagonizing tetrabenazine induced inhibition of performance. PMID:10588928

  16. Hydrogen/deuterium exchange of cross-linkable alpha-amino acid derivatives in deuterated triflic acid

    OpenAIRE

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

    2014-01-01

    In this paper we report here a hydrogen/deuterium exchange (H/D exchange) of cross-linkable alpha-amino acid derivatives with deuterated trifluoromethanesulfonic acid (TfOD). H/D exchange with TfOD was easily applied to o-catechol containing phenylalanine (DOPA) within an hour. A partial H/D exchange was observed for trifluoromethyldiazirinyl (TFMD) phenylalanine derivatives. N-Acetyl-protected natural aromatic alpha-amino acids (Tyr and Trp) were more effective in H/D exchange than unprotect...

  17. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Letitia D Jones

    Full Text Available The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND is increasing. In these individuals, the integrity of the blood-brain barrier (BBB is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1. As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  18. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  19. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway

    OpenAIRE

    Park, Ji-Hyun; Seo, Young Ho; Jang, Jung-Hee; Jeong, Chul-Ho; Lee, Sooyeun; Park, Byoungduck

    2017-01-01

    Background Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we fu...

  20. Novel flurbiprofen derivatives with improved brain delivery: synthesis, in vitro and in vivo evaluations.

    Science.gov (United States)

    Zheng, Dan; Shuai, Xiao; Li, Yanping; Zhou, Peng; Gong, Tao; Sun, Xun; Zhang, Zhirong

    2016-09-01

    Tarenflurbil (R-flurbiprofen) was acknowledged as a promising candidate in Alzheimer's disease (AD) therapy. However, the Phase III study of tarenflurbil was extremely restricted by its poor delivery efficiency to the brain. To tackle this problem, the novel carriers for tarenflurbil, racemic flurbiprofen (FLU) derivatives (FLU-D1 and FLU-D2) modified by N,N-dimethylethanolamine-related structures were synthesized and characterized. These derivatives showed good safety level in vitro and they possessed much higher cellular uptake efficiency in brain endothelial cells than FLU did. More importantly, the uptake experiments suggested that they were internalized via active transport mechanisms. Biodistribution studies in rats also illustrated a remarkably enhanced accumulation of these derivatives in the brain. FLU-D2, the ester linkage form of these derivatives, achieved a higher brain-targeting efficiency. Its C max and AUC 0- t were enhanced by 12.09-fold and 4.61-fold, respectively compared with those of FLU. Additionally, it could be hydrolyzed by esterase in the brain to release the parent FLU, which might facilitate its therapeutic effect. These in vitro and in vivo results highlighted the improvement of the brain-targeted delivery of FLU by making use of N,N-dimethylethanolamine ligand, with which an active transport mechanism was involved.

  1. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    Science.gov (United States)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  2. Tritium derivatives of the glycyrrhetinic acid and procedure for its preparation

    International Nuclear Information System (INIS)

    Turner, J.C.

    1977-01-01

    The invention concerns tritium derivatives of glycyrrhetinic acid which is largely used to treat ulcers and inflammations, and it deals with a method for their production. The 3α- 3 H-glycyrrhetinic acid, 3 α- 3 H-carbene oxolone, Na-salt and basic Al salt of this carbene oxolone, as well as the acetyl derivates, piperazine amide derivatives and further derivatives of the glycyrrhetinic acid (e.g. cinnamyl ester) are claimed in nine examples. (HK) [de

  3. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Jeddidiah W. D. Griffin

    2017-01-01

    Full Text Available There is a dire need to discover new targets for Alzheimer’s disease (AD drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.

  4. The influence of humic acids derived from earthworm-processed organic wastes on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Atiyeh, R.M.; Lee, S.; Edwards, C.A.; Arancon, N.Q.; Metzger, J.D. [Ohio State University, Columbus, OH (United States). Soil Ecology Lab.

    2002-08-01

    Some effects of humic acids, formed during the breakdown of organic wastes by earthworms (vermicomposting), on plant growth were evaluated. In the first experiment, humic acids were extracted from pig manure vermicompost using the classic alkali/acid fractionation procedure and mixed with a soilless container medium (Metro-Mix 360), to provide a range of 0, 50, 100, 150, 200, 250, 500, 1000, 2000 and 4000 mg of humate per kg of dry weight of container medium, and tomato seedlings were grown in the mixtures. In the second experiment, humates extracted from pig manure and food wastes vermicomposts were mixed with vermiculite to provide a range of 0, 50, 125, 250, 500, 1000 and 4000 mg of humate per kg of dry weight of the container medium, and cucumber seedlings were grown in the mixtures. Both tomato and cucumber seedlings were watered daily with a solution containing all nutrients required to ensure that any differences in growth responses were not nutrient-mediated. The incorporation of both types of vermicompost-derived humic acids, into either type of soilless plant growth media, increased the growth of tomato and cucumber plants significantly, in terms of plant heights, leaf areas, shoot and root dry weights. Plant growth increased with increasing concentrations of humic acids incorporated into the medium up to a certain proportion, but this differed according to the plant species, the source of the vermicompost, and the nature of the container medium. Plant growth tended to be increased by treatments of the plants with 50-500 mg/kg humic acids, but often decreased significantly when the concentrations of humic acids derived in the container medium exceeded 500-1000 mg/kg. These growth responses were most probably due to hormone-like activity of humic acids from the vermicomposts or could have been due to plant growth hormones adsorbed onto the humates. (author)

  5. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    Science.gov (United States)

    Al-Ahmad, Abraham J

    2017-10-01

    Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.

  6. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  7. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  8. What will this do to me and my brain? Ethical issues in brain-to-brain interfacing

    Directory of Open Access Journals (Sweden)

    Elisabeth eHildt

    2015-02-01

    Full Text Available For several years now, brain-computer interfaces (BCIs in which brain signals are used to navigate a computer, a prostheses or a technical device, have been developed in various experimental contexts (Wolpaw & Wolpaw 2012; Grübler & Hildt 2014. Researchers have recently taken the next step and run experiments based on connections between two brains. These so-called brain-to-brain interfaces (abbreviation: BBIs or BTBIs involve not only a BCI component deriving information from a brain and sending it to a computer, but also a computer-brain interface (CBI component delivering information to another brain. What results is technology-mediated brain-to-brain communication (B2B communication, i.e. direct communication between two brains that does not involve any activity of the peripheral nervous system. In what follows, ethical issues that arise in neural interfacing will be discussed after a short introduction to recent BBI experiments. In this, the focus will be on the implications BBIs may have on the individual at the CBI side of the BBI, i.e. on the recipient.

  9. Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity.

    Science.gov (United States)

    Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio

    2018-04-10

    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.

  10. The positive cognitive impact of aerobic fitness is associated with peripheral inflammatory and brain-derived neurotrophic biomarkers in young adults.

    Science.gov (United States)

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2017-10-01

    There is ample evidence for supporting the positive impact of aerobic fitness on cognitive function, but little is known about the physiological mechanisms. The objective of this study was to investigate whether the positive cognitive impact of aerobic fitness is associated with inflammatory and neurotrophic peripheral biomarkers in young adults aged 18 to 29years (n=87). For the objective assessment of aerobic fitness, we measured maximal oxygen uptake (VO 2 max) as a parametric measure of cardiorespiratory capacity. We demonstrated that young adults with the higher levels of VO 2 max performed better on computerized cognitive tasks assessing sustained attention and working memory. This positive VO 2 max-cognitive performance association existed independently of confounders (e.g., years of education, intelligence scores) but was significantly dependent on resting peripheral blood levels of inflammatory (C-reactive protein, CRP) and neurotrophic (brain-derived neurotrophic factor, BDNF) biomarkers. Statistical models showed that CRP was a mediator of the effect of VO 2 max on working memory. Further, BDNF was a moderator of the effect of VO 2 max on working memory. These mediating and moderating effects occurred in individuals with higher levels of aerobic fitness. The results suggest that higher aerobic fitness, as measured by VO 2 max, is associated with enhanced cognitive functioning and favorable resting peripheral levels of inflammatory and brain-derived neurotrophic biomarkers in young adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain.

    Science.gov (United States)

    Chen, Chuck T; Kitson, Alex P; Hopperton, Kathryn E; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Lin, Lauren E; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P

    2015-10-29

    Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.

  12. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain

    Directory of Open Access Journals (Sweden)

    Sarita S. Hardas

    2013-01-01

    Full Text Available Alzheimer disease (AD is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP and intracellular neurofibrillary tangles (NFTs. The major component of SP is amyloid β-peptide (Aβ, which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE. HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  13. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood-Brain Barrier.

    Science.gov (United States)

    Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S

    2014-11-17

    The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  14. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    Science.gov (United States)

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  15. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  16. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid

    Science.gov (United States)

    Taha, Ameer Y.; Chang, Lisa; Chen, Mei

    2016-01-01

    Background This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) sufficient to maintain brain 14C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction. Methods 18–21 day male Fischer-344 (CDF) rats were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% (“n-3 adequate”), 3.6%, 2.7%, 0.9% or 0.2% (“n-3 deficient”) α-LNA for 15 weeks. Rats were intravenously infused with 14C-DHA to steady state for 5 minutes, serial blood samples collected to obtain plasma and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, Jin. Results Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (Jin) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA. Conclusion Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low. PMID:26869088

  17. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report.

    Science.gov (United States)

    Zhang, Hanrui; Shi, Jianting; Hachet, Melanie A; Xue, Chenyi; Bauer, Robert C; Jiang, Hongfeng; Li, Wenjun; Tohyama, Junichiro; Millar, John; Billheimer, Jeffrey; Phillips, Michael C; Razani, Babak; Rader, Daniel J; Reilly, Muredach P

    2017-11-01

    To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA ( LIPA -/- ) had barely detectable LAL enzymatic activity. Control and LIPA -/- IPSDM were loaded with [ 3 H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [ 3 H]-cholesterol to apolipoprotein A-I was abolished in LIPA -/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [ 3 H]-cholesterol-labeled AcLDL, [ 3 H]-cholesterol efflux was, however, not different between control and LIPA -/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA -/- IPSDM. In nonlipid loaded state, LIPA -/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA -/- IPSDM. LIPA -/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B , IL6 , and CCL5. CONCLUSIONS: LIPA -/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human

  18. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  19. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    Science.gov (United States)

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Brain structure mediates the association between height and cognitive ability.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Franz, Carol E; Fennema-Notestine, Christine; Hagler, Donald J; Lyons, Michael J; Dale, Anders M; Kremen, William S

    2018-05-11

    Height and general cognitive ability are positively associated, but the underlying mechanisms of this relationship are not well understood. Both height and general cognitive ability are positively associated with brain size. Still, the neural substrate of the height-cognitive ability association is unclear. We used a sample of 515 middle-aged male twins with structural magnetic resonance imaging data to investigate whether the association between height and cognitive ability is mediated by cortical size. In addition to cortical volume, we used genetically, ontogenetically and phylogenetically distinct cortical metrics of total cortical surface area and mean cortical thickness. Height was positively associated with general cognitive ability and total cortical volume and cortical surface area, but not with mean cortical thickness. Mediation models indicated that the well-replicated height-general cognitive ability association is accounted for by individual differences in total cortical volume and cortical surface area (highly heritable metrics related to global brain size), and that the genetic association between cortical surface area and general cognitive ability underlies the phenotypic height-general cognitive ability relationship.

  1. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezing...... (18.6+/-1.3 ng/ml versus 16.5+/-1.4 ng/ml), and showed a right-skewed BDNF concentration distribution. No association between whole blood BDNF concentrations and thrombocyte count, age, or BDNF genotype was found. In conclusion, the BDNF ELISA assay determines whole blood BDNF accurately and with high...

  2. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  3. Neuroprotective effects of Ellagic acid on Neonatal Hypoxic Brain ...

    African Journals Online (AJOL)

    Purpose: To investigate if ellagic acid exerts neuroprotective effects in hypoxic ischemic (HI) brain injury by inhibiting apoptosis and inflammatory responses. Methods: Separate groups of rat pups from post-natal day 4 (D4) were administered with ellagic acid (10, 20 or 40 mg/kg body weight) orally till post- natal day 10 ...

  4. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino...... acids. Upon acidic release, the aldehyde instantaneously formed the cyclic N-carbamyliminium ion, which rearranged to the corresponding imidazolone. Under strongly acidic conditions the imidazolones acted as nuclophiles in the Pictet-Spengler reaction....

  5. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  6. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Synthesis and stability of strongly acidic benzamide derivatives

    DEFF Research Database (Denmark)

    Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael

    2018-01-01

    Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported....

  8. Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery

    Science.gov (United States)

    Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.

    1993-04-01

    Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.

  9. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    Science.gov (United States)

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  10. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  11. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: Application to a study on the associations of d-amino acid concentration changes and Alzheimer's disease.

    Science.gov (United States)

    Li, Zhe; Xing, Yuping; Guo, Xingjie; Cui, Yan

    2017-07-15

    There are significant differences in d-amino acid concentrations between healthy people and Alzheimer's disease patients. In order to investigate the potential correlation between d-amino acids and Alzheimer's disease, a simple and sensitive ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed. The method was applied to simultaneous determination of 11 d-amino acids in different regions of rat brain. Rat brain homogenates were firstly pretreated with protein precipitation procedure and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Baseline separation of the derivatives was achieved on an ACQUITY UPLC BEH C 18 column (2.1 mm×50mm, 1.7μm). The mobile phase consisted of acetonitrile and water (containing 8mM ammonium hydrogen carbonate) and the flow rate was 0.6mLmin -1 . The derived analytes were sensitively detected by multiple reaction monitoring in the positive ion mode. The lower limits of quantitation ranged from 0.06 to 10ngmL -1 with excellent linearity (r≥0.9909). The intra- and inter-day RSD were in the range of 3.6-12% and 5.7-12%, respectively. The recovery rate was 82.5%-95.3%. With this UPLC-MS/MS method, the 11 d-amino acids in hippocampus, cerebral cortex, olfactory bulb and cerebellum from Alzheimer's disease rats and age-matched controls could be simultaneously determined. Compared with the normal controls, the concentrations of d-serine, d-alanine, d-leucine, and d-proline in hippocampus and cerebral cortex of Alzheimer's disease rat brain were significantly decreased, while no differences in olfactory bulb and cerebellum of all the d-amino acids were observed. The different amounts and distribution of d-amino acids in brain between the two groups, which regulated by particular pathological changes of Alzheimer's disease, would give new insights into further study in neuropathogenesis and provide novel therapeutic targets of Alzheimer

  13. Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction

    Directory of Open Access Journals (Sweden)

    Brenda Rocamonde

    2013-01-01

    Full Text Available After trauma brain injury, oxidative substances released to the medium provoke an enlargement of the initial lesion, increasing glial cell activation and, occasionally, an influx of immune cells into the central nervous system, developing the secondary damage. In response to these stimuli, microglia are activated to perform upregulation of intracellular enzymes and cell surface markers to propagate the immune response and phagocytosis of cellular debris. The phagocytosis of debris and dead cells is essential to limit the inflammatory reaction and potentially prevent extension of the damage to noninjured regions. Lipoic acid has been reported as a neuroprotectant by acting as an antioxidant and anti-inflammatory agent. Furthermore, angiogenic effect promoted by lipoic acid has been recently shown by our group as a crucial process for neural regeneration after brain injury. In this work, we focus our attention on the lipoic acid effect on astroglial and microglial response after brain injury.

  14. Social Competence in Childhood Brain Tumor Survivors: Feasibility and Preliminary Outcomes of a Peer-Mediated Intervention

    Science.gov (United States)

    Devine, Katie A.; Bukowski, William M.; Sahler, Olle Jane Z.; Ohman-Strickland, Pamela; Smith, Tristram H.; Lown, E. Anne; Patenaude, Andrea Farkas; Korones, David N.; Noll, Robert B.

    2016-01-01

    Objective Evaluate the acceptability, feasibility, and preliminary outcomes of a peer-mediated intervention to improve social competence of brain tumor survivors and classmates. Methods Twelve childhood brain tumor survivors and 217 classroom peers in intervention (n = 8) or comparison (n = 4) classrooms completed measures of social acceptance and reputation at two time points in the year. The intervention (5–8 sessions over 4–6 weeks) taught peer leaders skills for engaging classmates. Individual and classroom outcomes were analyzed with ANCOVA. Results Recruitment rates of families of brain tumor survivors (81%) and schools (100%) were adequate. Peer leaders reported satisfaction with the intervention. Preliminary outcome data trended toward some benefit in increasing the number of friend nominations for survivors of brain tumors but no changes in other peer-reported metrics. Preliminary results also suggested some positive effects on classroom levels of victimization and rejection. Conclusions A peer-mediated intervention was acceptable to families of brain tumor survivors and feasible to implement in schools. Findings warrant a larger trial to evaluate improvements for children with brain tumors and their peers. PMID:27355881

  15. Characterization of BASP1-mediated neurite outgrowth

    DEFF Research Database (Denmark)

    Korshunova, Irina; Caroni, Pico; Kolkova, Kateryna

    2008-01-01

    The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated...

  16. Acyl Meldrum's acid derivatives: application in organic synthesis

    Science.gov (United States)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  17. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  19. Cinnamic acid derivatives in cosmetics - current use and future prospects.

    Science.gov (United States)

    Gunia-Krzyżak, Agnieszka; Słoczyńska, Karolina; Popiół, Justyna; Koczurkiewicz, Paulina; Marona, Henryk; Pękala, Elżbieta

    2018-06-05

    Cinnamic acid derivatives are widely used in cosmetics and possess various functions. This group of compounds includes both naturally occurring as well as synthetic substances. On the basis of the Cosmetic Ingredient Database (CosIng) and available literature, this review summarizes their functions in cosmetics, including their physicochemical and biological properties as well as reported adverse effects. A perfuming function is typical of many derivatives of cinnamaldehyde, cinnamyl alcohol, dihydrocinnamyl alcohol, and cinnamic acid itself; these substances are commonly used in cosmetics all over the world. Some of them show allergic and photoallergic potential, resulting in restrictions in maximum concentrations and/or a requirement to indicate the presence of some substances in the list of ingredients when their concentrations exceed certain fixed values in a cosmetic product. Another important function of cinnamic acid derivatives in cosmetics is UV protection. Ester derivatives such as ethylhexyl methoxycinnamate (octinoxate), isoamyl p-methoxycinnamte (amiloxiate), octocrylene, and cinoxate are used in cosmetics all over the world as UV filters. However, their maximum concentrations in cosmetic products are restricted due to their adverse effects, which include contact and a photocontact allergies, phototoxic contact dermatitis, contact dermatitis, estrogenic modulation, and generation of reactive oxygen species. Other rarely utilized functions of cinnamic acid derivatives are as an antioxidant, in skin conditioning, hair conditioning, as a tonic, and in antimicrobial activities. Moreover, some currently investigated natural and synthetic derivatives of cinnamic acid have shown skin lightening and anti-aging properties. Some of them may become new cosmetic ingredients in the future. In particular, 4-hydroxycinnamic acid, which is currently indexed as a skin-conditioning cosmetics ingredient, has been widely tested in vitro and in vivo as a new drug candidate

  20. Smuggling Drugs into the Brain: An Overview of Ligands Targeting Transcytosis for Drug Delivery across the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Julia V. Georgieva

    2014-11-01

    Full Text Available The blood–brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood–brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier–drug system (“Trojan horse complex” is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.

  1. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  2. Symptom severity and life satisfaction in brain injury: The mediating role of disability acceptance and social self-efficacy.

    Science.gov (United States)

    Ditchman, Nicole; Sung, Connie; Easton, Amanda B; Johnson, Kristina S; Batchos, Elisabeth

    2017-01-01

    Although the negative impact of symptom severity on subjective well-being outcomes has been established among individuals with brain injury, the mediating and protective role that positive human traits might have on this relationship has not been adequately explored. The purpose of this study was to examine the impact of social self-efficacy and disability acceptance on the relationship between symptom severity and life satisfaction among individuals with brain injury. Hierarchical regression analysis and correlation techniques were used to test a hypothesized dual-mediation model of life satisfaction in a sample of 105 adults with acquired brain injury. Results indicated that social self-efficacy and disability acceptance fully mediated the relationship between symptom severity and life satisfaction, lending support for a dual-mediation model with disability acceptance being the strongest contributor. These findings suggest there may be considerable value for rehabilitation providers to develop strengths-based service strategies and/or specialized intervention programs that focus on capitalizing these positive human traits to promote life satisfaction and well-being for clients with brain injury. Implications for clinical practice and future research direction are also discussed.

  3. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L. and Their Antioxidative Activity

    Directory of Open Access Journals (Sweden)

    Jeong-Yong Cho

    2016-08-01

    Full Text Available Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester, and 3,5-di-dihydrocaffeoylquinic acid methyl ester. Their chemical structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy (LC-ESI-MS. In addition, the presence of dicaffeoylquinic acid derivatives in this plant was reconfirmed by LC-ESI-MS/MS analysis. The isolated compounds strongly scavenged 1,1-diphenyl-2-picrylhydrazyl radicals and inhibited cholesteryl ester hydroperoxide formation during rat blood plasma oxidation induced by copper ions. These results indicate that the caffeoylquinic acid derivatives may partially contribute to the antioxidative effect of S. herbacea.

  4. Brain and liver fatty acid composition changes upon consumption of Lactobacillus rhamnosus LA68.

    Science.gov (United States)

    Ivanovic, Nevena; Minic, Rajna; Djuricic, Ivana; Dimitrijevic, Ljiljana; Sobajic, Sladjana; Zivkovic, Irena; Djordjevic, Brizita

    2015-02-01

    Recent reports suggest that the metabolic activity of the enteric microbiota may influence the fatty acid composition of the host tissue. There are many studies dealing with the influence of lactobacilli on various pathological conditions, and some of the effects are strain-specific. This study was designed to test the effects of a particular Lactobacillus strain, Lactobacillus rhamnosus LA68 on fatty acid composition of the liver and the brain of C57BL/6 mice in the absence of an underlying pathological condition. Female mice were supplemented with live L. rhamnosus LA68 bacteria for the duration of 1 month. Serum biochemistry was analyzed and liver and brain fatty acid composition was assessed by gas-liquid chromatography. Significant changes in liver and brain fatty acid composition were detected. In the liver tissue we detected an increase in palmitoleic acid (p = 0.038), while in the brain compartment we found an increase in palmitic (p = 0.042), stearic (p = 0.017), arachidonic acid (p = 0.009) and docosahexaenoic acid (p = 0.004) for control versus experimental group. These results show discrete changes caused by LA68 strain consumption. Even short duration of administration of LA68 influences the fatty acid composition of the host which adds to the existing knowledge about Lactobacillus host interaction, and adds to the growing knowledge of metabolic intervention possibilities.

  5. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  6. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  7. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  8. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    Science.gov (United States)

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  9. The Brain Derived Neurotrophic Factor and Personality

    OpenAIRE

    Christian Montag

    2014-01-01

    The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF) in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF...

  10. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice

    OpenAIRE

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and m...

  11. Regulatory Mechanisms Involved in the Expression of Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor

    Science.gov (United States)

    1996-03-01

    neurotoxic dopamine analog that is taken up by nigral dopaminergic cells where it is metabolized to highly reactive oxygen free radicals that cause ...brain regions is elevated after other types of brain insults, including ischemia and hypoglycemia (see Lindvall et al. 1994 for review). Lindvall et a1...with kainic acid were also reported. These investigators also reported significant increases in BDNF mRNA levels in cultures of neonatal astrocytes

  12. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    Science.gov (United States)

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  13. Omega-3 polyunsaturated fatty acids and brain aging.

    Science.gov (United States)

    Denis, Isabelle; Potier, Brigitte; Heberden, Christine; Vancassel, Sylvie

    2015-03-01

    The literature on the influence of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) on brain aging has grown exponentially during the last decade. Many avenues have been explored but no global picture or clear evidence has emerged. Experimental studies have shown that ω-3 PUFA is involved in many neurobiological processes that are involved in neurotransmission and neuroprotection, indicating that these PUFAs may prevent age-related brain damage. Human studies have revealed only a weak link between ω-3 PUFA status and cognitive aging, whereas interventional studies have yet to confirm it. The purpose of this review is to analyze the developments in the area during the last 2 years. Human brain MRI studies have confirmed previous findings that ω-3 PUFA can protect the brain during aging; two intervention studies obtained clear evidence. We also analyzed the experimental data clarifying the involvement of ω-3 PUFA in neurotransmission, neuroprotection (including prevention of peroxidation, inflammation, and excitotoxicity), and neurogenesis, thereby helping the brain cope with aging. These recent human and experimental studies provide support for and clarification of how ω-3 PUFA protect against brain aging and highlight the main lines for future research.

  14. Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain

    International Nuclear Information System (INIS)

    Kohriyama, Kazuaki; Matsuoka, Masato; Igisu, Hideki

    1994-01-01

    In vitro, both acrylamide and acrylic acid inhibited creatine kinase (CK) activity in rat brain homogenates, and acrylic acid was more potent than acrylamide. In vivo, however, when given i.p. 50 mg/kg per day for 8 days to rats, only acrylamide inhibited CK activity in the brain and caused apparent neurological signs. 14 C in the brain 24 h after the injection of 14 C-labelled chemicals was more than 7 times greater with acrylamide than with acrylic acid. The inhibition of CK activity by acrylamide varied in eight regions of the brain; from 54% in hypothalamus to 27% in cerebellar vermis. The regional difference of CK inhibition, however, did not agree well with either 14 C distribution or with the distribution in regions which appear clinically or pathologically vulnerable to acrylamide. (orig.)

  15. Brain, kidney and liver sup 203 Hg-methyl mercury uptake in the rat: Relationship to the neutral amino acid carrier

    Energy Technology Data Exchange (ETDEWEB)

    Aschner, M [Department of Pharmacology and Toxicology, and the Interdepartmental Neuroscience Training Program, Albany Medical College, Albany, NY (USA)

    1989-01-01

    To investigate the effect of L-neutral amino acids on tissue levels of methyl mercury in the adult animal, rats were infused into the external jugular vein with solutions containing (a) 0.05 mM {sup 203}Hg-MeHgCl and saline, (b) 0.05 mM {sup 203}Hg-MgHgCl-0.1 mM L-cysteine, (c) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-methionine, (d) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-leucine, or (e) 0.05 mM {sup 203}Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-leucine. Groups of animals were sacrificed at 3 min. 7 hr, and 96 hr. Brain, kidney, and liver {sup 203}Hg radioactivity was measured by means of gamma-scintillation spectrometry. Brain {sup 203}Hg concentrations L-cysteine treated animals were significantly higher compared with saline treated animals (P<0.05) at 3 min., 7 hr and 96 hr. The coinjection or coinfusion of methyl mercury with L-cysteine and L-methionine abolished the L-cysteine-mediated brain {sup 203}Hg uptake (P<0.05), at each sacrifice time. Kidney and liver {sup 203}Hg concentrations were not significantly different in any of the treatment groups compared with controls, irrespective of the sacrifice time. Furthermore, the percentage of diffusible {sup 203}Hg (non-protein bound) at each sacrifice time was not statistically different irrespective of the treatment assigned. These results suggest that methyl mercury L-cysteine conjugates in the plasma may share a common transport step with the L-neutral amino acid carrier transport system and indicate the presence in brain capillaries of a transport system capable of selectively mediating methyl mercury uptake across the capillary endothelial cell membrane. (author).

  16. Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation

    International Nuclear Information System (INIS)

    Smith, C.B.; Deibler, G.E.; Eng, N.; Schmidt, K.; Sokoloff, L.

    1988-01-01

    A quantitative autoradiographic method for the determination of local rates of protein synthesis in brain in vivo is being developed. The method employs L-[1- 14 C]leucine as the radiolabeled tracer. A comprehensive model has been designed that takes into account intracellular and extracellular spaces, intracellular compartmentation of leucine, and the possibility of recycling of unlabeled leucine derived from steady-state degradation of protein into the precursor pool for protein synthesis. We have evaluated the degree of recycling by measuring the ratio of the steady-state precursor pool distribution space for labeled leucine to that of unlabeled leucine. The values obtained were 0.58 in whole brain and 0.47 in liver. These results indicate that there is significant recycling of unlabeled amino acids derived from steady-state protein degradation in both tissues. Any method for the determination of rates of cerebral protein synthesis in vivo with labeled tracers that depends on estimation of precursor pool specific activity in tissue from measurements in plasma must take this recycling into account

  17. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Chen, Chunnuan; Fan, Sining; Wu, Shukai; Yang, Fuxing; Fang, Zhongning; Fu, Huangde; Li, Yasong

    2018-04-20

    Microglial polarization and the subsequent neuroinflammatory response are contributing factors for traumatic brain injury (TBI)-induced secondary injury. High mobile group box 1 (HMGB1) mediates the activation of the NF-κB pathway, and it is considered to be pivotal in the late neuroinflammatory response. Activation of the HMGB1/NF-κB pathway is closely related to HMGB1 acetylation, which is regulated by the sirtuin (SIRT) family of proteins. Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA inhibited TBI-induced microglial activation and the subsequent neuroinflammatory response by regulating the HMGB1/NF-κB signaling pathway. However, no studies have elucidated if ω-3 PUFA affects the HMGB1/NF-κB pathway in a HMGB1 deacetylation of dependent SIRT1 manner, thus regulating microglial polarization and the subsequent neuroinflammatory response. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglia polarization and pro-inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and HMGB1, were used to evaluate the neuroinflammatory responses and the anti-inflammatory effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1/NF-κB signaling pathway activation to evaluate the effects of ω-3 PUFA supplementation. The impact of SIRT1 deacetylase activity on HMGB1 acetylation and the interaction between HMGB1 and SIRT1 were assessed to evaluate anti-inflammation effects of ω-3 PUFAs, and also, whether these effects were dependent on a SIRT1-HMGB1/NF-κB axis to gain further insight into the mechanisms underlying the

  18. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  19. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  20. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  1. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Science.gov (United States)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  2. Selenium- or tellurium- containing bile acids and derivatives thereof

    International Nuclear Information System (INIS)

    Monks, R.; Riley, A.L.M.

    1981-01-01

    This invention relates to the preparation of selenium and tellurium derivatives, particularly γ-emitting radioactive derivatives of bile acids and bile salts. Such compounds are valuable in the examination of body function, especially small bowel function. (author)

  3. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease

    Science.gov (United States)

    Deane, Rashid; Singh, Itender; Sagare, Abhay P.; Bell, Robert D.; Ross, Nathan T.; LaRue, Barbra; Love, Rachal; Perry, Sheldon; Paquette, Nicole; Deane, Richard J.; Thiyagarajan, Meenakshisundaram; Zarcone, Troy; Fritz, Gunter; Friedman, Alan E.; Miller, Benjamin L.; Zlokovic, Berislav V.

    2012-01-01

    In Alzheimer disease (AD), amyloid β peptide (Aβ) accumulates in plaques in the brain. Receptor for advanced glycation end products (RAGE) mediates Aβ-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a high-affinity RAGE-specific inhibitor (FPS-ZM1) that blocked Aβ binding to the V domain of RAGE and inhibited Aβ40- and Aβ42-induced cellular stress in RAGE-expressing cells in vitro and in the mouse brain in vivo. FPS-ZM1 was nontoxic to mice and readily crossed the blood-brain barrier (BBB). In aged APPsw/0 mice overexpressing human Aβ-precursor protein, a transgenic mouse model of AD with established Aβ pathology, FPS-ZM1 inhibited RAGE-mediated influx of circulating Aβ40 and Aβ42 into the brain. In brain, FPS-ZM1 bound exclusively to RAGE, which inhibited β-secretase activity and Aβ production and suppressed microglia activation and the neuroinflammatory response. Blockade of RAGE actions at the BBB and in the brain reduced Aβ40 and Aβ42 levels in brain markedly and normalized cognitive performance and cerebral blood flow responses in aged APPsw/0 mice. Our data suggest that FPS-ZM1 is a potent multimodal RAGE blocker that effectively controls progression of Aβ-mediated brain disorder and that it may have the potential to be a disease-modifying agent for AD. PMID:22406537

  4. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.

    Directory of Open Access Journals (Sweden)

    Choong-Wan Woo

    2015-01-01

    Full Text Available Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS, an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.

  5. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  6. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    Science.gov (United States)

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  7. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    OpenAIRE

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-...

  8. Effect of ethanol on γ-aminobutyric acid in the brain

    International Nuclear Information System (INIS)

    Lassanova, M.; Tursky, T.; Homerova, D.

    1989-01-01

    The effect of acute and chronic ethanol administration on the level of γ-aminobutyric acid (GABA), glutamate, aspartate, and glutamine was investigated using 14 C-labelled compounds. The level of GABA rose after both acute and chronic ethanol administration. In chronic experiments also the levels of glutamate, aspartate and glutamine were increased. In acute experiments the incorporation from glucose into the studied amino acids (neuronal compartment) increased, while in chronic experiments a decreasing trend was observed. In the glial compartment the incorporation increased only into glutamate and glutamine in acute experiments, while in chronic experiments a decreased incorporation into glutamine was recorded. The activities of three enzymes were studied in seven parts of the brain after acute ethanol administration. The activity of glutamic acid decarboxylase increased in the hypothalamus and brain cortex and decreased in the medulla oblongata. The activity of GABA transaminase did not change and the activity of glutamine synthetase decreased only in the hippocampus. In accordance with several other studies, the presented results show that ethanol interferes with the GABA system in the brain. It is suggested that the primary effect of ethanol is exerted on the cell membranes with preference for the regions connected with the GABA system. (author). 3 figs., 6 tabs., 18 refs

  9. Brain-Derived Neurotrophic Factor Predicts Mortality Risk in Older Women

    DEFF Research Database (Denmark)

    Krabbe, K.S.; Mortensen, E.L.; Avlund, K.

    2009-01-01

    OBJECTIVES To test the hypothesis that low circulating brain-derived neurotrophic factor (BDNF), a secretory member of the neurotrophin family that has a protective role in neurodegeneration and stress responses and a regulatory role in metabolism, predicts risk of all-cause mortality in 85-year...

  10. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools.

    Science.gov (United States)

    Ekinci, Deniz; Sentürk, Murat; Küfrevioğlu, Ömer İrfan

    2011-12-01

    In the field of medicinal chemistry, there is a growing interest in the use of small molecules. Although acetyl salicylic acid is well known for medical applications, little is known about other salicylic acid derivatives, and there is serious lack of data and information on the effects and biological evaluation that connect them. This review covers the synthesis and drug potencies of salicylic acid derivatives. After a brief overview of the information on salicylic acid and its features, a detailed review of salicylic acids as drugs and prodrugs, usage as cyclooxygenase inhibitors, properties in plants, synthesis and recent patents, is developed. Salicylic acid research is still an important area and innovations continue to arise, which offer hope for new therapeutics in related fields. It is anticipated that this review will guide the direction of long-term drug/nutraceutical safety trials and stimulate ideas for future research.

  11. Microbiome-Derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-09-01

    Full Text Available Abundant clinical, epidemiological, imaging, genetic, molecular, and pathophysiological data together indicate that there occur an unusual inflammatory reaction and a disruption of the innate-immune signaling system in Alzheimer’s disease (AD brain. Despite many years of intense study, the origin and molecular mechanics of these AD-relevant pathogenic signals are still not well understood. Here, we provide evidence that an intensely pro-inflammatory bacterial lipopolysaccharide (LPS, part of a complex mixture of pro-inflammatory neurotoxins arising from abundant Gram-negative bacilli of the human gastrointestinal (GI tract, are abundant in AD-affected brain neocortex and hippocampus. For the first time, we provide evidence that LPS immunohistochemical signals appear to aggregate in clumps in the parenchyma in control brains, and in AD, about 75% of anti-LPS signals were clustered around the periphery of DAPI-stained nuclei. As LPS is an abundant secretory product of Gram-negative bacilli resident in the human GI-tract, these observations suggest (i that a major source of pro-inflammatory signals in AD brain may originate from internally derived noxious exudates of the GI-tract microbiome; (ii that due to aging, vascular deficits or degenerative disease these neurotoxic molecules may “leak” into the systemic circulation, cerebral vasculature, and on into the brain; and (iii that this internal source of microbiome-derived neurotoxins may play a particularly strong role in shaping the human immune system and contributing to neural degeneration, particularly in the aging CNS. This “Perspectives” paper will further highlight some very recent developments that implicate GI-tract microbiome-derived LPS as an important contributor to inflammatory-neurodegeneration in the AD brain.

  12. Boronic acid adducts of technetium dioxime (BATO) complexes derived from quinuclidine benzilate (QNB) boronic acid stereoisomers: Syntheses and studies of their binding to the muscarinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Jurisson, Silvia S.; Pirro, John; DiRocco, Richard J.; Rosenspire, Karen C.; Jagoda, Elaine; Nanjappan, Palaniappa; Eckelman, William C.; Nowotnik, David P.; Nunn, Adrian D.

    1995-01-01

    We have investigated the possibility of using BATO complexes derivatized with the muscarinic acetylcholine receptor (mAChR) antagonist, quinuclidinyl benzilate (QNB), for mAChR imaging. The BATO complexes, TcCl(DMG) 3 B-QNB, were prepared using QNB derivatives containing a 4'-boronic acid substituent on one of the benzilic benzene rings (QNB-boronic acid). The QNB-boronic acid molecule has two chiral centers, and all four QNB-BATO stereoisomers were made and evaluated. When studied using in vitro receptor binding assays based on tissue from rat brain caudate-putamen (which contains primarily M 1 and M 4 mAChR) and rat heart (M 2 mAChR), the QNB-boronic acid stereoisomers had binding affinities (K A ) in the range 2 x 10 5 -1 x 10 8 , at least 10-fold lower than theK A for QNB (ca 2 x 10 9 ). The stereochemistry of both centers had some influence on the affinity constant. When the TcCl(DMG) 3 B-QNB complexes were studied, none of the stereoisomeric complexes displayed measurable specific binding (K A 6 ), but all showed high non-specific binding. In vitro autoradiography with rat brain slices confirmed the absence of specific binding in these tracers. In vivo, the 99m TcCl(DMG) 3 B-QNB complexes displayed minimal brain uptake, and modest heart uptake; the latter was unlikely to be related to uptake by the mAChR. In light of these findings, we conclude that the interaction between the TcCl(DMG) 3 B-QNB complexes and biological membranes is dominated by the hydrophobicity of the BATO moiety. The TcCl(DMG) 3 B-QNB complexes, therefore, have little potential for mAChR imaging

  13. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  14. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    Directory of Open Access Journals (Sweden)

    N.M. Jadavji

    2015-06-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM. In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT, which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid.

  15. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  16. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    Science.gov (United States)

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  17. A Standard Structure for Bile Acids and Derivatives

    Directory of Open Access Journals (Sweden)

    Francisco Meijide

    2018-02-01

    Full Text Available The crystal structures of two ester compounds (a monomer in its methyl ester form, with an amino isophthalic group, and a dimer in which the two steroid units are linked by a urea bridge recrystallized from ethyl acetate/methanol derived from cholic acid are described. Average bond lengths and bond angles from the crystal structures of 26 monomers and four dimers (some of them in several solvents of bile acids and esters (and derivatives are used for proposing a standard steroid nucleus. The hydrogen bond network and conformation of the lateral chain are also discussed. This standard structure was used to compare with the structures of both progesterone and cholesterol.

  18. Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain

    International Nuclear Information System (INIS)

    Croteau, Etienne; Lavallee, Eric; Hubert, Laurent; Rousseau, Jacques A.; Lecomte, Roger; Labbe, Sebastien M.; Carpentier, Andre C.; Pifferi, Fabien; Cunnane, Stephen C.; Benard, Francois

    2010-01-01

    Despite current advances in PET/CT systems, blood sampling still remains the standard method to obtain the radiotracer input function for tracer kinetic modelling. The purpose of this study was to validate the use of image-derived input functions (IDIF) of the carotid and femoral arteries to measure the arterial input function (AIF) in PET imaging. The data were obtained from two different research studies, one using 18 F-FDG for brain imaging and the other using 11 C-acetate and 18 F-fluoro-6-thioheptadecanoic acid ( 18 F-FTHA) in femoral muscles. The method was validated with two phantom systems. First, a static phantom consisting of syringes of different diameters containing radioactivity was used to determine the recovery coefficient (RC) and spill-in factors. Second, a dynamic phantom built to model bolus injection and clearance of tracers was used to establish the correlation between blood sampling, AIF and IDIF. The RC was then applied to the femoral artery data from PET imaging studies with 11 C-acetate and 18 F-FTHA and to carotid artery data from brain imaging with 18 F-FDG. These IDIF data were then compared to actual AIFs from patients. With 11 C-acetate, the perfusion index in the femoral muscle was 0.34±0.18 min -1 when estimated from the actual time-activity blood curve, 0.29±0.15 min -1 when estimated from the corrected IDIF, and 0.66±0.41 min -1 when the IDIF data were not corrected for RC. A one-way repeated measures (ANOVA) and Tukey's test showed a statistically significant difference for the IDIF not corrected for RC (p 18 F-FTHA there was a strong correlation between Patlak slopes, the plasma to tissue transfer rate calculated using the true plasma radioactivity content and the corrected IDIF for the femoral muscles (vastus lateralis r=0.86, p=0.027; biceps femoris r=0.90, p=0.017). On the other hand, there was no correlation between the values derived using the AIF and those derived using the uncorrected IDIF. Finally, in the brain imaging

  19. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk-Grochala, Jagoda; Kwasniewicz, Ewa; Deregowska, Anna; Wnuk, Maciej

    2017-06-01

    Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER + , PR +/- , HER2 - ), MDA-MB-231 (ER - , PR - , HER2 - ) and SK-BR-3 (ER - , PR - , HER2 + ). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5-10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.

  20. The substituent and solvent effects on the antioxidant activity of the ferulic acid derivations

    International Nuclear Information System (INIS)

    Najafi, M.; Bukhari, S.A.

    2014-01-01

    The antioxidant activity of ortho and meta substituted ferulic acid derivatives have been investigated in the gas phase and water. The reaction enthalpies of antioxidant activity of studied derivatives have been calculated and compared with corresponding values of ferulic acid. Results show that EWG substituents increase the BDE, IP, while EDG ones cause a rise in the PA. The ferulic acid derivatives with lowest BDE, IP and PA values were identified as the compounds with high antioxidant activity. Results show that the substituents at ortho position have high potential for synthesis of novel ferulic acid derivatives. Results show that ferulic acid derivatives can process their protective role via HAT and SPLET mechanism in gas phase and solvent, respectively. The calculated reaction enthalpies of the substituted ferulic acids have linear dependences with Hammett constants and EHOMO that can be utilized in the selection of suitable substituents for the synthesis of novel antioxidants based on ferulic acid. (author)

  1. Isotope derivative assay of human serum bile acids

    International Nuclear Information System (INIS)

    Pageaux, J.F.; Duperray, B.; Dubois, M.; Pacheco, H.

    1981-01-01

    A new method for the selective determination of the main serum bile acids has been developed. Serum samples with added 14 C-labeled bile acid were submitted to deproteinization, alkaline hydrolysis, methylation, and were then chromatographed on alumina before acetylation with 2 microliters of [ 3 H]acetic anhydride. Excess reagent was eliminated by evaporation; elimination of residual tritiated contaminants and separation of the doubly labeled bile acid derivatives were obtained by thin-layer chromatography, column chromatography on Lipidex 5000, and crystallization. The sensitivity of the method is about 10 pmol of each bile acid. Analyses of seven sera with normal or elevated concentration of bile acids by the proposed method and gas-liquid chromatography showed a close correlation

  2. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  3. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  4. Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

    Science.gov (United States)

    Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu

    2017-08-01

    Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects

  5. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Science.gov (United States)

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  6. Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1 secretion

    Directory of Open Access Journals (Sweden)

    Benakis Corinne

    2012-04-01

    Full Text Available Abstract Background Cerebral ischemia is associated with the activation of glial cells, infiltration of leukocytes and an increase in inflammatory mediators in the ischemic brain and systemic circulation. How this inflammatory response influences lesion size and neurological outcome remains unclear. D-JNKI1, an inhibitor of the c-Jun N-terminal kinase pathway, is strongly neuroprotective in animal models of stroke. Intriguingly, the protection mediated by D-JNKI1 is high even with intravenous administration at very low doses with undetectable drug levels in the brain, pointing to a systemic mode of action, perhaps on inflammation. Findings We evaluated whether D-JNKI1, administered intravenously 3 h after the onset of middle cerebral artery occlusion (MCAO, modulates secretion of the inflammatory mediators interleukin-6 and keratinocyte-derived chemokine in the plasma and from the spleen and brain at several time points after MCAO. We found an early release of both mediators in the systemic circulation followed by an increase in the brain and went on to show a later systemic increase in vehicle-treated mice. Release of interleukin-6 and keratinocyte-derived chemokine from the spleen of mice with MCAO was not significantly different from sham mice. Interestingly, the secretion of these inflammatory mediators was not altered in the systemic circulation or brain after successful neuroprotection with D-JNKI1. Conclusions We demonstrate that neuroprotection with D-JNKI1 after experimental cerebral ischemia is independent of systemic and brain release of interleukin-6 and keratinocyte-derived chemokine. Furthermore, our findings suggest that the early systemic release of interleukin-6 and keratinocyte-derived chemokine may not necessarily predict an unfavorable outcome in this model.

  7. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    Science.gov (United States)

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  8. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Leptin Mediate High Fat Diet Sensitization of Angiotensin II-elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation

    Science.gov (United States)

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G.; Thunhorst, Robert L.; Felder, Robert B.; Johnson, Alan Kim

    2016-01-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin (Ang) II administration that is mediated at least in part by increased activity of brain renin-angiotensin system (RAS) and proinflammatory cytokines (PICs). The present study tested whether leptin mediates this HFD-induced sensitization of Ang II-elicited hypertension by interacting with brain RAS and PICs mechanisms. Rats fed a HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels and mRNA expression of leptin and its receptors in the lamina terminalis (LT) and hypothalamic paraventricular nucleus (PVN). Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of Ang II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the AT1-R antagonist irbesartan, the TNF-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the RAS and PICs in the LT and PVN. The leptin antagonist and the inhibitors of AT1-R, TNF-α synthesis and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by leptin through upregulation of central RAS and PICs. PMID:27021010

  10. Blood brain barrier permeability and tPA-mediated neurotoxicity

    Science.gov (United States)

    Nassar, Taher; Yarovoi, Sergey; Rayan, Anwar; Lamensdorf, Itschak; Karakoveski, Michael; Vadim, Polianski; Fanne, Rami Abu; Jamal, Mahmud; Cines, Douglas B.; Higazi, Abd Al-Roof

    2015-01-01

    Tissue type plasminogen activator (tPA) induces neuronal apoptosis, disrupt the blood-brain-barrier (BBB), and promotes dilation of the cerebral vasculature. The timing, sequence and contributions of these and other deleterious effects of tPA and their contribution to post-ischemic brain damage after stroke, have not been fully elucidated. To dissociate the effects of tPA on BBB permeability, cerebral vasodilation and protease-dependent pathways, we developed several tPA mutants and PAI-1 derived peptides constructed by computerized homology modeling of tPA. Our data show that intravenous administration of human tPA to rats increases BBB permeability through a non-catalytic process, which is associated with reversible neurotoxicity, brain damage, edema, mortality and contributes significantly to its brief therapeutic window. Furthermore, our data show that inhibiting the effect of tPA on BBB function without affecting its catalytic activity, improves outcome and significantly extends its therapeutic window in mechanical as well as thromboembolic models of stroke. PMID:20060006

  11. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  12. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alkylation of Zwitterionic Thiooxalic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Manfred Michalik

    2001-05-01

    Full Text Available The new S-alkyl thiooxal-1-hydrazono-2-amidrazonium halides 2-4 were synthesized by reaction of the corresponding zwitterionic thiooxalic acid derivatives 1 with alkyl halides in methanol. The structures of compounds 4b and 4d were proven by X-ray structural analysis. Both compounds form an interesting intermolecular network of hydrogen bonds in the solid state.

  14. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  15. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Laura Camacho

    Full Text Available Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM versus non-brain metastatic (non-BM cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210 and two down-regulated miRNAs (miR-19a and miR-29c in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  16. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling.

    Science.gov (United States)

    Trifunović, Jovana; Borčić, Vladan; Vukmirović, Saša; Kon, Svetlana Goločorbin; Mikov, Momir

    2016-09-20

    Information on ADME properties of examined bile acids and their oxo derivatives are scarce, although the interest for bile acids and their use in nanochemistry and macromolecular chemistry is increasing. The purpose of this research was to evaluate the lipophilicity, a crucial physicochemical parameter for describing ADME properties of selected bile acids and their oxo derivatives, and to compare two approaches: experimentally determined hydrophobicity parameters and calculated logP values. Commercially available bile acids - deoxycholic, chenodeoxycholic, hyodeoxycholic and ursodeoxycholic acid were used to synthesize oxo derivatives. Lipophilicity was evaluated in two solvent systems: toluene/ethanol and toluene/butanol. Retention parameters were acquired by normal-phase TLC. The correlations between calculated logP values obtained using five different software and experimentally determined hydrophobicity parameters (RM(0)(tol/eth), RM(0)(tol/but), b(tol/eth) and b(tol/but)) were examined. Correlation analysis confirmed significant dependence between experimental RM(0) values and software calculated parameters. Results suggest satisfactory intestinal absorption after oral administration for all of the examined compounds as well as low volumes of distribution, and high affinity for binding with plasma proteins. Penetration through blood-brain barrier and skin is not satisfactory. All of the examined compounds show high affinity for binding with G-protein coupled receptors and consequently inhibition of ionic channels. Results also suggest possible binding with nuclear receptors. Established lipophilicity testing model of studied compounds showed excellent predictive ability and might represent significant tool in development of relations between chromatographic behavior and ADME properties. Compounds 3α-hydroxy-7,12-dioxo-5β-cholanoic and 12α-hydroxy-3,7-dioxo-5β-cholanoic acid might be the most suitable candidates for further development studies (satisfactory

  17. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  19. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Osama H. Elshenawy

    2017-02-01

    Full Text Available Cytochrome P450-mediated metabolism of arachidonic acid (AA is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal 19 ischemia/reperfusion (I/R injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.

  20. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Science.gov (United States)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  1. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  2. Mechanisms of bile acid mediated inflammation in the liver.

    Science.gov (United States)

    Li, Man; Cai, Shi-Ying; Boyer, James L

    2017-08-01

    Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  4. Lung-Derived Mediators Induce Cytokine Production in Downstream Organs via an NF-κB-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    E. K. Patterson

    2013-01-01

    Full Text Available In the setting of acute lung injury, levels of circulating inflammatory mediators have been correlated with adverse outcomes. Previous studies have demonstrated that injured, mechanically ventilated lungs represent the origin of the host inflammatory response; however, mechanisms which perpetuate systemic inflammation remain uncharacterized. We hypothesized that lung-derived mediators generated by mechanical ventilation (MV are amplified by peripheral organs in a “feed forward” mechanism of systemic inflammation. Herein, lung-derived mediators were collected from 129X1/SVJ mice after 2 hours of MV while connected to the isolated perfused mouse lung model setup. Exposure of liver endothelial cells to lung-derived mediators resulted in a significant increase in G-CSF, IL-6, CXCL-1, CXCL-2, and MCP-1 production compared to noncirculated control perfusate media (P<0.05. Furthermore, inhibition of the NF-κB pathway significantly mitigated this response. Changes in gene transcription were confirmed using qPCR for IL-6, CXCL-1, and CXCL-2. Additionally, liver tissue obtained from mice subjected to 2 hours of in vivo MV demonstrated significant increases in hepatic gene transcription of IL-6, CXCL-1, and CXCL-2 compared to nonventilated controls. Collectively, this data demonstrates that lung-derived mediators, generated in the setting of MV, are amplified by downstream organs in a feed forward mechanism of systemic inflammation.

  5. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  6. Proportion of root-derived acid phosphomonoesterase in total soil acid phosphomonoesterase in different forests

    Directory of Open Access Journals (Sweden)

    Ladislav Holík

    2011-01-01

    Full Text Available Enzyme acid phosphomonoesterase (APM plays an important role in phosphorus mineralization in different type of terrestrial ecosystems. This enzyme is of great agronomic significance because it hydrolyses organic phosphorus to different forms of inorganic phosphorus which are assimilable by plants. APM may also indicate changes in the quantity and quality of phosphorylated substrates in soil and is a good indicator of its biological state as well as presence of pollutants. APM may be produced by plant roots and soil microorganisms and both of these sources may play different role in phosphorus mineralization in different ecosystems. The aim of this work was determine acid phosphomonoesterase (APM activity location in soil of different forest ecosystems. The APM activity location determination was performed on the basis of root-derived and soil-derived APM and expression of proportion of those root-derived in total soil APM up to 13 cm depth. The results of this preliminary study showed that root-derived APM formed 21–34 % of total soil APM in pine and oak forest.

  7. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment

    Science.gov (United States)

    Markworth, James F.; Vella, Luke; Lingard, Benjamin S.; Tull, Dedreia L.; Rupasinghe, Thusitha W.; Sinclair, Andrew J.; Maddipati, Krishna Rao

    2013-01-01

    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a

  8. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Keun Oh

    2014-09-01

    Full Text Available Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD. To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA, jasmonic acid (JA, and ethylene (ET in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  9. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  10. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  11. The hippocampal response to psychosocial stress varies with salivary uric acid level.

    Science.gov (United States)

    Goodman, Adam M; Wheelock, Muriah D; Harnett, Nathaniel G; Mrug, Sylvie; Granger, Douglas A; Knight, David C

    2016-12-17

    Uric acid is a naturally occurring, endogenous compound that impacts mental health. In particular, uric acid levels are associated with emotion-related psychopathology (e.g., anxiety and depression). Therefore, understanding uric acid's impact on the brain would provide valuable new knowledge regarding neural mechanisms that mediate the relationship between uric acid and mental health. Brain regions including the prefrontal cortex, amygdala, and hippocampus underlie stress reactivity and emotion regulation. Thus, uric acid may impact emotion by modifying the function of these brain regions. The present study used functional magnetic resonance imaging (fMRI) during a psychosocial stress task to investigate the relationship between baseline uric acid levels (in saliva) and brain function. Results demonstrate that activity within the bilateral hippocampal complex varied with uric acid concentrations. Specifically, activity within the hippocampus and surrounding cortex increased as a function of uric acid level. The current findings suggest that uric acid levels modulate stress-related hippocampal activity. Given that the hippocampus has been implicated in emotion regulation during psychosocial stress, the present findings offer a potential mechanism by which uric acid impacts mental health. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  13. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction.

    Science.gov (United States)

    Rodríguez-Serrano, Luis M; Ramírez-León, Betsabee; Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-12-01

    Brain-derived neurotrophic factor (BDNF) has emerged as one of the most potent molecular mediators not only for synaptic plasticity, but also for the behavioral organism-environment interactions. Our previous studies in the insular cortex (IC), a neocortical region that has been related with acquisition and retention of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the basolateral amygdaloid nucleus (Bla)-IC projection and enhances the retention of CTA memory of adult rats in vivo. The aim of the present study was to analyze whether acute BDNF-infusion in the IC modifies the extinction of CTA. Accordingly, animals were trained in the CTA task and received bilateral IC microinfusions of BDNF before extinction training. Our results showed that taste aversion was significantly reduced in BDNF rats from the first extinction trial. Additionally, we found that the effect of BDNF on taste aversion did not require extinction training. Finally we showed that the BDNF effect does not degrade the original taste aversion memory trace. These results emphasize that BDNF activity underlies memory extinction in neocortical areas and support the idea that BDNF is a key regulator and mediator of long-term synaptic modifications. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer.

    Science.gov (United States)

    Nagesh, Prashanth K B; Hatami, Elham; Chowdhury, Pallabita; Kashyap, Vivek K; Khan, Sheema; Hafeez, Bilal B; Chauhan, Subhash C; Jaggi, Meena; Yallapu, Murali M

    2018-03-07

    Endoplasmic reticulum (ER) stress is an intriguing target with significant clinical importance in chemotherapy. Interference with ER functions can lead to the accumulation of unfolded proteins, as detected by transmembrane sensors that instigate the unfolded protein response (UPR). Therefore, controlling induced UPR via ER stress with natural compounds could be a novel therapeutic strategy for the management of prostate cancer. Tannic acid (a naturally occurring polyphenol) was used to examine the ER stress mediated UPR pathway in prostate cancer cells. Tannic acid treatment inhibited the growth, clonogenic, invasive, and migratory potential of prostate cancer cells. Tannic acid demonstrated activation of ER stress response (Protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme 1 (IRE1)) and altered its regulatory proteins (ATF4, Bip, and PDI) expression. Tannic acid treatment affirmed upregulation of apoptosis-associated markers (Bak, Bim, cleaved caspase 3, and cleaved PARP), while downregulation of pro-survival proteins (Bcl-2 and Bcl-xL). Tannic acid exhibited elevated G₁ population, due to increase in p18 INK4C and p21 WAF1/CIP1 expression, while cyclin D1 expression was inhibited. Reduction of MMP2 and MMP9, and reinstated E-cadherin signifies the anti-metastatic potential of this compound. Altogether, these results demonstrate that tannic acid can promote apoptosis via the ER stress mediated UPR pathway, indicating a potential candidate for cancer treatment.

  15. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Antidiabetic Effect of Brain-Derived Neurotrophic Factor and Its Association with Inflammation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Ceren Eyileten

    2017-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a neurotrophin, which plays an important role in the central nervous system, and systemic or peripheral inflammatory conditions, such as acute coronary syndrome and type 2 diabetes mellitus (T2DM. BDNF is also expressed in several nonneuronal tissues, and platelets are the major source of peripheral BDNF. Here, we reviewed the potential role of BDNF in platelet reactivity in T2DM and its association with selected inflammatory and platelet activation mediators. Besides that, we focused on adipocytokines such as leptin, resistin, and adiponectin which are considered to take part in inflammation and both lipid and glucose metabolism in diabetic patients as previous studies showed the relation between adipocytokines and BDNF. We also reviewed the evidences of the antidiabetic effect of BDNF and the association with circulating inflammatory cytokines in T2DM.

  17. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  18. Photooxidative cleavage of 4(1H)-quinolinones to 2-acylaminobenzoic acids and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Staskun, B. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Chemistry); Foote, C.S. (California Univ., Los Angeles (USA). Dept. of Chemistry)

    1984-12-01

    4(1H)-Quinolinones undergo oxidative cleavage to afford the corresponding 2-acylaminobenzoic acids when subjected to dye-sensitized photooxygenation in methanol-aqueous sodium hydroxide solution. The derived 2-aminobenzoic acid was the predominant product in certain instances. The reaction, with singlet oxygen suggested as the active species, provides an alternative methodology for access to nuclear- substituted anthranilic acids and derivatives.

  19. Influence of omega-3 fatty acids from the flaxseed (Linum usitatissimum) on the brain development of newborn rats.

    Science.gov (United States)

    Lenzi Almeida, K C; Teles Boaventura, G; Guzmán Silva, M A

    2011-01-01

    The importance of essential fatty acids, in particular the omega-3 family, in the central nervous system development of newborns is well documented. The flaxseed (Linum usitatissimum) is considered one of the best vegetable sources of omega-3 fatty acids. The influence of omega-3 fatty acids from flaxseed on the brain development of newborn rats was evaluated. Pups of the F1 generation were obtained from 18 female Wistar rats divided in 3 groups (n=6), FG: fed with diet based on Flaxseed added with casein, CG: Casein, and MCG: Modified Casein supplemented with fibers and soybean oil. Newborn pups were weighted and submitted to euthanasia; brains were collected for evaluation of weight and lipid profile through gaseous chromatography. Significant increase in brain weight (39%) and relative brain weight (37%) was verified in pups from mothers fed with flaxseed diet. The omega-3 (n-3) fatty acids from the flaxseed were found in abundance in the diet made with this oleaginous and also significant increase in docosahexaenoic acid (DHA) (38%), as well as in total of omega-3 (n-3) fatty acids (62%). Maternal diet of flaxseed during pregnancy influences the incorporation of omega-3 fatty acid in the composition of brain tissue, assuring a good development of this organ in newborn rats.

  20. Valproic acid potentiates curcumin-mediated neuroprotection in Lipopolysaccharide induced rats

    Directory of Open Access Journals (Sweden)

    Amira eZaky

    2014-10-01

    Full Text Available The etiology of neuroinflammation is complex and comprises multifactorial, involving both genetic and environmental factors during which diverse genetic and epigenetic modulations are implicated. Curcumin (Cur, and valproic acid (VPA, histone deacetylase 1 inhibitor, have neuroprotective effects. The present study was designed with an aim to investigate the ability of co-treatment of both compounds (Cur or VPA (200mg/kg for four weeks to augment neuroprotection and enhance brain recovery from intra-peritoneal (IP injection of (250 µg/kg lipopolysaccharide (LPS-stimulated neuroinflammatory condition on rat brain cortex. Cortex activation and the effects of combined treatment and production of proinflammatory mediators, COX-2, APE1 and nitric oxide/iNOS were investigated. Neuroinflammation development was assessed by histological analyses and by investigating associated indices (BACE1, APP, PSEN-1 and PSEN-2. Furthermore we measured the expression profile of let-7 miRNAs members a, b, c, e and f in all groups, a highly abundant regulator of gene expression in the CNS. Protein and mRNA levels of neuroinflammation markers COX-2, BACE1, APP and iNOS were also attenuated by combined therapy. On the other hand, assessment of the indicated five let-7 members, showed distinct expression profile pattern in the different groups. Let-7 a, b and c disappeared in the induced group, an effect that was partially suppressed by co-addition of either Cur or VPA. These data suggest that the combined treatment induced significantly the expression of the five members when compared to rats treated with Cur or VPA only as well as to self-recovery group, which indicates a possible benefit from the synergistic effect of Cur-VPA combination as therapeutic agents for neuroinflammation and its associated disorders. The mechanism elucidated here highlights the particular drug-induced expression profile of let-7 family as new targets for future pharmacological development.

  1. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  2. The Modification of Cellulosic Surface with Fatty Acids via Plasma Mediated Reactions

    Science.gov (United States)

    Nada, Ahmed Ali Ahmed

    Much attention has been paid recently to understand the healing process made by the human body, in order to develop new approaches for promoting healing. The wound healing process includes four main phases, namely, hemostatic, inflammatory, proliferation, and remodeling, which take place successively. The human body can provide all the requirements of the healing process in normal wounds, unless there is a kind of deficiency of the skin function or massive fluid losses of vast wounds. Therefore, wound care of non-healing wounds has recently been the growing concern of many applications. The goal of this work is to explore the development of a new cellulose-based wound dressing composite that contain or release wound healing agents attained via dry textile chemical finishing techniques (thermal curing-plasma treatment). The synthesis of different wound healing agents derived from fatty acids and attached chemically to cellulose or even delivered through cyclodextrine modified cellulose are reported in this work. First, free fatty acids, which are obtained from commercial vegetable oils, were identified as wound healing agents. Many of these free acids are known to bind with and deactivate the proteases associated with inflammation at a wound site. Linoleic acid is extracted from commercial products of safflower seed oil while ricinoleic acid is obtained from castor oil. Conjugated linoleic acid was synthesized. Un-conjugated linoleic acid was used to prepare two derivatives namely linoleic azide and allylic ketone of linoleic acid. Different cellulose derivatives such as cellulose peroxide, iododeoxycellulose and cellulose diazonium salt in different degree of substitutions were synthesized in order to facilitate the free radical reaction with the fatty acid derivatives. New modified cellulosic products were synthesized by reacting the cellulosic and the linoleic acid derivatives via thermal or plasma technique and characterized by FT-IR ATR, the wettability test

  3. Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability

    Directory of Open Access Journals (Sweden)

    M. Catarina Silva

    2016-09-01

    Full Text Available Frontotemporal dementia (FTD and other tauopathies characterized by focal brain neurodegeneration and pathological accumulation of proteins are commonly associated with tau mutations. However, the mechanism of neuronal loss is not fully understood. To identify molecular events associated with tauopathy, we studied induced pluripotent stem cell (iPSC-derived neurons from individuals carrying the tau-A152T variant. We highlight the potential of in-depth phenotyping of human neuronal cell models for pre-clinical studies and identification of modulators of endogenous tau toxicity. Through a panel of biochemical and cellular assays, A152T neurons showed accumulation, redistribution, and decreased solubility of tau. Upregulation of tau was coupled to enhanced stress-inducible markers and cell vulnerability to proteotoxic, excitotoxic, and mitochondrial stressors, which was rescued upon CRISPR/Cas9-mediated targeting of tau or by pharmacological activation of autophagy. Our findings unmask tau-mediated perturbations of specific pathways associated with neuronal vulnerability, revealing potential early disease biomarkers and therapeutic targets for FTD and other tauopathies.

  4. The hippocampal response to psychosocial stress varies with salivary uric acid level

    Science.gov (United States)

    Goodman, Adam M.; Wheelock, Muriah D.; Harnett, Nathaniel G.; Mrug, Sylvie; Granger, Douglas A.; Knight, David C.

    2016-01-01

    Uric acid is a naturally occurring, endogenous compound that impacts mental health. In particular, uric acid levels are associated with emotion-related psychopathology (e.g., anxiety and depression). Therefore, understanding uric acid’s impact on the brain would provide valuable new knowledge regarding neural mechanisms that mediate the relationship between uric acid and mental health. Brain regions including the prefrontal cortex, amygdala, and hippocampus underlie stress reactivity and emotion regulation. Thus, uric acid may impact emotion by modifying the function of these brain regions. The present study used functional magnetic resonance imaging (fMRI) during a psychosocial stress task to investigate the relationship between baseline uric acid levels (in saliva) and brain function. Results demonstrate that activity within the bilateral hippocampal complex varied with uric acid concentrations. Specifically, activity within the hippocampus and surrounding cortex increased as a function of uric acid level. The current findings suggest that uric acid levels modulate stress-related hippocampal activity. Given that the hippocampus has been implicated in emotion regulation during psychosocial stress, the present findings offer a potential mechanism by which uric acid impacts mental health. PMID:27725214

  5. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  6. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  7. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a multifactorial age-related disease associated with oxidative stress (OS and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative, and AntiOxBEN2 (pyrogallol derivative and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively, while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively. Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y and human hepatocarcinoma (HepG2 cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  8. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    Science.gov (United States)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  9. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle

    DEFF Research Database (Denmark)

    Pedersen, Line; Holkmann Olsen, Caroline; Pedersen, Bente Klarlund

    2012-01-01

    Serum levels and muscle expression of the chemokine CXCL1 increase markedly in response to exercise in mice. Because several studies have established muscle-derived factors as important contributors of metabolic effects of exercise, this study aimed at investigating the effect of increased expres...... in muscle angiogenesis. In conclusion, our data show that overexpression of CXCL1 within a physiological range attenuates diet-induced obesity, likely mediated through a CXCL1-induced improvement of fatty acid oxidation and oxidative capacity in skeletal muscle tissue....

  10. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  11. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors.

    Science.gov (United States)

    Wang, Z; Liu, Q; Zhang, R; Liu, S; Xia, Z; Hu, Y

    2009-11-10

    The purpose of this work is to study the effect of catalpol, an iridoid from Rehmannia glutinosa on neurodegenerative changes induced by beta-amyloid peptide Abeta(25-35) or Abeta(25-35)+ibotenic acid and the underlying mechanism. Results showed that catalpol significantly improved the memory deficits in the neurodegenerative mouse model produced by injection of Abeta(25-35)+ibotenic acid to the nucleus magnocellularis basalis, yet it is neither a cholinesterase inhibitor nor a muscarinic (M) receptor agonist. Instead, the choline acetyl transferase (ChAT) activity and the M receptor density in brain were significantly decreased in the model mice and catalpol could significantly elevate their levels. Furthermore, the brain-derived neurotrophic factor (BDNF) content in brain was significantly decreased in the model mice and catalpol elevated it to normal level (83%+/-3% and 102%+/-2% of normal respectively). There is a significant positive correlation between BDNF content and memory. Primary culture of forebrain neurons revealed that aggregated Abeta(25-35) induced significant decrease of ChAT positive neuron number, neurite outgrowth length, and M receptor density, while catalpol added to the culture medium 2 h prior to Abeta addition showed significant dose dependent protective effect. Notably, 24 h and 48 h after the addition of Abeta to the cultured cells, the BDNF mRNA level in the neurons decreased to 76%+/-7% and 66%+/-3% of control without catalpol treatment, but became 128%+/-17% and 131%+/-23% of control with catalpol treatment. When the action of BDNF was inhibited by k252a in the cultured neurons, the protective effect of catalpol was completely (neurite outgrowth length) or partially (ChAT positive neuron number and the M receptor density) abolished. Taken together, catalpol improves memory and protects the forebrain neurons from neurodegeneration through increasing BDNF expression. Whether catalpol could reverse the neurodegenerative changes already

  12. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  13. [Brain oedema and acute liver failure].

    Science.gov (United States)

    Spahr, L

    2003-04-01

    Brain oedema leading to intracranial hypertension occurs in a significant proportion of patients with acute liver failure in whom it is a leading cause of death. Although precise pathogenic mechanisms associated to this severe complication remain incompletely understood, increasing evidence points to gut-derived neurotoxins including ammonia as key mediators in cerebral osmotic and perfusion disturbances. The management of brain oedema and intracranial hypertension requires a multidisciplinar approach in a center where liver transplantation is available, as this option is the only treatment modality that provides improvement in outcome. This article reviews the most common causes of acute liver failure and the standard of supportive care management, and describes future potential therapeutic aspects of brain oedema and intracranial hypertension.

  14. Development and Validation of a HPTLC Method for Simultaneous Estimation of L-Glutamic Acid and γ-Aminobutyric Acid in Mice Brain.

    Science.gov (United States)

    Sancheti, J S; Shaikh, M F; Khatwani, P F; Kulkarni, Savita R; Sathaye, Sadhana

    2013-11-01

    A new robust, simple and economic high performance thin layer chromatographic method was developed for simultaneous estimation of L-glutamic acid and γ-amino butyric acid in brain homogenate. The high performance thin layer chromatographic separation of these amino acid was achieved using n-butanol:glacial acetic acid:water (22:3:5 v/v/v) as mobile phase and ninhydrin as a derivatising agent. Quantitation of the method was achieved by densitometric method at 550 nm over the concentration range of 10-100 ng/spot. This method showed good separation of amino acids in the brain homogenate with Rf value of L-glutamic acid and γ-amino butyric acid as 21.67±0.58 and 33.67±0.58, respectively. The limit of detection and limit of quantification for L-glutamic acid was found to be 10 and 20 ng and for γ-amino butyric acid it was 4 and 10 ng, respectively. The method was also validated in terms of accuracy, precision and repeatability. The developed method was found to be precise and accurate with good reproducibility and shows promising applicability for studying pathological status of disease and therapeutic significance of drug treatment.

  15. Dietary guanidinoacetic acid does not accumulate in the brain of healthy men

    DEFF Research Database (Denmark)

    Ostojic, Sergej M.; Ostojic, Jelena

    2018-01-01

    analyzed for brain GAA and glutamate concentrations using TARQUIN 4.3.10 software. Brain GAA levels remained essentially unchanged at follow-up (an increase of 7.7% from baseline levels; 95% confidence interval, - 24.1% to 39.5%; P = 0.88) when averaged across 12 white and grey matter voxel locations......We conducted a secondary analysis of a previously completed trial to determine the effects of 8-week guanidinoacetic acid (GAA) loading on brain GAA levels in five healthy men. Brain magnetic resonance spectroscopy (1H-MRS) was taken at baseline and post-administration, with spectra additionally....... No significant changes were found for brain glutamate levels during the study (P = 0.64). Supplemental GAA appears to be safe intervention concerning brain GAA deposition, at least with GAA dosages used....

  16. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington's Disease.

    Science.gov (United States)

    Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B; Kazantsev, Aleksey G; Hersch, Steven

    2016-12-15

    Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.

  17. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  18. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?

    Science.gov (United States)

    Stilling, Roman M; van de Wouw, Marcel; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2016-10-01

    Several lines of evidence suggest that brain function and behaviour are influenced by microbial metabolites. Key products of the microbiota are short-chain fatty acids (SCFAs), including butyric acid. Butyrate is a functionally versatile molecule that is produced in the mammalian gut by fermentation of dietary fibre and is enriched in butter and other dairy products. Butyrate along with other fermentation-derived SCFAs (e.g. acetate, propionate) and the structurally related ketone bodies (e.g. acetoacetate and d-β-hydroxybutyrate) show promising effects in various diseases including obesity, diabetes, inflammatory (bowel) diseases, and colorectal cancer as well as neurological disorders. Indeed, it is clear that host energy metabolism and immune functions critically depend on butyrate as a potent regulator, highlighting butyrate as a key mediator of host-microbe crosstalk. In addition to specific receptors (GPR43/FFAR2; GPR41/FFAR3; GPR109a/HCAR2) and transporters (MCT1/SLC16A1; SMCT1/SLC5A8), its effects are mediated by utilisation as an energy source via the β-oxidation pathway and as an inhibitor of histone deacetylases (HDACs), promoting histone acetylation and stimulation of gene expression in host cells. The latter has also led to the use of butyrate as an experimental drug in models for neurological disorders ranging from depression to neurodegenerative diseases and cognitive impairment. Here we provide a critical review of the literature on butyrate and its effects on multiple aspects of host physiology with a focus on brain function and behaviour. We find fundamental differences in natural butyrate at physiological concentrations and its use as a neuropharmacological agent at rather high, supraphysiological doses in brain research. Finally, we hypothesise that butyrate and other volatile SCFAs produced by microbes may be involved in regulating the impact of the microbiome on behaviour including social communication. Copyright © 2016 Elsevier Ltd. All

  19. Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition.

    Science.gov (United States)

    Jones, Sara E; Whitehead, Kristi; Saulnier, Delphine; Thomas, Carissa M; Versalovic, James; Britton, Robert A

    2011-01-01

    Although commensal microbes have been shown to modulate host immune responses, many of the bacterial factors that mediate immune regulation remain unidentified. Select strains of human-derived Lactobacillus reuteri synthesize immunomodulins that potently inhibit production of the inflammatory cytokine TNF. In this study, genetic and genomic approaches were used to identify and investigate L. reuteri genes required or human TNF immunomodulatory activity. Analysis of membrane fatty acids from multiple L. reuteri strains cultured in MRS medium showed that only TNF inhibitory strains produced the cyclopropane fatty acid (CFA) lactobacillic acid. The enzyme cyclopropane fatty acid synthase is required for synthesis of CFAs such as lactobacillic acid, therefore the cfa gene was inactivated and supernatants from the cfa mutant strain were assayed for TNF inhibitory activity. We found that supernatants from the wild-type strain, but not the cfa mutant, suppressed TNF production by activated THP-1 human monocytoid cells Although this suggested a direct role for lactobacillic acid in immunomodulation, purified lactobacillic acid did not suppress TNF at physiologically relevant concentrations. We further analyzed TNF inhibitory and TNF non-inhibitory strains under different growth conditions and found that lactobacillic acid production did not correlate with TNF inhibition. These results indicate that cfa indirectly contributed to L. reuter immunomodulatory activity and suggest that other mechanisms, such as decreased membrane fluidity or altered expression of immunomodulins, result in the loss of TNF inhibitory activity. By increasing our understanding of immunomodulation by probiotic species, beneficial microbes can be rationally selected to alleviate intestinal inflammation.

  20. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation.

    Science.gov (United States)

    Achariyar, Thiyagaragan M; Li, Baoman; Peng, Weiguo; Verghese, Philip B; Shi, Yang; McConnell, Evan; Benraiss, Abdellatif; Kasper, Tristan; Song, Wei; Takano, Takahiro; Holtzman, David M; Nedergaard, Maiken; Deane, Rashid

    2016-12-08

    Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it's expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student's t- test. We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Thus, choroid plexus

  1. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  2. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    Directory of Open Access Journals (Sweden)

    Luis Chícharo

    2008-08-01

    Full Text Available Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1 at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2 at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3 at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems.

  3. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  4. Nutrition in brain development and aging: role of essential fatty acids.

    Science.gov (United States)

    Uauy, Ricardo; Dangour, Alan D

    2006-05-01

    The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.

  5. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line.

    Science.gov (United States)

    Fujiwara, Yuki; Miyazaki, Wataru; Koibuchi, Noriyuki; Katoh, Takahiko

    2018-01-01

    Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA), which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF), an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP), and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.

  6. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line

    Directory of Open Access Journals (Sweden)

    Yuki Fujiwara

    2018-02-01

    Full Text Available Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA, which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF, an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP, and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.

  7. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  8. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    is well known, however endothelial cells may also play an important role through mediating brain-to-blood L-glutamate efflux. Expression of excitatory amino acid transporters has been demonstrated in brain endothelial cells of bovine, human, murine, rat and porcine origin. These can account for high...... affinity concentrative uptake of L-glutamate from the brain interstitial fluid into the capillary endothelial cells. The mechanisms in between L-glutamate uptake in the endothelial cells and L-glutamate appearing in the blood are still unclear and may involve a luminal transporter for L......-glutamate, metabolism of L-glutamate and transport of metabolites or a combination of the two. However, both in vitro and in vivo studies have demonstrated blood-to-brain transport of L-glutamate, at least during pathological events. This review summarizes the current knowledge on the brain-to-blood L-glutamate efflux...

  9. Acyl Meldrum's acid derivatives: application in organic synthesis

    International Nuclear Information System (INIS)

    Janikowska, K; Rachoń, J; Makowiec, S

    2014-01-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references

  10. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  11. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  12. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    Science.gov (United States)

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-01

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  13. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    Science.gov (United States)

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Benefits of Docosahexaenoic Acid, Folic Acid, Vitamin D and Iodine on Foetal and Infant Brain Development and Function Following Maternal Supplementation during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Nancy L. Morse

    2012-07-01

    Full Text Available Scientific literature is increasingly reporting on dietary deficiencies in many populations of some nutrients critical for foetal and infant brain development and function. Purpose: To highlight the potential benefits of maternal supplementation with docosahexaenoic acid (DHA and other important complimentary nutrients, including vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or infant brain development and/or function. Methods: English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies were obtained through searches on MEDLINE and the Cochrane Register of Controlled Trials from January 2000 through to February 2012 and reference lists of retrieved articles. Reports were selected if they included benefits and harms of maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during pregnancy and/or lactation. Results: Maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function. Conclusion: Maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring.

  15. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emeĺyanenko, Vladimir N.; Stepurko, Elena N.; Zherikova, Kseniya V.

    2015-01-01

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  16. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Zaitsau, Dzmitry H. [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Emeĺyanenko, Vladimir N. [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Stepurko, Elena N. [Chemistry Faculty and Research Institute for Physical Chemical Problems, Belarusian State University, 220030 Minsk (Belarus); Zherikova, Kseniya V. [Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-12-20

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  17. Disposition of naphthalene and its metabolites in the brain of rainbow trout (Salmo gairdneri)

    International Nuclear Information System (INIS)

    Collier, T.K.; Krahn, M.M.; Malins, D.C.

    1980-01-01

    Rainbow trout (Salmo gairdneri) were exposed to orally administered [ 3 H]naphthalene. Another group received naphthyl glucuronic acid and naphthyl sulfate via iv injection. Brain, liver, and blood were assayed for the parent compound and/or total metabolites. Individual naphthalene derivatives were determined by high-performance liquid chromatography (hplc) using either radiometric or on-line fluorimetric detection systems. Naphthalene concentrations in brain (8.2 pmol/mg dry wt at 16 hr after feeding) approximated those found at the same time in liver (7.4 pmol/mg dry wt). A nonconjugated naphthalene derivative, 1,2-dihydro-1,2-dihydroxynaphthalene, also accumulated in brain (0.041 pmol/mg dry wt after 16 hr), although to a lesser degree than in liver (0.10 pmol/mg dry wt after 16 hr). Conjugated naphthalene derivatives, 1-naphthyl sulfate and 1-naphthyl glucuronic acid, although present in liver and blood, were largely excluded from the brain. Low naphthalene hydroxylase activity (<2.0 pmol product formed/mg protein/min) indicated that the trout brain has a minimal ability to oxidize aromatic hydrocarbons. These findings suggest that the brain of adult trout is substantially different from other tissues (e.g., liver and blood) with respect to the disposition of naphthalene and its metabolites

  18. Mass spectrometric studies of stable isotope-labelled carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Andersson, B.Aa.; Dinger, F.; Dinh-Nguyen, N.

    1975-01-01

    Low resolution mass spectra of deuterium and carbon-13 labelled fatty acid pyrrolidides are discussed. The simple fragmentation pattern of pyrrolidides makes them superior to other derivatives, regarding location of isotopes. Deuteriation of ethylenic fatty acid pyrrolidides therefore seems to be an improved method to locate carbon-carbon double bonds by mass spectrometry. (author)

  19. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    Science.gov (United States)

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  20. Repetitive Hyperbaric Oxygenation Attenuates Reactive Astrogliosis and Suppresses Expression of Inflammatory Mediators in the Rat Model of Brain Injury

    Directory of Open Access Journals (Sweden)

    Irena Lavrnja

    2015-01-01

    Full Text Available The exact mechanisms by which treatment with hyperbaric oxygen (HBOT exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI. CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein, vimentin, and ICAM-1 (intercellular adhesion molecule-1 both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.

  1. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  2. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  3. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...... autoradiography on sections of pig brain was performed using [(3)H]HOCPCA. In vivo evaluation of [(11)C]HOCPCA showed no brain uptake, possibly due to a limited uptake of HOCPCA by the MCT1 transporter at tracer doses of [(11)C]HOCPCA....

  5. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice

    OpenAIRE

    Sugasini, Dhavamani; Thomas, Riya; Yalagala, Poorna C. R.; Tai, Leon M.; Subbaiah, Papasani V.

    2017-01-01

    Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysopho...

  6. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania; Rocchi, A.; Cesca, F.; Tan, H.; Miele, E.; Giugni, Andrea; Orlando, M.; Perrone Donnorso, M.; Perozziello, G.; Benfenati, Fabio; Di Fabrizio, Enzo M.

    2018-01-01

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  7. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration

    KAUST Repository

    Limongi, Tania

    2018-04-04

    Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging from tunable distension or shrinkage to total dissolution, depending on the function they are designed for. In this paper we present a biocompatible microfabricated poly-ε-caprolactone (PCL) scaffold for primary neuron growth and maturation that has been optimized for the in vitro controlled release of brain-derived neurotrophic factor (BDNF). We demonstrate that the designed morphology confers to these devices an enhanced drug delivery capability with respect to monolithic unstructured supports. After incubation with BDNF, micropillared PCL devices progressively release the neurotrophin over 21 days in vitro. Moreover, the bioactivity of released BDNF is confirmed using primary neuronal cultures, where it mediates a consistent activation of BDNF signaling cascades, increased synaptic density, and neuronal survival. These results provide the proof-of-principle on the fabrication process of micropatterned PCL devices, which represent a promising therapeutic option to enhance neuronal regeneration after lesion and for neural tissue engineering and prosthetics.

  8. Mixed acid-base disorder secondary to topiramate use in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S Golla

    2016-01-01

    Full Text Available We report a case of a man with traumatic brain injury. He was started on to prophylactic topiramate which led to a mixed acid-base disorder. He had severe metabolic acidosis secondary to renal tubular acidification defect and respiratory alkalosis secondary to hyperventilation. Withdrawal of the offending drug led to the prompt resolution of the acid-base disturbance.

  9. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids.

    Science.gov (United States)

    Rodrigues, Marieli O; Cantos, Jéssica B; D'Oca, Caroline R Montes; Soares, Karina L; Coelho, Tatiane S; Piovesan, Luciana A; Russowsky, Dennis; da Silva, Pedro A; D'Oca, Marcelo G Montes

    2013-11-15

    This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events.

    Science.gov (United States)

    Luby, Joan; Belden, Andy; Botteron, Kelly; Marrus, Natasha; Harms, Michael P; Babb, Casey; Nishino, Tomoyuki; Barch, Deanna

    2013-12-01

    IMPORTANCE The study provides novel data to inform the mechanisms by which poverty negatively impacts childhood brain development. OBJECTIVE To investigate whether the income-to-needs ratio experienced in early childhood impacts brain development at school age and to explore the mediators of this effect. DESIGN, SETTING, AND PARTICIPANTS This study was conducted at an academic research unit at the Washington University School of Medicine in St Louis. Data from a prospective longitudinal study of emotion development in preschool children who participated in neuroimaging at school age were used to investigate the effects of poverty on brain development. Children were assessed annually for 3 to 6 years prior to the time of a magnetic resonance imaging scan, during which they were evaluated on psychosocial, behavioral, and other developmental dimensions. Preschoolers included in the study were 3 to 6 years of age and were recruited from primary care and day care sites in the St Louis metropolitan area; they were annually assessed behaviorally for 5 to 10 years. Healthy preschoolers and those with clinical symptoms of depression participated in neuroimaging at school age/early adolescence. EXPOSURE Household poverty as measured by the income-to-needs ratio. MAIN OUTCOMES AND MEASURES Brain volumes of children's white matter and cortical gray matter, as well as hippocampus and amygdala volumes, obtained using magnetic resonance imaging. Mediators of interest were caregiver support/hostility measured observationally during the preschool period and stressful life events measured prospectively. RESULTS Poverty was associated with smaller white and cortical gray matter and hippocampal and amygdala volumes. The effects of poverty on hippocampal volume were mediated by caregiving support/hostility on the left and right, as well as stressful life events on the left. CONCLUSIONS AND RELEVANCE The finding that exposure to poverty in early childhood materially impacts brain

  11. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: Relationship to the neutral amino acid carrier

    International Nuclear Information System (INIS)

    Aschner, M.

    1989-01-01

    To investigate the effect of L-neutral amino acids on tissue levels of methyl mercury in the adult animal, rats were infused into the external jugular vein with solutions containing a) 0.05 mM 203 Hg-MeHgCl and saline, b) 0.05 mM 203 Hg-MgHgCl-0.1 mM L-cysteine, c) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-methionine, d) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-leucine, or e) 0.05 mM 203 Hg-MeHgCl-0.1 mM L-cysteine-0.1 mM L-leucine. Groups of animals were sacrificed at 3 min. 7 hr, and 96 hr. Brain, kidney, and liver 203 Hg radioactivity was measured by means of gamma-scintillation spectrometry. Brain 203 Hg concentrations L-cysteine treated animals were significantly higher compared with saline treated animals (P 203 Hg uptake (P 203 Hg concentrations were not significantly different in any of the treatment groups compared with controls, irrespective of the sacrifice time. Furthermore, the percentage of diffusible 203 Hg (non-protein bound) at each sacrifice time was not statistically different irrespective of the treatment assigned. These results suggest that methyl mercury L-cysteine conjugates in the plasma may share a common transport step with the L-neutral amino acid carrier transport system and indicate the presence in brain capillaries of a transport system capable of selectively mediating methyl mercury uptake across the capillary endothelial cell membrane. (author)

  12. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism.

    Science.gov (United States)

    Zheng, P; Zeng, B; Zhou, C; Liu, M; Fang, Z; Xu, X; Zeng, L; Chen, J; Fan, S; Du, X; Zhang, X; Yang, D; Yang, Y; Meng, H; Li, W; Melgiri, N D; Licinio, J; Wei, H; Xie, P

    2016-06-01

    Major depressive disorder (MDD) is the result of complex gene-environment interactions. According to the World Health Organization, MDD is the leading cause of disability worldwide, and it is a major contributor to the overall global burden of disease. However, the definitive environmental mechanisms underlying the pathophysiology of MDD remain elusive. The gut microbiome is an increasingly recognized environmental factor that can shape the brain through the microbiota-gut-brain axis. We show here that the absence of gut microbiota in germ-free (GF) mice resulted in decreased immobility time in the forced swimming test relative to conventionally raised healthy control mice. Moreover, from clinical sampling, the gut microbiotic compositions of MDD patients and healthy controls were significantly different with MDD patients characterized by significant changes in the relative abundance of Firmicutes, Actinobacteria and Bacteroidetes. Fecal microbiota transplantation of GF mice with 'depression microbiota' derived from MDD patients resulted in depression-like behaviors compared with colonization with 'healthy microbiota' derived from healthy control individuals. Mice harboring 'depression microbiota' primarily exhibited disturbances of microbial genes and host metabolites involved in carbohydrate and amino acid metabolism. This study demonstrates that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host's metabolism.

  13. Rapid Modulation of Aromatase Activity in the Vertebrate Brain

    Directory of Open Access Journals (Sweden)

    Thierry D. Charlier

    2013-01-01

    Full Text Available Numerous steroid hormones, including 17β-estradiol (E2, activate rapid and transient cellular, physiological, and behavioral changes in addition to their well-described genomic effects. Aromatase is the key-limiting enzyme in the production of estrogens, and the rapid modulation of this enzymatic activity could produce rapid changes in local E2 concentrations. The mechanisms that might mediate such rapid enzymatic changes are not fully understood but are currently under intense scrutiny. Recent studies in our laboratory indicate that brain aromatase activity is rapidly inhibited by an increase in intracellular calcium concentration resulting from potassium-induced depolarization or from the activation of glutamatergic receptors. Phosphorylating conditions also reduce aromatase activity within minutes, and this inhibition is blocked by the addition of multiple protein kinase inhibitors. This rapid modulation of aromatase activity by phosphorylating conditions is a general mechanism observed in different cell types and tissues derived from a variety of species, including human aromatase expressed in various cell lines. Phosphorylation processes affect aromatase itself and do not involve changes in aromatase protein concentration. The control of aromatase activity by multiple kinases suggests that several amino acids must be concomitantly phosphorylated to modify enzymatic activity but site-directed mutagenesis of several amino acids alone or in combination has not to date revealed the identity of the targeted residue(s. Altogether, the phosphorylation processes affecting aromatase activity provide a new general mechanism by which the concentration of estrogens can be rapidly altered in the brain.

  14. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    Science.gov (United States)

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, PDHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract.

    Science.gov (United States)

    Krumbeck, Janina A; Marsteller, Nathan L; Frese, Steven A; Peterson, Daniel A; Ramer-Tait, Amanda E; Hutkins, Robert W; Walter, Jens

    2016-07-01

    Rodent-derived strains of Lactobacillus reuteri densely colonize the forestomach of mice and possess several genes whose predicted functions constitute adaptations towards an acidic environment. The objective of this study was to systematically determine which genes of L. reuteri 100-23 contribute to tolerance towards host gastric acid secretion. Genes predicted to be involved in acid resistance were inactivated, and their contribution to survival under acidic conditions was confirmed in model gastric juice. Fitness of five mutants that showed impaired in vitro acid resistance were then compared through competition experiments in ex-germ-free mice that were either treated with omeprazole, a proton-pump inhibitor that suppresses acid secretion in the stomach, or left untreated. This analysis revealed that the urease cluster was the predominant factor in mediating resistance to gastric acid production. Population levels of the mutant, which were substantially decreased in untreated mice, were almost completely restored through omeprazole, demonstrating that urease production in L. reuteri is mainly devoted to overcome gastric acid. The findings provide novel information on the mechanisms by which L. reuteri colonizes its gastric niche and demonstrate that in silico gene predictions and in vitro tests have limitations for predicting the ecological functions of colonization factors in bacterial symbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Association between neurotrophin 4 and long-chain polyunsaturated fatty acid levels in mid-trimester amniotic fluid.

    Science.gov (United States)

    Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S

    2014-11-01

    The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.

  17. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  18. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  19. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain.

    Science.gov (United States)

    Nichols, Charles D; Sanders-Bush, Elaine

    2002-05-01

    Hallucinogenic drugs such as lysergic acid diethylamide (LSD) have profound effects on humans including hallucinations and detachment from reality. These remarkable behavioral effects have many similarities to the debilitating symptoms of neuropsychiatric disorders such as schizophrenia. The effects of hallucinogens are thought to be mediated by serotonin receptor activation; however, how these drugs elicit the unusual behavioral effects remains largely a mystery, despite much research. We have undertaken the first comprehensive analysis of gene expression influenced by acute LSD administration in the mammalian brain. These studies represent a novel approach to elucidate the mechanism of action of this class of drugs. We have identified a number of genes that are predicted to be involved in the processes of synaptic plasticity, glutamatergic signaling and cytoskeletal architecture. Understanding these molecular events will lead to new insights into the etiology of disorders whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs, and also may ultimately result in new therapies.

  20. Channel opening of γ-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    The function of γ-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36 Cl - isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36 Cl - influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36 Cl - influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate

  1. A new coruleoellagic acid derivative from stems of Rhodamnia dumetorum.

    Science.gov (United States)

    Lakornwong, Waranya; Kanokmedhakul, Kwanjai; Kanokmedhakul, Somdej

    2018-07-01

    A new coruleoellagic acid derivative, 3,3',4,4',5'-pentamethylcoruleoellagic acid (1) together with nine known compounds, hexamethylcoruleoellagic acid (2), 3,4,3'-tri-O-methylellagic acid (3), heptaphylline (4), 7-methoxymukonal (5), dentatin (6), sinapaldehyde (7), gallic acid (8), 2,6-dimethoxy-4H-pyran-4-one (9) and β-sitosterol (10) were isolated from the stems of Rhodamnia dumetorum. Their structures were identified by physical and spectroscopic data (IR, 1D and 2D NMR, and MS). Compounds 1, 2 and 7-10 were tested for antibacterial activity against six pathogenic bacterial strains (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Methicillin resistant S. aureus (MRSA)).

  2. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase.

    Science.gov (United States)

    Bhattacharjee, Payel; Bera, Indrani; Chakraborty, Subhamoy; Ghoshal, Nanda; Bhattacharyya, Debasish

    2017-11-01

    Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Dolgorev, A V; Serikov, Yu A; Zolotavin, V L

    1977-03-01

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V/sup 3 +/ forms yellow complexes of the composition 1:1 with instability constants 2.2x10/sup -19/, 7.8x10/sup -11/, and 2.2x10/sup -12/, respectively. Complexes of V/sup 3 +/ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4).

  4. Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine

    DEFF Research Database (Denmark)

    Artmann, Andreas; Petersen, Gitte; Hellgren, Lars

    2008-01-01

    and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high...... (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic...... acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum...

  5. Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid.

    Science.gov (United States)

    García-García, Alejandro G; Polo-Hernández, Erica; Tabernero, Arantxa; Medina, José M

    2015-10-22

    We have previously shown that serum albumin controls perinatal rat brain development through the regulation of oleic acid synthesis by astrocytes. In fact, oleic acid synthesized and released by astrocytes promoted neurite growth, neuron migration and the arrangement of prospective synapses. In this work we show that alpha-fetoprotein (AFP) is also present in the brain during embryonic development, its concentrations peaking at E15.5 and at E19.5. However, after E19.5 AFP concentrations plummeted concurrently with a sharp increase in serum albumin concentrations. At E15.5, AFP is present in caudal regions of the brain, particularly in brain areas undergoing differentiation during this period, such as the thalamic reticular nucleus of the thalamus, the hypothalamus, the amygdala and the hippocampus. Albumin was not detected in the brain at E15.5 but stained brain cells substantially on day E19.5, showing a very similar distribution to that of AFP under the same circumstances. The concentrations of free oleic acid in the brain were inversely correlated with those of AFP, suggesting that the signals elicited by AFP and oleic acid can be inversely associated. GAP-43, a marker of axonal growth that is highly expressed by the presence of oleic acid, was not co-localized with AFP except in the marginal zone and areas delimiting the subplate. AFP prevented the increase in GAP-43 expression caused by the presence of oleic acid in neurons in primary culture in vitro and in organotypic cultures of embryonic rat brain ex vivo, suggesting that AFP may modulate the effect of serum albumin on brain development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  7. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masaki, E-mail: mohno@hiroshima-u.ac.jp [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Ito, Masataka; Ohkura, Ryouichi [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Mino A, Esteban R. [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Nakai, Satoshi [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Kawata, Kuniaki [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Nishijima, Wataru [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan)

    2014-03-01

    Highlights: • Perfluorooctanoic acid (PFOA) was decomposed based on ferric ion performance. • Complete decomposition of PFOA was confirmed in strongly acidic conditions. • Fe{sup 2+} changed to Fe{sup 3+} to restore chemical equilibrium in this condition. • Fe{sup 3+} was only produced from Fe{sup 2+} by hydroxyl radical in weakly acidic conditions. • The Fe{sup 3+} regeneration mechanisms resulted in the performance of Fe{sup 3+} for PFOA. - Abstract: The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe{sup 3+} ion. Although Fe{sup 3+} ion is consumed and is transformed to Fe{sup 2+} ion by photochemical decomposition of PFOA and its intermediates, the produced Fe{sup 2+} ion will change to Fe{sup 3+} ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH){sup 2+}. At pH 3.7 or higher pH, Fe{sup 3+} ion will only be produced from the oxidation of Fe{sup 2+} ion by hydroxyl radical produced by Fe(OH){sup 2+} under UV irradiation. These different mechanisms of Fe{sup 3+} regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  8. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    Science.gov (United States)

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Effect of carbohydrate ingestion on brain exchange of amino acids during sustained exercise in human subjects

    DEFF Research Database (Denmark)

    Blomstrand, Eva; Møller, Kirsten; Secher, Niels Henry

    2005-01-01

    occasions; either supplemented with a 6% carbohydrate solution or with flavoured water (placebo). Catheters were inserted into the right internal jugular vein and the radial artery of the non-dominant arm. The brain exchange of amino acids during exercise was calculated from the arterial-jugular venous......AIM: This study investigated the effect of prolonged exercise with and without carbohydrate intake on the brain exchange of amino acids, especially focussing on tryptophan and branched-chain amino acids (BCAA). METHODS: Five male subjects exercised for 3 h on a cycle ergometer at 200 +/- 7 W on two...... concentration difference multiplied by plasma flow. RESULTS: About 106 micromol (22 mg) of tryptophan was taken up by the brain during exercise in the placebo trial, whereas no significant uptake was observed in the carbohydrate trial. In accordance, the arterial concentration of free tryptophan increased from...

  10. Neural computations mediating one-shot learning in the human brain.

    Directory of Open Access Journals (Sweden)

    Sang Wan Lee

    2015-04-01

    Full Text Available Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively "switched" on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a "switch," turning on and off one-shot learning as required.

  11. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives.

    Science.gov (United States)

    Chua, Lee Suan; Lau, Cher Haan; Chew, Chee Yung; Ismail, Nurul Izzati Mohd; Soontorngun, Nitnipa

    2018-01-15

    Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market. The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison. The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks. The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique. O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be

  12. Effects of the Brain-Derived Neurotrophic Factor Val66Met polymorphism and resting brain functional connectivity on individual differences in tactile cognitive performance in healthy young adults.

    Science.gov (United States)

    Yang, Xuejuan; Xu, Ziliang; Liu, Lin; Liu, Peng; Sun, Jinbo; Jin, Lingmin; Zhu, Yuanqiang; Fei, Ningbo; Qin, Wei

    2017-07-28

    Cognitive processes involve input from multiple sensory modalities and obvious differences in the level of cognitive function can be observed between individuals. Evidence to date understanding the biological basis of tactile cognitive variability, however, is limited compared with other forms of sensory cognition. Data from auditory and visual cognition research suggest that variations in both genetics and intrinsic brain function might contribute to individual differences in tactile cognitive performance. In the present study, by using the tactual performance test (TPT), a widely used neuropsychological assessment tool, we investigated the effects of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and resting-state brain functional connectivity (FC) on interindividual variability in TPT performance in healthy, young Chinese adults. Our results showed that the BDNF genotypes and resting-state FC had significant effects on the variability in TPT performance, together accounting for 32.5% and 19.1% of the variance on TPT total score and Memory subitem score respectively. Having fewer Met alleles, stronger anticorrelations between left posterior superior temporal gyrus and somatosensory areas (right postcentral gyrus and right parietal operculum cortex), and greater positive correlation between left parietal operculum cortex and left central opercular cortex, all correspond with better performance of TPT task. And FC between left parietal operculum cortex and left central opercular cortex might be a mediator of the relationship between BDNF genotypes and Memory subitem score. These data demonstrate a novel contribution of intrinsic brain function to tactile cognitive capacity, and further confirm the genetic basis of tactile cognition. Our findings might also explain the interindividual differences in cognitive ability observed in those who are blind and/or deaf from a new perspective. Copyright © 2017. Published by Elsevier Ltd.

  13. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Science.gov (United States)

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  14. Interactions of Neuropathogenic Escherichia coli K1 (RS218 and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    2014-01-01

    Full Text Available Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin, adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (IbeA, CNF1, metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (CNF1, metabolism (D-serine catabolism abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity.

  15. Brain-Derived Neurotrophic Factor Elevates Activating Transcription Factor 4 (ATF4 in Neurons and Promotes ATF4-Dependent Induction of Sesn2

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-03-01

    Full Text Available Activating transcription factor 4 (ATF4 plays important physiologic roles in the brain including regulation of learning and memory as well as neuronal survival and death. Yet, outside of translational regulation by the eIF2α-dependent stress response pathway, there is little information about how its levels are controlled in neurons. Here, we show that brain-derived neurotrophic factor (BDNF promotes a rapid and sustained increase in neuronal ATF4 transcripts and protein levels. This increase is dependent on tropomyosin receptor kinase (TrkB signaling, but independent of levels of phosphorylated eIF2α. The elevation in ATF4 protein occurs both in nuclei and processes. Transcriptome analysis revealed that ATF4 mediates BDNF-promoted induction of Sesn2 which encodes Sestrin2, a protector against oxidative and genotoxic stresses and a mTor complex 1 inhibitor. In contrast, BDNF-elevated ATF4 did not affect expression of a number of other known ATF4 targets including several with pro-apoptotic activity. The capacity of BDNF to elevate neuronal ATF4 may thus represent a means to maintain this transcription factor at levels that provide neuroprotection and optimal brain function without risk of triggering neurodegeneration.

  16. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  17. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  18. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Taiwo Betty Ayeleso

    2017-11-01

    Full Text Available The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.

  19. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  20. On the Toxicity of the Aromatic Diamines and their Tetramethylcarboxylic Acid Derivatives

    OpenAIRE

    Gili, Pedro; Mederos, Alfredo

    2000-01-01

    The use of the theoretical PALLAS 3.0 program, to study the toxic behaviour of tetramethylcarboxylic acids, potential pharmaceuticals derived from o-phenylenediamines, indicates that o-phenylenediamines are highly toxic (level 1), while the tetramethycarboxylic acid derivatives (o-PhDTA and 3,4-TDTA) are slightly toxic, similar to EDTA (level 3). Therefore these ligands o-PhDTA and 3,4-TDTA, similar to EDTA, can be used as sequestering agents of toxic metals and overload of essential metals i...

  1. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  2. Banana-shaped molecules derived from substituted isophthalic acids

    Indian Academy of Sciences (India)

    In this paper we present a review of five-rings banana-shaped molecules derived from isophthalic acids. This study deals with about a hundred compounds and most of them have not been published. By a combination of several linking groups and different selected substituents either on the outer rings or on the central core ...

  3. Ion-pair high performance liquid chromatographic retention behavior of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.W.; Chung, Y.S. [Chungbuk National University, Cheongju (Korea); Oh, S.K. [Handok Pharmaceuticals Co. Ltd., Chungbuk (Korea)

    1999-06-01

    The ion-pair high performance liquid chromatographic elution behavior of salicylic acid and its derivatives was studied with measuring capacity factor, k', changing the concentration of ion-pairing reagent (tetrabutylammonium chloride, TBACl) in mobile phase. As a result, it was found that k' of the samples increase at pH 7.2 as the TBACl concentration increase. The derivatives of salicylic acid were separated each other at an optimum mobile phase condition which was found from the observation of the retention behavior. The optimum mobile phase condition was methanol solution(MeOH:H{sub 2}O 30:70) containing 20 mM TBACl for the determination of salicylic acid and methanol solution (MeOH:H{sub 2}O 20:80) containing 40 mM TBACl for p-aminosalicylic acid at pH 7.2. The method has been applied for the analysis of the contents of salicylic acid derivatives in an aspirin tablet and a tuberculosis curing agent. 8 refs., 4 figs., 2 tabs.

  4. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  5. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice.

    Science.gov (United States)

    Yoneda, Mitsugu; Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Tanigami, Hayate; Yachie, Akihiro; Ohno-Shosaku, Takako; Shido, Osamu

    2017-01-01

    Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier.

    Science.gov (United States)

    Carpentier, M; Descamps, L; Allain, F; Denys, A; Durieux, S; Fenart, L; Kieda, C; Cecchelli, R; Spik, G

    1999-07-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein mainly located in intracellular vesicles and secreted in biological fluids. In previous works, we demonstrated that CyPB interacts with T lymphocytes and enhances in vitro cellular incorporation and activity of CsA. In addition to its immunosuppressive activity, CsA is able to promote regeneration of damaged peripheral nerves. However, the crossing of the drug from plasma to neural tissue is restricted by the relative impermeability of the blood-brain barrier. To know whether CyPB might also participate in the delivery of CsA into the brain, we have analyzed the interactions of CyPB with brain capillary endothelial cells. First, we demonstrated that CyPB binds to two types of binding sites present at the surface of capillary endothelial cells from various species of tissues. The first type of binding sites (K(D) = 300 nM; number of sites = 3 x 10(6)) is related to interactions with negatively charged compounds such as proteoglycans. The second type of binding sites, approximately 50,000 per cell, exhibits a higher affinity for CyPB (K(D) = 15 nM) and is involved in an endocytosis process, indicating it might correspond to a functional receptor. Finally, the use of an in vitro model of blood-brain barrier allowed us to demonstrate that CyPB is transcytosed by a receptor-mediated pathway (flux = 16.5 fmol/cm2/h). In these conditions, CyPB did not significantly modify the passage of CsA, indicating that it is unlikely to provide a pathway for CsA brain delivery.

  7. Meta-analysis of global transcriptomics reveals conserved genetic pathways of Quercetin and Tannic acid mediated longevity in C. elegans

    Directory of Open Access Journals (Sweden)

    Kerstin ePietsch

    2012-04-01

    Full Text Available Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension, lifespan extending or toxic. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published data sets derived from i longevity mutants or ii infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the formulation of mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, therefore seems to be a crucial regulator for both polyphenols.

  8. Differences in fatty acid composition between cerebral brain lobes in juvenile pigs after fish oil feeding

    NARCIS (Netherlands)

    Dullemeijer, Carla; Zock, Peter L.; Coronel, Ruben; den Ruijter, Hester M.; Katan, Martijn B.; Brummer, Robert-Jan M.; Kok, Frans J.; Beekman, Jet; Brouwer, Ingeborg A.

    2008-01-01

    Very long-chain n-3 PUFA from fish are suggested to play a role in the development of the brain. Fish oil feeding results in higher proportions of n-3 PUFA in the brains of newborn piglets. However, the effect of fish oil on the fatty acid composition of specific cerebral brain lobes in juvenile

  9. Formation and Characterization of Self-Assembled Phenylboronic Acid Derivative Monolayers toward Developing Monosaccaride Sensing-Interface

    Directory of Open Access Journals (Sweden)

    Kwangnak Koh

    2007-08-01

    Full Text Available We designed and synthesized phenylboronic acid as a molecular recognitionmodel system for saccharide detection. The phenylboronic acid derivatives that haveboronic acid moiety are well known to interact with saccharides in aqueous solution; thus,they can be applied to a functional interface of saccharide sensing through the formation ofself-assembled monolayer (SAM. In this study, self-assembled phenylboronic acidderivative monolayers were formed on Au surface and carefully characterized by atomicforce microscopy (AFM, Fourier transform infrared reflection absorption spectroscopy(FTIR-RAS, surface enhanced Raman spectroscopy (SERS, and surface electrochemicalmeasurements. The saccharide sensing application was investigated using surface plasmonresonance (SPR spectroscopy. The phenylboronic acid monolayers showed goodsensitivity of monosaccharide sensing even at the low concentration range (1.0 × 10-12 M.The SPR angle shift derived from interaction between phenylboronic acid andmonosaccharide was increased with increasing the alkyl spacer length of synthesizedphenylboronic acid derivatives.

  10. Dietary guanidinoacetic acid increases brain creatine levels in healthy men

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik

    2017-01-01

    OBJECTIVE: Guanidinoacetic acid (GAA) is an experimental dietary additive that might act as a creatine source in tissues with high-energy requirements. In this case study, we evaluated brain levels of creatine in white matter, gray matter, cerebellum, and thalamus during 8 wk oral GAA......, and 8 wk, the participants underwent brain magnetic resonance spectroscopy, clinical chemistry studies, and open-ended questionnaire for side-effect prevalence and severity. RESULTS: Brain creatine levels increased in similar fashion in cerebellum, and white and gray matter after GAA supplementation......, with an initial increase of 10.7% reported after 4 wk, and additional upsurge (7.7%) from the weeks 4 to 8 follow-up (P creatine levels decreased after 4 wk for 6.5% (P = 0.02), and increased nonsignificantly after 8 wk for 8% (P = 0.09). GAA induced an increase in N-acetylaspartate levels at 8...

  11. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara (Japan); Ishizuka, Tamotsu [Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Tsurumaki, Hiroaki [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Aoki, Haruka; Mogi, Chihiro [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo (Japan); Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Hisada, Takeshi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi (Japan); Yamada, Masanobu [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan)

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  12. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  13. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  14. Reversal learning enhanced by lysergic acid diethylamide (LSD): concomitant rise in brain 5-hydroxytryptamine levels.

    Science.gov (United States)

    King, A R; Martin, I L; Melville, K A

    1974-11-01

    1 Small doses of lysergic acid diethylamide (LSD) (12.5-50 mug/kg) consistently facilitated learning of a brightness discrimination reversal.2 2-Bromo-lysergic acid diethylamide (BOL-148), a structural analogue of LSD, with similar peripheral anti-5-hydroxytrypamine activity but no psychotomimetic properties, had no effect in this learning situation at a similar dose (25 mug/kg).3 LSD, but not BOL-148, caused a small but significant increase in brain 5-hydroxytryptamine levels, but had no effect on the levels of catecholamines in the brain at 25 mug/kg.

  15. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  16. Effect of Omega-3 Fatty Acids on Neurotransmitters Level in the Brain of Male Albino Rats Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Saada, H.N.; Said, U.Z.; Shedid, S.M.; Mahdy, E.M.E.; Elmezayen, H.E.

    2014-01-01

    The omega-3 fatty acids are essential dietary nutrients, and one of their important roles is providing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) for growth and function of nervous tissue. Reduced level of DHA in the brain induce dramatic changes in brain function including changes in size of neurons as well as changes in learning and memory. The objective of this study was to evaluate the role of fish oil rich in omega-3 fatty acids on γ-radiation-induced physiological changes in the brain cerebral hemispheres. Omega-3 fatty acids was supplemented daily by gavages to rats at a dose of 400 mg/ kg body wt for 7 days pre- and 21 days post-exposure to whole body fractionated gamma rays at doses of 2 Gy/week up to a total dose of 8 Gy. The results demonstrated that whole body γ-irradiation induced oxidative stress, de - creased the main polyunsaturated fatty acids; DHA and EPA, and induced neurotransmitters alteration in brain tissues. Oxidative stress was manifested by a significant increase in lipid peroxidation product malondialdehyde (MDA) and decrease in the activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Oxidative stress was accompanied by alterations in the level of the neurotransmitters manifested by a significant increase of glutamic and aspartic and a significant decrease of serotonin (5-HT) levels in brain cerebral hemispheres. Rats receiving fish oil 7 days before and 21 days after exposure to γ-radiation showed significant improvement in the levels of EPA and DHA associated with significant amelioration of oxidative stress and neurotransmitters alteration. It is concluded that fish oil protect the brain from radiation-induced physiological changes by protecting brain cellular membranes through counteracting the decrease of omega-3 fatty acids and minimizing oxidative stress

  17. The study on transport of brain-derived neurotrophic factor in facial nerve

    International Nuclear Information System (INIS)

    Li Yunchun; Li Lin; Wang Quanlin; Yang Xiaochuan; He Gang; Gao Bingqing; Lin Daicheng; Liang Chuanyu

    2000-01-01

    The transport information of brain-derived neurotrophic factor (BDNF) in facial nerve is studied using 125 I-BDNF or 131 I-BDNF. After one lateral facial nerve trunk of adult rabbit is transected, a silicone chamber is inserted between the stumps, and labelled compounds are administered into the chamber. Bilateral facial nerve trunk and facial nerve motor neurone of brain-stem of rabbits are collected and counted respectively, and imaged at coronary position of head in live rabbit. The results show that BDNF has a retrograde transport in facial nerve, and the transport of 131 I-BDNF is marked restrained by BDNF in facial nerve

  18. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.

    Science.gov (United States)

    Lin, Lin; Metherel, Adam H; Jones, Peter J; Bazinet, Richard P

    2017-09-01

    N-acylethanolamines (NAEs) are endogenous lipid ligands for several receptors including cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α), which regulate numerous physiological functions. Fatty acid amide hydrolase (FAAH) is largely responsible for the degradation of NAEs. However, at high concentrations of ethanolamines and unesterified fatty acids, FAAH can also catalyze the reverse reaction, producing NAEs. Several brain insults such as ischemia and hypoxia increase brain unesterified fatty acids. Because FAAH can catalyze the synthesis of NAE, we aimed to test whether FAAH was necessary for CO 2 -induced hypercapnia/ischemia increases in NAE. To test this, we examined levels of NAEs, 1- and 2-arachidonoylglycerols as well as their corresponding fatty acid precursors in wild-type and mice lacking FAAH (FAAH-KO) with three Kill methods: (i) head-focused, high-energy microwave irradiation (microwave), (ii) 5 min CO 2 followed by microwave irradiation (CO 2 + microwave), and (iii) 5 min CO 2 only (CO 2 ). Both CO 2 -induced groups increased, to a similar extent, brain levels of unesterified oleic, arachidonic, and docosahexaenoic acid and 1- and 2-arachidonoylglycerols compared to the microwave group in both wild-type and FAAH-KO mice. Oleoylethanolamide (OEA), arachidonoylethanolamide (AEA), and docosahexaenoylethanolamide (DHEA) levels were about 8-, 7-, and 2.5-fold higher, respectively, in the FAAH-KO mice compared with the wild-type mice. Interestingly, the concentrations of OEA, AEA, and DHEA increased 2.5- to 4-fold in response to both CO 2 -induced groups in wild-type mice, but DHEA increased only in the CO 2 group in FAAH-KO mice. Our study demonstrates that FAAH is necessary for CO 2 - induced increases in OEA and AEA but not DHEA. Targeting brain FAAH could impair the production of NAEs in response to brain injuries. © 2017 International Society for Neurochemistry.

  19. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  20. Anti-Amyloid-?-Mediated Positron Emission Tomography Imaging in Alzheimer's Disease Mouse Brains

    OpenAIRE

    McLean, Daniel; Cooke, Michael J.; Wang, Yuanfei; Green, David; Fraser, Paul E.; George-Hyslop, Peter St; Shoichet, Molly S.

    2012-01-01

    Antibody-mediated imaging of amyloid β (Aβ) in Alzheimer's disease (AD) offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG) and a positron emitting isotope, Copper-64 (t(½) = 12.7 h), and intra...

  1. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  2. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function

    Directory of Open Access Journals (Sweden)

    Jesmond Dalli

    2017-11-01

    Full Text Available Macrophages are central in coordinating the host response to both sterile and infective insults. Clearance of apoptotic cells and cellular debris is a key biological action preformed by macrophages that paves the way to the resolution of local inflammation, repair and regeneration of damaged tissues, and re-establishment of function. The essential fatty acid-derived autacoids termed specialized pro-resolving mediators (SPM play central roles in promoting these processes. In the present article, we will review the role of microvesicles in controlling macrophage efferocytosis and SPM production. We will also discuss the role of both apoptotic cells and microvesicles in providing substrate for transcellular biosynthesis of several SPM families during efferocyotsis. In addition, this article will discuss the biological actions of the recently uncovered macrophage-derived SPM termed maresins. These mediators are produced via 14-lipoxygenation of docosahexaenoic acid that is either enzymatically converted to mediators carrying two hydroxyl groups or to autacoids that are peptide-lipid conjugates, coined maresin conjugates in tissue regeneration. The formation of these mediators is temporally regulated during acute self-limited infectious-inflammation where they promote the uptake and clearance of apoptotic cells, regulate several aspects of the tissue repair and regeneration, and display potent anti-nociceptive actions.

  3. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  4. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several \\'acid-mediated tumour invasion\\' models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results suggest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.

  5. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    Science.gov (United States)

    Lu, Jun; Wu, Dong-Mei; Zheng, Yuan-Lin; Hu, Bin; Cheng, Wei; Zhang, Zi-Feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  6. Production of arachidonic and linoleic acid metabolites by guinea pig tracheal epithelial cells

    International Nuclear Information System (INIS)

    Oosthuizen, M.J.; Engels, F.; Van Esch, B.; Henricks, P.A.; Nijkamp, F.P.

    1990-01-01

    Pulmonary epithelial cells may be responsible for regulating airway smooth muscle function, in part by release of fatty acid-derived mediators. Incubation of isolated guinea pig tracheal epithelial cells with radiolabeled arachidonic acid (AA) leads to the production of 5- and 15-hydroxyeicosatetraenoic acid (5- and 15-HETE) and smaller amounts of leukotriene (LT) B4 and C4 and 12-hydroxyheptadecatrienoic acid (HHT). Epithelial cells also are able to release linoleic acid (LA) metabolites. Incubation with radiolabeled linoleic acid leads to the formation of 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE). The biological significance of these mediators produced by epithelial cells is discussed

  7. AMINOMETHANESULPHONIC ACIDS AND ITS N-DERIVATIVES ARE COMPONENTS OF N. GOODS BUFFERS

    Directory of Open Access Journals (Sweden)

    R.E. Khoma

    2015-11-01

    Full Text Available On the basis of pH measuring the temperature dependence of the second ionization constant (pK2 are set for aminomethansulfonic acid (AMSA and its N-derivatives. It was found that the area of  effective buffering of AMSK and its N-benzyl derivative allows to maintain the pH of acid-compatible with life. The absolute values  of the coefficients in the equation pK2 = -Ai+ Bi/T for the aminosulfonic acids correlated with their molar masses. A simultaneous change in values  DpH /DT and Bicoefficient for the studied acids QSAR method are stayed. The values  of the distribution coefficients in the octanol – water (Pow and molar refraction are calculated. In the future the data obtained in this study will be used to predict the physical, chemical and toxicological properties of the compounds studied.

  8. Caffeic acid derivative from Clinopodium umbrosum

    Directory of Open Access Journals (Sweden)

    M. Esfahanizadeh

    2017-11-01

    Full Text Available Background and objectives: Plants of genus Clinopodium have been used in different cultures as traditional medicines.Due to theimportance of medicinal properties of the genus Clinopodium, C. umbrosum was selected for phytochemical analysis along with evaluation of its antioxidant property. Methods: The aerial parts of C. umbrosum were extracted with petroleum ether, chloroform, and methanol. Later, the methanol extract was fractionated via solid phase extraction and reversed phase high performance liquid chromatography. Consequently, structure of the isolated compound was analyzed through spectral analysis of 1D and 2D NMR data. Besides, the essential oil of C. umbrosum achieved through hydrodistillation was analyzed via gas chromatography-mass spectrometry (GC-MS. Additionally, the antioxidant property of C. umbrosum methanol extracttogether with its phenolics and flavonoids content were assessed. Results: Structure elucidation of the purified compound revealed presence of a caffeic acid derivative in C. umbrosum methanol extract. GC-MS analysis of the essential oil showed limonene, acetophenone, palmitic acid and phytol as the most frequent components of the essential oil. Moreover, the RC50 value for free radical scavenging activity of  the methanol extract was determined as 38.52 µg/mL and values for the total phenolics and flavonoids contact were calculated as 5.14 g gallic acid equivalent and 4.25 g quercetin equivalent per 100 g of dried plant material, respectively.  Conclusion: Overall, the present study was the first report on the phytochemical analysis of C. umbrosum whichrevealed presence of rosmarinic acid as the main component of the methanol extract with prominent antioxidant activity.

  9. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    Science.gov (United States)

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  10. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Titos, Esther; Clària, Joan

    2013-12-01

    Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  12. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  13. Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arroniz-Crespo, M.; Nunez-Olivera, E. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain); Martinez-Abaigar, J. [Universidad de La Rioja, Complejo Cientifico-Tecnologico, Avda. Madre de Dios 51, 26006 Logrono (La Rioja) (Spain)], E-mail: javier.martinez@unirioja.es

    2008-01-15

    We examined, under laboratory conditions, the physiological responses of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia to artificially enhanced ultraviolet (UV) radiation for 82 days, especially considering the responses of five hydroxycinnamic acid derivatives. This species lives in mountain streams, where it is exposed to low temperatures and high UV levels, and this combination is believed to increase the adverse effects of UV. Enhanced UV radiation hardly caused any change in several physiological variables indicative of vitality, such as F{sub v}/F{sub m} and chlorophylls/phaeopigments ratio (OD430/OD410). Thus, this liverwort seemed to be tolerant to UV radiation, probably due to the accumulation of three UV-absorbing hydroxycinnamic acid derivatives: p-coumaroylmalic acid, 5''-(7'',8''-dihydroxycoumaroyl)-2-caffeoylmalic acid, and 5''-(7'',8''-dihydroxy-7-O-{beta}-glucosyl-coumaroyl)-2-caffeoylmalic acid. These compounds might serve as bioindicators of enhanced UV radiation. - Several hydroxycinnamic acid derivatives of an aquatic liverwort are induced by enhanced UV radiation and might serve as bioindicators of changes in UV levels.

  14. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    Science.gov (United States)

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  15. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    Science.gov (United States)

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  16. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  17. A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Ting; Xu, Wei; Deng, Chenguang; Xu, Shaoxin; Li, Fanghua; Wu, Yuejin; Wu, Lijun; Bian, Po

    Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its bioactive derivatives are well accepted as systemic signal transducers that are produced in response to various environmental stresses. It is therefore speculated that the JA signal pathway might play a potential role in mediating radiation-induced bystander signaling of root-to-shoot. In the present study, pretreatment of seedlings with Salicylhydroxamic acid, an inhibitor of lipoxigenase (LOX) in JA biosynthesis, significantly suppressed RIBE-mediated expression of the AtRAD54 gene. After root irradiation, the aerial parts of A. thaliana mutants deficient in JA biosynthesis (aos) and signaling cascades (jar1-1) showed suppressed induction of the AtRAD54 and AtRAD51 genes and TSI and 180-bp repeats, which have been extensively used as endpoints of bystander genetic and epigenetic effects in plants. These results suggest an involvement of the JA signal pathway in the RIBE of plants. Using the root micro-grafting technique, the JA signal pathway was shown to participate in both the generation of bystander signals in irradiated root cells and radiation responses in the bystander aerial parts of plants. The over-accumulation of endogenous JA in mutant fatty acid oxygenation up-regulated 2 (fou2), in which mutation of the Two Pore Channel 1 (TPC1) gene up-regulates expression of the LOX and allene oxide synthase (AOS) genes, inhibited RIBE-mediated expression of the AtRAD54 gene, but up-regulated expression of the AtKU70 and AtLIG4 genes in the non-homologous end joining (NHEJ) pathway. Considering that NHEJ is employed by plants with increased DNA damage, the switch from HR to NHEJ suggests that over-accumulation of endogenous JA might enhance the radiosensitivity of plants

  18. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    Science.gov (United States)

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  19. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  20. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Pawel K., E-mail: olsze005@umn.edu [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Fredriksson, Robert; Eriksson, Jenny D. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Mitra, Anaya [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Radomska, Katarzyna J. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Gosnell, Blake A. [Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Solvang, Maria N. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden); Levine, Allen S. [Minnesota Obesity Center, Saint Paul, MN 55108 (United States); Department of Food Science and Nutrition, Saint Paul, MN 55108 (United States); Schioeth, Helgi B. [Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124 Uppsala (Sweden)

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  1. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    International Nuclear Information System (INIS)

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Schioeth, Helgi B.

    2011-01-01

    Highlights: → The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. → The level of colocalization is similar in the male and female brain. → Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. → Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  2. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation.

    Directory of Open Access Journals (Sweden)

    Navjot Shah

    Full Text Available Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays.We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach.Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.

  3. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice.

    Science.gov (United States)

    He, Yuqing; Zhang, Hehong; Sun, Zongtao; Li, Junmin; Hong, Gaojie; Zhu, Qisong; Zhou, Xuebiao; MacFarlane, Stuart; Yan, Fei; Chen, Jianping

    2017-04-01

    Plant hormones play a vital role in plant immune responses. However, in contrast to the relative wealth of information on hormone-mediated immunity in dicot plants, little information is available on monocot-virus defense systems. We used a high-throughput-sequencing approach to compare the global gene expression of Rice black-streaked dwarf virus (RBSDV)-infected rice plants with that of healthy plants. Exogenous hormone applications and transgenic rice were used to test RBSDV infectivity and pathogenicity. Our results revealed that the jasmonic acid (JA) pathway was induced while the brassinosteroid (BR) pathway was suppressed in infected plants. Foliar application of methyl jasmonate (MeJA) or brassinazole (BRZ) resulted in a significant reduction in RBSDV incidence, while epibrassinolide (BL) treatment increased RBSDV infection. Infection studies using coi1-13 and Go mutants demonstrated JA-mediated resistance and BR-mediated susceptibility to RBSDV infection. A mixture of MeJA and BL treatment resulted in a significant reduction in RBSDV infection compared with a single BL treatment. MeJA application efficiently suppressed the expression of BR pathway genes, and this inhibition depended on the JA coreceptor OsCOI1. Collectively, our results reveal that JA-mediated defense can suppress the BR-mediated susceptibility to RBSDV infection. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    Science.gov (United States)

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  5. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Directory of Open Access Journals (Sweden)

    Oláh G

    2013-09-01

    the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines. Keywords: blood–brain barrier, cortical spreading depression, glutamate receptors, kynurenic acid, kynurenines, NMDAR

  6. Brain-Derived Neurotrophic Factor Val66Met Polymorphism Affects the Relationship Between an Anxiety-Related Personality Trait and Resting Regional Cerebral Blood Flow.

    Science.gov (United States)

    Wei, Shau-Ming; Eisenberg, Daniel P; Nabel, Katherine G; Kohn, Philip D; Kippenhan, J Shane; Dickinson, Dwight; Kolachana, Bhaskar; Berman, Karen F

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) is an important modulator of constitutive stress responses mediated by limbic frontotemporal circuits, and its gene contains a functional polymorphism (Val66Met) that may influence trait stress sensitivity. Reports of an association of this polymorphism with anxiety-related personality traits have been controversial and without clear neurophysiological support. We, therefore, determined the relationship between resting regional cerebral blood flow (rCBF) and a well-validated measure of anxiety-related personality, the TPQ Harm Avoidance (HA) scale, as a function of BDNF Val66Met genotype. Sixty-four healthy participants of European ancestry underwent resting H215O positron emission tomography scans. For each genotype group separately, we first determined the relationship between participants' HA scores and their resting rCBF values in each voxel across the entire brain, and then directly compared these HA-rCBF relationships between Val66Met genotype groups. HA-rCBF relationships differed between Val homozygotes and Met carriers in several regions relevant to stress regulation: subgenual cingulate, orbital frontal cortex, and the hippocampal/parahippocampal region. In each of these areas, the relationship was positive in Val homozygotes and negative in Met carriers. These data demonstrate a coupling between trait anxiety and basal resting blood flow in frontolimbic neurocircuitry that may be determined in part by genetically mediated BDNF signaling. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  8. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    Science.gov (United States)

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  9. Migraine with aura and silent brain infarcts lack of mediation of patent foramen ovale.

    Science.gov (United States)

    Calviere, L; Tall, P; Massabuau, P; Bonneville, F; Larrue, V

    2013-12-01

    Population-based studies have shown a heightened prevalence of clinically silent brain infarcts in subjects who have migraine with aura (MA). We sought to determine whether this association could be confirmed in young patients with cryptogenic ischemic stroke, and explored the role of patent foramen ovale (PFO) as a potential underlying mechanism. Patients were selected from a registry of young patients consecutively treated for ischemic stroke in a tertiary university hospital among those without definite cause of stroke. Patients with PFO were matched for age and gender with patients with normal atrial septum. Migraine and MA were evaluated after patient selection and matching. Silent brain infarcts were independently evaluated on MRI. We included 100 patients [60 men; mean age (SD), 44.8 years (8.3)], 50 patients with PFO. We found silent brain infarcts in 36 patients and MA in 13 patients. MA was more frequent in patients with silent brain infarcts than in patients without silent brain infarcts (25.0% vs. 6.3%; OR, 5; 95% CI, 1.4-17.6; P = 0.01). Traditional cardiovascular risk factors were not associated with silent brain infarcts. PFO was neither associated with MA (OR, 1.7; 95% CI, 0.5-5.3) nor silent brain infarcts (OR, 0.7; 95% CI, 0.3-1.5). The association of MA with silent brain infarcts was not altered after adjustment for PFO. Findings suggest that silent brain infarcts in young patients with cryptogenic stroke is associated with MA. We found no evidence for a mediating effect of PFO on this association. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  10. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.

  11. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  12. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    Science.gov (United States)

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta.

    Science.gov (United States)

    Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara

    2015-10-01

    Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Adam Dinoff

    Full Text Available The mechanisms through which physical activity supports healthy brain function remain to be elucidated. One hypothesis suggests that increased brain-derived neurotrophic factor (BDNF mediates some cognitive and mood benefits. This meta-analysis sought to determine the effect of exercise training on resting concentrations of BDNF in peripheral blood.MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after exercise interventions ≥ 2 weeks. Risk of bias was assessed using standardized criteria. Standardized mean differences (SMDs were generated from random effects models. Risk of publication bias was assessed using funnel plots and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses.In 29 studies that met inclusion criteria, resting concentrations of peripheral blood BDNF were higher after intervention (SMD = 0.39, 95% CI: 0.17-0.60, p < 0.001. Subgroup analyses suggested a significant effect in aerobic (SMD = 0.66, 95% CI: 0.33-0.99, p < 0.001 but not resistance training (SMD = 0.07, 95% CI: -0.15-0.30, p = 0.52 interventions. No significant difference in effect was observed between males and females, nor in serum vs plasma.Aerobic but not resistance training interventions increased resting BDNF concentrations in peripheral blood.

  15. Neural Computations Mediating One-Shot Learning in the Human Brain

    Science.gov (United States)

    Lee, Sang Wan; O’Doherty, John P.; Shimojo, Shinsuke

    2015-01-01

    Incremental learning, in which new knowledge is acquired gradually through trial and error, can be distinguished from one-shot learning, in which the brain learns rapidly from only a single pairing of a stimulus and a consequence. Very little is known about how the brain transitions between these two fundamentally different forms of learning. Here we test a computational hypothesis that uncertainty about the causal relationship between a stimulus and an outcome induces rapid changes in the rate of learning, which in turn mediates the transition between incremental and one-shot learning. By using a novel behavioral task in combination with functional magnetic resonance imaging (fMRI) data from human volunteers, we found evidence implicating the ventrolateral prefrontal cortex and hippocampus in this process. The hippocampus was selectively “switched” on when one-shot learning was predicted to occur, while the ventrolateral prefrontal cortex was found to encode uncertainty about the causal association, exhibiting increased coupling with the hippocampus for high-learning rates, suggesting this region may act as a “switch,” turning on and off one-shot learning as required. PMID:25919291

  16. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  17. Synthesis of azido derivatives of mucobromic acid | D. Jumbam ...

    African Journals Online (AJOL)

    Mucobromic acid is a highly reactive multicentered molecule. It was converted to its corresponding but unstable diazido derivative by reaction with two equivalents of sodium azide. The resultant 3,4-diazido-5-hydroxyfuran-2(5H)-one was obtained in moderate yield (42%) but decomposed readily even at low temperatures.

  18. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.

    Science.gov (United States)

    Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D

    1995-01-01

    The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.

  20. Peripheral Tumor Necrosis Factor-Alpha (TNF-α) Modulates Amyloid Pathology by Regulating Blood-Derived Immune Cells and Glial Response in the Brain of AD/TNF Transgenic Mice.

    Science.gov (United States)

    Paouri, Evi; Tzara, Ourania; Kartalou, Georgia-Ioanna; Zenelak, Sofia; Georgopoulos, Spiros

    2017-05-17

    Increasing evidence has suggested that systemic inflammation along with local brain inflammation can play a significant role in Alzheimer's disease (AD) pathogenesis. Identifying key molecules that regulate the crosstalk between the immune and the CNS can provide potential therapeutic targets. TNF-α is a proinflammatory cytokine implicated in the pathogenesis of systemic inflammatory and neurodegenerative diseases, such as rheumatoid arthritis (RA) and AD. Recent studies have reported that anti-TNF-α therapy or RA itself can modulate AD pathology, although the underlying mechanism is unclear. To investigate the role of peripheral TNF-α as a mediator of RA in the pathogenesis of AD, we generated double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α (huTNF-α) expression. We found that 5XFAD/Tg197 mice display decreased amyloid deposition, compromised neuronal integrity, and robust brain inflammation characterized by extensive gliosis and elevated blood-derived immune cell populations, including phagocytic macrophages and microglia. To evaluate the contribution of peripheral huTNF-α in the observed brain phenotype, we treated 5XFAD/Tg197 mice systemically with infliximab, an anti-huTNF-α antibody that does not penetrate the blood-brain barrier and prevents arthritis. Peripheral inhibition of huTNF-α increases amyloid deposition, rescues neuronal impairment, and suppresses gliosis and recruitment of blood-derived immune cells, without affecting brain huTNF-α levels. Our data report, for the first time, a distinctive role for peripheral TNF-α in the modulation of the amyloid phenotype in mice by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance. SIGNIFICANCE STATEMENT Mounting evidence supports the active involvement of systemic inflammation, in addition to local brain inflammation, in Alzheimer's disease (AD) progression. TNF-α is a

  1. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairmen...

  2. Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis.

    Science.gov (United States)

    Sevillano, Alejandro M; Fernández-Borges, Natalia; Younas, Neelam; Wang, Fei; R Elezgarai, Saioa; Bravo, Susana; Vázquez-Fernández, Ester; Rosa, Isaac; Eraña, Hasier; Gil, David; Veiga, Sonia; Vidal, Enric; Erickson-Beltran, Melissa L; Guitián, Esteban; Silva, Christopher J; Nonno, Romolo; Ma, Jiyan; Castilla, Joaquín; R Requena, Jesús

    2018-01-01

    Very solid evidence suggests that the core of full length PrPSc is a 4-rung β-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the β-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of β-strands, helping us to predict the threading of the β-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.

  3. Soluble mediators and the interaction of drugs in IBD

    DEFF Research Database (Denmark)

    Rask-Madsen, J

    1998-01-01

    and 5-aminosalicylic acid (5-ASA), inhibit raised concentrations of these interdependent soluble mediators of inflammation, which may amplify one another or have parallel effects. Future medical options for treatment of IBD aim at removing perpetuating antigens or inhibiting the entry of inflammatory......, which provides the clinical manifestations of IBD. Other important soluble mediators of inflammation include complement-derived and chemotactic peptides, specific adhesion molecules, neuropeptides and reactive metabolites of oxygen and nitrogen. Current established therapies, such as glucocorticoids...

  4. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  5. Therapeutic potential of brain-derived neurotrophic factor (BDNF and a small molecular mimics of BDNF for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary Wurzelmann

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF, a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  6. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  7. TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid.

    Science.gov (United States)

    Wen, Shijie; Liu, Hao; Li, Xingyu; Chen, Xiaoping; Hong, Yanbin; Li, Haifen; Lu, Qing; Liang, Xuanqiang

    2018-05-01

    A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolyploid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogaea fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5-2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible peanut oil. Furthermore, this was the first report on peanut genome editing event, and the obtained high oleic mutants could serve for peanut breeding project.

  8. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    Science.gov (United States)

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  9. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks

    Science.gov (United States)

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes ‘normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  10. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature.

    Science.gov (United States)

    Klement, Wendy; Garbelli, Rita; Zub, Emma; Rossini, Laura; Tassi, Laura; Girard, Benoit; Blaquiere, Marine; Bertaso, Federica; Perroy, Julie; de Bock, Frederic; Marchi, Nicola

    2018-05-01

    Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. A disarray of NG2DsRed + pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1 + microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67 + ) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. These results indicate the

  11. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  12. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3......, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (pdifference in BDNF levels...

  13. Effects of single cyanamide dose on free amino acid pool in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskiy, S.Yu.

    Outbred rats were employed in trials on the effects of cyanamide - an inhibitor of aldehyde dehydrogenase proposed for the treatment of alcoholism - on the brain pool of essential and nonessential amino acid. Cyanamide was administered intraperitoneally in a dose of 60 mg/kg, followed in some experiments by intraperitoneal ethanol in a dose of 0.5 g/kg. Following cyanamide administration, marked enhancement of the levels of taurine, cystine, and GABA was noted, whereas the increase in serine was less pronounced. Cyanamide administration also induced depression of alanine, valine, leucine, phenylalanine, and of ethanolamine levels. Administration of ethanol after priming with cyanamide had only the additional effect of diminishing the levels of cysteic acid and ornithine in the brain. However, the differences between the cyanamide animals and the cyanamide + ethanol animals were not significant. With currently available data, it is difficult to tell whether the effects of cyanamide are due to elevation in acetaldehyde levels, or to some direct effect of the drug on protein or amino acid metabolism. 24 references.

  14. Neuropeptides as mediators of the early-life impact on the brain; implications for alcohol use disorders

    Directory of Open Access Journals (Sweden)

    Ingrid eNylander

    2012-07-01

    Full Text Available The brain is constantly exposed to external and internal input and to function in an ever-changing environment we are dependent on processes that enable the brain to adapt to new stimuli. Exposure to postnatal environmental stimuli can interfere with vital adaption processes and cause long-term changes in physiological function and behaviour. Early-life alterations in brain function may result in impaired ability to adapt to new situations, in altered sensitivity to challenges later in life and thereby mediate risk or protection for psychopathology such as alcohol use disorders (AUD. In clinical research the studies of mechanisms, mediators and causal relation between early environmental factors and vulnerability to AUD are restricted and attempts are made to find valid animal models for studies of the early-life influence on the brain. This review focuses on rodent models and the effects of adverse and naturalistic conditions on peptide networks within the brain and pituitary gland. Importantly, the consequences of alcohol addiction are not discussed but rather neurobiological alterations that can cause risk consumption and vulnerability to addiction. The article reviews earlier results and includes new data with emphasis on endogenous opioid peptides but also oxytocin and vasopressin. These peptides are vital for developmental processes and it is hypothesized that early-life changes in peptide networks may interfere with neuronal processes and thereby contribute the individual vulnerability for AUD. The summarized results indicate a link between early-life rearing conditions, opioids and ethanol consumption and that the ethanol-induced effects and the treatment with opioid antagonists later in life are dependent on early-life experiences. Endogenous opioids are therefore of interest to further study in the early-life impact on individual differences in vulnerability to AUD and treatment outcome.

  15. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  16. Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells

    International Nuclear Information System (INIS)

    Shetty, Dinesh; Jeong, Jae Min; Ju, Chang Hwan; Lee, Yun-Sang; Jeong, Seo Young; Choi, Jae Yeon; Yang, Bo Yeun

    2010-01-01

    Objectives: We developed amino acid derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A) that can be labeled with 68 Ga, and we investigated their basic biological properties. Materials and methods: Alanine derivatives of DO2A and DO3A were synthesized by regiospecific nucleophilic attack of DO2tBu and DO3tBu on the β-position of Boc-L-serine-β-lactone, followed by acid hydrolysis. Also, homoalanine derivatives were synthesized by reacting with the protected bromo derivative of homoalanine, which was synthesized from N-Cbz-L-homoserine lactone. Further catalytic reduction and acid cleavage of protected groups resulted in the required products. All derivatives were labeled with 68 Ga. Cell uptake assays were carried out in Hep3B (human hepatoma) and U87MG (human glioma) cell lines at 37 o C. Positron emission tomography (PET) imaging studies were performed using balb/c mice xenografted with CT-26 (mouse colon cancer). Results: All compounds were labeled with >97% efficiency. According to in vitro studies, the labeled amino acid derivatives showed significantly greater uptakes than the control ( 68 Ga 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) in cancer cells. Small animal PET images for labeled compounds showed high tumor uptake, as well as kidney and bladder uptakes, at 30 min postinjection. 68 Ga-DO3A-homoalanine showed the highest standardized uptake value ratio (3.9±0.3), followed by 68 Ga-DO2A-alanine (3.1±0.2), 68 Ga-DO3A-alanine (2.8±0.2) and 68 Ga-DO2A-homoalanine (2.3±0.2). Conclusion: These derivatives were found to have high labeling efficiencies, high stabilities, high tumor cell uptakes, high tumor/nontumor xenograft uptakes and low nonspecific uptake in normal organs, except for the kidneys. However, the uptake mechanism of these derivatives remains unclear, and uptake via specific amino acid transporters needs to be demonstrated.

  17. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

    Science.gov (United States)

    DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C

    2017-08-04

    The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation

  18. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp.

    Science.gov (United States)

    Quecine, Maria Carolina; Kidarsa, Teresa A.; Goebel, Neal C.; Shaffer, Brenda T.; Henkels, Marcella D.; Zabriskie, T. Mark

    2015-01-01

    Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism. PMID:26655755

  19. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  20. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  1. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    Science.gov (United States)

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  2. Synthesis and pharmacology of N-alkylated derivatives of the excitotoxin ibotenic acid

    DEFF Research Database (Denmark)

    Madsen, U; Dumpis, M A; Bräuner-Osborne, Hans

    1998-01-01

    Three amino-alkylated derivatives of the naturally occurring excitatory amino acid (EAA) receptor agonist ibotenic acid (Ibo) have been synthesized and tested pharmacologically. N-Methyl-Ibo (1a) and N-ethyl-Ibo (1b) were shown to be agonists at NMDA receptors (EC50 = 140 and 320 micro......-c and the potent NMDA agonist 2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA) in order to elucidate the observed structure-activity data....

  3. Free-radical-mediated conjugate additions. Enantioselective synthesis of butyrolactone natural products: (-)-enterolactone, (-)-arctigenin, (-)-isoarctigenin, (-)-nephrosteranic acid, and (-)-roccellaric acid.

    Science.gov (United States)

    Sibi, Mukund P; Liu, Pingrong; Ji, Jianguo; Hajra, Saumen; Chen, Jian-xie

    2002-03-22

    Lewis acid-mediated conjugate addition of alkyl radicals to a differentially protected fumarate 10 produced the monoalkylated succinates with high chemical efficiency and excellent stereoselectivity. A subsequent alkylation or an aldol reaction furnished the disubstituted succinates with syn configuration. The chiral auxiliary, 4-diphenylmethyl-2-oxazolidinone, controlled the stereoselectivity in both steps. Manipulation of the disubstituted succinates obtained by alkylation furnished the natural products (-)-enterolactone, (-)-arctigenin, and (-)-isoarctigenin. The overall yields for the target natural products were 20-26% over six steps. Selective functionalization of the disubstituted succinates obtained by aldol condensation gave the paraconic acid natural products (-)-nephrosteranic acid (8) and (-)-roccellaric acid (9). The overall yield of the natural products 8 and 9 over four steps was 53% and 42%, respectively.

  4. Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins

    Directory of Open Access Journals (Sweden)

    Jennifer M Rothberg

    2013-10-01

    Full Text Available One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8 affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D cultures. For these studies, we used 1 3D reconstituted basement membrane overlay cultures of human carcinomas, 2 live cell imaging assays to assess proteolysis, and 3 in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.

  5. Gamma-hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: evidence for GABA(B) receptor-mediated effects.

    Science.gov (United States)

    Pistis, M; Muntoni, A L; Pillolla, G; Perra, S; Cignarella, G; Melis, M; Gessa, G L

    2005-01-01

    Gamma-hydroxybutyric acid (GHB) is a short-chain fatty acid naturally occurring in the mammalian brain, which recently emerged as a major recreational drug of abuse. GHB has multiple neuronal mechanisms including activation of both the GABA(B) receptor, and a distinct GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the multifaceted pharmacological, behavioral and toxicological profile of GHB. Drugs of abuse exert remarkably similar effects upon reward-related circuits, in particular the mesolimbic dopaminergic system and the nucleus accumbens (NAc). We used single unit recordings in vivo from urethane-anesthetized rats to characterize the effects of GHB on evoked firing in NAc "shell" neurons and on spontaneous activity of antidromically identified dopamine (DA) cells located in the ventral tegmental area. GHB was studied in comparison with the GABA(B) receptor agonist baclofen and antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911). Additionally, we utilized a GHB analog, gamma-(p-methoxybenzil)-gamma-hydroxybutyric acid (NCS-435), devoid of GABA(B) binding properties, but with high affinity for specific GHB binding sites. In common with other drugs of abuse, GHB depressed firing in NAc neurons evoked by the stimulation of the basolateral amygdala. On DA neurons, GHB exerted heterogeneous effects, which were correlated to the baseline firing rate of the cells but led to a moderate stimulation of the DA system. All GHB actions were mediated by GABA(B) receptors, since they were blocked by SCH50911 and were not mimicked by NCS-435. Our study indicates that the electrophysiological profile of GHB is close to typical drugs of abuse: both inhibition of NAc neurons and moderate to strong stimulation of DA transmission are distinctive features of diverse classes of abused drugs. Moreover, it is concluded that addictive and rewarding properties of GHB do not necessarily involve a putative high affinity GHB

  6. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  7. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    Science.gov (United States)

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  8. Serum levels of brain-derived neurotrophic factor and thiobarbituric acid reactive substances in chronically medicated schizophrenic patients: a positive correlation Níveis séricos do fator neurotrófico derivado do cérebro e dos produtos de reação com o ácido tiobarbitúrico em pacientes com esquizofrenia cronicamente medicados: correlação positiva

    Directory of Open Access Journals (Sweden)

    Clarissa Severino Gama

    2008-12-01

    Full Text Available OBJECTIVE: The neurotrophins, antioxidant enzymes and oxidative markers have reciprocal interactions. This report verified in chronically stable medicated schizophrenic patients whether there are correlations between the serum levels of superoxide dismutase, a key enzyme in the antioxidant defense, thiobarbituric acid reactive substances, a direct index of lipid peroxidation, and brain-derived neurotrophic factor, the most widely distributed neurotrophin. METHOD: Sixty DSM-IV schizophrenic patients were included (43 males, 17 females. Mean age was 34.7 ± 10.8 years, mean age at first episode was 19.8 ± 7.9 years, and mean illness duration was 14.9 ± 8.5 years. Each subject had a blood sample collected for the determination of serum levels of brain-derived neurotrophic factor, thiobarbituric acid reactive substances and superoxide dismutase. RESULTS: Brain-derived neurotrophic factor levels showed a positive correlation with thiobarbituric acid reactive substances levels (r = 0.333, p = 0.009. Brain-derived neurotrophic factor levels were not correlated with superoxide dismutase levels (r = - 0.181, p = 0.166, and superoxide dismutase levels were not correlated with thiobarbituric acid reactive substances levels (r = 0.141, p = 0.284. CONCLUSIONS: The positive correlation between brain-derived neurotrophic factor and thiobarbituric acid reactive substances suggests the need of further investigation on intracellular interactions of neurotrophins, antioxidant enzymes and oxidative markers. In addition, this opens a venue for investigation on treatments for the prevention of neurotoxicity along the course of schizophrenia.OBJETIVO: As neurotrofinas, enzimas antioxidantes e marcadores de oxidação têm interações. Este estudo verificou se existem correlações entre os níveis séricos de superóxido-dismutase, uma enzima chave na defesa antioxidante, os produtos de reação com o ácido tiobarbitúrico, um indicador direto de peroxidação lip

  9. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    Science.gov (United States)

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Carnitine derivatives: clinical usefulness.

    Science.gov (United States)

    Malaguarnera, Mariano

    2012-03-01

    Carnitine and its derivatives are natural substances involved in both carbohydrate and lipid metabolism. This review summarizes the recent progress in the field in relation to the molecular mechanisms. The pool of different carnitine derivatives is formed by acetyl-L-carnitine (ALC), propionyl-L-carnitine (PLC), and isovaleryl-carnitine. ALC may have a preferential effect on the brain tissue. ALC represents a compound of great interest for its wide clinical application in various neurological disorders: it may be of benefit in treating Alzheimer's dementia, depression in the elderly, HIV infection, chronic fatigue syndrome, peripheral neuropathies, ischemia and reperfusion of the brain, and cognitive impairment associated with various conditions. PLC has been demonstrated to replenish the intermediates of the tricarboxylic acid cycle by the propionyl-CoA moiety, a greater affinity for the sarcolemmal carrier, peripheral vasodilator activity, a greater positive inotropism, and more rapid entry into myocytes. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. ALC and PLC are considered well tolerated without significant side-effects. A number of therapeutic effects possibly come from the interaction of carnitine and its derivatives with the elements of cellular membranes.

  11. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease.

    Science.gov (United States)

    Belkouch, Mounir; Hachem, Mayssa; Elgot, Abdeljalil; Lo Van, Amanda; Picq, Madeleine; Guichardant, Michel; Lagarde, Michel; Bernoud-Hubac, Nathalie

    2016-12-01

    Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Haastert, Peter J.M. van; Wit, René J.W. de; Snaar-Jagalska, B. Ewa

    1990-01-01

    Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Gα2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated

  13. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    Science.gov (United States)

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Use of [11C]aminocyclohexanecarboxylate for the measurement of amino acid uptake and distribution volume in human brain

    International Nuclear Information System (INIS)

    Koeppe, R.A.; Mangner, T.; Betz, A.L.; Shulkin, B.L.; Allen, R.; Kollros, P.; Kuhl, D.E.; Agranoff, B.W.

    1990-01-01

    A quantitative positron emission tomographic (PET) method to measure amino acid blood-brain barrier (BBB) transport rate and tissue distribution volume (DV) has been developed using 11 C-labeled aminocyclohexanecarboxylate (ACHC), a nonmetabolized amino acid analogue. Dynamic PET data were acquired as a series of 15 scans covering a total of 60 min and analyzed by means of a two-compartment, two-parameter model. Functional images were calculated for the amino acid transport rate constants across the BBB and the amino acid DV in the brain. Results show [ 11 C]ACHC to have an influx rate constant in gray matter of approximately 0.03-0.04 ml g-1 min-1, indicating a single-pass extraction fraction of approximately 5-7%. The intersubject coefficient of variation was approximately 15% while intrasubject variability of repeat scans was only slightly greater than 5%. Studies were performed in 15 young normal volunteer control subjects, 5 elderly controls, 7 patients with probable Alzheimer's disease, and one patient with phenylketonuria. Results indicate that [ 11 C]-ACHC will serve as the basis of a method for measuring amino acid transport rate and DV in the normal and pathological human brain

  15. Assessment of antitumoral and antimicrobial effects of a maslinic acid derivative

    Directory of Open Access Journals (Sweden)

    Ioana Z. Pavel

    2016-12-01

    Full Text Available INTRODUCTION Maslinic acid, a naturally occurring triterpene, has been reported to possess several therapeutic effects including antioxidant, anti-inflammatory and antiparasitic properties. Structural changes of the compound led to the development of new derivatives in order to expand the spectrum of activities. OBJECTIVES AND BACKGROUND The present study was purposed to assess the in vitro antitumoral and antibacterial effects of a maslinic acid derivative, namely benzyl (2α, 3β 2,3-diacetoxy-olean-12- en-28-amide (EM2. MATERIALS AND METHODS Four compound concentrations (12.5, 25, 50 and 100 µM were evaluated for their cytotoxic effect on A375 human melanoma and B164A5 murine melanoma cell lines using the MTT assay. Furthermore, EM2 was tested on ten bacterial strains by means of agar disk diffusion method with the assessment of the inhibition zone diameters at 24h period of time. RESULTS EM2 elicited a dose-dependent cytotoxic effect on both melanoma cell lines. Regarding the antibacterial activity, EM2 determined a significant growth inhibition on Streptococcus pyogenes (20 ± 0.26 mm and Staphylococcus aureus (13 ± 0.19 mm. CONCLUSIONS The tested maslinic acid derivative is a promising antitumoral agent against skin cancer and antimicrobial agent against cocci bacteria. Graphical abstract: EM2 in vitro effects

  16. A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Xu, Wei; Deng, Chenguang; Xu, Shaoxin; Li, Fanghua; Wu, Yuejin; Wu, Lijun [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei 230031 (China); Bian, Po, E-mail: bianpo@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei 230031 (China)

    2016-09-15

    Highlights: • The JA signal pathway plays a pivotal role in mediating radiation-induced bystander effects in Arabidopsis thaliana. • The JA signal pathway is involved in both the generation of bystander signals in irradiated roots and radiation responses in bystander aerial plants. • Over-accumulation of endogenous JA enhances the radiosensitivity of plants in terms of RIBE. - Abstract: Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its bioactive derivatives are well accepted as systemic signal transducers that are produced in response to various environmental stresses. It is therefore speculated that the JA signal pathway might play a potential role in mediating radiation-induced bystander signaling of root-to-shoot. In the present study, pretreatment of seedlings with Salicylhydroxamic acid, an inhibitor of lipoxigenase (LOX) in JA biosynthesis, significantly suppressed RIBE-mediated expression of the AtRAD54 gene. After root irradiation, the aerial parts of A. thaliana mutants deficient in JA biosynthesis (aos) and signaling cascades (jar1-1) showed suppressed induction of the AtRAD54 and AtRAD51 genes and TSI and 180-bp repeats, which have been extensively used as endpoints of bystander genetic and epigenetic effects in plants. These results suggest an involvement of the JA signal pathway in the RIBE of plants. Using the root micro-grafting technique, the JA signal pathway was shown to participate in both the generation of bystander signals in irradiated root cells and radiation responses in the bystander aerial parts of plants. The over-accumulation of endogenous JA in mutant fatty acid oxygenation up-regulated 2 (fou2), in which mutation of the Two Pore Channel 1 (TPC1) gene up-regulates expression of the LOX

  17. The incorporation of labelled amino acids into the subcellular fractions of the rabbit brain

    International Nuclear Information System (INIS)

    Ogrodnik, W.

    1980-01-01

    Radioactive amino acids were injected into the fourth ventriculum of adult rabbits. After 3, 6 and 13 hours the animals were killed and tissue subcellular fractions were prepared from their brains. Nucleic acids were extracted and quantitatively determined from nucleic, myelin, mitochondrial, microsomal and cytoplasmic fractions. The radioactivity was determined in the protein and nucleic acid fractions. It was found out that the incorporation of radioactive amino acids increased in relation to time. In the analyzed subcellular fractions a very rapid incorporation of glutamic acid and leucine into cytoplasmic proteins was observed. The chromatographic analysis of the nucleic acids showed that radioactivity in the nucleic acid fractions depended on a radioactive protein contamination. Radioactive aminoacyl-tRNA was not found in the nucleic acid fractions, extracted from different subcellular fractions. (author)

  18. Synthesis of α,ω-polyfluorinated α-amino acid derivatives and δ,δ-difluoronorvaline.

    Science.gov (United States)

    Ulbrich, Dirk; Daniliuc, Constantin G; Haufe, Günter

    2016-03-07

    Intending to synthesize ω,ω-difluoroalkyl amino acid derivatives by oxidative desulfurization-fluorination reactions of suitable arylthio-2-phthalimido butanoates and pentanoates, in addition to small amounts of the target products, mainly α,ω-polyfluorinated amino acid derivatives were formed by additional sulfur-assisted α-fluorination. This novel structural motif was verified spectroscopically as well as by X-ray analysis. A plausible mechanism of formation is suggested. Using a different approach, δ,δ-difluoronorvaline hydrochloride was synthesized with at least 36% enantiomeric excess via deoxofluorination of the corresponding aldehyde.

  19. Computational studies on non-succinimide-mediated stereoinversion mechanism of aspartic acid residues assisted by phosphate

    Science.gov (United States)

    Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi

    2018-03-01

    Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.

  20. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Science.gov (United States)

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.