WorldWideScience

Sample records for acid leach solutions

  1. Investigation of copper(I sulphide leaching in oxidative hydrochloric acid solution

    Directory of Open Access Journals (Sweden)

    Branislav Marković

    2015-12-01

    Full Text Available Present work is focused on the copper (I sulphide leaching with sodium chloride in hydrochloric acid solution and with introduction of gaseous oxygen. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the literature data and products which were formed during the process and the overall leaching reaction was defined. The influence of temperature and time on the leaching degree of copper was experimentally determined. The quantity of dissolved copper increases with the increase of both investigated parameters. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and chloride ions have a role to disrupt the creation of this passive layer.

  2. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    Science.gov (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  3. Study on the utilization of a sodium-sulfuric acid solution for the uranium minerals' leaching

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1988-01-01

    Argentine uranium minerals have been leached at bench scale with a different agent trying to reduce sulfuric acid consumption. The leaching agent was a sodium sulfate-sulfuric acid solution and the ore was from Sierra Pintada (San Rafael - Mendoza). The work was performed in stirred vessel at atmospheric pressure. The influence of different variables, pH, temperature, oxidant agent, sodium sulfate concentration and time, in the sulfuric acid consumption and the uranium yield was studied. (Author) [es

  4. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini

    2013-12-01

    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  5. Laboratory study on leaching of a sandstone-type uranium deposit for acid in-situ leaching

    International Nuclear Information System (INIS)

    Wen Zhenqian; Yao Yixuan; Zheng Jianping; Jiang Yan; Cui Xin; Xing Yongguo; Hao Jinting; Tang Huazhang

    2013-01-01

    Ore samples were took from in-situ leaching experiment boreholes in a sandstone-type uranium deposit. Technological mineralogy study, agitating leaching and column leaching experiments were carried. The results show that the content of minerals consuming acid and deoxidized minerals is low. When sulfuric acid concentration was 1O g/L, initial uranium content was 0.0224%, and liquid-to-solid ratio was l.91, leaching rate of column leaching experiments is 89.19%, acid consumption is 8.2 kg/t ore, acid consumption is 41.88 t/tU. Acid leaching, technology is recommend for field in-situ leaching experiment, sulfuric acid concentration in confecting solution is 10 g/L, and oxidizing agent is needless during leaching process. (authors)

  6. Solvent extraction of uranium from high acid leach solution

    International Nuclear Information System (INIS)

    Ramadevi, G.; Sreenivas, T.; Navale, A.S.; Padmanabhan, N.P.H.

    2010-01-01

    A significant part of the total uranium reserves all over the world is contributed by refractory uranium minerals. The refractory oxides are highly stable and inert to attack by most of the commonly used acids under normal conditions of acid strength, pressure and temperature. Quantitative dissolution of uranium from such ores containing refractory uranium minerals requires drastic operating conditions during chemical leaching like high acid strength, elevated pressures and temperatures. The leach liquors produced under these conditions normally have high free acidity, which affects the downstream operations like ion exchange and solvent extraction

  7. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    International Nuclear Information System (INIS)

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-01-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  8. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  9. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  10. Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite

    International Nuclear Information System (INIS)

    Song Huanbi; Hu Yezang

    1997-01-01

    The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively

  11. Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching

    Science.gov (United States)

    Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing

    2018-05-01

    Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.

  12. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić M.

    2012-01-01

    Full Text Available Interest for application of hydrometallurgical processes in a processing of complex sulphide ores and concentrates has increased in recent years. Their application provides better metal recoveries and reduced emission of gaseous and toxic ageneses in the environment. The kinetics and mechanism of sphalerite leaching from complex sulphide concentrate with sulphuric acid and sodium nitrate solution at standard conditions was presented in this paper. The influences of temperature and time on the leaching degree of zinc were investigated and kinetic analysis of the process was accomplished. With temperature increasing from 60 to 90°C, the zinc leaching increased from 25.23% to 71.66% after 2 hours, i.e. from 59.40% to 99.83% after 4 hours. The selected kinetic model indicated that the diffusion through the product layer was the rate-controlling step during the sphalerite leaching. The activation energy was determined to be 55 kJ/mol in the temperature range 60-90°C. XRD, light microscopy and SEM/EDX analyses of the complex concentrate and leach residue confirmed formation of elemental sulphur and diffusion-controlled leaching mechanism.

  13. Process for recovering tungsten from alkaline leaching solution of tungsten ores

    International Nuclear Information System (INIS)

    Onozaki, S.; Nemoto, S.; Hazeyama, T.

    1976-01-01

    This invention relates to a process for recovering tungsten from an alkaline leaching solution of tungsten ores. This invention comprises adjusting the pH of an alkaline leaching solution which is obtained by lixiviating ore containing tungsten with an alkaline solution to 7--8 with acid to oxidize molybdic acid ions in the solution, adding a sulfide donor, then precipitating molybdenum sulfide compounds by adjusting the pH value of the solution to 2--3. Tungstic acid ions are recovered as calcium tungstate by the addition of a calcium ion donor after the molybdenum sulfide compounds are separated

  14. Acid pre-treatment method for in situ ore leaching

    International Nuclear Information System (INIS)

    Mallon, R.G.; Braun, R.L.

    1975-01-01

    An acid leaching method is described for the recovery of a desired element from a subterranean rubblized body of primary ore containing the element and also having associated therewith a carbonate mineral wherein the rubblized ore body is flooded with an aqueous acidic solution in order to release carbon dioxide from the associated carbonate mineral. After a substantial portion of the available carbon dioxide is released and removed from the ore body, as by venting to the atmosphere, an oxidizing gas is introduced into the flooded, rubblized ore to oxidize the ore and form an acid leach solution effective in the presence of the dissolved oxidizing gas to dissolve the ore and cause the desired element to go into solution. The leach solution is then circulated to the surface where the metal values are recovered therefrom

  15. Determination of humic acid in alkali leaching solution of uranium by spectophotrometry-COD method

    International Nuclear Information System (INIS)

    Feng Yu; An Wei; Chen Shusen

    2014-01-01

    It is one of the main causes of extraction emulsification or resin toxicosis during alkali leaching process in uranium metallurgy which organic matters including humic acid exist in lixiviums. In order to study the effect of humic acid in uranium metallurgy, a method for determination of content of humic acid in aqueous solution need to be established. Spectrophotometry is a simple and convenient method in humic acid analysis. However, accuracy of spectrophotometry can be reduced greatly because of interference of uranium and other elements in the humic acid solutions. Although chemical oxygen demand (COD) method is a common analysis way of organic matters in aqueous solutions, the concentration of humic acid cannot be directly measured. In this paper, COD method is related with spectrophotometry to avoid the interference of uranium and ensure the accurate analysis of humic acid. The results showed that the detection limit of the method was 1.78 mg/L and the recovery rate was 101.2%. (authors)

  16. Groundwater leaching of neutralized and untreated acid-leached uranium-mill tailings

    International Nuclear Information System (INIS)

    Gee, G.W.; Begej, C.W.; Campbell, A.C.; Sauter, N.N.; Opitz, B.E.; Sherwood, D.R.

    1981-01-01

    Tailings neutralization was examined to determine the effect of neutralization on contaminant release. Column leaching of acid extracted uranium mill tailings from Exxon Highland Mill, Wyoming, Pathfinder Gas Hills Mill, Wyoming, and the Dawn Midnite Mill, Washington, resulted in the flushing of high concentrations of salts in the first four pore volumes of leachate, followed by a steady decrease to the original groundwater salt concentrations. Neutralization decreased the concentration of salts and radionuclides leaching from the tailings and decreased the volume of solution required to return the solution to the groundwater pH and EC. Radium-226 and uranium-238 leached quickly from the tailings in the initial pore volumes of both neutralized and unneutralized tailings, and then decreased significantly. 6 figures, 5 tables

  17. Passivation of chalcopyrite during the leaching with sulphuric acid solution in presence of sodium nitrate

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2010-01-01

    Full Text Available In this work, the process of the chalcopyrite leaching in sulphuric acid solution was investigated. Sodium nitrate was used as oxidant in the leaching process. Chemical reactions of leaching and their thermodynamic possibilities are predicted based on the calculated Gibbs energies and analysis of E−pH diagrams. The negative values of the Gibbs energy show that all chemical reactions are thermodynamically feasible at atmospheric pressure and in a temperature range 25-90°C. At high electrode potential and low pH values, Cu2+, Fe2+ and Fe3+ ions exist in water solutions. The increase of temperature reduces the probability of Fe3+ ion existence in the system. The chalcopyrite concentrate, enriched in the “Rudnik” flotation plant, with 27.08% Cu, 25.12% Fe, 4.15% Zn and 2.28% Pb was used in the work. XRD and DTA analysis of the concentrate reveals that the sample contains mainly the chalcopyrite with small amount of sphalerite. For the description of the reaction of leaching process the leach residuals, obtained at different conditions, were chosen for XRD, TG/DTA and SEM/EDX analyses. The elemental sulphur and chalcopyrite phases identified in leach residuals confirm our prediction that the elemental sulphur is formed during the leaching process. Accordingly, elemental sulphur is the main product of the reaction, while a minor amount of sulphide sulphur is oxidized to sulphate during the leaching. The sulphur formed during the reaction was precipitated at the particle surfaces, and slowed down the leaching rate in the final stage of leaching process. In the initial stage, the reaction rate was controlled by the surface reaction. The mechanism, latter has been changed into a diffusion controlled one.

  18. Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching

    Science.gov (United States)

    Royani, Ahmad; Sulistiyono, Eko; Prasetiyo, Agus Budi; Subagja, Rudi

    2018-05-01

    Magnesium is widely used in varieties industrial sector. Dolomite is one source of magnesium besides seawater. The extraction of magnesium from dolomite ores can be done by leaching process. In this work, the dolomite leaching to extract magnesium by hydrochloric acid was investigated. The leaching experiments were performed in a spherical glass batch reactor having a capacity of 1000 ml. The effects of the stirring speed, acid concentration, reaction temperature and liquid-solid ratio for each reaction time of 1; 2; and 3 h on the Mg leaching have been evaluated. 5 ml of solution sample were collected from the leached solutions, then it was filtered prior to analysis by ICP OES. The experimental results show that the magnesium extraction increases along with the increase of acid concentration, liquid-solid ratio and temperature. The optimum conditions for magnesium extraction were achieved at temperature 75 °C, extraction time 3 h, the HCl concentration of 2 M, the liquid-solid ratio 20 ml/g and stirring speed of 400 rpm. At this condition 98, 82 % of magnesium were extracted from dolomite. The conclusion obtained from this leaching process is that the magnesium can be extracted from dolomite by using hydrochloric acid solutions.

  19. Leaching of sodium carbonate cakes by nitric acid

    International Nuclear Information System (INIS)

    Troyanker, L.S.; Nikonov, V.N.

    1977-01-01

    The interaction has been studied of soda cakes of fluorite-rare-earth concentrate with nitric acid. The effect of a number of factors on extraction of REE into a nitric solution has been considered: the final acidity of the pulp, the duration of leaching, and the ratio between solid and liquid phases. The effect of adding aluminium nitrate into the pulp has also been studied. It has been shown that three-stage counterflow leaching of soda cakes with nitric acid increases REE extraction approximately by 10%

  20. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    Science.gov (United States)

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Leaching of Electronic Waste Using Biometabolised Acids

    Institute of Scientific and Technical Information of China (English)

    M. Saidan; B. Brown; M. Valix

    2012-01-01

    The revolution in information and communication technology has brought huge technical benefits and wealth, but has created a major global problem: the generation of vast amounts of electronic waste, or e-waste through product obsolesce. The challenge in managing e-waste will be in developing sustainable recycling tech- nologies that are able to address the volume and complexity of this waste using cost effective and ecologically sen-sitive methods. In this study, the capability or microorganism metabolic acids in dissolving the metallic tractions from waste printed circuit boards was examined. Several factors were considered in the examination of the activityof the acids-including secondary reactions, solution pH, temperature and the nature of ligands in solutions (or bioacid constituents). The leaching tests were cgnducted ex-situ, using synthetic organic acids. Leaching was performed for periods of up to 6 hat 70-90 ℃ and 1000 r-min-1.

  2. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  3. Glass-surface area to solution-volume ratio and its implications to accelerated leach testing

    International Nuclear Information System (INIS)

    Pederson, L.R.; Buckwalter, C.Q.; McVay, G.L.; Riddle, B.L.

    1982-10-01

    The value of glass surface area to solution volume ratio (SA/V) can strongly influence the leaching rate of PNL 76-68 glass. The leaching rate is largely governed by silicon solubility constraints. Silicic acid in solution reduced the elemental release of all glass components. No components are leached to depths greater than that of silicon. The presence of the reaction layer had no measurable effect on the rate of leaching. Accelerated leach testing is possible since PNL 76-68 glass leaching is solubility-controlled (except at very low SA/V values). A series of glasses leached with SA/V x time = constant will yield identical elemental release

  4. Recovery of Iron from Pyrolusite Leaching Slag by a Lab-Scale Circulation Process of Oxalic Acid Leaching and Ultraviolet Irradiation

    Directory of Open Access Journals (Sweden)

    Biao Deng

    2017-12-01

    Full Text Available Pyrolusite leaching slag is a Fe-containing slag generated from pyrolusite leaching process with SO2. Recovery of iron from the slag not only has economic benefit, but also prevents the secondary pollution to the environment. A novel lab-scale cyclic process for recovering iron from pyrolusite leaching slag was introduced. The process contains two steps: (1 iron was leached with oxalic acid and [Fe(C2O4n](3−2n+ solution was generated; (2 the [Fe(C2O4n](3−2n+ solution was irradiated by ultraviolet and ferrous oxalate precipitation were obtained. The effect of operation parameter on leaching and irradiation process were studied separately. In the leaching process, the optimal solid/liquid ratio, oxalic acid concentration, leaching temperature, stirring rate, and leaching time are 1:50, 0.40 mol/L, 95 °C, 300 r/min, and 3 h, respectively. In the irradiation process, the best irradiation wavelength, Fe/oxalic acid molar ratio and irradiation time are 254 nm, 1:4, and 30 min. Besides, a test of 9 continuous cycles was carried out and the performance and material balance of the combined process were investigated. The results showed that the cyclic process is entirely feasible and prove to be stable producing, and ferrous oxalate of 99.32% purity. Material balance indicated that 95.17% of iron was recovered in the form of FeC2O4·2H2O, and the recovery efficiency of oxalic acid was 58.52%.

  5. A kinetics study of acetic acid on cobalt leaching of spent LIBs: Shrinking Core Model

    Directory of Open Access Journals (Sweden)

    Setiawan Hendrik

    2018-01-01

    Full Text Available Lithium-ion batteries (LIBs are secondary rechargeable power sources which increasing production also leads to large amount of waste. In order to environmentally friendly reduce the waste, this work aimed to use acetic acid as a substitute leaching agent to leach Co metals which constitutes about 72.39% wt of the battery cathode. The leaching process was done in a three-necked-flask where calcined LIB cathode powder was mixed with acetic acid solution. The variables of the leaching process under investigation were solution pH, concentration of H2O2 in the solution, S/L ratio, temperature and reaction time. Experimental results showed that only temperature significantly influenced the leaching rate of Co. Since the process was exothermic, the maximum recovery decreased as temperature increased. Conventional shrinking core model that considers diffusion and irreversible surface reaction resistances was found not sufficient to predict the kinetics of the Co leaching with acetic acid. A more representative kinetics model that considers a reversible reaction of Co complex formation needs to be further developed.

  6. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.

    Science.gov (United States)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Acid leaching of mixed spent Li-ion batteries

    Directory of Open Access Journals (Sweden)

    A.A. Nayl

    2017-05-01

    Full Text Available Acid leaching for different types of mixed spent Li-ion mobile batteries is carried out after alkali decomposition using NH4OH followed by H2SO4 + H2O2 leaching. In the alkali decomposition step, the effects of reaction time, NH4OH concentration, liquid/solid mass ratio and reaction temperature on the decomposition process are investigated to remove Al, Cu, Mn, Ni, Co, and Li. After alkaline treatment, the alkali paste is treated to leach the remaining metals using H2SO4 + H2O2. The significant effects of reaction time, acid concentration, H2O2 concentration, liquid/solid mass ratios and reaction temperature on the leaching rate are studied. More than 97% of Al, Mn, Ni, Co, and Li and about 65% Cu are leached in two stages. Kinetic analysis shows that, the data fit with chemical reaction control mechanism and the activation energies for the investigated metals using the Arrhenius equation ranged from 30.1 to 41.4 kJ/mol. Recovered metals are precipitated from the leaching liquor at varying pH values using NaOH solution and Na2CO3. Firstly, Mn is precipitated as MnCO3 at pH = 7.5. Secondly, at pH = 9.0, nickel is precipitated as NiCO3. Thirdly, as the pH of the leaching liquor reaches 11–12, Co(OH2 is precipitated and the remaining Li is readily precipitated as Li2CO3 using a saturated Na2CO3 solution. Based on the experimental data, a flow sheet is developed and tested for the recovery process.

  8. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  9. Leaching of basic oxygen furnace sludge with sulphuric acid

    Directory of Open Access Journals (Sweden)

    Andrea Miškufová

    2010-03-01

    Full Text Available In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressureand temperatures up to 100 °C is investigated on a laboratory scale. The influence of sulphuric acid concentration, temperature, timeand liquid to solid ratio (L:S on the leaching process was studied. The main aim of this study was to determine optimal conditions whenthe maximum amount of zinc passes into the solution.

  10. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    Science.gov (United States)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  11. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.

    Science.gov (United States)

    Biswas, Ranjit K; Karmakar, Aneek K; Kumar, Sree L

    2016-05-01

    The spent Zn-C cell powder, containing ZnMn2O4, ZnO, MnO(OH) and possibly Mn2O3 and Mn3O4, can be leached by a sulfuric acid solution mixed with some glucose. The leaching is found to be dependent on solid to liquid (S/L) ratio, amount of glucose, concentration of sulfuric acid solution, time and pulp agitation speed. For 5g powder (S), 1h leaching time and 300rpm pulp agitation speed, two-level four-factor (2(4)) experimental designs have been carried out to derive models for extraction of both Mn(II) and Zn(II). Amount of glucose (G, g), concentration of H2SO4 solution (C, mol/L), volume of H2SO4 solution as leachant (L, mL) and leaching temperature (T, °C) are considered as factors (variables). The model in both cases consists of mean, factor effects and interaction effects. The four-factor interaction effect is observed in neither of the cases. Some two-factor and three-factor effects are found to have produced positive or negative contributions to dissolution percentage in both cases. The models are examined for comparison with experimental results with good fits and also used for optimization of factors. At optimized condition (G=0.50g, C=2mol/L, L=250mL and T=100°C), an aliquot of 5g powder in 1h and at 300rpm produces a solution containing (7.08±0.10)g/L Mn(II) and (2.20±0.06)g/L Zn(II) corresponding to almost 100% extraction of both metal ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  13. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.

    Science.gov (United States)

    Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng

    2017-11-01

    Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  14. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers

    Science.gov (United States)

    Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko

    2018-04-01

    Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.

  15. Recovery of Vanadium from H2SO4-HF Acidic Leaching Solution of Black Shale by Solvent Extraction and Precipitation

    Directory of Open Access Journals (Sweden)

    Xingbin Li

    2016-03-01

    Full Text Available The recovery of vanadium from sulfuric and hydrofluoric mixed acid solutions generated by the direct leaching of black shale was investigated using solvent extraction and precipitation methods. The process consisted of reduction, solvent extraction, and stripping, followed by precipitation and calcination to yield vanadium pentoxide. The influence of various operating parameters on the extraction and recovery of vanadium was studied. Vanadium (IV was selectively extracted using a mixture of 10% (v/v di(2-ethylhexylphosphoric acid and 5% (v/v tri-n-butylphosphate in sulfonated kerosene. Using six extraction and five stripping stages, the extraction efficiency for vanadium was 96.7% and the stripping efficiency was 99.7%. V2O5 with a purity of 99.52% was obtained by oxidation of the loaded strip solution and precipitation of ammonium polyvanadate at pH 1.8 to 2.2, followed by calcination of the dried precipitate at 550 °C for 2 h. It was concluded that the combination of solvent extraction and precipitation is an efficient method for the recovery of vanadium from a multi-element leach solution generated from black shale.

  16. Some factors affecting agitation leach test during in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Liao Wensheng; Jiang Yan; Wang Limin; Shi Zhenfeng; Zhao Qiaofu; MARMAR

    2014-01-01

    The agitation leaching test is one of the most fundamental research works in in-situ leaching of uranium. Some factors affecting the test results were analyzed including stirring, leaching time, oxidizer used in alkaline leach, washing solution, the amount and size of ore samples. The results indicate that stirring can enhance diffusion velocity. The leach time l or 2 days is suitable for the samples containing accessible uranium and low acid consumption minerals; whereas 3 or 4 days for those containing refractory ore to leach and slowly acid consuming minerals. For the oxidizer used in alkaline leach, potassium permanganate is better than hydrogen peroxide. Recovery calculated by the leach solution can be directly obtained by its uranium level and the original volume of lixiviant without analyzing and calculating the washing solution. The appropriate amount and size of ore samples for the agitation leaching test are 60 g and <1 mm. By controlling the above factors, the agitation leach test can improve the applicability of the different ore samples and give the more reliable data. (authors)

  17. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    Science.gov (United States)

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  18. Reductive Leaching Kinetics of Low Grade Manganese Deposits in H2SO4 Solution Using Malonic Acid as Reducing Agent

    OpenAIRE

    Taysser Lasheen; S. A. Abu Elenein; W. A. Saleh; A. H Orabi; D. A Ismaiel

    2014-01-01

    A leaching process was developed to extract manganese and metal values from Alloga manganese concentrate. The preferential leaching process was achieved through reductive leaching in dilute sulfuric acid medium with malonic acid as the reducing agent. Leaching parameters were optimized as 1.0 M H2SO4, 10% malonic acid in solid/liquid ratio 1:10 for 90 min at 80 C and using ore ground to – 74 µm. Under these conditions, the leaching efficiency of manganese reaches 97%, whilst iron dissolution ...

  19. Effects of structural and textural grain characteristics on leaching of sulphide minerals from a polymetallic concentrate by sodium nitrate and sulphuric acid solution

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2017-01-01

    Full Text Available In this paper, the influence of structural and textural characteristics of sulfide minerals on their leaching from a polymetallic concentrate by sulfuric acid and sodium nitrate solution is presented. The starting material was Pb–Zn–Cu sulphide polymetallic concentrate enriched during the flotation of a polymetallic ore in the "Rudnik" flotation plant (Rudnik – Serbia. Leaching experiments were carried out in a closed glass reactor, which provides stable hermetic conditions and allows heating at constant temperature. Chemical, XRD, qualitative and quantitative microscopic and SEM/EDX analyses were used to characterizes samples of the polymetallic concentrate and leach residue. It was determined that chalcopyrite, sphalerite, galena, pyrrhotite and quartz were present in the polymetallic concentrate. The content of sulphide minerals was 69.5%, of which 60.9% occurred as liberated grains: 88.3% of chalcopyrite, 59.3% of sphalerite, 25.1% of galena and 51.6% of pirrhotite. The rest of chalcopyrite, sphalerite, galena and pirrhotite grains were in the forms of inclusions, impregnations, and simple and complex intergrowths. During the leaching process by sodium nitrate and sulphuric acid solution, it was shown previously that the leaching rate of sulphide minerals decreased with time while a part of the sulphide minerals remained in the leach residue. After leaching at 80°C for 120 min, the yields were 69.8, 82.7 and 67.1% for Cu, Zn and Fe, respectively. Lead, in the form of insoluble anglesite, remained in the leach residue. In addition to the anglesite, unleached sulfide minerals and quartz, elemental sulfur was found in the solid residue. The content of sulphide minerals was 35% of which 33.7% minerals occur independently. In specific, 54.7% of chalcopyrite, 31.9% of sphalerite, 8.2% of galena and 37.6% of pyrrhotite appear as separate grains with highly corroded surfaces. Therefore, the structural assembly of sulphide grains in the

  20. Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment

    Directory of Open Access Journals (Sweden)

    Yahya Ahmad Asyari

    2017-01-01

    Full Text Available Coal ash is the residue that is produced during coal combustion for instance fly ash, bottom ash or boiler slag which was primarily produced from the combustion of coal. With growth in coal burning power station, huge amount of coal bottom ash (CBA considered as hazardous material which are normally disposed in an on-site disposal system without any commercialization purpose. Previous researchers have studied the extraction of silica from agricultural wastes such as palm ash and rice husk ash (RHA and CBA by using leaching treatment method. In this study, the weaker acid, citric acid solution was used to replace the strong acid in leaching treatment process. Result showed that the heavy metal content such as Copper (Cu, Zinc (Zn and Lead (Pb can be decrease. Meanwhile the silica can be extracted up to 44% from coal bottom ash using citric acid leaching treatment under the optimum reaction time of 60 minutes with solution temperature of 60°C and concentration of citric acid more than 2%.

  1. Study of the sulfuric acid leaching and bacterial leaching of low grade uranium ore by orbital shaker experiment

    International Nuclear Information System (INIS)

    Li Guangyue; Liu Yulong; Wang Yongdong; Ding Dexin

    2009-01-01

    The sulphuric acid leaching and bacteria leaching by orbital shaker experiments were conducted for the low grade uranium ore from a uranium mine in Guangdong Province. The results show that, when the concentration of sulphuric acid and that of slurry were 30 g/L and 25%, respectively, the conditions were most favourable for sulphuric acid leaching and the rate of leaching reached 92.92%, that, when pH value was 1.5, inoculation amount, 10%, concentration of slurry, 10%, the conditions were most favourable for bacteria leaching and the rate of leaching reached 95.93%, that, compared with sulphuric acid leaching, bacteria leaching decreased sulphuric acid consumption by 17.2% and increased the rate of leaching by 3%, and that, under the most favourable conditions for suphuric acid leaching, if 1% natrium chlorate was added, the rate of leaching increased to 96.46%, but 10 kg of natrium chlorate was consumed for 1 ton of uranium ore. (authors)

  2. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  3. A statistical approach to the experimental design of the sulfuric acid leaching of gold-copper ore

    Directory of Open Access Journals (Sweden)

    Mendes F.D.

    2003-01-01

    Full Text Available The high grade of copper in the Igarapé Bahia (Brazil gold-copper ore prevents the direct application of the classic cyanidation process. Copper oxides and sulfides react with cyanides in solution, causing a high consumption of leach reagent and thereby raising processing costs and decreasing recovery of gold. Studies have showm that a feasible route for this ore would be a pretreatment for copper minerals removal prior to the cyanidation stage. The goal of this experimental work was to study the experimental conditions required for copper removal from Igarapé Bahia gold-copper ore by sulfuric acid leaching by applying a statistical approach to the experimental design. By using the Plackett Burman method, it was possible to select the variables that had the largest influence on the percentage of copper extracted at the sulfuric acid leaching stage. These were temperature of leach solution, stirring speed, concentration of sulfuric acid in the leach solution and particle size of the ore. The influence of the individual effects of these variables and their interactions on the experimental response were analyzed by applying the replicated full factorial design method. Finally, the selected variables were optimized by the ascending path statistical method, which determined the best experimental conditions for leaching to achieve the highest percentage of copper extracted. Using the optimized conditions, the best leaching results showed a copper extraction of 75.5%.

  4. Acid agglomeration heap leaching: present status, principle and applications

    International Nuclear Information System (INIS)

    Zeng Yijun

    2004-01-01

    For extracting valuable metal from clay-bearing acidic ores of poor permeability, agglomerated acid heap leaching appears to be the most effective method, whereas conventional leaching and general heap leaching bring about unsatisfactory recovery and poor economic returns. The present state of research work on acid agglomeration worldwide and its basic principle are discussed. The first commercial application employing acid agglomeration-heap leaching in China is also introduced

  5. Alternative leaching processes for uranium ores

    International Nuclear Information System (INIS)

    Ring, R.J.

    1979-01-01

    Laboratory studies have been carried out to compare the extraction of uranium from Australian ores by conventional leaching in sulphuric acid with that obtained using hydrochloric acid and acidified ferric sulphate solutions. Leaching with hydrochloric acid achieved higher extractions of radium-226 but the extraction of uranium was reduced considerably. The use of acidified ferric sulphate solution reduced acid consumption by 20-40% without any detrimental effect on uranium extraction. The ferric ion, which is reduced during leaching, can be reoxidized and recycled after the addition of acid makeup. Hydrogen peroxide was found to be an effective oxidant in conventional sulphuric acid leaching. It is more expensive than alternative oxidants, but it is non-polluting, lesser quantities are required and acid consumption is reduced

  6. Acid mine drainage simulated leaching behavior of goethite and cobalt substituted goethite

    Science.gov (United States)

    Penprase, S. B.; Kimball, B. E.

    2015-12-01

    Though most modern day mining aims to eliminate the seepage of acid mine drainage (AMD) to the local watershed, historical mines regularly receive little to no remediation, and often release acidic, metal-rich drainage and particles to the environment. Treatment of AMD often includes neutralizing pH to facilitate the precipitation of Fe-oxides and dissolved trace metals, thereby forming Trace Metal Substituted (TMS) forms of known minerals, such as goethite (α-FeOOH). The stability of TMS precipitates is not fully understood. As a result, we conducted a 20 day leach experiment using laboratory synthesized pure (Gt) and cobalt-substituted (CoGt) goethites with a dilute ultrapure HCl solution (pH = 3.61) at T = 23.3±2.5ºC. Leached solids were characterized using X-ray diffraction (XRD) and scanning electron microscopy paired with energy dispersive spectroscopy (SEM-EDS). Leach solutions were sampled for pH and conductivity, and dissolved chemistry was determined with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Preliminary results indicate Gt and CoGt filtered leach solutions experienced constant pH (Gt = 3.9 ± 0.1, CoGt = 6.8 ± 0.2) and conductivity (Gt = 69 ± 6.6 μS/cm, CoGt = 81 ± 16 μS/cm) for t = 0-20 days. Micro-focused XRD results indicate that leached solids did not change in mineralogy throughout the experiment, and SEM images show minor disintegration along mineral grain edges, but little overall change in shape. Preliminary ICP-MS results show lower dissolved Fe concentrations for CoGt (1.1 ± 1.1 ppb) compared to Gt (17 ± 8.9 ppb) over time. Dissolved Co concentrations ranged from 560 - 830 ppb and increased over time. Compared to leaching of pure Gt, leaching of CoGt generated significantly higher pH, slightly higher conductivity, and significantly less dissolved Fe. During the CoGt leach, Co was preferentially leached over Fe. The differences in leaching behavior between pure and TMS goethite in the laboratory have implications for

  7. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    Science.gov (United States)

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  8. Removal of radium-226 from radium-contaminated soil using humic acid by column leaching method

    International Nuclear Information System (INIS)

    Esther Phillip; Muhamad Samudi Yasir

    2012-01-01

    In this study, evaluation of radium-226 removal from radium-contaminated soil using humic acid extracted from peat soil by column leaching method was carried out. Humic acid of concentration 100 ppm and pH 7 was leached through a column packed with radium-contaminated soil and leachates collected were analysed with gamma spectrometer to determine the leached radium-226. Results obtained indicated low removal of radium-226 between 1 - 4 %. Meanwhile, leaching profile revealed that radium-226 was bound to soil components with three different strength, thus resulting in three phases of radium-226 removal. It was estimated that the total removal of radium-226 from 10 g radium-contaminated soil sample studied could be achieved using approximately 31500 - 31850 ml HA solutions with leaching rate of 1 ml/ min. (author)

  9. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    Science.gov (United States)

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hydrochloric acid leach of Agnew Lake uranium concentrate

    International Nuclear Information System (INIS)

    Haque, K.E.; Ipekoglue, B.

    1981-10-01

    Hydrochloric acid leaching was conducted on the radioactive mineral concentrate separated from the Agenw Lake uranium ore. Leach tests conducted at the optimum conditions (75 0 C; 36 hours; 66.0 Kg HCl/tonne; solid:liquid -1:1) resulted in the extraction of 87% uranium and 84% radium. The radionuclide level of the residue was U-0.016%, Th-0.24% and Ra-65 pCi/g solids. However to obtain a residue almost free of radium (i.e., Ra level at the detection limit: 4-6 pCi/g solids), the first stage leach residue was further treated with hydrochloric acid. The radium level in the best second stage leach residue was also above the target level. Therefore, multistage (3 or 4) hydrochloric acid and/or neutral chloride leaching is recommended to obtain tailings almost free of radionuclide

  11. Comparative studies on acid leaching of zinc waste materials

    Science.gov (United States)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  12. Gold recovery from acidic leach solutions using as extractants trialkylamines of N,N'-di-alkyl-aliphatic amides

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Carlini, D.; Gasparini, G.M.; Simonetti, E.

    1988-07-01

    TriOctylAmine (TOA) and a di-substituted aliphatic amide, N,N-Di-N-ButylOctanamide (DBOA), were examined in batch and in mini mixer-settler experiments using leachates of Peruvian and Bolivian concentrates. With these minerals, very rich in sulfur (pyrites, stybine), 90-95% gold recovery in 12-24 hours was reached by leaching with 4M aqua regia (HCl 3M nitric acid 1M) at room temperature and with 1/3 solid/liquid ratio. With these leachate solutions (2-3M total acidity, 10-60 ppm ao Au), the two processes with TOA (GAMEX PROCESS) and with DBOA (AUMIDEX PROCESS) were tested and compared. Experimental results strongly support the possibility of using TOA and DBOA on an industrial scale.

  13. Study of radium extraction mechanisms from scales by leaching in different acidic and alkaline media

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Gafar, M.; Al-Kurdi, H.

    2002-07-01

    The present report shows the results of leaching experiments for scales containing naturally occuring radioactive materials using different acidic and alkaline media. The obtained result can be used for defining the method of safe disposal of such waste. Leaching solutions used in this study were distilled water, mineral acids (sulpharic acid, hydrochloric acid and nitric acid), sodium, potassium hydroxides, ammonium oxalate EDTA, sodium carbonate, potassium acetate, and a mixture of potassium chloride and hydrochloric acid. The results have shown that the extraction ratio of radium-226, the most abundant isotope in scales, is very low and even negligible using all different media. This indicates that all scales produced in Syrian oil fields do not require any chemical preparation before disposal. In addition, the effect of both stirring time of phrases and concentration of leaching media that may affect the radium transfer process from solid phase to aqueous phase have been investigated were no measurable amount being observed in the leachate. (author)

  14. Quantitative Leaching of a Spent Cell Phone Printed Circuit Board by Hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Alafara A. Baba

    2014-07-01

    Full Text Available This paper presents a kinetic data on the hydrometallurgical recovery of some metal ions from a printed circuit board (PCB of a spent cell phone by hydrochloric acid leaching. The effects of acid concentration, temperature and particle diameter on the dissolution efficiency at various leaching time intervals were examined. The results of the leaching investigations showed that the powdered cell phone dissolution increases with increasing acid concentration, system temperature with decreasing particle diameter at 360 rpm. With 2M HCl solution, about 88.49% of the sample was dissolved within 120 minutes using 0.075-0.112 mm particle diameter at 800 C. The results of the study indicated that the dissolution reaction could be represented by a shrinking core model with surface chemical reaction. A value of 0.61, 60.67 kJ/mol and 12.9s-1 were calculated as reaction order, activation energy and frequency factor, respectively for the dissolution process.

  15. Extraction of uranium from coarse ore and acid-curing and ferric sulphate-trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing

    1994-01-01

    On the basis of analysis of the problems in the technology of the traditional uranium hydrometallurgy and the limitations of thin layer leaching process (TLL), a new leaching system-acid-curing and ferric sulphate-trickle leaching (AFL) process (NGJ in Chinese) has developed for extraction of uranium from the coarse ore. The ferric sulphate solution was used for trickling the acid-cured uranium ore and the residual leaching reaction incomplete in TLL process can be improved in this process. And the AFL process has a wide applicability to China's uranium ores, being in competition with the traditional agitation leaching process for treating coarse ores. The uranium ore processing technology based on the AFL process will become one of the new basic technologies of uranium hydrometallurgy. A series of difficulties will be basically overcome associated with fine grinding because of its elimination in the presented process. Moreover, the situation of the present uranium hydrometallurgy can be also changed owing to without technological effluent discharge

  16. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.

    Science.gov (United States)

    Gao, Wenfang; Liu, Chenming; Cao, Hongbin; Zheng, Xiaohong; Lin, Xiao; Wang, Haijuan; Zhang, Yi; Sun, Zhi

    2018-05-01

    Recovery of metals from spent lithium-ion batteries (LIBs) has attracted worldwide attention because of issues from both environmental impacts and resource supply. Leaching, for instance using an acidic solution, is a critical step for effective recovery of metals from spent LIBs. To achieve both high leaching efficiency and selectivity of the targeted metals, improved understanding on the interactive features of the materials and leaching solutions is highly required. However, such understanding is still limited at least caused by the variation on physiochemical properties of different leaching solutions. In this research, a comprehensive investigation and evaluation on the leaching process using acidic solutions to recycle spent LIBs is carried out. Through analyzing two important parameters, i.e. leaching speed and recovery rate of the corresponding metals, the effects of hydrogen ion concentration, acid species and concentration on these two parameters were evaluated. It was found that a leachant with organic acids may leach Co and Li from the cathode scrap and leave Al foil as metallic form with high leaching selectivity, while that with inorganic acids typically leach all metals into the solution. Inconsistency between the leaching selectivity and efficiency during spent LIBs recycling is frequently noticed. In order to achieve an optimal status with both high leaching selectivity and efficiency (especially at high solid-to-liquid ratios), it is important to manipulate the average leaching speed and recovery rate of metals to optimize the leaching conditions. Subsequently, it is found that the leaching speed is significantly dependent on the hydrogen ion concentration and the capability of releasing hydrogen ions of the acidic leachant during leaching. With this research, it is expected to improve understanding on controlling the physiochemical properties of a leaching solution and to potentially design processes for spent LIBs recycling with high industrial

  17. Process optimization and leaching kinetics of zinc and manganese metals from zinc-carbon and alkaline spent batteries using citric acid reagent

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Zn-Carbon and Alkaline spent batteries contains heavy metals, such as zinc and manganese, which can causes environmental problem if not handled properly. Usually the recovery of these metals were done by leaching method using strong acid, but the use of strong acids as leaching reagents can be harmful to the environment. This paper concerns the recovery of Zn and Mn metals from Zn-C and alkaline spent batteries with leaching method using citric acid as the environmental friendly leaching reagent. The leaching conditions using citric acid were optimized and the leaching kinetics of Zn and Mn in citric acid solution was investigated. The leaching of 89.62% Zn and 63.26% Mn was achieved with 1.5 M citric acid, 90°C temperature, and 90 minutes stirring time. Kinetics data for the dissolution of Zn showed the best fit to chemical control shrinking core model, while the diffusion controlled model was suitable for the dissolution of Mn kinetics data. The activation energy of 6.12 and 1.73 kcal/mol was acquired for the leaching of Zn and Mn in the temperature range 60°C-90°C.

  18. A new Leaching System, Sheta Extractor

    International Nuclear Information System (INIS)

    Sheta, M.E.

    2008-01-01

    Moving of crushed solid ores against leaching solution in a continuous countercurrent arises a true technical problem. This invented system introduces a practical solution for such problem. Inside the system, the crushed ore is driving against gravity, whereas the leaching solution moves in the opposite direction. Contact between the two phases occurs with gentle stirring. After contact, discharging of the processed phases takes place automatically out the system. The system was investigated for uranium leaching from a coarse grained fraction (+2 --- -- -30 mm) of uranium mineralized granite sample. Uranium leaching percent reached to nearly 50% using sulfuric acid

  19. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  20. Leaching of irradiated polymers: solution characterization and actinides complexation

    International Nuclear Information System (INIS)

    Fromentin, Elodie

    2017-01-01

    The first aim of this work is to study the degradation of an industrial poly-esterurethane (PURm) by radio-oxidation and then by leaching in an alkaline aqueous solution. The second aim is to measure the complexing power of hydro-soluble degradation products (HDP) with actinides. To reach these goals, PURm was first characterized and then radio-oxidized at room temperature with γ rays up to 10 MGy. Second, it was leached at pH 13.3 at different temperature values. Numerous analytical techniques were employed in order to characterize the HDP which were obtained. Europium(III) was used as an analogue of actinides(III) and the behavior of HDP with europium(III) was analyzed by time-resolved luminescence spectroscopy (TRLS). Whatever the dose received by PURm, adipic acid and butane-1,4-diol are the two main HDP in leachates. The leaching data acquired at 40 and 60 C, on the 1 MGy radio-oxidized PURm, correlate with the model given by Yoon et al. (1997). However, the data at room temperature (22 C in average) are not in agreement with the model. Nevertheless, it seems that the plateau which was reached at long-term leaching is the same whatever the temperature used in this study. The results allow to conclude that the predominant mechanism occurring during the leaching of unirradiated and radio-oxidized PURm in an alkaline medium is the hydrolysis of the soft segments ester groups. The complexation of europium(III) by HDP in alkaline medium was demonstrated. The measurement of the complexing power and the identification of ligands was achieved under certain conditions. (author) [fr

  1. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  2. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  3. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  4. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline

    Directory of Open Access Journals (Sweden)

    Yuanzhao Wu

    2017-08-01

    Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.

  5. Acid leaching of uranium present in a residue from mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Braulio, Walace S.; Ladeira, Ana C.Q. [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Dept. of Mineral Technology

    2011-07-01

    The acid mine drainage is one of the most important environmental problems associated with mining of ores containing sulfides. The treatment of these acid effluents, which contains high concentrations of dissolved metals and anions, is generally by liming. The wastes generated in the liming process may present significant toxicity and their storage in inappropriate places waiting for treatment is a common issue that requires solution. Osamu Utsumi Mine located in the city of Caldas, Minas Gerais, has been facing this problem. The residue of this mine consists of an alkaline sludge generated from the neutralization of the pH of acid mine drainage and is rich in various metals, including uranium. The main concern is the long term stability of this residue, which is in permanent contact with the acid water in the open pit. The recovery of uranium by hydrometallurgical techniques, such as acid leaching, can be a viable alternative on the reuse of this material. This study aimed at establishing a specific leaching process for the recovery of uranium present in the sludge from Caldas uranium mine. Some parameters such as solid/liquid ratio (0.09 to 0.17), time of leaching (1 to 24 hours) and concentration of sulfuric acid (pH from 0 to 3.0) were assessed. The results showed that it is possible to extract 100% of uranium present in the sludge. The concentration of U{sub 3}O{sub 8} in the residue was 0.25%, similar to the content of the vein ores which is around 0.20% to 1.0%. The best experimental leaching condition is solid/liquid ratio of 0.17, pH 1.0 and 2 hours of reaction at room temperature (25 deg C). The content of uranium in the liquor is around 440 mgL{sup -1}. The recovery of the uranium from the liquor is under investigation by ionic exchange. (author)

  6. Acid leaching of uranium present in a residue from mining industry

    International Nuclear Information System (INIS)

    Braulio, Walace S.; Ladeira, Ana C.Q.

    2011-01-01

    The acid mine drainage is one of the most important environmental problems associated with mining of ores containing sulfides. The treatment of these acid effluents, which contains high concentrations of dissolved metals and anions, is generally by liming. The wastes generated in the liming process may present significant toxicity and their storage in inappropriate places waiting for treatment is a common issue that requires solution. Osamu Utsumi Mine located in the city of Caldas, Minas Gerais, has been facing this problem. The residue of this mine consists of an alkaline sludge generated from the neutralization of the pH of acid mine drainage and is rich in various metals, including uranium. The main concern is the long term stability of this residue, which is in permanent contact with the acid water in the open pit. The recovery of uranium by hydrometallurgical techniques, such as acid leaching, can be a viable alternative on the reuse of this material. This study aimed at establishing a specific leaching process for the recovery of uranium present in the sludge from Caldas uranium mine. Some parameters such as solid/liquid ratio (0.09 to 0.17), time of leaching (1 to 24 hours) and concentration of sulfuric acid (pH from 0 to 3.0) were assessed. The results showed that it is possible to extract 100% of uranium present in the sludge. The concentration of U 3 O 8 in the residue was 0.25%, similar to the content of the vein ores which is around 0.20% to 1.0%. The best experimental leaching condition is solid/liquid ratio of 0.17, pH 1.0 and 2 hours of reaction at room temperature (25 deg C). The content of uranium in the liquor is around 440 mgL -1 . The recovery of the uranium from the liquor is under investigation by ionic exchange. (author)

  7. Separation of cerium from other lanthanides by leaching with nitric acid rare earth(III) hydroxide-cerium(IV) oxide mixtures

    International Nuclear Information System (INIS)

    Mioduski, T.; Dong Anh Hao; Hoang Hong Luan

    1989-01-01

    The objective of the present work is a method for separating Ce from other Ln in the raw natural mixtures of rare earth hydroxides obtained from Vietnamese and Mongolian fluorocarbonate ores. The method, a simple acid digestion, should combine a maximum Ln(III) concentration of the effluent solution with a nitrate counter-ion environment and high selectivity vs. leaching yield parameters. Under optimum conditions Ce (and Th, if present) virtually does not pass into solution while the yield of leaching and the sum of REE oxides concentration in the after-leach solution reach the maximum values of 97% (mass) and 0.18 kg x dm -3 , respectively. (author) 9 refs.; 8 tabs

  8. Direct separation of uranium and thorium from Qatrani phosphatic raw ore by consecutive percolation leaching

    Energy Technology Data Exchange (ETDEWEB)

    Hussein El-Sayed, M

    1984-07-01

    Phosphatic sandstone of Qatrani area contains high concentrations of uranium and thorium (1450 and 870 ppm respectively). These elements were directly separated from a representative sample of the ore by percolation leaching. Separation made was carried out by using two different leaching reagents, citric and nitric acids for obtaining two separate concentrates of U and Th consecutively from the sample. Uranium was leached first by using citric acid where other rock ingredients were left intact. The effects of: (a) increasing acid input amounts and (b) increasing leaching solution volumes (dilution) on U leaching efficiency were studied. The results revealed that citric acid reaction upon phosphate is limited in spite of higher residual acidity reported in the leach liquors. Regarding uranium, its leaching efficiency increased by increasing acid amounts and/or leaching solution volumes while fixing the acid input amounts. The efficiency of U leaching is more pronounced in the second case than in the first. Increasing U leaching while phosphate dissolution is limited could be interpreted as that the relative complexing affinity of citrate anion for hexavalent uranium is by far much greater than with phosphate. Thorium was thereafter leached by using dilute solutions of nitric acid to avoid dissolution of nitric acid to avoid dissolution of impurities. Percolation leaching experiments were thus performed on the uranium-free samples in the columns used previously in uranium leaching. The effects of increasing acid amounts and increasing leach liquor recycles on Th (and P/sub 2/O/sub 5/) leaching efficiency were studied.

  9. Manual of acid in situ leach uranium mining technology

    International Nuclear Information System (INIS)

    2001-08-01

    In situ leaching (ISL) technology recovers uranium using two alternative chemical leaching systems - acid and alkaline. This report brings together information from several technical disciplines that are an essential part of ISL technology. They include uranium geology, geohydrology, chemistry as well as reservoir engineering and process engineering. This report provides an extensive description of acid ISL uranium mining technology

  10. Manual of acid in situ leach uranium mining technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    In situ leaching (ISL) technology recovers uranium using two alternative chemical leaching systems - acid and alkaline. This report brings together information from several technical disciplines that are an essential part of ISL technology. They include uranium geology, geohydrology, chemistry as well as reservoir engineering and process engineering. This report provides an extensive description of acid ISL uranium mining technology.

  11. Leaching of cell wall components caused by acid deposition on fir needles and trees

    Energy Technology Data Exchange (ETDEWEB)

    Shigihara, Ado [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: r200670202@kanagawa-u.ac.jp; Matsumoto, Kiyoshi [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan); Sakurai, Naoki [Faculty of Integrated Arts and Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, 739-8521 (Japan); Igawa, Manabu [Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)

    2008-07-15

    Virgin fir forests have been declining since the 1960s at Mt. Oyama, which is located at the eastern edge of the Tanzawa Mountains and adjacent to the Kanto plain in Japan. An acid fog frequently occurs in the mountains. We collected throughfall and stemflow under fir trees and rainfall every week during January-December 2004 at Mt. Oyama to clarify the influence of acid fog on the decline of fir (Abies firma) needles. In relation to throughfall and stemflow, D-mannose, D-galactose, and D-glucose are the major neutral sugar components; only D-glucose is a major component of rainfall. The correlation coefficient between the total neutral sugars and uronic acid (as D-galacturonic acid), which is a key component of the cross-linking between pectic polysaccharides, was high except for rainfall. The leached amount of calcium ion, neutral sugars, uronic acid, and boron is related to the nitrate ion concentration in throughfall. Results of a laboratory exposure experiment using artificial fog water simulating the average composition of fog water observed at Mt. Oyama (simulated acid fog: SAF) on the fir seedling needles also shows a large leaching of these components from the cell walls of fir needles. The leaching amount increased concomitantly with decreasing pH of the SAF solution. We also observed that a dimeric rhamnogalacturonan II-borate complex (dRG-II-B) that exists in the cell wall as pectic polysaccharide was converted to monomeric RG-II (mRG-II) by the leaching of calcium ion and boron. Results not only of field observations but also those of laboratory experiments indicate a large effect of acid depositions on fir needles.

  12. Uranium recovery from acid leach liquors: Ix or Sx?

    International Nuclear Information System (INIS)

    Van Tonder, D.; Kotze, M.

    2007-01-01

    Various technologies for uranium recovery from sulphuric acid leach solutions were compared. Although the main consideration was the economics (Capex, recovery and Opex) of the various technologies and associated unit operations, other factors, such as flexibility, reliability, ease of operation, fire risk, stability with regards to feed flow variations, and feed solids content, would also need to be considered in the overall analysis. The design basis used for the comparison was a production rate or 200 kg/h U 3 O8 over a solution concentration range of 40 to 1500 mg/L U 3 O8. The technologies to be compared included Resin-in-pulp (RIP), Fixed-bed Ion Exchange (FBIX), Continuous Countercurrent Ion Exchange (CCIX, e.g. NIMCIX), and Solvent Extraction (Sx) using Bateman Pulsed Columns (BPC) and Bateman Settlers. Countercurrent Decantation (CCD) and clarification would be required for the Sx and FBIX technologies. The preliminary economic evaluation indicated that a flowsheet, comprising RIP for bulk uranium extraction and upgrade, followed by Sx, employing the BPC for purification of the RIP eluate stream, was the most economic option at leach liquor concentrations below 900 mg/L. Above 900 mg/L the economic evaluation suggested that CCDs followed by Sx in the BPC was the most economical processing option. For applications where the ore is abrasive and not amenable to RIP, due to the rate of resin consumption, Paste Thickeners to remove the bulk of the solids, followed by RIP, was found to be the most economic processing option at leach liquor concentrations below 200 mg/L. However, for leach liquor concentrations above 200 mg/L, a CCD-circuit followed by Sx using BPC was again the most economic favourable route

  13. Selective removal of chromium from sulphuric acid leach liquor of ilmenite ore by solvent extraction with trioctylamine

    Directory of Open Access Journals (Sweden)

    E.O. Olanipekun

    2000-12-01

    Full Text Available The selective removal of chromium, a trace impurity that degrades the whiteness of titanium(IV oxide pigments, from sulphuric acid leach liquor of ilmenite, was investigated by solvent extraction with xylene solutions of trioctylamine. Important factors of commercial significance affecting the extraction operation have been examined. More than 99% of the chromium was selectively removed in multiple batch extractions from the leach liquor and titanium losses were minimal (< 1%. The chromium content of extracted solutions was reduced to less than 1 ppm and thermal hydrolysis of these solutions yielded white titanium(IV oxide pigments that are suitable for use in the coatings pigment industry.

  14. Effect of acid leaching conditions on impurity removal from silicon doped by magnesium

    Directory of Open Access Journals (Sweden)

    Stine Espelien

    2017-07-01

    Full Text Available The effect of magnesium addition into a commercial silicon and its leaching refining behavior is studied for producing solar grade silicon feedstock. Two different levels of Mg is added into a commercial silicon and the leaching of the produced alloys by 10% HCl solution at 60 ℃ for different durations is performed. It is shown that the microstructure of the alloy and in particular the distribution of eutectic phases is dependent on the amount of the added Mg. Moreover, the metallic impurities in silicon such as Fe, Al, Ca and Ti are mainly forming silicide particles with different compositions. These silicides are physically more detached from the primary silicon grains and their removal through chemical and physical separation in leaching is better for higher Mg additions. It is observed that the leaching is more effective for the purification of smaller silicon particles produced from each Mg-doped silicon alloy. It is shown that acid leaching by the applied method is effective to reach more than 70% of phosphorous removal. It is also shown that the purity of silicon is dependent on the total Mg removal and effectiveness of leaching on removing the Mg2Si phase.

  15. Novel precipitation technique for uranium recovery from carbonate leach solutions

    International Nuclear Information System (INIS)

    Sujoy Biswas; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2015-01-01

    The recovery of uranium from carbonate ore leach solution was studied using novel precipitation method. The uranium from leach liquor was recovered as magnesium diuranate with NaOH in presence of trace amount of Mg 2+ . Effects of various parameters such as addition of H 2 SO 4 , MgO, MgSO 4 as well as NaOH were investigated for maximum uranium recovery. Overall uranium recovery of the process was 97 % with improved particle size (∼57 µm). Based on the experimental findings, a process flow-sheet was developed for uranium recovery from carbonate ore leach solution with a uranium concentration of <1 g/L. (author)

  16. Heap leaching procedure for the Uranium extraction

    International Nuclear Information System (INIS)

    Shishahbore, M. R.

    2002-01-01

    Heap leaching of Uranium ores is currently in use in several countries. Before taking any decision for construction of heap in industrial scale, it is necessary to obtain the main factors that influence the heap leaching process, such as acid construction, acid solution flowrate, temperature of reaction, or size, ration of liquid to solid, permeability and suitable oxidant. To achieve the above parameters, small scale column leaching is usually recommended. In this project column leaching were carried out in 6 plexiglass column with 43.5 cm an height and 7.4 cm inner diameter. In each column closely 2.00 kg Uranium ore were leached by sulfuric acid. Leaching operation on Iranian ores from two different anomalies from the same area were investigated. In this project, six column were leached at different flowrate of eluent and effect of oxidant were investigated. Acid consumption were in the range of 60 - 144 kg per ton ore and recovery between 73.07% - 99.97%. Finally according to the results obtained, investigated that over are suitable to heap leaching technique. Al tough, to enforce of heap leaching project need to more experiments

  17. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  18. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    Science.gov (United States)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  19. Leaching behavior of lanthanum, nickel and iron from spent catalyst using inorganic acids

    Science.gov (United States)

    Astuti, W.; Prilitasari, N. M.; Iskandar, Y.; Bratakusuma, D.; Petrus, H. T. B. M.

    2018-01-01

    Highly technological applications of rare earth metals (REs) and scarcity of supply have become an incentive torecover the REs from various resources, which include high grade and low grade ores, as well as recycledwaste materials. Spent hydrocracking catalyst contain lanthanum and a variety of valuable metals such as nickel and iron. This study investigated the recovery of lanthanum, nickel and iron from spent hydrocracking catalyst by leaching using various inorganic acid (sulfuric acid, hydrochloric acid, and nitric acid). The effect of acid concentration, type of acid and leaching temperature was conducted to study the leaching behavior of each valuable metal from spent-catalyst. It has been shown that it is possible to recover more than 90% of lanthanum, however the leaching efficiency of nickel and iron in this process was very low. It can be concluded that the leaching process is selective for lanthanum recovery from hydrocracking spent-catalyst.

  20. Lead isotope results of acid leaching experiments on acid volcanics and black shales in an ore environment

    International Nuclear Information System (INIS)

    Gulson, B.L.

    1977-01-01

    In the volcanogenic Woodlawn Cu-Pb-Zn deposit, where pyrite is the dominant sulphide phase in the ore and a ubiquitous mineral in the host volcanics and shales, leaching experiments using HNO 3 -HCl to overcome the ore/rock lead dominance, resulted in highly complex lead isotopic data, dependent mainly on the original lead concentration in the rock. For samples with higher (> 5 ppm) lead concentrations, the acid leaches are less radiogenic than the rocks or residues whereas for samples with 15 ppm lead, the data arrays are those expected for a dominance of ore/rock lead. In all except the very high lead samples (> 100 ppm), lead is derived from sources other than sulphides. Furthermore, in only the highest lead sample is the acid leach isotopic value compatible with that of the ore lead. As found in previous leaching investigations, the dominant component of lead and uranium is extracted in the acid leach. Acid-leaching experiments of this type may have possible applications in prospecting for basemetal sulphides. (auth.)

  1. Uranium leaching from phosphatic sandstone and shale of Qatrani using citrate as a new leaching reagent

    International Nuclear Information System (INIS)

    Hussein, E.M.

    1997-01-01

    Uranium is found in Qatrani area (Southwest of Cairo and North of lake Qarun) in various forms in sedimentary rocks. Two important ore materials have been chosen for studying the recovery of their uranium contents namely; the phosphatic sandstone and the carbonaceous shale. The main emphasis in this thesis is the choice of an acid that would selectively leach uranium from thesis ores while leaving calcium phosphate and carbonate minerals minerals almost completely intact. Citric acid was indeed found advantageous due primarily to its strong ability to form stable complexes with uranium over a wide range of PH values beside the possibility of controlling thr solubility of calcium-bearing compounds by adding calcium citrate. The latter is actually characterized by its ability to exist in an unionized or associated from in citric acid solutions. From the general leaching characteristics of both uranium and P 2 O 5 from Qatrani phosphatic sandstone by citric acid, it was found that uranium could be completely leached beside the possibility of realizing a differential leaching percent values vs P 2 O 5 which is generally of limited solubility. Such a low solubility of P 2 O 5 has even been completely inhibited by providing calcium citrate to the citric acid solutions in amounts sufficient to exist in an optimum ionized non-associated state. Such a provision would render the solution unable to carry any further calcium ions thus the breakdown of the phosphate mineral was hindered while uranium has completely been selectively

  2. Technical application of agglomerated acidic heap leaching of clay-bearing uranium ore in China

    International Nuclear Information System (INIS)

    Zeng Yijun; Li Jianhua; Li Tieqiu; Zhong Pingru

    2002-01-01

    The permeability of ore mass has a great influence on the leaching period of heap leaching and the leaching efficiency, hence the uranium ores with high content of clay is difficult to acidic heap leaching. The Research Institute of Uranium Mining has engaged several years studies on the cementing agents of acidic agglomeration, agglomeration conditions, as well as the curing measures of agglomerated balls. On the basis of these studies, several types of clay-bearing ores have been tested with good results. The technique of agglomerated acidic heap leaching has been successfully applied in a uranium mine. Since agglomeration has effectively increased the permeability of ore heap, its leaching period is decreased from 200 days to 60 days, the leaching efficiency is increased to 96% from less than 40% comparing with direct heap leaching program

  3. Pressure leaching of chalcopyrite concentrate

    Science.gov (United States)

    Aleksei, Kritskii; Kirill, Karimov; Stanislav, Naboichenko

    2018-05-01

    The results of chalcopyrite concentrate processing using low-temperature and high-temperature sulfuric acid pressure leaching are presented. A material of the following composition was used, 21.5 Cu, 0.1 Zn, 0.05 Pb, 0.04 Ni, 26.59 S, 24.52 Fe, 16.28 SiO2 (in wt.%). The influence of technological parameters on the degree of copper and iron extraction into the leach solution was studied in the wide range of values. The following conditions were suggested as the optimal for the high-temperature pressure leaching: t = 190 °C, PO2 = 0.5 MPa, CH2SO4 = 15 g/L, L:S = 6:1. At the mentioned parameters, it is possible to extract at least 98% Cu from concentrate into the leaching solution during 100 minutes. The following conditions were suggested as optimal for the low-temperature pressure leaching: t = 105 °C, PO2 = 1.3-1.5 MPa, CH2SO4 = 90 g/L, L:S = 10:1. At the mentioned parameters, it is possible to extract up to 83% Cu from the concentrate into the leach solution during 300-360 minutes.

  4. Acid-curing and ferric-trickle leaching effluent used in closed circuit uranium extractive process

    International Nuclear Information System (INIS)

    Jin Suoqing; Xiang Qinfang; Guo Jianzheng; Lu Guizhu; Su Yanru

    1998-01-01

    The new uranium ore process consists of crushing ore, mixing crushed ore with strong acid in rotating drums and curing the mixture in piles, trickle-leaching the ore beds with ferric solution, extracting uranium from pregnant solution with tertiary amine, precipitating product and disposing residue tailings. All the process effluent is used in closed circuit. There will be no process water to be discharged in the flowsheet except the tailings carrying off 15% water because during leaching moisture content of the ore rises to 15%. Tailings produced by the process are moist and friable, and can be disposed of on a pile or returned to the mine. Main technical parameters of the process: (a) water consumption is 0.2∼0.3 m 3 /t ore, electric power consumption is 20∼30 kW·h/t ore; (b) ore crushing up to -5∼-7 mm, leaching period is 12∼45 d, U content of residue is 0.01%∼0.02%, producing pregnant solution is 0.3∼0.5 m 3 /t ore, which is 1/5∼1/8 that of conventional agitation leaching process; (c) organic agent consumption is 1/5∼1/8 that of the conventional agitation process. All the research results above are tested by the pilot-plant test and industrial test. The new process has been applied to recovery of uranium in the mine located at northeast of China

  5. An experimental study on gold precipitation from leach solutions of ...

    African Journals Online (AJOL)

    This paper presents the results of the study dedicated to the determination of the optimum parameters for the electrolytic gold precipitation from thiourea leach solutions. The leaching was carried out using technogenic gold-bearing raw materials (gold-bearing sands) of the Far East of the Russian Federation. The study ...

  6. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Serebrennikov, V.S.; Dorofeeva, V.A.

    1980-01-01

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO 3 - and CO 3 2- ions, promoting uranium transfer into solution

  7. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.

    Science.gov (United States)

    Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min

    2015-07-01

    Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    Science.gov (United States)

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  9. Effects of solution chemistry and atmosphere on leaching of alkali borosilicate glass

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Christensen, H.; Clark, D.E.; Werme, L.

    1983-01-01

    The leaching behavior of two alkali-borosilicate glasses containing 9 wt % simulated fission products and 1.6 wt % uranium oxide has been studied. Samples were exposed to one of eight types of leachants including doubly distilled water, simulated ground silicate water, a brine solution, and solutions containing various concentrations of iron, aluminum or sodium maintained at either 25 0 C, 40 0 C or 90 0 C for up to 182 days. The most aggressive leachants were the solutions containing sodium (excluding brine) and simulated ground silicate water. These solutions increased the extent of leaching by a factor of 2 to 3 over that for distilled water for one of the glasses. A partially protective surface film rich in magnesium, potassium, and chlorine was formed on the glasses exposed to the brine solution. In order to evaluate the effects of atmosphere on leaching, samples were also immersed in doubly distilled water over which the relative concentrations of oxygen, nitrogen and carbon dioxide were varied. Increasing the carbon dioxide concentration from 0 to 50% resulted in a factor of 3 increase in the leaching rate

  10. Kinetics of acid leaching of ilmenite decomposed by KOH part 1: decomposition by KOH and leaching by HCl

    International Nuclear Information System (INIS)

    Nayl, A.A; Aly, H.F.

    2010-01-01

    Decomposition of ilmenite by KOH solutions, to convert titanium to potassium titanate, was first studied . This was followed by leaching titanium from the ilmenite paste using HCl solutions in the temperature range 50-150 degree C for different periods up to 3 hr. The significant factors affecting the leaching process were studied. The experimental data of the decomposition rate of ilmenite by KOH and of the formed KOH paste by HCl under the relevant operating variables were interpreted with the shrinking core model under chemically controlled process. The apparent activation energy for leaching of titanium in both cases bas been evaluated and discussed.

  11. Static leaching of uraniferous shales on open areas

    International Nuclear Information System (INIS)

    Hernandez Nieto, J.; Cordero, G.; Villarrubia, M.

    1973-01-01

    This report describes the tests on acid heap leaching with conventional (1.400 ppm U 3 O 8 ) crushed uranium ores. We use open circuits with low internal recycled. Using starving acidity in the leaching solutions we obtain a smooth solubilization of uranium and, at the same time, the pregnant liquors are good for the solvent extraction recovery. (Author)

  12. Complex sulphide-barite ore leaching in ferric chloride solution

    Directory of Open Access Journals (Sweden)

    Miroslav Sokić

    2016-06-01

    Full Text Available The results of research on the leaching process of complex sulphide-barite ore were presented in this paper. The leaching process was carried out in a laboratory autoclave by ferric chloride solution. Considering that those minerals are represented in complex structural-textural relationships, it is not possible to extract lead, zinc and copper minerals from ore by flotation methods. The obtained results confirmed possibility of the ore processing directly, by chemical methods. The effect of temperature, time and oxygen partial pressure on the lead, zinc and copper dissolution was studied. The maximal leaching degree was achieved at 100 °C and amount of 91.5 % for Pb, 96.1 % for Zn and 60.7 % for Cu. Leaching at temperatures above 100 °C is impractical.

  13. Study on uranium loss during 'Iron-Gypsum Cake' precipitation from acid leach liquor of Jaduguda ore using factorially designed experiments

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Chatterjee, Ankur; Singh, A.K.; Hubli, R.C.

    2012-01-01

    Acid leaching process for uranium recovery from ore often generates considerable amounts of impurities into the solution. It is a challenge to separate the non-valuable impurities as manageable and stable waste products for final disposal, without losing the valuable constituents. The main impurities that come with the leach liquor are iron and sulfate. Their removal is essential for meeting the iron requirement in leaching circuit and also for making the effluent suitable for recycle. Factorial design analysis was applied to study of process variables for precipitation of iron and sulphate from leach liquor with composition using CaO as precipitation reagent

  14. Solution mining process

    International Nuclear Information System (INIS)

    Showalter, W.E.

    1984-01-01

    A solution mining process which may be used for uranium, thorium, vanadium, copper, nickel, molybdenum, rhenium, and selenium is claimed. During a first injection-and-production phase of between 6 months and 5 years, a leaching solution is injected through at least one well into the formation to solubilize the mineral values and form a pregnant liquor. This liquor is recovered through another well. The leaching solution contains sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, an alkali metal carbonate, an alkali metal bicarbonate, ammonium carbonate or ammonium bicarbonate. Subsequently during a first production-only phase of between about 2 weeks and one year, injection of the leaching solution is suspended but pregnant liquor is still recovered. This stage is followed by a second injection-and-production phase of between 6 months and 5 years and a second production-only phase. The mineral values are separated from the pregnant liquor to form a barren liquor. The leaching agent is introduced into this liquor, and the solution is recycled. In a second claim for the solution mining of uranium, dilute carbonic acid is used as the leaching solution. The solution has a pH less than 7 and a bicarbonate ion concentration between about 380 ppm and 1000 ppm. The injection-and-production phase lasts between one and two years and the production only phase takes between one and four months. Carbon dioxide is introduced into the barren liquor to form a dilute carbonic acid solution and the solution is recycled

  15. Method of gradual acid leaching of uranium ores of silicate and aluminosilicate nature

    International Nuclear Information System (INIS)

    Bosina, B.; Krepelka, J.; Urban, P.; Kropacek, J.; Stransky, J.

    1987-01-01

    Leaching uranium ore pulp is divided into two stages. The first stage takes place without any addition of a leaching agent at elevated pressure and temperature. In the second stage, sulfuric acid is added to the pulp (50 to 1000 kg per tonne of ore) or an oxidation agent. Leaching then proceeds according to routine procedures. The procedure is used to advantage for silicate or aluminosilicate ores which contain uranium minerals which are difficult to leach, pyrite and reducing substances. The two stage leaching allows to use the technology of pressure leaching, reduces consumption of sulfuric acid and oxidation agents and still achieves the required reduction oxidation potential. (E.S.)

  16. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Popp, C.J.

    1979-01-01

    The tests described were undertaken to determine the extent to leach solution-rock interactions with uranium-bearing ore obtained from the Mariano Lake mine. Leach solutions of an acidic (H/sub 2/O/sub 4/-sulfuric acid) and basic (NaHCO/sub 3/-sodium bicarbonate) nature were tested, in addition to a leach solution containing potassium chloride and sulfuric acid (KCl/H/sub 2/SO/sub 4/). The latter solution was chosen in an attempt to equilibrate the aqueous phase with the rock-forming silicate minerals and minimize adverse effects such as clay formation, porosity loss, and lixiviant loss. 29 refs

  17. Physical and chemical mechanism underlying ultrasonically enhanced hydrochloric acid leaching of non-oxidative roasting of bastnaesite.

    Science.gov (United States)

    Zhang, Dongliang; Li, Mei; Gao, Kai; Li, Jianfei; Yan, Yujun; Liu, Xingyu

    2017-11-01

    In this study, we investigated an alternative to the conventional hydrochloric acid leaching of roasted bastnaesite. The studies suggested that the rare earth oxyfluorides in non-oxidatively roasted bastnaesite can be selectively leached only at elevated temperatures Further, the Ce(IV) in oxidatively roasted bastnaesite does not leach readily at low temperatures, and it is difficult to induce it to form a complex with F - ions in order to increase the leaching efficiency. Moreover, it is inevitably reduced to Ce(III) at elevated temperatures. Thus, the ultrasonically-assisted hydrochloric acid leaching of non-oxidatively roasted bastnaesite was studied in detail, including, the effects of several process factors and the, physical and chemical mechanisms underlying the leaching process. The results show that the leaching rate for the ultrasonically assisted process at 55°C (65% rare earth oxides) is almost the same as that for the conventional leaching process at 85°C. Based on the obtained results, it is concluded that ultrasonic cavitation plays a key role in the proposed process, resulting not only in a high shear stress, which damages the solid surface, but also in the formation of hydroxyl radicals (OH) and hydrogen peroxide (H 2 O 2 ). Standard electrode potential analysis and experimental results indicate that Ce(III) isoxidized by the hydroxyl radicals to Ce(IV), which can be leached with F - ions in the form of a complex, and that the Ce(IV) can subsequently be reduced to Ce(III) by the H 2 O 2. This prevents the Cl - ions in the solution from being oxidized to form chlorine. These results imply that the ultrasonically-assisted process can be used for the leaching of non-oxidatively roasted bastnaesite at low temperatures in the absence of a reductant. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Process for the removal of radium from acidic solutions containing same

    Science.gov (United States)

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  19. Experimental study on bio-leaching of high sulphuric acid consumption uranium ore by adding sulphide

    International Nuclear Information System (INIS)

    Meng Yunsheng; Zheng Ying; Liu Hui; Cheng Hao; Zhou Lei; Liu Chao; Fan Baotuan; Li Jianhua

    2012-01-01

    In order to decrease acid consumption and increase leaching rate, an experiment on bio-leach-ing of low grade uranium ore by adding sulphide was done. Compared with conventional leaching method, the leaching rate of uranium is improved by 3% and the leaching period was reduced to 60 days from 90 days by bio-leaching method of adding sulphide. In order to decrease acid consumption with bio-leaching by adding sulphide obviously, robust bacteria to sulphide should be chosen. (authors)

  20. Characterization of dross and its recovery by sulphuric acid leaching

    Science.gov (United States)

    Rahmani, S. A.; Meidianto, A.; Amal, M. I.; Wismogroho, A. S.; Widayatno, W. B.

    2018-03-01

    This paper reports the characterization of dross from galvanizing process and its recovery using acidic leaching method. The diffraction profile of dross showed identical peaks with that of ZnO. The X-ray Fluorescence (XRF) analysis identified the content of following metals: Zn, Fe, Mn, Ga, Co, and W. The thermal behaviour examination revealed the existence of some volatiles within the initial sample. The acidic leaching at various concentrations of sulphuric acid was conducted to determine the optimum concentration for zinc recovery and the highest yield of zinc sulphate. It is concluded that the optimum concentration of H2SO4 for this kind of dross is 4 M with 71.9% yield of ZnSO4. The result of leaching process was confirmed by infrared spectrum, where various absorptions corresponding to SO4 2- and Zn-O bands were observed.

  1. Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum

    Science.gov (United States)

    Hu, Z.; Antonick, P.; Fujita, Y.; Reed, D. W.; Riman, R.; Eslamimanesh, A.; Das, G.; Anderko, A.; Wu, L.; Shivaramaiah, R.; Navrotsky, A.

    2017-12-01

    Rare earth elements (REE) are critical to many clean energy technologies. However, the lack of U.S. domestic production and the reliance on imported REE put U.S. energy security at risk. Consequently development of new sources is of strategic interest. Global phosphate deposits contain 27 million tons of REE and 38% of these REE end up in phosphogypsum (PG) waste during phosphate fertilizer production. Recovering REE from PG is a first step toward a trash-to-treasure transformation. We studied the leaching of REE from synthetic PG samples containing Y, Nd, or Eu using a suite of lixiviants including spent medium from the growth of the bacterium Gluconobacter oxydans ("biolixiviant"), gluconic acid, common mineral acids (phosphoric and sulfuric), and water. Synthetic PG was used to facilitate the comparison of the different lixiviants; real PG waste is extremely heterogeneous. Gluconic acid was the predominant identified organic acid in the biolixiviant. The leaching efficiency of the acidic lixiviants at the same pH (2.1) or molar concentration as gluconic acid in the biolixiviant (220 mM) were compared and rationalized by thermodynamic simulation using the mixed-solvent electrolyte model. Initial results indicate that the biolixiviant was more effective at leaching the REE than the mineral acids at pH 2.1. At 220 mM acid concentrations, sulfuric acid was the most effective, followed by the biolixiviant. Interestingly, for a given lixiviant, the leaching behavior of the REE differed. This study provides insight into the definition of an efficient lixiviant for leaching REE from phosphate fertilizer production waste.

  2. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    Science.gov (United States)

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Flotation-nitric acid leach procedure for increasing uranium recovery from a refractory ore

    International Nuclear Information System (INIS)

    Carnahan, T.G.; Lei, K.P.V.

    1979-01-01

    The Bureau of Mines investigated a flotation-nitric acid leach procedure as part of the goal to maximize minerals and metals recovered from primary and secondary domestic resources. Studies were conducted on an ore that contained carbon-bearing and sulfide mineralization that rendered a portion of the ore refractory (resistant) to conventional leaching technology. The procedure investigated for treating the ore consisted of the following: (1) separation by flotation of the carbonaceous and sulfidic components from the ore, (2) leaching the flotation concentrate with nitric acid at 100 0 to 110 0 C, (3) leaching the flotation tailings with sulfuric acid, and (4) processing the combined leached slurries in a conventional manner to recover yellow cake. In step 2, HNO 3 is converted to gaseous products from which it is regenerated by reacting these products with air and water for further leaching. An overall uranium extraction of 96% was achieved by this procedure

  4. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching.

    Science.gov (United States)

    Antonijević, M M; Dimitrijević, M D; Stevanović, Z O; Serbula, S M; Bogdanovic, G D

    2008-10-01

    The flotation tailings pond of the Bor Copper Mine poses a great ecological problem not only for the town of Bor but also for the surrounding soils and watercourses. Since the old flotation tailings contain about 0.2% of copper on the average, we investigated their leaching with sulphuric acid in the absence and presence of an oxidant. The aim was to determine the leaching kinetics of copper and iron as affected by various factors such as: the pH value of the leach solution, stirring speed, pulp density, particle size, concentration of ferric ions, temperature and time for leaching. The average copper and iron recovery obtained was from 60% to 70% and from 2% to 3%, respectively. These results indicate that the old flotation tailings pond represents an important source of secondary raw material for the extraction of copper and that it should be valorized rather than land reclamation. At the end of the paper, a mechanism of dissolution of copper and iron minerals from the tailings was described.

  5. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Propp, C.J.

    1980-01-01

    Modern methods of uranium solution mining are typically accompanied by gains and losses of mass through reagent consumption by rock-forming minerals, with subsequent formation of clay minerals, gypsum, carbonates, and iron oxyhydroxides. A systematic approach to alleviate such problems involves the application of leach solutions that are in equilibrium with the host-rock minerals but in disequilibrium with the ore-forming minerals. This partial equilibrium can be approximated by solution-composition adjustments within the systems K 2 O-Al 2 O 3 SiO 2 -H 2 O and Na 2 O 3 -Al 2 O 3 SiO 2 -H 2 O. Uranium ore containing 0.15 percent U 3 O 8 from the Gulf Mineral Resources Corporation's Mariano Lake mine, the Smith Lake district of the Grants mineral belt, was collected for investigation. Presented are a theoretical evaluation of leachate data and an experimental treatment of the ore, which contained mainly K-feldspar, plagioclase feldspar, and quartz (with lesser amounts of micas, clay minerals, and organic carbonaceous material). Small-scale (less than or equal to 1 kg) column-leaching experiments were conducted to model the results of conventional leaching operations and to provide leachate solutions that could be compared with solutions calculated to be in equilibrium with the matrix minerals. Leach solutions employed include: 1) sulfuric acid, 2) sodium bicarbonate, and 3) sulfuric acid with 1.0 molal potassium chloride. The uranium concentrations in the sodium-bicarbonate leach solution and the acid-leach solution were about a gram per liter at the termination of the tests. However, the permeability of the ore in the acid leach was greatly reduced, owing to the formation of clay minerals. Uranium solubility in the leach column stabilized with the potassium-chloride solution was calculated from leachate compositions to be limited by the solubility of carnotite

  6. Development and optimisation of process parameters for recovery of uranium from calcia slag and lining material (SLM) by leaching process and subsequent recovery of uranium from the leach liquor generated

    International Nuclear Information System (INIS)

    Verma, Dinesh Kumar; Srivastava, Praveen Kumar; Das, Santanu; Kumar, Raj; Roy, S.B.

    2014-01-01

    Presently uranium value is recovered by nitric acid dissolution of the SLM, to get uranyl nitrate solution (UNS) and subsequent solvent extraction process. UNS generated After SLM dissolution is very lean in uranium content and create difficulty in solvent extraction. Moreover, NO X is also generated during SLM dissolution in nitric acid. An alternate process was developed where nitric acid is not being used and uranium is being recovered by leaching out the SLM using acetic acid. The process was also optimised for recovery and overall economics of the process by using process effluent AALL (Acetic Acid Leach Liquor) as a leaching agent. The uranium value in the leach liquor was precipitated by using sodium hydroxide. The precipitate was dissolved in nitric acid and the Uranyl Nitrate Solution generated was having Uranium concentration of 15-30 g/l. The alternate process developed will have less effluent generation, less NO X generation and will produce more concentrated UNS in comparison to the nitric acid dissolution process

  7. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    Science.gov (United States)

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.

    Science.gov (United States)

    Peng, Chao; Hamuyuni, Joseph; Wilson, Benjamin P; Lundström, Mari

    2018-06-01

    Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO 2 . In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (C 6 H 8 O 6 ) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [H 2 SO 4 ] = 2 M, [C 6 H 8 O 6 ] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid

    International Nuclear Information System (INIS)

    Jean-Soro, Liliane; Bordas, François; Bollinger, Jean-Claude

    2012-01-01

    This study investigates the column leaching of a soil contaminated mainly with Cr and Ni by using two chelants: citric acid (biodegradable) and EDTA (non-biodegradable) followed with water rinse. The chelants lead to Cr and Ni leaching, in addition to major elements (Ca, Fe, Mg, Al, Mn and Zn) showing the dissolution of soil mineral constituents. EDTA leaches more major elements and Ni than citric acid related to the respective stability of metal–chelant complexes; citric acid leaches more Cr than EDTA, certainly because of a substitution reaction with Cr(VI). In the case of alternating chelant/water applications, leaching occurs during the chelant applications, but also during water applications. In the case of chelant/water applications followed by continuous water application, both Cr and Ni leach over time. This increased mobility could be due to the residual chelant present in soil as well as to the dissolution/mobilization of mineral or organic soil fractions. - Highlights: ► Column leaching of an industrial soil contaminated with chromium and nickel. ► Citric acid or EDTA were used alternatively or followed with water rinse. ► Chelants lead to Cr and Ni leaching and the dissolution of soil mineral constituents. ► Leaching of these two metals proceeds continuously during water rinse. ► Chelants deeply impacted Cr and Ni mobility. - Citric acid or EDTA application deeply impact Cr and Ni mobility during column leaching of a contaminated soil.

  10. Process for the removal of radium from acidic solutions containing same

    International Nuclear Information System (INIS)

    Scheitlin, F.M.

    1984-01-01

    Radium is removed from an inorganic-acid solution contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities. The invention is applicable, for example, to the recovery of 226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings, and thus contain thorium and uranium. The contaminated fly ash may be incorporated in a suitable matrix and stored, and the residual solutions processed to separate uranium and thorium. (author)

  11. Pilot test of bacterial percolation leaching at Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Liu Jian; Jiang Yngqiong; Cai Chunhui; Jiang Lang; Zhou Renhua; Tong Changning; Zhang Hongli

    2006-01-01

    Total 18 t uranium ores of Fuzhou Uranium Mine packed in three or four columns in series were leached by bacterial percolation. The results show that without adding any other chemical oxidant such as sodium chlorate, the leaching rate measured by residue is 91.45%-94.48%, leaching time is 50-60 d, acid consumption is 6.17%-7.75%, and residue grade is 0.0149%-0.0208%. Compared with conventional percolation leaching process, the leaching rate is improved by 3%, leaching time is shorted by 26%, and acid consumption is saved by 34%. Accumulation pattern of ΣFe and F - in the process of leaching is discussed. Influence of F - on bacterial growth, regeneration of barren solution as well as correlative techniques are reviewed. (authors)

  12. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  13. Method for separation of Cs from acid solution dissolving radionuclides and microanalysis of solution with ICP-AES

    International Nuclear Information System (INIS)

    Kanazawa, Toru; Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Fuketa, Toyoshi

    2004-06-01

    The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to understand mechanisms of radionuclides release from irradiated fuel during severe accidents. As a part of evaluation in the program, the mass balances of released and deposited FP (Fission Products) onto the test apparatus are estimated from gamma ray measurement for acid solution leached from the apparatus, but short-life nuclides are difficult to be measured because those in the VEGA fuel have been mostly depleted due to cooling for several years. Moreover, the radionuclides without emitting gamma rays and very small quantity of elements cannot be quantified by gamma ray measurement. Therefore, a microanalysis by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) for the acid solution leached from VEGA apparatuses is being applied to evaluate the released and deposited masses for those elements. Since Cs-134 and -137, which are major FP dissolved in the solution, have high intensity of gamma ray spectrum, they have to be removed from the solution before the microanalysis in order to avoid contamination of ICP system and to decrease exposure to gamma ray. In this report, methods for separation of Cs from acid solution were reviewed and the applicability of them to the ICP-AES analysis was discussed. The method for Cs separation using the inorganic ion exchanger, AMP (Ammonium Molybdate Phosphate) was applied to the solutions of cold and hot test and the effectiveness was examined. The results showed that more than 99.9% of Cs could be removed from the test solutions, and once removed Sb by AMP was recovered by using a complexing agent such as citric acid. Next, the method was applied to an acid solution leached from VEGA-3 apparatus, and ICP-AES analysis was performed for it. The analysis showed that amount of U, Sr and Zr were successfully quantified. Most of elements to be analyzed were measurable except for Sb, Ag and Sn, although

  14. Bacterial leaching of uranium ores - a review

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-11-01

    The bacterial leaching of uranium ores involves the bacterially catalysed oxidation of associated pyrite to sulphuric acid and Fe 3+ by autotrophic bacteria and the leaching of the uranium by the resulting acidic, oxidising solution. Industrial application has been limited to Thiobacillus thiooxidans and Thiobacillus ferrooxidans at pH 2 to 3, and examples of these are described. The bacterial catalysis can be improved with nutrients or prevented with poisons. The kinetics of leaching are controlled by the bed depth, particle size, percolation rate, mineralogy and temperature. Current work is aimed at quantitatively defining the parameters controlling the kinetics and extending the method to alkaline conditions with other autotrophic bacteria. (author)

  15. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    OpenAIRE

    Ahmed, I.M.; Nayl, A.A.; Daoud, J.A.

    2016-01-01

    Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent r...

  16. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    Science.gov (United States)

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  17. Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent

    International Nuclear Information System (INIS)

    Ramadevi, G.; Sreenivas, T.; Navale, A.S.; Padmanabhan, N.P.H.

    2012-01-01

    This paper describes the solvent extraction studies carried out on an acidic low assay uranium bearing leach liquor generated during sulfuric acid leaching of a refractory uranium ore using alamine 336-isodecenol-kerosene reagent combine. The leach liquor has a U 3 O 8 content of about 270 mg/L, free acidity 2.4 N H 2 SO 4 and total dissolved solids concentration of 260 g/L. Process parameteric variation studies indicated strong influence of free acidity of the leach liquor, alamine 336 concentration and aqueous to organic phase ratio on the extraction efficiency of uranium. An extraction efficiency of about 95% was achieved when the free acidity of leach liquor was 1 N H 2 SO 4 or lower, using 2% (v/v) alamine 336 at ambient temperature with an aqueous to organic phase ratio of 1:1. The loading capacity under these conditions was 1.2 g/L of U 3 O 8 . About 98% of the uranium values could be stripped from the loaded organic using 1 N NaCl in 0.2 N H 2 SO 4 . The solvent extraction studies aided in developing a suitable process flowsheet for treating refractory uranium ores which need high acidity during leaching and relatively lower acidity for purification by solvent extraction. (author)

  18. Extraction of methylmercury from tissue and plant samples by acid leaching

    Energy Technology Data Exchange (ETDEWEB)

    Hintelmann, Holger; Nguyen, Hong T. [Trent University, Chemistry Department, Peterborough, ON (Canada)

    2005-01-01

    A simple and efficient extraction method based on acidic leaching has been developed for measurement of methylmercury (MeHg) in benthic organisms and plant material. Methylmercury was measured by speciated isotope-dilution mass spectrometry (SIDMS), using gas chromatography interfaced with inductively coupled plasma mass spectrometry (GC-ICP-MS). Reagent concentration and digestion temperature were optimized for several alkaline and acidic extractants. Recovery was evaluated by addition of MeHg enriched with CH{sub 3}{sup 201}Hg{sup +}. Certified reference materials (CRM) were used to evaluate the efficiency of the procedure. The final digestion method used 5 mL of 4 mol L{sup -1} HNO{sub 3} at 55 C to leach MeHg from tissue and plant material. The digest was further processed by aqueous phase ethylation, without interference with the ethylation step, resulting in 96{+-}7% recovery of CH{sub 3}{sup 201}Hg{sup +} from oyster tissue and 93{+-}7% from pine needles. Methylmercury was stable in this solution for at least 1 week and measured concentrations of MeHg in CRM were statistically not different from certified values. The method was applied to real samples of benthic invertebrates and inter-laboratory comparisons were conducted using lyophilized zooplankton, chironomidae, and notonectidae samples. (orig.)

  19. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.

    Science.gov (United States)

    Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M

    2017-02-01

    The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights

  20. Gangue minerals reactivity in oxidative leaching of uraninite with dilute sulfuric acid from low-grade ores. An approach for better leach liquor purity

    International Nuclear Information System (INIS)

    Madakkaruppan, V.; Chanchal Sarbajna; Pius, Anitha; Sreenivas, T.

    2016-01-01

    This paper presents results of sulfuric acid leaching studies carried out on a low-grade uranium ore with emphasis on attaining maximum uranium leachability with minimum content of detrimental ions like Si, Al, Fe, Mg and P, which originate from reactive gangue minerals like chlorite, biotite and apatite. A 'two-stage leaching' scheme was developed wherein the total reaction time and the pH of the slurry were split such that the initial phase consists of higher acidity with shorter reaction period and the later phase involves reduced acidity and longer reaction time. This modification gives leach liquor of higher purity with good uranium leachability at relatively lower acid consumption. (author)

  1. Uranium nanoparticle synthesis from leaching solution

    International Nuclear Information System (INIS)

    Sadowski, Z.; Sklodowska, A.

    2014-01-01

    The removal of uranium from leaching and bioleaching solutions is of great significance for an environment protection. In comparison with conventional separation techniques, synthesis of uranium nanoparticles has a number of benefits. It has been demonstrated that the uranium nanoparticles show high catalytic activity. In the present studies a variety of synthesis systems have been used for reduction of uranium from bioleaching solution. Among various catalytical templates the hematite Fe_2O_3 nanoparticles are most interest It was presented the report on development of synthesis method to produce nano structured Fe_2O_3 particles. The efficiency of hematite nanoparticles for adsorption of uranium ions from bioleaching solutions was investigated. Bacterial leaching is alternate technique used to extract uranium from mining wastes. The bioleaching process is environment friendly and gives the extraction yield of over 90%. The bioleaching solutions were obtained from bioleaching experiments using waste materials from different places at Lower Silesia (Kowary, Grzmiaca, Kopaniec, Radoniow). Chemoautotrophic bacteria were used for bioleaching tests. The significant adsorption capacity of U(VI) onto iron oxide and hydroxides (goethite, hematite, and magnetite) was observed. The sorption of U(VI) onto the hematite surface was connected with the chemical reduction of U(VI) to U(IV) by Fe"2"+ ions. The initial reaction system contained excess of Fe"2"+ ions which were used to reduce of U(VI). The reduction of U(VI) occurred at pH at the vicinity of pH=2.4. The colloid particles of hematite with UO_2 nanoparticles were obtained. The results of zeta potential measurements of hematite nanoparticles showed that at the ionic strength equals 10"-"3M NaCl, the average zeta potential was +32.4±3.5 mV at pH = 2.6. The interaction of hematite nanoparticles with the bioleaching solutions led to decrease of positive zeta potential to the value of 6.4± 2.7 mV. (author)

  2. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid

    OpenAIRE

    Konstantinos Hatzilyberis; Theopisti Lymperopoulou; Lamprini-Areti Tsakanika; Klaus-Michael Ochsenkühn; Paraskevas Georgiou; Nikolaos Defteraios; Fotios Tsopelas; Maria Ochsenkühn-Petropoulou

    2018-01-01

    Aiming at the industrial scale development of a Scandium (Sc)-selective leaching process of Bauxite Residue (BR), a set of process design aspects has been investigated. The interpretation of experimental data for Sc leaching yield, with sulfuric acid as the leaching solvent, has shown significant impact from acid feed concentration, mixing time, liquid to solids ratio (L/S), and number of cycles of leachate re-usage onto fresh BR. The thin film diffusion model, as the fundamental theory for l...

  3. Uranium and thorium leached from uranium mill tailing of Guangdong province (CN)) and its implication for radiological risk

    International Nuclear Information System (INIS)

    Wang, J.; Liu, J.; Zhu, L.; Qi, J. Y.; Chen, Y. H.; Xiao, T. F.; Fu, S. M.; Wang, C. L.; Li, J. W.

    2012-01-01

    The paper focused on the leaching behaviour of uranium (U) and thorium (Th) from uranium mill tailing collected from the Uranium Mill Plant in Northern Guangdong Province (CN)). Distilled water (pH 6) and sulphuric acid solution (pH 4 and 3) were used as solvent for the leaching over 22 weeks. It was found that the cumulative leach fraction from the mill tailing was 0.1, 0.1 and 0.7 % for U release, and overall 0.01 % for Th release, using distilled water, sulphuric acid solution of pH 4 and pH 3 as leaching agents, respectively. The results indicate that (1) the release of U and Th in uranium mill tailing is a slow and long-term process; (2) surface dissolution is the main mechanism for the release of U and Th when sulphuric acid solution of pH 3 is employed as the leaching agent; (3) both U and Th are released by diffusion when using sulphuric acid solution of pH 4 as the leaching agent and (4) U is released by surface dissolution, while Th is released by diffusion when using distilled water as the leaching agent. The implication for radiological risk in the real environment was also discussed. (authors)

  4. Separation of Rhenium from Lead-Rich Molybdenite Concentrate via Hydrochloric Acid Leaching Followed by Oxidative Roasting

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Lead-rich molybdenite is a typical rhenium-bearing molybdenum resource in China, which has not been efficiently utilized due to its high contents of lead and gangue minerals. In this study, hydrochloric acid was used for preliminarily removing lead and calcite from a lead-rich molybdenite concentrate. Oxidative roasting-ammonia leaching was then carried out for separation of rhenium and extraction of molybdenum. The hydrochloric acid leaching experiments revealed that 93.6% Pb and 97.4% Ca were removed when the leaching was performed at 95 °C for 10 min with HCl concentration of 8 wt. % and liquid-solid ratio of 5 (mL/g. The results of direct oxidative roasting indicated that 89.3% rhenium was volatilized from the raw concentrate after roasting at 600 °C for 120 min in air. In contrast, the rhenium volatilization was enhanced distinctly to 98.0% after the acid-leached concentrate (leaching residue was roasted at 550 °C for 100 min. By the subsequent ammonia leaching, 91.5% molybdenum was leached out from the calcine produced from oxidative roasting of the acid-leached concentrate, while only 79.3% Mo was leached from the calcine produced by roasting molybdenite concentrate without pretreatment.

  5. Extraction of Zinc and Manganese from Alkaline and Zinc-Carbon Spent Batteries by Citric-Sulphuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Francesco Ferella

    2010-01-01

    Full Text Available The paper is focused on the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Metals are extracted by sulphuric acid leaching in the presence of citric acid as reducing agent. Leaching tests are carried out according to a 24 full factorial design, and empirical equations for Mn and Zn extraction yields are determined from experimental data as a function of pulp density, sulphuric acid concentration, temperature, and citric acid concentration. The highest values experimentally observed for extraction yields were 97% of manganese and 100% of zinc, under the following operating conditions: temperature 40∘C, pulp density 20%, sulphuric acid concentration 1.8 M, and citric acid 40 g L-1. A second series of leaching tests is also performed to derive other empirical models to predict zinc and manganese extraction. Precipitation tests, aimed both at investigating precipitation of zinc during leaching and at evaluating recovery options of zinc and manganese, show that a quantitative precipitation of zinc can be reached but a coprecipitation of nearly 30% of manganese also takes place. The achieved results allow to propose a battery recycling process based on a countercurrent reducing leaching by citric acid in sulphuric solution.

  6. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    Kosim-Affandi; Umar-Sarip; Alwi, Guswita; Sri-Sudaryanto

    2000-01-01

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and p ine oil , 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H 2 SO 4 100 kg/ton, MnO 2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 o C and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  7. Waste acid/metal solution reduction and recovery by vacuum distillation

    International Nuclear Information System (INIS)

    Jones, E.O.; Wilcox, W.A.; Johnson, N.T.; Bowdish, F.W.

    1995-01-01

    Processes involving distillation under reduced pressure were developed at the Pacific Northwest Laboratory several years ago to recover spent acid solutions generated during the manufacture of nuclear fuel for the N-Reactor at the Hanford site. Following construction and testing of a pilot-plant, the technology was licensed to Viatec Recovery Systems, Inc. for commercialization. The technology developed included specialized distillation and rectification of volatile acids, removal of water and/or volatile acid from sulfuric acid, and precipitation of salts. A key feature of the Waste Acid Detoxification and Reclamation (WADR) technology is the development and use of advanced thermoplastic and fluoropolymer materials of construction in all critical process equipment. The technology was then expanded to include crystallization to recover metal salts for possible reuse. Economic and environmental advantages of the procedures include recovery of acids for reuse, simplification or elimination of the disposal of waste solutions, and possible recovery of metals. Industries expected to benefit from such applications include galvanizing, electroplating, sand leaching and any where metals are cleaned in acid solutions. Currently a modular system has been assembled for recovery of several different spent acid solutions

  8. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    Directory of Open Access Journals (Sweden)

    I.M. Ahmed

    2016-09-01

    Full Text Available Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent recovery amounts to 95% and 99% for zinc and copper, respectively. The experimental data of this leaching process were well interpreted with the shrinking core model under chemically controlled processes. The apparent activation energy for the leaching of zinc has been evaluated using the Arrhenius expression. Based on the experimental results, a separation method and a flow sheet were developed and tested to separate zinc, copper, iron, aluminum and silica gel from the brass slag.

  11. A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions

    Science.gov (United States)

    Liu, Qiong; Xiang, Pengzhi; Huang, Yao

    2018-01-01

    A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.

  12. Leaching of copper concentrates with high arsenic content in chlorine-chloride media

    International Nuclear Information System (INIS)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-01-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs

  13. Selection of organic acid leaching reagent for recovery of zinc and manganese from zinc-carbon and alkaline spent batteries

    Science.gov (United States)

    Yuliusman; Amiliana, R. A.; Wulandari, P. T.; Ramadhan, I. T.; Kusumadewi, F. A.

    2018-03-01

    Zinc-carbon and alkaline batteries are often used in electronic equipment that requires small quantities of power. The waste from these batteries contains valuable metals, such as zinc and manganese, that are needed in many industries and can pollute the environment if not treated properly. This paper concerns the recovery of zinc and manganese metals from zinc-carbon and alkaline spent batteries with leaching method and using organic acid as the environmental friendly leaching reagent. Three different organic acids, namely citric acid, malic acid and aspartic acid, were used as leaching reagents and compared with sulfuric acid as non-organic acid reagents that often used for leaching. The presence of hydrogen peroxide as manganese reducers was investigated for both organic and non-organic leaching reagents. The result showed that citric acid can recover 64.37% Zinc and 51.32% Manganese, while malic acid and aspartic acid could recover less than these. Hydrogen peroxide gave the significant effect for leaching manganese with non-organic acid, but not with organic acid.

  14. British strong-acid leach process targeted at refractory uranium ores

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The UKAEA-patented strong-acid leach process for refractory U ores is briefly outlined with emphasis on its variations from the conventional dilute-acid process and the projected economics for a processing plant using this process. The process uses 6N H 2 SO 4 with a sharply reduced leaching time over conventional processes. The solubilized U is removed by percolation and the use of only about 10 percent liquid produces less effluent. Conventional processing plant equipment can be used except at the feed preparation, acid mixing, curing, and washing stages. Ore can be processed at larger grain sizes and the milling is done in a dry rod mill. Alternatives to the percolation removal of U are listed. Other work being done by UKAEA on U recovery from ores is briefly indicated. (U.S.)

  15. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  16. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  17. Bottle roll leach test for Temrezli uranium ore

    International Nuclear Information System (INIS)

    Çetin, K.; Bayrak, M.; Turan, A. İsbir; Üçgül, E.

    2014-01-01

    The bottle roll leach test is one of the dynamic leaching procedure which can meet in-situ mining needs for determining suitable working conditions and helps to simulate one of the important parameter; injection well design. In this test, the most important parameters are pulp density, acidic or basic concentration of leach solution, time and temperature. In recent years, bottle roll test is used not only for uranium but also gold, silver, copper and nickel metals where in situ leach (ISL) mining is going to be applied. For this purpose for gold and silver metal cyanide bottle roll tests and for uranium metal; acidic and basic bottle roll tests could be applied. The new leach test procedure which is held in General Directorate of Mineral Research and Exploration (MTA) of Turkey is mostly suitable for determining metal extraction conditions and recovery values in uranium containing ore bodies. The tests were conducted with samples taken from Temrezli Uranium Ore located in approximately 200 km east of Turkey’s capital, Ankara. Mining rights of Temrezli Ore is controlled 100% by Anatolia Energy Ltd. The resource estimate includes an indicated mineral resource of 10.827 Mlbs U_3O_8 [~4160 t U] at an average grade of 1426 ppm [~1210 ppm U] and an additional inferred resource of 6.587 Mlbs of U_3O_8 [~2530 t U] at an average grade of 904 ppm [~767 ppm U]. In accordance with the demand from Anatolia Energy bottle roll leach tests have been initiated in MTA laboratories to investigate the recovery values of low-grade uranium ore under in-situ leach conditions. Bottle roll leaching tests are performed on pulverized samples with representative lixiviant solution at ambient pressure and provide an initial evaluation of ore leachability with a rough estimate of recovery value. At the end of the tests by using 2 g/L NaHCO_3 and 0.2 g/L H_2O_2 more than 90% of uranium can pass into leach solution in 12 days. (author)

  18. Hydrochloric acid leaching of uranium, thorium, radium and rare-earth elements, from an Elliot lake radioactive ore

    International Nuclear Information System (INIS)

    Mahdy, M.A.

    1988-01-01

    Extraction of uranium by commercial methods using sulphuric acid developed a lot of environmental problems. To avoid such problems, other uranium extraction techniques have been adopted including fluorination, chlorination, chlorine assisted leaching, hydrochloric acid leaching, etc. This work is oriented towards the study of the factors controlling the hydrochloric acid leaching. The target of the study is to extract the total amount of U, Th, Ra-226 and rare earth elements. By using a suitable combination of the leaching factors, it was possible to achieve the designed target

  19. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching

    International Nuclear Information System (INIS)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-01-01

    Highlights: • Ammoniacal leaching is used to recover spent Li-ion battery cathode materials. • Leaching agents consist of ammonia, ammonium sulfite and ammonium carbonate. • Ammonium sulfite is a reductant and ammonium carbonate acts as pH buffer. • Co and Cu can be fully leached while Mn and Al are not leached. • Co recovery via ammoniacal leaching is economical compared to acid leaching. - Abstract: As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn_2O_4, LiCo_xMn_yNi_zO_2_, Al_2O_3 and C while the leach residue is composed of LiNi_xMn_yCo_zO_2, LiMn_2O_4, Al_2O_3, MnCO_3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al.

  20. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure

    International Nuclear Information System (INIS)

    Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.E.; Markopoulos, Ch.

    2008-01-01

    Laboratory-scale research has focused on the recovery of titanium from red mud, which is obtained from bauxite during the Bayer process for alumina production. The leaching process is based on the extraction of this element with diluted sulfuric acid from red mud under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The titanium recovery efficiency on the basis of red mud weight reached 64.5%. The characterization of the initial red mud, as well as this of the leached residues was carried out by X-ray diffraction, TG-DTA and scanning electron microscopy

  1. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  2. Determination of zinc in ammoniacal ore leaching solutions by X-ray fluorescence spectrometry using a radioactive source

    International Nuclear Information System (INIS)

    Cornejo, N.; Afailal, A.; Garcia, F.; Palacios, M.

    1994-01-01

    A method was developed for the fast determination of zinc in leaching solutions by radioisotope energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The measured intensities were used to develop regression models for estimating the zinc concentration. The primary radiation was provided by the 244 Cm radioisotope. Several experimental parameters including the saturation thickness and detection limit were determined. The advantages of the utilization of conditioning agents with elements of low atomic number such as nitric acid were established. (orig.)

  3. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  4. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  5. Decontamination of Soils Contaminated with Co and Cs by Using an Acid Leaching Process

    International Nuclear Information System (INIS)

    Jung-Joon, Lee; Gye-Nam, Kim; Jei-Kwon, Moon; Kune-Woo, Lee

    2009-01-01

    Acid leaching process has been adapted for the remediation of soils contaminated with heavy metals and radionuclides. This method has been reported to be simple, and economically promising. Moreover it can be applicable for on-site and off-site remediations as well. Investigations were conducted on an acid leaching process using surrogate contaminated soils. Size sieving, agglomeration and column leaching were carried out with soils artificially contaminated with Co and Cs, respectively. Size distribution was analyzed for a determination of the particle size required to be agglomerated. Because of the low water permeability of the soils due to their fine particles, they were sieved by using a sieve with a 0.075 mm size (No. 200 mesh) for an agglomeration. The soils with a size smaller than 0.075 mm were agglomerated by using 2 % sodium silicate (Na 2 SiO 3 ), while the soils with a size larger than 0.075 mm were used directly for the column leaching test. From the preliminary test (the batch scale leaching test), 0.1 M of HCl was determined as the effective leaching agent for Co and Cs. Finally, the soils mixed with the coarse soil and the agglomerated soil were decontaminated with 0.1 M HCl within 11.3 days and the removal efficiencies of Co and Cs were 94.0 % and 82.8 %, respectively. In conclusion, an acid leaching process could be applied for a remediation of soils contaminated with radionuclides such as Co and Cs. (authors)

  6. Selective removal of chromium from sulphuric acid leach liquor of ...

    African Journals Online (AJOL)

    ... removed in multiple batch extractions from the leach liquor and titanium losses were minimal (< 1%). The chromium content of extracted solutions was reduced to less than 1 ppm and thermal hydrolysis of these solutions yielded white titanium(IV) oxide pigments that are suitable for use in the coatings pigment industry.

  7. Transuranium elements leaching from simulated HLW glasses in synthetic interstitial claywater

    International Nuclear Information System (INIS)

    Wang, L.

    1992-08-01

    The main objective of this Master Thesis is to measure the steady-state concentrations of Pu, Np, and Am upon the leaching of High-Level Waste Glass in two types of synthetic claywater: humic acid free and humic acid containing synthetic claywater. The synthetic claywater has a composition that is representative for the in-situ interstitial groundwater of the Boom clay formation, a potential geological repository of radioactive waste in Belgium. The steady-state concentrations of transuranium elements were measured by leaching experiments with a typical duration of 400 days. Five main conclusions are drawn from the experimental data. (1) The transuranium elements that are released from simulated High Level Waste Glass are dominantly present in the synthetic claywater solutions as colloids. These colloids are smaller than 2 nm in absence of humic acids. In the presence of humic acids however, the colloids interact with actinides (adsorb or coagulate) and form particles larger than 2 nm. Np and Am are associated with inorganic and organic colloids in the synthetic interstitial claywater solution whereas Pu forms only inorganic colloids. (2) The steady-state concentration of Pu is in good agreement with the solubility of the Pu compound PuO 2 .xH 2 O. It is therefore concluded that PuO 2 .xH 2 O is the solubility controlling phase. (3) The Pu(IV)-species are dominant in the leaching solutions. Carbonate and humic acid complexes are negligible. (4) The steady-state concentrations of Np and Am in leaching solutions were much lower than the values calculated on the basis of known thermodynamic data. This indicates that the solubility controlling phases for Np and Am were not correctly identified or that the measured Np and Am concentrations were not steady-state values. (5) Non-active glass leaching tests have indicated that no organic colloids were formed as a result of glass dissolution. (A.S.)

  8. Nitric acid leaching of radium and other significant radionuclides from uranium ores and tailings

    International Nuclear Information System (INIS)

    Ryon, A.D.; Hurst, F.J.; Seeley, F.G.

    1977-08-01

    Nitric acid leaching of representative uranium ores and mill tailings from the western U.S. mining districts removes up to 98% of the 226 Ra and 230 Th, yielding a residue containing 17 to 60 pCi of radium per gram. At best, this is an order of magnitude greater than that in surrounding soils, but about the same level as a standard proposed for building materials in the United Kingdom. Data are also presented on the water penetration and leaching of tailings, the solubility of BaSO 4 , and radon emanation coefficients of ores, tailings, and nitric acid-leached residues

  9. Characterization of Tank 16H Annulus Samples Part II: Leaching Results

    International Nuclear Information System (INIS)

    Hay, M.; Reboul, S.

    2012-01-01

    contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.

  10. Environmental aspects of sulphuric acid in situ leach uranium mining in the permafrost zone (Vitim District, Russian Federation)

    International Nuclear Information System (INIS)

    Fazlullin, M.I.; Boitsov, A.V.

    2002-01-01

    Currently in situ leaching pilot tests are in progress at the Khiagda deposit, Vitim District, Russian Federation. The deposit is of the sandstone basal channel type, or paleovalley type in the Russian classification. It contains about 15 000 mt U at an ore grade averaging 0.05% U. Mineralization occurs in permeable unconsolidated Neogene fluvial sediments located below the permafrost which extends to 100 m deep. The basement rock is Paleozoic granite. Neogene-Quaternary basalts overlap the ore hosting sediments. The thickness of the ore host horizon varies from a few meters to 120 m. The depth of mineralization averages 170 m. Ore bodies are of lens and strataform shape. The following types of underground waters have been identified: groundwaters of the near surface or active layer, the aquifer in the Neogene volcanics, the ore host aquifer of the Neogene permeable sediments and fault related waters. The permeability in the ore bearing horizon varies from 0.1 to 20 m/day (averages 2 to 3 m/day). The waters of the productive aquifer are not suitable for industrial nor potable water supply due to their initial chemical composition. The ore host horizons occur between two impermeable horizons, which confine leaching solutions. Using sulphuric acid solutions as leaching reagent decreases the pH and increases Total Dissolved Solids (TDS) of the groundwaters within the leaching area due to concentration of sulphate-ion and other dissolved components. Principal components contaminating the underground waters are sulphates of aluminium, manganese, nickel and chrome. Their content during leaching significantly exceeds initial values. The available information on residual acid migration with the ground water shows that the concentration of contaminants significantly decreases away from the leaching contour. This occurs due to precipitation of contaminants during migration of the underground water from ISL sites. The external contour of the contamination aureole is defined

  11. Rare earth elements leaching from Tin slag using Acid Chloride after Alkaline fusion process

    International Nuclear Information System (INIS)

    Kurnia Trinopiawan; Budi Yuli Ani; June Mellawati; Mohammad Zaki Mubarok

    2016-01-01

    Tin slag, a waste product from tin smelting process, has a potency to be utilized further by extracting the valuable metals inside, such as rare earth elements(REE). The objective of this study is to determine the optimum leaching condition of REE from tin slag after alkali fusion. Silica structure in slag is causing the direct leaching uneffectively. Therefore, pre-treatment step using alkali fusion is required to break the structure of silica and to increase the porosity of slag. Fusion is conducted in 2 hours at 700°C, with ratio of natrium hydroxide (NaOH) : slag = 2 : 1. Later, frit which is leached by water then leached by chloride acid to dissolve REE. As much as 87,5% of REE is dissolved at 2 M on chloride acid (HCl) concentration, in 40°C temperature, -325 mesh particle size, 15 g/100 ml of S/L, 150 rpm of agitation speed, and 5 minutes of leaching time. (author)

  12. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3

  13. Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-10-01

    Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO 3 - ,CO 3 2- , OH - , and O 2- organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the 137 Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the 137 Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the 137 Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing 137 Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the 137 Cs was removed in 16 h with 3.0 M HNO 3 . Only 22% of the 137 Cs was removed in 117 h usi 6.0 M HNO 3 . Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO 3 for a total mixing time of 558 h removed 84% of the 137 Cs. The use of caustic leaching prior to HNO 3 leaching, and the use of HF with HNO 3 in acidic leaching, increased the rate of 137 Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO 3 leaching of the W-25 sludge

  14. Recovery of vanadium (V) from spent catalysts used in sulfuric acid production units by acid or alkaline leaching

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Stas, J.; Shino, O.; Asaad, K.; Al-Kassemi, H.; Al-Qabani, F.

    2008-01-01

    The present paper, studies the recovery of vanadium from the spent catalyst by using acidic or alkaline leaching technique. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 20%(w/w) of sulfuric acid is the most suitable for leaching process at 70 Centigrade. The precipitation of vanadium using some alkaline media (Na 2 CO 3 , (NH 4 )CO 3 and NH 4 OH) has been also studied, it has been shown that ammonium hydroxide was the best at 60 degree, and iron was co-precipitated with vanadium which pollute the obtained red cake. So it is necessary to use liquid-liquid extraction technique for the separation between vanadium and iron and to have iron free red cake. (author)

  15. Ion leaching and soil solution acidification in a vadose zone under soil treated with sewage sludge for agriculture.

    Science.gov (United States)

    Borba, Ricardo Perobelli; Ribeirinho, Victor Sanches; de Camargo, Otávio Antonio; de Andrade, Cristiano Alberto; Kira, Carmen Silvia; Coscione, Aline Reneé

    2018-02-01

    In this study, we performed monitoring of the soil solution (SS) over 10 years on a loamy/clayey-textured Dark Red Dystroferric Oxisol that received sewage sludge for agricultural purposes. The SS was obtained by lysimeters installed along the walls of a well at 1 m, 2 m, 3 m, 4 m and 5 m in depth. The major ions found in the SS were NO 3 - , SO 4 2- , Cl - , Ca 2+ , Mg 2+ , Al 3+ , Pb 2+ , Cd 2+ and Zn 2+ , and the pH level ranged from 4 to 6.5 along the profile. Throughout the first three years of monitoring, the pH to a 3-m depth became more acidic, and in the last year, this trend reached 5 m. At the 5-m depth, the pH decreased from 6.5 to 4.5 from the first to the last monitoring. The SS acidification was provoked by both nitrite oxidation and ion leaching. The leaching of H + or the possible ion exchange/desorption of H + due to the leached cations (Ca 2+ and Mg 2+ ) at the 4-m and 5-m depth caused the pH decrease. The ionic strength (IS) of the solution controlled the ion leaching. The sludge application increased the IS to 3 m, increasing the density of the soil charges and its ability to absorb ions. After the sludge application was completed, there was a decrease in IS of the SS as well as a decrease in ion absorption and retention abilities, which promoted leaching to greater depths. During the entire monitoring process, NO 3 - , Cd and Pb remained above the potability limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Leaching mechanisms of constituents from fly ash under the influence of humic acid.

    Science.gov (United States)

    Zhao, Shengxin; Chen, Zhonglin; Shen, Jimin; Kang, Jing; Zhang, Jin; Shen, Yanqing

    2017-01-05

    As a low-cost material for adsorption, FA is one of the most efficient adsorbents of HA. However, the leaching of elements from FA is problematic during utilization in water treatment. In this investigation, the potential leaching behaviors of Calcium, Arsenic, Born, Chromium, and other elements from FA in HA solution were studied via batch test. The data show that HA had an effect on the leaching of each element of FA, depending on the pH, the initial concentration of HA and the addition of calcium oxide (CaO). The Langmuir isotherm could better fit the equilibrium data in different initial concentrations of HA from 10 to 100mg/L. Because of the interaction between HA and the FA leaching elements, multi-layer adsorption occurred when the initial concentration of HA was more than 100mg/L. The pH and free CaO content played major roles in HA adsorption and FA leaching. Using SEM and XRD to characterize the solid of FA being mixed with CaO treated in solution, the results demonstrated that the reaction between FA and CaO could generate crystal minerals, such as portlandite, gismondine, ettringite (AFt) and calcite, which effectively restrained the leaching of elements, reduced secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  18. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  19. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    International Nuclear Information System (INIS)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO 3 , to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH) 2 , neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO 3 neutralization to pH 4 followed by neutralization with Ca(OH) 2 to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH) 2 as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO 4 are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies

  20. Static leaching of uraniferous shales with countercurrent circuits

    International Nuclear Information System (INIS)

    Cordero, G.; Villarrubia, M.; Hernandez, J.

    1973-01-01

    We test different amounts of acid and the way of adding it in order to obtain the solubilization of uranium in static leaching. We also test the effects of the temperature. Finally we show the tests of solvent extraction considering the most important variables in it . In leaching we must work with 32 kg/t of acid and 40 d in order to obtain uraniums solubilization over 80%, The pregnant liquors have a high concentration of silica and we must use low organic liquid ( ≤ 3,5 % in amine) and fit the acidity of the pregnant Solutions to 4-8 g H 2 SO 4 /I. We show the economy of the process. (Author)

  1. Basic and acidic leaching of Melton Valley Storage Tank sludge at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.

    1995-01-01

    Basic and acidic leaching tests were conducted with samples of sludge taken from an underground storage tank at the US Department of Energy Melton Valley Storage Tank facility at Oak Ridge National Laboratory. The tests evaluated separation technologies for use in sludge processing to concentrate the radionuclides and reduce the volumes of storage tank waste for final disposal. Study results of sludge characterization, caustic leaching of sludge samples at ambient temperature and at 95 degrees C, and acid leaching of sludge samples at ambient temperature are reported in detail

  2. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk [Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Sookyung [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Donghyo, E-mail: ydh@kigam.re.kr [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Kwon, Kyungjung, E-mail: kfromberk@gmail.com [Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2016-08-05

    Highlights: • Ammoniacal leaching is used to recover spent Li-ion battery cathode materials. • Leaching agents consist of ammonia, ammonium sulfite and ammonium carbonate. • Ammonium sulfite is a reductant and ammonium carbonate acts as pH buffer. • Co and Cu can be fully leached while Mn and Al are not leached. • Co recovery via ammoniacal leaching is economical compared to acid leaching. - Abstract: As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn{sub 2}O{sub 4}, LiCo{sub x}Mn{sub y}Ni{sub z}O{sub 2,} Al{sub 2}O{sub 3} and C while the leach residue is composed of LiNi{sub x}Mn{sub y}Co{sub z}O{sub 2}, LiMn{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MnCO{sub 3} and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al.

  3. Recovery of cyanide in gold leach waste solution by volatilization and absorption.

    Science.gov (United States)

    Gönen, N; Kabasakal, O S; Ozdil, G

    2004-09-10

    In this study, the effects of pH, time and temperature in regeneration of cyanide in the leaching waste solution of gold production from disseminated gold ore by cyanidation process were investigated and the optimum conditions, consumptions and cyanide recovery values were determined. The sample of waste solution containing 156 mg/l free CN- and 358 mg/l total CN-, that was obtained from Gümüşhane-Mastra/Turkey disseminated gold ores by cyanidation and carbon-in-pulp (CIP) process under laboratory conditions was used in the experiments. Acidification with H2SO4, volatilization of hydrogen cyanide (HCN) with air stripping and absorption of HCN in a basic solution stages were applied and under optimum conditions, 100% of free cyanide and 48% of complex cyanide and consequently 70% of the total cyanide in the liquid phase of gold leach effluent are recovered.

  4. Process for controlling calcium in a leach operation

    International Nuclear Information System (INIS)

    Habib, E.J.

    1982-01-01

    A method for controlling calcium, e.g. calcite, build-up in the leach solution of a uranium and/or related values recovery operation wherein the leach solution is flowed through a value bearing ore to dissolve the desired values. A soluble fluoride, e.g. sodium fluoride, is added to the leach solution after it has passed through the ore to thereby precipitate calcium fluoride from the leach solution and lower the calcium content of the leach solution. The soluble fluoride may be added to the leach solution before the leach solution passes through the process equipment which is used to remove the values from the leach solution or the soluble fluoride may be added after the leach solution passes through the process equipment. If added before, it is preferable to also add a carbonate/bicarbonate solution along with the soluble fluoride to prevent coprecipitation of uranyl/desired value fluoride or to redissolve coprecipitated fluoride back into the leach solution

  5. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Extraction of uranium from anomaly ores no 1,6,8 in salt domes of Bandar Abbas region using column leaching by seawater in sulfuric acid medium

    International Nuclear Information System (INIS)

    Fatemi, K.

    2003-01-01

    Column leaching is one of the experimental methods which is used for identifying the specifications of uranium ores. From the efficiency point of view, the process has some complications and usually it is applied in parallel with the conventional leaching process in order to facilitate of finding an appropriate design and operational method, to be applicable in an large practical scale. In this research work, at the first stage, the existed free chlorine in the samples was washed out using seawater. Then, in a process of acid leaching with seawater and sulfuric acid by the use of the column leaching was applied. The results show that the maximum of 85% of uranium from the ore of Anomali ≠1 is extracted. The extra residual of the used acid dose not react with the uranium and therefore it will increase the free acidity of the leach liquor. In Anomali ≠6, the extraction efficiency of uranium is 75%, while in Anomali ≠8, using 30 periods of leaching, the efficiency is 81%. However, the maximum efficiency achievement has to be avoided by the non-economical circumstances. Based on some comparisons, it is shown that the presence of chlorine in ore will affect the efficiency. The capability of s eawater i n uranium extraction from salted, compared with the n ormal or sweat water h as some advantages. These include: reduction of the operational period, less acid consumption, and reduction in the ore leaching costs. Thus, the heap leaching industry is believed to be a valuable and economical method for uranium extraction, where the needs of utilizing the complicated technical facilities can be reduced. The present work is the first research project on the uranium extraction and concentration in solution containing chlorine. Our experimental results can provide a valuable pattern for the heap leaching of uranium ores design from arches shaped in the region Bandar Abbas

  7. A procedure for acid leaching of ores of the sandstone type, particularly of uranium ores

    International Nuclear Information System (INIS)

    Fiala, P.; Baloun, S.; Hinterholzinger, O.

    1990-01-01

    Ore mixed with the enriched fraction of the leached ore is leached with sulfuric acid at 5 to 220 degC. Bulky particles are sorted out from the mixture and reduced in size, and particles with a higher proportion of the useful component are separated from them. The latter particles constitute the enriched fraction of the leached ore, which is partially or completely returned to the mixture with the entering ore. The sorting should preferably be performed in an aqueous system. The assets of this procedure include a better homogenization of the mixture with the acid, a better stability of the reaction mixture which brings about reduced adhesion and solidification, and the possibility of extending the reaction time and increasing the temperature. The reduction in size makes for a better access of the leaching agent to the useful minerals, and the returning of the leachate to the reaction system spares sulfuric acid. (M.D.)

  8. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  9. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    Science.gov (United States)

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  10. Leaching of Glyphosate and Aminomethylphosphonic Acid from an Agricultural Field over a Twelve-Year Period

    DEFF Research Database (Denmark)

    Norgaard, Trine; Moldrup, Per; Ferré, Ty P A

    2014-01-01

    content at the time of application and the level of the groundwater table relative to the drain depth was essential for whether solutes were detected in the drainage runoff. We present a leaching risk chart to illustrate the dependence of glyphosate, AMPA, and soil particle leaching based on precipitation......, and particles. Glyphosate and AMPA leaching were highly event driven, controlled by the time and intensity of the first precipitation event after glyphosate application. A high similarity in time-accumulated curves for drainage and leached pesticide masses suggests near-constant drainage and leaching rates...

  11. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  12. A Mineralogical Assessment on Residues after Acidic Leaching of Bauxite Residue (Red Mud for Titanium Recovery

    Directory of Open Access Journals (Sweden)

    Gözde Alkan

    2017-10-01

    Full Text Available Due to its alkalinity, red mud produced by the Bayer process may affect both the environment and human health. For this reason, its further utilization instead of disposal is of great importance. Numerous methods have already been studied for hydrometallurgical treatment of red mud, especially for the recovery of various metallic components such as iron, aluminum, titanium or rare earth elements. This study focuses on the extraction of titanium from red mud and in particular the mineralogical changes, induced by leaching. Sulfuric acid, hydrochloric acid and their combination have been utilized as leaching agents with the same leaching parameters. It has been determined that sulfuric acid is the best candidate for the red mud treatment in terms of titanium leaching efficiency at the end of 2 h with a value of 67.3%. Moreover, samples from intermediate times of reaction revealed that leaching of Ti exhibit various reaction rates at different times of reaction depending on acid type. In order to explain differences, X-ray Diffraction (XRD, scanning electron microscope (SEM and QEMSCAN techniques were utilized. Beside titanium oxide (TiO2 with available free surface area, a certain amount of the TiO2 was detected as entrapped in Fe dominating oxide. These associations between Ti and Fe phases were used to explain different leaching reaction rates and a reaction mechanism was proposed to open a process window.

  13. Reduction of inorganics from macroalgae Laminaria digitata and spent mushroom compost (SMC) by acid leaching and selective hydrothermal liquefaction

    DEFF Research Database (Denmark)

    Toor, Saqib Sohail; Jasiunas, Lukas; Xu, Chunbao (Charles)

    2018-01-01

    Hydrothermal liquefaction (HTL) is a promising route for producing bio-crude from various biomass feedstocks. However, high content of inorganic constituents in biomass like macroalgae Laminaria digitata and spent mushroom compost (SMC) affect the conversion process and the resulting fuel products....... This research studied the effects of different acid leaching treatments on such feedstocks, subsequent HTL, and bio-crude properties. Leaching treatments were performed using five different agents: deionized water, acetic acid, citric acid, sulfuric acid, and hydrochloric acid. Performance of leaching...... was evaluated by analyzing both leached biomass and HTL products by elemental analysis, ash content, inductively coupled plasma (ICP) analysis, and X-ray diffraction (XRD) analysis. Catalytic and non-catalytic HTL of both feedstocks before and after treatment were performed in a 10-mL microreactor at 400 °C...

  14. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate

    International Nuclear Information System (INIS)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-01-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs

  15. Leaching of silicon from ferronickel (FeNi) smelting slag with sodium hydroxide solution at atmospheric pressure

    Science.gov (United States)

    Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.

    2018-01-01

    The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.

  16. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  17. Leaching Characteristics of Calcium and Strontium from Phosphogypsum Under Acid Rain.

    Science.gov (United States)

    Wang, Mei; Luo, Houqiao; Chen, Yong; Yang, Jinyan

    2018-02-01

    Phosphogypsum (PG) stored close to phosphorus chemical plants has caused worldwide environmental problems. Column leaching experiments were conducted to evaluate Ca and Sr leaching from PG under simulated acid rain at pH levels typical for rain in the study region (Shifang, China). High concentrations of Ca and Sr in leachates in the first five leaching events could pollute the soil and groundwater around the PG. Leachates pH was lower than and had no correlation with simulated rain pH. No correlations between simulated rain pH and cumulative Ca and Sr content in leachates were noted. Around 2.0%-2.2% of Ca and 0.5%-0.6% of Sr were leached out from PG by the simulated summer rainfall in Shifang. Electrical conductivity values, Ca and Sr concentrations at bottom sections of PG columns were higher than those of top sections, while pH values showed a reverse trend. More precautions should be taken to protect the environment around PG stacks.

  18. In situ leaching of uranium in South Australia

    International Nuclear Information System (INIS)

    Matthews, D.

    1998-01-01

    The proposed two new uranium mines at Beverley and Honeymoon, South Australia plan to use the cheap but potentially polluting process of in situ leaching (ISL) and permission has already been given for experimental underground leaching at Beverley. The mining industry describes ISL as environmentally benign because, instead of excavating, a corrosive liquid such as sulphuric acid is used. The liquid, sometimes 10000 times more acid than the aquifer water, is pumped into the ground in order to leach out the uranium and the resulting solution is then pumped to the surface where the uranium is extracted. Because the groundwater is salty and radioactive, the mining companies regard it as useless, so its contamination by ISL is considered of no concern. Salty radioactive water can be purified or desalinated and such processes are commonly used by mining companies such as Western Mining Corporation at Roxby Downs. (author)

  19. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  20. The removal of mercury from solid mixed waste using chemical leaching processes

    International Nuclear Information System (INIS)

    Gates, D.D.; Chao, K.K.; Cameron, P.A.

    1995-07-01

    The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I 2 solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I 2 leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I 2 , NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass

  1. Combined oxidative leaching and electrowinning process for mercury recovery from spent fluorescent lamps.

    Science.gov (United States)

    Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan

    2016-11-01

    In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studies of leaching of copper ores and flotation wastes

    International Nuclear Information System (INIS)

    Wawszczak, D.; Deptula, A.; Lada, W.; Smolinski, T.; Olczak, T.; Brykala, M.; Wojtowicz, P.; Rogowski, M.; Milkowska, M.; Chmielewski, A.G.

    2014-01-01

    In Poland, there are significant deposits of copper ores. During the copper extraction, large amounts of flotation wastes are produced. In the ores and flotation wastes many other important elements are present. The main goal of this work was analysis of uranium content and to elaborate procedures for recovery of U from these materials. Two types of ores and four types of waste were examined. It has been found that uranium content varies from 4.5 to 25 ppm. The other elements have also been determined in these materials: Cu (4-5 % in ores and 0.3-1.7 % in waste), Ag, Re, Mo, La, Ni, V, etc. For leaching, sulfuric acid and sodium carbonates of various concentrations (temperature, time) were used. The optimum conditions for leaching have been found. The concentration of uranium in the final solution was generally less than 25 μg/mL. The other elements are also present in the leaching solutions. Simultaneous liquid-liquid extraction of uranium with these elements from leaching solution is under study. In our opinion, only such combined procedure for the recovery of uranium together with the accompanying elements could be cost-effective. (author)

  3. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.

    Science.gov (United States)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung

    2016-08-05

    As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  5. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  6. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores

    International Nuclear Information System (INIS)

    Estrada Aguilar, J.; Uriarte Hueda, A.

    1962-01-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs

  7. Resistance evaluation expanded perlite the leaching acid: variation of parameters concentration, time and leaching agent

    International Nuclear Information System (INIS)

    Almeida, J.M.F. de; Damasceno Junior, E.; Oliveira, E.S.; Fernandes, N.S.

    2016-01-01

    The expanded perlite is an amorphous aluminosilicate which presents in its composition about 75.0% silicon oxide (SiO2), also having other species in the composition as oxides of some metals. Silicas and silicates have been used in the environmental field, in relevant anti-corrosive activity. In this context, materials that exposes too many highly acidic media, require preservation against this type of wear, as this type of damage causes a great financial loss, thereby requiring low-cost, abundant materials, non-toxic and easy to purchase as some silica coating. The study evaluated the perlite expanded resistance against an acid leaching process. With undeniability the use of strong acids and different working conditions were not able to remove the oxides present on the expanded perlite sample, thus demonstrating the high strength of the expanded perlite against acid attacks. (author)

  8. Leaching of DOC, DN, and inorganic constituents from scrap tires.

    Science.gov (United States)

    Selbes, Meric; Yilmaz, Ozge; Khan, Abdul A; Karanfil, Tanju

    2015-11-01

    One concern for recycle and reuse of scrap tires is the leaching of tire constituents (organic and inorganic) with time, and their subsequent potential harmful impacts in environment. The main objective of this study was to examine the leaching of dissolved organic carbon (DOC), dissolved nitrogen (DN), and selected inorganic constituents from scrap tires. Different sizes of tire chips and crumb rubber were exposed to leaching solutions with pH's ranging from 3.0 to 10.0 for 28days. The leaching of DOC and DN were found to be higher for smaller size tire chips; however, the leaching of inorganic constituents was independent of the size. In general, basic pH conditions increased the leaching of DOC and DN, whereas acidic pH conditions led to elevated concentrations of metals. Leaching was minimal around the neutral pH values for all the monitored parameters. Analysis of the leaching rates showed that components associated with the rubbery portion of the tires (DOC, DN, zinc, calcium, magnesium, etc.) exhibited an initial rapid followed by a slow release. On the other hand, a constant rate of leaching was observed for iron and manganese, which are attributed to the metal wires present inside the tires. Although the total amounts that leached varied, the observed leaching rates were similar for all tire chip sizes and leaching solutions. Operation under neutral pH conditions, use of larger size tire chips, prewashing of tires, and removal of metal wires prior to application will reduce the impact of tire recycle and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  10. Enhancement of gold grade through arsenic removal in the gold concentrate using sulfuric acid baking and hot water leaching

    Science.gov (United States)

    On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Kim, Hyun-soo; Park, Cheon-young

    2017-04-01

    In order to improve gold recovery, in general, the roasting process is carried out on gold concentrate. However in this process, Arsenic(As) is released from the gold concentrate and valuable elements such as Fe, Cu, Zn and Pb are converted into oxides. This causes air pollution through the release of As and loss of valuable elements by discarding the oxide minerals in the tailings. In order to prevent the release of As and the loss of valuable metals, an acid baking experiment was carried out on the gold concentrate with the addition of an H2SO4 solution. The baking effect, H2SO4 concentration effect and the effects of changing the baking time were examined using an electric furnace. In experimental results, soluble metal sulfates such as Rhomboclase and Mikasite were formed in the baked samples as seen through XRD analysis. In hot(70 degree Celsius) water leaching of the roast and baked samples, As the contents leached were 60 times more in the baked sample than the roast sample, and the Fe, Cu, Zn and Pb contents were 17, 10, 14, 13 times in the baked sample than in the roast sample, respectively. In the water leached solid-residues, the maximum gold grade was upgraded by 33% due to the acid baking effect. It is confirmed that acid baking with H2SO4 prevented As release into the air and the recovery of valuable metals through hot water leaching such as Fe, Cu, Zn and Pb which were formerly discarded in the tailings. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  11. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    Science.gov (United States)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  12. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  13. Bacterial leaching of waste uranium materials.

    Science.gov (United States)

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  14. Bacterial leaching of waste uranium materials

    International Nuclear Information System (INIS)

    Barbic, F.F.; Bracilovic, D.M.; Krajincanic, B.V.; Lucic, J.L.

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.0372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid. (author)

  15. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC.

    Science.gov (United States)

    Yuan, Jie; Xiao, Jin; Li, Fachuang; Wang, Bingjie; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-03-01

    Spent cathode carbon (SCC) from aluminum electrolysis has been treated in ultrasonic-assisted caustic leaching and acid leaching process, and purified SCC used as carbon source to synthesize silicon carbide (SiC) was investigated. Chemical and mineralogical properties have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and thermogravimetry and differential scanning calorimetry (TGA-DSC). Various experimental factors temperature, time, liquid-solid ratio, ultrasonic power, and initial concentration of alkali or acid affecting on SCC leaching result were studied. After co-treatment with ultrasonic-assisted caustic leaching and acid leaching, carbon content of leaching residue was 97.53%. SiC power was synthesized by carbothermal reduction at 1600 °C, as a result of yield of 76.43%, and specific surface area of 4378 cm 2 /g. This is the first report of using purified SCC and gangue to prepare SiC. The two industrial wastes have been used newly as secondary sources. Furthermore, ultrasonic showed significant effect in SCC leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. LEACH ARCILLAS ACTIVATED PARTIAL ACID SULFURICO

    OpenAIRE

    Romero Y Otiniano, P.; Pizarra Cabrera, R.

    2014-01-01

    This work is concerned with the activation of calcium bentonite from Junín- Perú (with a moisture content of 24.1% and an average of particle size 40 µ ) with sulphuric acid. The parameters studied are the ratio of bentonite to acid solution, acid concentration and reaction time to boiling temperatura of the mixture. The optimum conditions obtained are the following: 0.47 kg. of bentonite/kg. of acid solution to 4.8 N, 4 h of treatment to 104 ºC and the conversion of 45.6% alumina and 73.5% o...

  18. Uranium leaching by fungal metabolite

    International Nuclear Information System (INIS)

    Wang Yongdong; Li Guangyue; Ding Dexin; Hu Nan

    2012-01-01

    To explore new means of bioleaching, one strain of high-yielding fungi-Aspergillus niger which could produce organic acids was separated and purified from soil samples of uranium mine. The influence of cultural temperature, initial pH value, inoculum sizes on its growth characteristics were carried out. And the tests of uranium leaching of metabolin of Aspergillus niger were operated. On these tests, the effects of metabolin of Aspergillus niger with different pH value produced in the diverse culture temperature on uranium leaching were investigated. The results show that this strain of Aspergillus niger can grow best under the following conditions: the temperature is 37℃, the initial pH value is 7.0, the inoculum sizes is 2% (the OD value of the spores solution is 0.06). The uranium extraction effects relative to the final pH value of the cultures. and the maximum leaching rates is 83.05% when the pH value is 2.3. (authors)

  19. Impact of simulated acid rain on trace metals and aluminum leaching in latosol from Guangdong Province, China

    Science.gov (United States)

    Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin. Xu

    2014-01-01

    Acid rain is one of the most serious ecological and environmental problems worldwide. This study investigated the impacts of simulated acid rain (SAR) upon leaching of trace metals and aluminum (Al) from a soil. Soil pot leaching experiments were performed to investigate the impacts of SAR at five different pH levels (or treatments) over a 34-day period upon the...

  20. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    Science.gov (United States)

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  1. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  2. Acid leaching of scheelite concentrates; Lixiviacion acida de concentrado de scheelita

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Alguacil, F. J.

    2005-07-01

    The acid leaching in hydrochloric media of a tungsten concentrate (scheelite, CaWO{sub 4}) was studied. Of the above-mentioned, an insoluble solid (H{sub 2}WO{sub 4}) was obtained which were treated with an alkaline solution of sodium hydroxide, achieving the complete solubilization of the tungsten as wolframate ion (WO''2{sub 4}). The transformed fraction of tungsten increases with the temperature, as well as with a finer grain. A maximum dissolution of 88.5% (400 g/l HCL, 363 K and 20 {mu}m of particle size) was achieved for a 3 h process, of the dissolution process was interpreted by the recessive core model with formation of a layer of solid product for the whole range of variation of the parameters in study. the activation energy value was found to be 28.0kJ/mol. (Author) 6 refs.

  3. Preliminary Study on the Dissolutions of Ce, Nd, Y and La from Mineral Cassiterite by Acid and Alkaline Leaching

    Science.gov (United States)

    Firdiyono, F.; Andriyah, L.; Aini, F. N.; Arini, T.; Lalasari, L. H.

    2018-03-01

    Rare Earth Metal is a rare element that its availability in nature is very small. In Indonesia, the potential of rare earth metals is generally found as the associated mineral in major commodities, especially gold and alluvial tin. These associated minerals can be processed using a particular technology so that the result is a by-product that can increase the added value of the mineral. This purpose of this research was to investigate the dissolution of Cerium (Ce), Neodymium (Nd), Yttrium (Y) and Lanthanum (La) from mineral cassiterite by leaching process using dilute hydrochloric acid (HCl), sulfate acid (H2SO4) and sodium hydroxide (NaOH). Firstly, cassiterite was grinded to -100 mesh of particle size and characterized by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) techniques. Secondly, 10 gram of cassiterite was leached in 100 ml solution of 3.26 N HCl, H2SO4 and NaOH at variation leaching time of 2, 4, 6, 24 and 48 hours in atmospheric conditions. The products were then filtered to separate filtrate and residue of cassiterite. Finally, to investigate the dissolution of Ce, La, Nd and Y, filtrate from dissolved cassiterite was analyzed by Induced Coupled Plasma-Optical Emission Spectrometry (ICP-OES), while to know the chemical composition of cassiterite leached by dilute HCl, H2SO4 and NaOH, residue products of cassiterite was characterized by XRF analysis. The result of ICP-OES analysis showed the dissolution of Ce element higher than Nd, Y and La elements for leaching cassiterite using HCl, H2SO4 and NaOH. The increase of leaching time was accompanied by the rise in the amount of dissolved elements from cassiterite. The result of XRF analysis showed the chemistry composition of Ce, Nd, Y and La elements on residue decreased insignificantly from chemistry composition of cassiterite (raw mineral) in all conditions. However, the dissolution of Ce, La, Nd and Y was insignificant in all conditions.

  4. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Espenscheid, W.F.; Yan, F.Y.

    1983-01-01

    The present invention relates to the recovery of uranium from subterranean ore deposits, and more particularly to an in-situ leaching operation employing an aqueous solution of sulfuric acid and carbon dioxide as the lixiviant. Uranium is solubilized in the lixiviant as it traverses the subterranean uranium deposit. The lixiviant is subsequently recovered and treated to remove the uranium

  5. Kinetics of the Leaching Process of an Australian Gibbsitic Bauxite by Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Aichun Zhao

    2016-01-01

    Full Text Available Gibbsitic bauxite from Australia was leached by hydrochloric acid in this work. Analysis on kinetics for the extraction of Al2O3 was quantitatively studied. It was concluded that the hydrochloric acid leaching process of gibbsitic bauxite was controlled by chemical reaction. Moreover, the mechanism for the dissolution followed the equation, ln⁡k=39.44-1.66×104(1/T, with an apparent activation energy of 137.90 kJ/mol, according to the equation of k=Ae-Ea/RT. This work aims to provide a good theory support for the process control by using a new method of alumina production from the low grade bauxite.

  6. Acid-Gangue Interactions in Heap Leach Operations: A Review of the Role of Mineralogy for Predicting Ore Behaviour

    Directory of Open Access Journals (Sweden)

    Deshenthree Chetty

    2018-01-01

    Full Text Available Heap leaching accounts for a fifth of global copper production, sourced primarily from porphyry ores, yet metal recoveries are often not optimal. Gangue, and its interaction with acid, plays an important role in such processes. Thus, a proper understanding of gangue minerals present in the ore, their textural relationships relative to particle size distribution, reactivity with acid under different conditions, and relationship to lithotypes and geological alteration in the orebody, is necessary to predict ore behaviour in the comminution, agglomeration, curing and heap leach unit operations. Mineralogical tools available for characterisation are routine X-ray diffraction, optical microscopy, automated scanning electron microscopy, and electron probe microanalysis, accompanied by more recent advancements in hyperspectral infrared imaging and X-ray computed tomography. Integrated use of these techniques allows mineral abundance, textural relationships and mineral chemistry to be addressed over the range of particle and agglomerate sizes. Additionally, diagnostic leach results can be better interpreted when calibrated against robust mineralogical data. The linkage of ore attributes, metallurgical behaviour and their distribution in the orebody forms an integral part of a geometallurgical approach to predicting, and addressing, changes during the heap leaching process. Further investigation should address the fundamentals of gangue reaction with strong acid, and concomitant structural breakdown during curing and agglomeration processes, and how this differs from gangue-acid reactivity under weaker acid conditions, combined with temperature and fluid flow effects of heap leaching. Pre-and post- characterisation is necessary to understand and quantify the effects of variables for gangue-acid reactivity in these various operations. The characterisation outcomes should lead to a refinement of the hierarchy of gangue mineral reactivity under different

  7. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  8. Critical parameters in the dump and heap leaching of gold, silver, copper and uranium: permeability, solution delivery and solution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Lastra, M.K.; Chase, C.K.

    1984-02-01

    Critical to successful dump and heap leaching for gold, silver, copper and uranium are factors such as permeability, solution delivery to the ore, and solution recovery. This paper deals with possible techniques for successful accomplishment of these three factors. New developments as well as older techniques are discussed, together with rationals for use of some techniques in reference to others. The authors hope to present a checklist so that the ideal application to individual mine situations can be achieved. This involves a discussion of the merits of each different method and the situations for most logical application. It is hoped that such discussion will broaden the geographic areas where dump and heap leaching can be applied to include greater winter cold and tropical regions of large amounts of rainfall.

  9. Critical parameters in the dump and heap leaching of gold, silver, copper and uranium: permeability, solution delivery and solution recovery

    International Nuclear Information System (INIS)

    Lastra, M.K.; Chase, C.K.

    1984-01-01

    Critical to successful dump and heap leaching for gold, silver, copper and uranium are factors such as permeability, solution delivery to the ore, and solution recovery. This paper deals with possible techniques for successful accomplishment of these three factors. New developments as well as older techniques are discussed, together with rationals for use of some techniques in reference to others. The authors hope to present a checklist so that the ideal application to individual mine situations can be achieved. This involves a discussion of the merits of each different method and the situations for most logical application. It is hoped that such discussion will broaden the geographic areas where dump and heap leaching can be applied to include greater winter cold and tropical regions of large amounts of rainfall

  10. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    DEFF Research Database (Denmark)

    Kindler, Reimo; Siemens, Jan; Kaiser, Klaus

    2011-01-01

    ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small...... solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems....

  11. Long-term stability of earthen materials in contact with acidic tailings solutions

    International Nuclear Information System (INIS)

    Peterson, S.R.; Erikson, R.L.; Gee, G.W.

    1982-11-01

    The objectives of the studies documented in this report were to use experimental and geochemical computer modeling tools to assess the long-term environmental impact of leachate movement from acidic uranium mill tailings. Liner failure (i.e., an increase in the permeability of the liner material) was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 years. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The high clay materials tested appear suitable for lining tailings impoundment ponds. The decreases in permeability are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. In conclusion the same mineralogical changes and contaminant reactions predicted by geochemical modeling and observed in laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 4 year history of acid attack

  12. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test.

    Science.gov (United States)

    Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong

    2017-01-01

    Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (D e ). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, D e and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of D e appeared to be time dependent, and D e values increased after the 210 th day in weakly alkaline and weakly acidic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bacteria heap leaching test of a uranium ore

    International Nuclear Information System (INIS)

    Liu Hui; Liu Jinhui; Wu Weirong; Han Wei

    2008-01-01

    Column bioleaching test of a uranium ore was carried out. The optimum acidity, spraying intensity, spray-pause time ratio were determined. The potential, Fe and U concentrations in the leaching process were investigated. The effect of bacteria column leaching was compared with that of acid column leaching. The results show that bacteria column leaching can shorten leaching cycle, and the leaching rate of uranium increases by 9.7%. (authors)

  14. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    Science.gov (United States)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  15. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-01-01

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC 2 O 4 ⋅2H 2 O and Li 2 CO 3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor

  16. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  17. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.

    Science.gov (United States)

    Liu, Taoze; Li, Feili; Jin, Zhisheng; Yang, Yuangen

    2018-07-01

    A column leaching study, coupled with acid deposition simulation, was conducted to investigate the leaching of potentially toxic metals (PTM) from zinc smelting slag materials (SSM) after being incubated in an acid Alfisol for 120 days at room temperature. Two SSMs (SSM-A: acidic, 10 yrs exposure with moderate high PTM concentrations versus SSM-B: alkaline, 2 yrs exposure with extremely high PTM concentrations), were used for the incubation at 0.5, 1, 2.5, 5 wt% amendment ratios in triplicate. Five leaching events were conducted at day 1, 3, 7, 14, and 28, and the leaching of PTMs mainly occurred in the first three leaching events, with the highest PTM concentrations in leachate measured from 5 wt% SSM amendments. After leaching, 2.5, 12, 5.5, 14, 11, and 9 wt% of M3 extractable Pb, Zn, Cd, Co, Cr, and Ni could be released from 5 wt% SSM-A amended soils, being respectively 25, 12, 4, 2, 2, and 2 times more than those from 5 wt% SSM-B amended soils. In the leachates, the concentrations of PTMs were mostly affected by leachant pH and were closely correlated to the concentrations of Fe, Al, Ca, Mg and P with Cd, Pb, and Zn showing the most environmental concern. Visual MINTEQ 3.1 modeling suggested metallic ions and sulfate forms as the common chemical species of PTMs in the leachates; whereas, organic bound species showed importance for Cd, Pb, Cu, and Ni, and CdCl + was observed for Cd. Aluminum hydroxy, phosphate, and sulfate minerals prevailed as the saturated minerals, followed by chloropyromorphite (Pb 5 (PO 4 ) 3 Cl) and plumbogummite (PbAl 3 (PO 4 ) 2 (OH) 5 ·H 2 O) in the leachates. This study suggested that incubation of SSMs in acidic soil for a long term can enhance the release of PTMs as the forms of metallic ions and sulfate when subjected to acid deposition leaching. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Uranium leaching using mixed organic acids produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Yong-dong Wang; Guang-yue Li; De-xin Ding; Zhi-xiang Zhou; Qin-wen Deng; Nan Hu; Yan Tan

    2013-01-01

    Both of culture temperature and pH value had impacts on the degree of uranium extraction through changing types and concentrations of mixed organic acids produced by Aspergillus niger, and significant interactions existed between them though pH value played a leading role. And with the change of pH value of mixed organic acids, the types and contents of mixed organic acids changed and impacted on the degree of uranium extraction, especially oxalic acid, citric acid and malic acid. The mean degree of uranium extraction rose to peak when the culture temperature was 25 deg C (76.14 %) and pH value of mixed organic acids was 2.3 (82.40 %) respectively. And the highest one was 83.09 %. The optimal culture temperature (25 deg C) of A. niger for uranium leaching was different from the most appropriate growing temperature (37 deg C). (author)

  19. Spatial and temporal distribution of solute leaching in heterogeneous soils: analysis and application to multisampler lysimeter data

    NARCIS (Netherlands)

    Rooij, de G.H.; Stagnitti, F.

    2002-01-01

    Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of

  20. Main ways and suitable technologies of improving economic benefits for uranium ore heap leaching in China (the end)

    International Nuclear Information System (INIS)

    Guan Zibin

    2001-01-01

    Combining with practice of China's uranium ore heap leaching, the author proposes main ways and suitable technologies in the fields of emphasizing feasibility research, adopting strengthened technologies, improving equipment level, optimizing control technological factors and developing application range and so on, which include adopting acid-currying and ferric sulphate-trickle leaching process, bacteria heap leaching, countercurrent heap leaching, selecting advanced material of heap bottom, developing large mechanized heap construction equipment and methods, popularizing drip irrigation distributing solution, optimizing heap leaching process parameters, as well as developing recovery equipment suited to heap leaching, etc, in order to increase leaching rate, reduce heap leaching period and achieve more economic benefits

  1. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].

    Science.gov (United States)

    Fomchenko, N V; Murav'ev, M I; Kondrat'eva, T F

    2014-01-01

    The bioregeneration of the solutions obtained after the leaching of copper and zinc from waste slag by sulfuric solutions of ferric sulfate is examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions obtained after the leaching of nonferrous metals from waste slag is possible at a dilution of the pregnant solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant solution with a nutrient medium. The application ofbioregeneration during the production of nonferrous metals from both waste and converter slags would make it possible to approach the technology of their processing using the closed cycle of workflows.

  2. Recovery TiO2 by leaching process of carbothermic reduced Kalimantan ilmenite

    Science.gov (United States)

    Wahyuningsih, S.; Sari, P. P.; Ramelan, A. H.

    2018-05-01

    Ilmenite naturally occurred in iron titanate (FeTiO3) minerals. The separation of natural ilmenite into TiO2 and Fe2O3 need to be explored to gain the high purity separation product. A new combination method named of carbothermic reduction, acidic-leaching and complexation by EDTA were proposed for separation TiO2 from Ilmenite. Roasting of ilmenite was carried out at 950 °C for 1 h by the addition of activated carbon with mass ratio of ilmenite : activated carbon =4:3. The carbothermic reduction was carried out to yield a high separation of initial content of ilmenite that will be easily to dissolve within hydrochloric acid solution in leaching process. The composition of ilmenite observed by X-Ray Fluoresences (XRF) changed after the carbothermic reduction process and the dominant content is TiO2 (57.56%). X-Ray Diffraction (XRD) of roasted ilmenite composed of decomposed product of ilmenite i.e. hematite (Fe2O3), TiO2 anatase, TiO2 rutile, and inorganic salt. The leaching of the roasted ilmenite has been done by sulphuric acid solution (6 M) to gain the titanyl sulphate solution. Separation of iron impurities of TiO2 gel from titanyl sulphate (TiOSO4) solution was conducted by complexation method using EDTA as a complexation agent. The characteristic of TiO2 obtained using XRD showed that TiO2 is anatase type and the percentage of TiO2 using XRF showed that TiO2 content of 86,03%.

  3. The leaching characteristics of vitrified slag

    International Nuclear Information System (INIS)

    Zhang, Jinlong; Li, Yaojian; Tian, Junguo; Sheng, Hongzhi; Xu, Yongxiang

    2010-01-01

    Full Text: Plasma-arc technology was developed to fix the heavy metal of flying ash by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A direct current (DC) experimental facility of 30 kW with plasma-arc technology was setup to form vitrified slag. The additives (CaO, SiO 2 ) were added into the reactor to form vitrified slag and fix the heavy metal (Cr, Pb), under dissimilar condition (long and short heating-up time, natural and water cooling). Vitrified slag was broken into different particle size, from 0.1 mm to 1 cm. The particles with different specific surface area were used to study the leaching of heavy metals in vitrified slag rate of speed. The pH value of leaching solution are from 2 to 12, the experiment was kept at different external temperature, from 4 degree Celsius to 70 degree celsius, for 1 week to 1 month. Heavy metal leaching concentration was used to measure the chemical stability of vitrified slag. The results show that the higher specific surface area, the higher heavy metal leaching concentration, but when the specific surface area reaches a certain value, little change in leaching concentration. The impact of temperature on leaching concentration was not significant, from 4 degree Celsius to 70 degree Celsius. The leaching concentration increases with decreasing of the pH value of leaching solution when the pH value of leaching solution less than 7, and little change in concentration increases with pH value when the pH value of leaching solution more than 7. Compared with the leaching concentration after 1 month, the leaching concentration after 1 week has not changed significantly. (Author)

  4. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid

    International Nuclear Information System (INIS)

    Madakkaruppan, V.; Pius, Anitha; Sreenivas, T.; Giri, Nitai; Sarbajna, Chanchal

    2016-01-01

    Highlights: • U leaching from a low-grade Si-rich ore studied in H_2SO_4 medium with (MW) irradiation. • MW heating is more efficient in terms of U recovery, kinetics and purity of liquor. • U leachability of 84% obtained in 90 min at 95 °C with 0.38 M H_2SO_4 at 450 mVwith MW heating • Conventional conductive heating gave about 74% leachability with less purity liquor. • U leaching was found follow product layer diffusion as controlling mechanism. - Abstract: This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12–0.50 M), redox potential (400–500 mV), particle size (600–300 μm) and temperature (35°–95 °C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism.

  5. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Madakkaruppan, V. [Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad 500016 (India); Pius, Anitha, E-mail: dranithapius@gmail.com [Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul District, Tamil Nadu 624302 (India); Sreenivas, T.; Giri, Nitai [Mineral Processing Division, Bhabha Atomic Research Center, AMD Complex, Begumpet, Hyderabad 500016 (India); Sarbajna, Chanchal [Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad 500016 (India)

    2016-08-05

    Highlights: • U leaching from a low-grade Si-rich ore studied in H{sub 2}SO{sub 4} medium with (MW) irradiation. • MW heating is more efficient in terms of U recovery, kinetics and purity of liquor. • U leachability of 84% obtained in 90 min at 95 °C with 0.38 M H{sub 2}SO{sub 4} at 450 mVwith MW heating • Conventional conductive heating gave about 74% leachability with less purity liquor. • U leaching was found follow product layer diffusion as controlling mechanism. - Abstract: This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12–0.50 M), redox potential (400–500 mV), particle size (600–300 μm) and temperature (35°–95 °C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism.

  6. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    Science.gov (United States)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  8. Static leaching of uraniferous shales on open areas; Lixiviacion estatica de izarras uraniferas (tratamiento de mineral rico en era abierta)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Nieto, J; Cordero, G; Villarrubia, M

    1973-07-01

    This report describes the tests on acid heap leaching with conventional (1.400 ppm U{sub 3}O{sub 8}) crushed uranium ores. We use open circuits with low internal recycled. Using starving acidity in the leaching solutions we obtain a smooth solubilization of uranium and, at the same time, the pregnant liquors are good for the solvent extraction recovery. (Author)

  9. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    Science.gov (United States)

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Leaching and geochemical behavior of fired bricks containing coal wastes.

    Science.gov (United States)

    Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid

    2018-03-01

    High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbonate heap leach of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Turney, W.R.; Mason, C.F.V.; Longmire, P.

    1994-01-01

    A new approach to removal of uranium from soils based on existing heap leach mining technologies proved highly effective for remediation of soils from the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio. In laboratory tests, remediation of uranium-contaminated soils by heap leaching with carbonate salt solutions was demonstrated in column experiments. An understanding of the chemical processes that occur during carbonate leach of uranium from soils may lead to enhancement of uranium removal. Carbonate leaching requires the use of an integrated and closed circuit process, wherein the leach solutions are recycled and the reagents are reused, resulting in a minimum secondary waste stream. Carbonate salt leach solution has two important roles. Primarily, the formation of highly soluble anionic carbonate uranyl species, including uranyl dicarbonate (UO 2 CO 32 = ) and uranyl tricarbonate (UO 2 CO 33 4- ), allows for high concentration of uranium in a leachate solution. Secondly, carbonate salts are nearly selective for dissolution of uranium from uranium contaminated soils. Other advantages of the carbonate leaching process include (1) the high solubility, (2) the selectivity, (3) the purity of the solution produced, (4) the relative ease with which a uranium product can be precipitated directly from the leachate solution, and (5) the relatively non-corrosive and safe handling characteristics of carbonate solutions. Experiments conducted in the laboratory have demonstrated the effectiveness of carbonate leach. Efficiencies of uranium removal from the soils have been as high as 92 percent. Higher molar strength carbonate solutions (∼0.5M) proved more effective than lower molar strength solutions (∼ 0.1M). Uranium removal is also a function of lixiviant loading rate. Furthermore, agglomeration of the soils with cement resulted in less effective uranium removal

  12. A study on prediction of uranium concentration in pregnant solution from in-situ leaching

    International Nuclear Information System (INIS)

    Yi Weiping; Zhou Quan; Yu Yunzhen; Wang Shude; Yang Yihan; Lei Qifeng

    2005-01-01

    The modeling course on prediction of uranium concentration in pregnant solution from in-situ leaching of uranium is described, a mathematical model based on grey system theory is put forward, and a set of computer application software is correspondingly developed. (authors)

  13. New technology of bio-heap leaching uranium ore and its industrial application in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Meng Yunsheng; Liu Jian; Meng Jin; Li Weicai; Xiao Jinfeng; Chen Sencai; Du Yuhai; Huang Bin

    2006-10-01

    Bioleaching mechanism of uranium ore is discussed. Incubation and selection of new strain, biomembrane oxidizing tank--a kind of new equipment for bacteria culture and oxidation regeneration of leaching agent are also introduced. The results of industrial experiment and industrial production are summarized. Compared with conventional heap leaching, bioleaching period and acid amount are reduced, oxidant and leaching agent are saved, and uranium concentration in leaching solution is increased. It is the first time to realize industrial production by bio-heap leaching in Chinese uranium mine. New equipment-biomembrane oxidizing tank give the basis of bio-heap leaching industrial application. Bio-heap leaching process is an effective technique to reform technique of uranium mine and extract massive low-content uranium ore in China. (authors)

  14. Hydrometallurgical treatment of copper smelter dusts. Desarsenification of leaching solutions

    International Nuclear Information System (INIS)

    Alguacil, F.J.; Magne, L.; Navarro, P.; Simpson, J.

    1996-01-01

    Copper smelter dusts contain along with this metal, which is amenable for its recovery, a number of other metals (especially arsenic) which are considered as toxic. Different alternatives have been proposed for the treatment of such metallurgical residues and among them Hydrometallurgy shows good perspectives for its application in this field. In the present work different hydrometallurgical processes proposed for the treatment of copper smelter dusts are described and evaluated together with different alternatives given for the Desarsenification of the leaching solutions. (Author) 36 refs

  15. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.

    Science.gov (United States)

    Sun, Conghao; Xu, Liping; Chen, Xiangping; Qiu, Tianyun; Zhou, Tao

    2018-02-01

    An eco-friendly and benign process has been investigated for the dissolution of Li, Co, Ni, and Mn from the cathode materials of spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 batteries, using DL-malic acid as the leaching agent in this study. The leaching efficiencies of Li, Co, Ni, and Mn can reach about 98.9%, 94.3%, 95.1%, and 96.4%, respectively, under the leaching conditions of DL-malic acid concentration of 1.2 M, hydrogen peroxide content of 1.5 vol.%, solid-to-liquid ratio of 40 g l -1 , leaching temperature of 80°C, and leaching time of 30 min. In addition, the leaching kinetic was investigated based on the shrinking model and the results reveal that the leaching reaction is controlled by chemical reactions within 10 min with activation energies (Ea) of 21.3 kJ·mol -1 , 30.4 kJ·mol -1 , 27.9 kJ·mol -1 , and 26.2 kJ·mol -1 for Li, Co, Ni, and Mn, respectively. Diffusion process becomes the controlled step with a prolonged leaching time from 15 to 30 min, and the activation energies (Ea) are 20.2 kJ·mol -1 , 28.9 kJ·mol -1 , 26.3 kJ·mol -1 , and 25.0 kJ·mol -1 for Li, Co, Ni, and Mn, respectively. This hydrometallurgical route was found to be effective and environmentally friendly for leaching metals from spent lithium batteries.

  16. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials.

    Science.gov (United States)

    Zhou, Xuejiao; Chen, Yongli; Yin, Jianguo; Xia, Wentang; Yuan, Xiaoli; Xiang, Xiaoyan

    2018-06-01

    Based on physicochemical properties of the scraps of spent aerospace magnetic materials, a roasting - magnetic separation followed by sulfuric acid leaching process was proposed to extract cobalt. Roasting was performed at 500 °C to remove organic impurity. Non-magnetic impurities were reduced by magnetic separation and then the raw material was sieved into desired particle sizes. Acid leaching was carried out to extract cobalt from the scraps and experimental parameters included agitation speed, particle size, initial concentration of sulfuric acid and temperature. Agitation speed higher than 300 r/min had a relatively small impact on the cobalt extraction. As the particle size reduced, the content of cobalt in the raw material decreases and the extraction of cobalt by acid leaching increased at first and decreased afterwards. Raising the initial concentration of sulfuric acid and temperature contributed to improve the cobalt extraction and the influence of temperature was more remarkable. SEM image revealed that the spent aerospace magnetic materials mainly existed in the sliced strip flake with a loose surface and porous structure. Under the experimental condition, the leaching rate of cobalt from the scraps in sulfuric acid solution could be expressed as ln(-ln(1 - α)) = lnk + nlnt. The apparent activation energy was found to be 38.33 kJ/mol and it was mainly controlled by the surface chemical reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    Science.gov (United States)

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  19. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation.

    Science.gov (United States)

    Alkan, Gözde; Yagmurlu, Bengi; Cakmakoglu, Seckin; Hertel, Tobias; Kaya, Şerif; Gronen, Lars; Stopic, Srecko; Friedrich, Bernd

    2018-04-04

    The need of light weight alloys for future transportation industry puts Sc and Ti under a sudden demand. While these metals can bring unique and desired properties to alloys, lack of reliable sources brought forth a supply problem which can be solved by valorization of the secondary resources. Bauxite residue (red mud), with considerable Ti and Sc content, is a promising resource for secure supply of these metals. Due to drawbacks of the direct leaching route from bauxite residue, such as silica gel formation and low selectivity towards these valuable metals, a novel leaching process based on oxidative leaching conditions, aiming more efficient and selective leaching but also considering environmental aspects via lower acid consumption, was investigated in this study. Combination of hydrogen peroxide (H 2 O 2 ) and sulfuric acid (H 2 SO 4 ) was utilized as the leaching solution, where various acid concentrations, solid-to-liquid ratios, leaching temperatures and times were examined in a comparative manner. Leaching with 2.5 M H 2 O 2 : 2.5 M H 2 SO 4 mixture at 90 °C for 30 min was observed to be the best leaching conditions with suppressed silica gel formation and the highest reported leaching efficiency with high S/L ratio for Sc and Ti; 68% and 91%; respectively.

  20. Leaching Behavior of Heavy Metals from Cement Pastes Using a Modified Toxicity Characteristic Leaching Procedure (TCLP).

    Science.gov (United States)

    Huang, Minrui; Feng, Huajun; Shen, Dongsheng; Li, Na; Chen, Yingqiang; Shentu, Jiali

    2016-03-01

    As the standard toxicity characteristic leaching procedure (TCLP) can not exhaust the acid neutralizing capacity of the cement rotary kiln co-processing solid wastes products which is particularly important for the assessment of the leaching concentrations of heavy metals. A modified TCLP was proposed. The extent of leaching of heavy metals is low using the TCLP and the leaching performance of the different metals can not be differentiated. Using the modified TCLP, however, Zn leaching was negligible during the first 180 h and then sharply increased (2.86 ± 0.18 to 3.54 ± 0.26 mg/L) as the acidity increased (pH leaching is enhanced using the modified TCLP. While Pb leached readily during the first 126 h and then leachate concentrations decreased to below the analytical detection limit. To conclude, this modified TCLP is a more suitable method for these cement rotary kiln co-processing products.

  1. Reduction of water consumption in the dynamic acid leaching process of uranium

    International Nuclear Information System (INIS)

    Chocron, M.; Arias, M.J.; Avato, A.M.; Díaz, V.A.

    2013-01-01

    In 2006 the Argentine state announced a plan to reactivate the nuclear sector. As a result of this decision, the National Atomic Energy Commission (CNEA) resumed its research in uranium mining for Argentine deposits. The first step was the study of the leaching process, mainly the dynamic leaching. In this work the influence of the reduction of the water content in the dynamic leaching process in acid medium, at laboratory scale and under batch operating conditions, on the main operating parameters (concentration of the leaching reagent, the oxidizing reagent and The reaction temperature). The percentages of pulp solids studied in the dynamic leaching were 53% and 66% w / w. For the tests uranium-molybdenum ores of the sandstone type were used. Two different working schemes were used to study the different operating parameters. In the tests carried out with 53% of solid in pulp, the parameters were studied individually (varying one parameter at a time), while working with a pulp of 66% solids, the study of the parameters was performed by a Factorial design of two levels of three variables, which in addition to studying the dependence of the different parameters allowed to analyze how they influence each other. During the leaching tests with 66% solids content in pulp, changes in the geometric and dynamic conditions of the system were necessary because of the poor mixing observed when using the same agitation conditions used in the leaching tests with 53% solids in pulp. When comparing the tests for both solids content conditions (53% and 66% w / w), similar extraction yields were observed for both uranium and molybdenum (more than 90% for uranium and more than 80% for The molybdenum). As a final result, the process water consumption (380 liters of water per ton of ore) is reduced by more than 50% by working with pulps of 66% w / w of solids, obtaining acceptable extraction yields and, as an additional, reducing The consumption of the leaching reagent. (author)

  2. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  3. A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2017-06-01

    Full Text Available Thiosulfate leaching is a promising alternative to cyanidation, and the main hindrances for its wide commercial application are the high thiosulfate consumption and the difficult recovery of dissolved gold. In this review, the four solutions to reduce the consumption of thiosulfate, including the control of reaction conditions, the use of additives, the generation of thiosulfate in situ, and the replacement of traditional cupric-ammonia catalysis, are introduced and evaluated after the presentation of background knowledge about thiosulfate consumption. The replacement of cupric-ammonia catalysis with other metals, such as nickel- and cobalt-based catalysts, is proposed. The reason is that it not only reduces thiosulfate consumption observably via decreasing the redox potential of leach solution significantly but also is beneficial to gold recovery mainly owing to eliminating the interference of cuprous thiosulfate [Cu(S2O33]5−. Based on the comparative analysis for five common recovery techniques of rare-noble metals from pregnant leach solution, ion-exchange resin adsorption is considered to be the most appropriate to recover aurothiosulfate [Au(S2O32]3− because the resin can be employed in the form of resin-in-leach/pulp and, furthermore, is able to be eluted and regenerated simultaneously at ambient temperature. At last, how to reduce the process cost of the resin adsorption technique is discussed. In order to simplify the complex two-stage elution process for loaded resins, the traditional catalysis is suggested to be replaced.

  4. Study of radionuclide leaching from the residues of K Basin sludge dissolution

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1998-01-01

    The sludges remaining in the K Basins after removal of the spent N Reactor nuclear fuel will be conditioned for disposal. After conditioning, an acid-insoluble residue will remain that may require further leaching to properly condition it for disposal. This document presents a literature study to identify and recommend one or more chemical leaching treatments for laboratory testing, based on the likely compositions of the residues. The processes identified are a nitric acid cerate leach, a silver-catalyzed persulfate leach, a nitric hydrofluoric acid leach, an oxalic citric acid reactor decontamination leach, a nitric hydrochloric acid leach, a ammonium fluoride nitrate leach, and a HEOPA formate dehydesulfoxylate leach. All processes except the last two are recommended for testing in that order

  5. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  6. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  7. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  8. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  9. Removal of Calcium from Scheelite Leaching Solution by Addition of CaSO4 Inoculating Crystals

    Science.gov (United States)

    Liu, Wenting; Li, Yongli; Zeng, Dewen; Li, Jiangtao; Zhao, Zhongwei

    2018-04-01

    In this work, the solubility behaviors of gypsum and anhydrite in the H2SO4-H3PO4-H2O system were investigated over the temperature range T = 30-80°C, and the results showed that the solubility of anhydrite was considerably lower than that of gypsum. On the basis of the differential solubilities of gypsum and anhydrite, a method was developed to remove calcium from the scheelite leaching solution by adding anhydrite as an inoculating crystal. The effects of the reaction time, concentration of the CaSO4 inoculating crystals, and temperature were investigated. With an addition of CaSO4 inoculating crystals at a concentration of 60 g/L, the Ca2+ concentration of the scheelite leaching solution decreased to a low level of approximately 0.76 g/L after 10 h at 70°C.

  10. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  11. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Kulik, Dmitrii A; Hummel, Wolfgang; Schlumberger, Stefan; Klink, Waldemar; Fisch, Martin; Mäder, Urs K

    2018-03-17

    Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Cost of producing U3O8 from ammonium bicarbonate in situ leach solution by the multiple-compartment ion-exchange system

    International Nuclear Information System (INIS)

    Hayashi, M.; Dolezal, H.

    1979-01-01

    The Bureau of Mines estimated the cost for a uranium ion-exchange recovery system using five grades of U 3 O 8 leach solution producing 815,570 pounds of U 3 O 8 per year from an ammonium bicarbonate in situ leach solution. The system flowsheet consisted of four unit operations: (1) Multiple-compartment ion-exchange (MCIX) absorption; (2) MCIX elution; (3) precipitation of the uranium as yellow cake, filtering, calcining, and packaging; and (4) waste disposal. The total fixed capital cost of a system treating 2,000 gallons per minute of 0.1-gram-per-liter-U 3 O 8 leach solution was estimated as $6,888,000. For a basic case of an MCIX system depreciating in 9 years, unit production cost of U 3 O 8 was $3.51 per pound. A decrease in feed solution grade from 0.4 to 0.03 gram per liter increased the production cost exponentially. Shorter depreciating periods significantly increased the production cost particularly for the lower grade feed solutions

  13. Recovery of Mn as MnO2 from spent batteries leaching solutions

    Directory of Open Access Journals (Sweden)

    Manciulea A. L.

    2013-04-01

    Full Text Available The recycling of spent batteries and recovery of metals from them is of great scientific and economic interest, on account of recycling requirement of these wastes and recovery of valuable materials (De Michellis et al., 2007. Usage of recycled materials is diminishing the energy consumption and pollution. It is important that the recycling process to be environmentally friendly, practical and cost-effective. Tests for the process of manganese removal from spent battery leaching solutions, with ammonium peroxodisulfate, prior to recovery of zinc by electrolysis are presented. The experiments were carried out according to a 23 full factorial design as a function of ammonium peroxodisulfate concentration, temperature and pH. Because the excessive manganese in the spent batteries leach solutions can cause problems in the process of Zn recovery by electrolysis the main focus of this study is the manganese removal without altering the concentration of zinc in solutions. Data from XRF and AAS during the reaction at different time are presented. Manganese is obtained with high extraction degree as MnO2, which is economic and commercial important with applications in battery industry, water treatment plants, steel industry and chemicals (Pagnanelli et al., 2007. The analysis of variance (ANOVA was carried out on the extraction yields of Zn after 30min, 1h, 2h and 3h of reaction. The preliminary results denoted that by chemical oxidation with ammonium peroxodisulfate is a suitable method for manganese removal as MnO2 prior zinc recovery by electrolysis, from spent batteries solutions and it could be used in a plant for recycling batteries.

  14. Recovery of uranium from alkaline ore (Tummalapalle) leach solution using novel precipitating method

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2014-01-01

    The aim of present study is recovery of uranium from such ore leach solution containing 2 O 7 at pH ∼12.5. The average particle size of the MgU 2 O 7 particles was 20 micron and overall uranium recovery was 97%. The composition of final precipitate was characterized using XRD and surface morphology was studied using SEM

  15. Static leaching of uraniferous shales with countercurrent circuits; Lixiviacion estatica, en contracorriente, de pizarras uraniferas

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, G; Villarrubia, M; Hernandez, J

    1973-07-01

    We test different amounts of acid and the way of adding it in order to obtain the solubilization of uranium in static leaching. We also test the effects of the temperature. Finally we show the tests of solvent extraction considering the most important variables in it . In leaching we must work with 32 kg/t of acid and 40 d in order to obtain uraniums solubilization over 80%, The pregnant liquors have a high concentration of silica and we must use low organic liquid ( {<=} 3,5 % in amine) and fit the acidity of the pregnant Solutions to 4-8 g H{sub 2}SO{sub 4}/I. We show the economy of the process. (Author)

  16. Leaching kinetic of Nd. Y, Pr and Sm in rare earth hydroxide (REOH) use nitric acid

    Science.gov (United States)

    Purwani, MV; Suyanti

    2018-02-01

    The purpose of this study were to determine the order of reaction, rate reaction constant and activation energy of reaction Y(OH)3, Nd(OH)3, Pr(OH)3 and Sm(OH)3 with HNO3. The rate reaction constant is necessary to determine the residence time in the design of continuously stirred tank reactor (CSTR). The studied parameters were leaching temperature (60 - 90 °C) and leaching time (0-15 minutes). From the resulting data can be concluded that the leaching process were strongly influenced by the time and temperature process. Leaching rare earth hydroxide (REOH) using nitric acid follows second order. At leaching 10 grams of REOH using 40 ml HNO3 0.0576 mol were obtained maximum conversion at 90 °C and leaching time 15 minutes for Y was 0.95 (leaching efficiency was 95%), for Nd was 0.97 ( leaching efficiency was 97%), for Pr was 0.94 (leaching efficiency was 94%) and for Sm was 0.94 (leaching efficiency was 94%). The largest activation energy was Y of 23.34 kJ/mol followed by Pr of 20.00 kJ/mol, Sm of 17.94 kJ/mol and the smallest was Nd of 16.39 kJ/mol. The relationship between the rate constant of the reaction with T for Y was kY = 338.26 e-23,34/RT, for Nd was kNd = 33.69 e -16,39 / RT, for Pr was kPr = 102.04 e-20 / RT and for Sm adalah was kSm = 50.16 e-17,94/RT

  17. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan

    2001-02-01

    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  18. Leaching of copper concentrates with high arsenic content in chlorine-chloride media; Lixiviacion de concentrados de cobre con alto contenido de arsenico en medio cloro-cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Herreros, O.; Fuentes, G.; Quiroz, R.; Vinals, J.

    2003-07-01

    This work reports the results of copper concentrates leaching which have high arsenic concepts (up to 2.5%). The treatments were carried out using chlorine that forms from sodium hypochlorite and sulphuric acid. The aim of this work is to obtain a solution having high copper content 4 to 6 g/l and 5 to 7 g/l free acid in order to submit it directly to a solvent extraction stage. In addition, this solution should have minimum content of arsenic and chloride ions. To carry out this investigation, an acrylic reactor was constructed where the leaching tests were made at constant temperature in a thermostatic bath under atmospheric pressure. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Typical variables were studied, such as leaching agent concentration, leaching time, pulp density and temperature among others. Some of the residues were analyzed by XRD and EPS. On the other hand, the solutions were analyzed by Atomic Absorption Spectroscopy. The results indicate solutions having the contents stated above can be obtained. (Author) 19 refs.

  19. Extraction of metals from ores by bacterial leaching: present status and future prospects

    International Nuclear Information System (INIS)

    Kelly, D.P.

    1977-01-01

    The principal organism effecting bacterial leaching of ferrous and sulfide ores is Thiobacillus ferrooxidans, though other thiobacilli and other bacteria may be involved. The process depends on (a) direct solubilization of metal sulfides by bacterial oxidation; (b) dissolution of metal sulfides or oxides by ferric iron produced by bacterial pyrite oxidation. Mining spoil dumps and low grade ores can be leached for copper or uranium by cheap low-level technology. Dump leaching enables maximum recovery of valuable metal from any ore, but makes possible exploitation of very low grade Cu and U ores. Continuous extraction processes are possible where a continuously growing bacterial culture is fed with pyritic ores (or FeSO 4 or other sulfide) and continuous metal solubilization proceeds. Intimate contact between the bacteria and the ore to be leached (especially with uranium oxide ores) is not always necessary: leaching of UO 2 ores probably depends only on ferric iron reaction with the ore. Degradation of pyrite-containing rocks may also be developed as part of future recovery processes for petroleum from oil shales. Two-stage leaching systems present the best prospect for developing a higher-level technology for metal extraction. State 1: bacterial generation of Fe 3+ from pyrite or a Fe 2+ source; Stage 2: chemical leaching of ore by Fe 3+ in acid solution. Two-stage processes can be surface processes using crushed or milled ores or can be applied to underground solution mining, when an ore (e.g. uranium) can be leached by pumping Fe 3+ solutions through shattered underground deposits, metal recovered (e.g. solvent extraction) and Fe 3+ regenerated by bacterial oxidation at the surface. The use of controlled continuous microbial cultures to generate either bacteria or ferric iron is outlined

  20. Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.

    Science.gov (United States)

    Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J

    2017-05-01

    Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.

  1. Aqueous-chlorine leaching of typical Canadian uranium ores

    International Nuclear Information System (INIS)

    Haque, K.E.

    1982-01-01

    Laboratory-scale aqueous-chlorine leaches were conducted on quartz-pebble conglomerates, pegmatite and vein-type ores. Optimum leach temperatures, pulp density and retention times were determined. Uranium extraction of 98 per cent was obtained from the Elliot Lake, Madawaska Mines of Bancroft and Rabbit Lake ores, 96 per cent from the Key Lake ore and 86 per cent from the Agnew Lake ore. However, tailings containing 15-20 pCi g -1 of radium-226 were obtained only from the Elliot Lake and Agnew lake quartz-pebble conglomerates and Bancroft pegmatite-type ores by second-stage leaches with HCl. The second-stage leach results indicate that multistage (3 or 4) acid-chloride or salt-chloride leaches might be effective to obtain tailings containing 15-20 pCi 226 Ra g -1 from the high-grade vein-type ores. Comparative reagent-cost estimates show that the sulphuric-acid leach process is far less expensive than aqueous chlorine leaching. Nevertheless, only the aqueous chlorine and acid-chloride leaches in stages are effective in producing tailings containing 15-20 pCi 226 Ra g -1 from the typical Canadian uranium ores. (Auth.)

  2. Mechanisms of Vanadium Recovery from Stone Coal by Novel BaCO3/CaO Composite Additive Roasting and Acid Leaching Technology

    Directory of Open Access Journals (Sweden)

    Zhenlei Cai

    2016-03-01

    Full Text Available In this report, the vanadium recovery mechanisms by novel BaCO3/CaO composite additive roasting and acid leaching technology, including the phase transformations and the vanadium leaching kinetics, were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using BaCO3/CaO as the composite additive. The results indicated that during the composite additive BaCO3/CaO roasting process, the monoclinic crystalline structure of muscovite (K(Al,V2[Si3AlO10](OH2 was converted into the hexagonal crystalline structure of BaSi4O9 and the tetragonal crystalline structure of Gehlenite (Ca2Al2SiO7, which could, therefore, facilitate the release and extraction of vanadium. Vanadium in leaching residue was probably in the form of vanadate or pyrovanadate of barium and calcium, which were hardly extracted during the sulfuric acid leaching process. The vanadium leaching kinetic analysis indicated that the leaching process was controlled by the diffusion through a product layer. The apparent activation energy could be achieved as 46.51 kJ/mol. The reaction order with respect to the sulfuric acid concentration was 1.1059. The kinetic model of vanadium recovery from stone coal using novel composite additive BaCO3/CaO could be finally established.

  3. The determination, by x-ray-fluorescence spectrometry, of noble and base metals in matte-leach residues

    International Nuclear Information System (INIS)

    Austen, C.E.

    1977-01-01

    An accurate and precise method is described for the determination of noble and base metals in matte-leach residues. Preparation of the samples essentially involves fusion with sodium peroxide in a zirconium crucible and leaching with hydrochloric and nitric acids. Matrix correction and calibration are achieved by use of the single-standard calibration method with reference solutions prepared from pure metals or from compounds of the element to be determined

  4. Leaching of gallium from gaiter granite, eastern desert, Egypt

    International Nuclear Information System (INIS)

    Zahran, M.A.; Mahmoud, KH.F.; Mahdy, M.A.; Abd El-Hamid, A.M.

    2006-01-01

    Preliminary leaching tests of gallium from some Egyptian granite rocks such as those of Gabal Gattar area was investigated by using 8 M HCl acid and sodium perchlorate as oxidant. To achieve the optimum leaching conditions, the factors affecting the leaching efficiency as the acid type and concentration, oxidant type and amount, leaching temperature, agitation time, solid / liquid ratio and the effect of grain size were studied. The complete chemical analysis of the collected samples was firstly carried out to determine the chemical features of the Gattarian granite. More than 97% of gallium content was leached when applying these optimum leaching conditions

  5. Uranium adsorption from the sulphuric acid leach liquor containing more chlorides with cation-exchange resin SL-406

    International Nuclear Information System (INIS)

    Hu Jun; Wang Zhaoguo; Chi Renqing; Niu Xuejun

    1994-01-01

    The feasibility of uranium adsorption was studied from the sulphuric acid leach liquor of a uranium ore containing more chlorides with cation-exchange resin SL-406. The influence of some factors on uranium adsorption was investigated. It was shown that the resin possesses better selectivity, stability and higher capacity. It can be effectively used to recovery uranium from leach liquors of uranium ores containing more chlorides

  6. Application of percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Jiang Lang; Wang Haita; He Jiangming

    2006-01-01

    In order to solve these problems such as high cost by conventional agitation leaching, low permeability and low leaching rate by heap leach, a percolation leaching method was developed. Two-year's production results show that leaching rate of uranium is up to 90% by this method. Compared with conventional agitation leaching, the power, sulfuric acid and lime consumption by the percolation leaching decreased by 60%, 27% and 77% respectively. (authors)

  7. Slag Treatment Followed by Acid Leaching as a Route to Solar-Grade Silicon

    NARCIS (Netherlands)

    Meteleva-Fischer, Y.V.; Yang, Y.; Boom, R.; Kraaijveld, B.; Kuntzel, H.

    2012-01-01

    Refining of metallurgical-grade silicon was studied using a process sequence of slag treatment, controlled cooling, and acid leaching. A slag of the Na2O-CaO-SiO2 system was used. The microstructure of grain boundaries in the treated silicon showed enhanced segregation of impurities, and the

  8. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  9. Leaching of gold, silver and accompanying metals from circuit boards (PCBs waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2011-12-01

    Full Text Available Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements.The presented leaching strategy for Au-Ag contained in circuit boards (PCBs aims at gaining gold and silver in the metallic form.Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastesrepresents a practical, economic and at the same time an ecological solution. The ammonium thiosulphate based leaching of gold and silverfrom PCBs waste, using crushing as a pretreatment, was investigated. It was possible to achieve 98 % gold and 93 % silver recovery within48 hours of ammonium thiosulphate leaching. This type of leaching is a better leaching procedure for recovery of gold and silver from PCBwaste than the classical toxic cyanide leaching. 84 % Cu, 82 % Fe, 77 % Al, 76 % Zn, 70 % Ni, 90 % Pd, 88 % Pb and 83 % Sn recovery ofthe accompanying metals was achieved, using sulphuric acid with hydrogen peroxide, sodium chloride and aqua regia. A four steps leachingprocess gave a very satisfactory yield and a more rapid kinetics for all observed metals solubilization than other technologies.

  10. Recovery of uranium from copper leaching solutions from the South Chuquicamata mine

    International Nuclear Information System (INIS)

    Andalaft, N.; Soto, R.

    1980-01-01

    The paper deals with the recovery of uranium from copper leaching solutions containing between 10 and 18 ppm U 3 O 8 . The study, which covers a laboratory stage and a pilot plant stage, has shown the technical feasibility of producing yellow cake with U 3 O 8 contents of between 13 and 20% by direct precipitation of eluates which, when purified in the laboratory, have contained up to some 85% U 3 O 8 . (author)

  11. Separation of polythionates and the gold thiosulfate complex in gold thiosulfate leach solutions by ion-interaction chromatography.

    Science.gov (United States)

    O'Reilly, John W; Shaw, Matthew J; Dicinoski, Greg W; Grosse, Andrew C; Miura, Yasuyuki; Haddad, Paul R

    2002-07-01

    A method for the separation of the polythionates (SxO6(2-), x = 3-5) in gold thiosulfate leach solutions using ion-interaction chromatography with conductivity and ultraviolet (UV) detection is described. Polythionates were eluted within 18 min using an eluent comprising an acetonitrile step gradient at 0.0 min from 15% v/v to 28% v/v, 3 mM TBAOH, and 2.5 mM sodium carbonate, operated using a Dionex NS1-5 micron column with guard. The developed method was capable of separating the gold thiosulfate complex ion in standard solutions, but quantification of this species in realistic leach solutions proved impractical due to a self-elution effect that caused the gold peak to be eluted as a broad band. Detection limits for polythionates using a 10 microL injection volume ranged between 1-6 mg L(-1) (5-23 microM) for conductivity and 0.8-13 mg L(-1) (4-68 microM) for UV detection, based on a signal-to-noise ratio of 2. Calibration was linear over the ranges 5-2000, 10-2000 and 25-2500 mg L(-1) for trithionate, tetrathionate and pentathionate, respectively. The technique was applied successfully to leach liquors containing 0.5 M ammonium thiosulfate, 2 M ammonia, 0.05 M copper sulfate and 20 % m/v gold ore.

  12. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Study on Selective Removal of Impurity Iron from Leached Copper-Bearing Solution Using a Chelating Resin

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2016-10-01

    Full Text Available In order to selectively remove iron from copper laden solution after leaching but prior to electrowinning, equilibrium, kinetic, and thermodynamic studies have been conducted on an a chelating resin of Rexp-501 at pH 1.0 and at various temperatures. Both Langmuir and Freundlich models were investigated, with the Langmuir model proving to be more suitable for fitting iron removal performance, with little influence from copper concentration. Compared with the pseudo first order kinetic model, the pseudo second order kinetic model fitted the dynamic adsorption process better, indicating a chemisorption mechanism. Fourier transform infrared spectroscopy (FT-IR results indicated that C=O from carbonyl group played a key role in combining with iron and can be regenerated and reused. However, the C=O of the acylamino group combining with iron was not able to be released after oxalic acid was applied.

  14. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    Science.gov (United States)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  15. Bacterial Leaching

    Indian Academy of Sciences (India)

    and studies microbial biotechnology and ... foundation for subsequent research into the role of microorgan- ... are more readily accesible, for example those in solution, rather .... Vat leaching as currently applied to oxide ores involves the.

  16. Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar.

    Science.gov (United States)

    Feng, Mingyu; Zhang, Weihua; Wu, Xueyong; Jia, Yanming; Jiang, Chixiao; Wei, Hang; Qiu, Rongliang; Tsang, Daniel C W

    2018-06-01

    After the application of sludge derived biochar (SDBC) for soil stabilization, it is subjected to continuous leaching that may change its surface properties and metal(loid) immobilization performance. This study simulated the continuous leaching through the fresh SDBC sample in columns with unsaturated and saturated zones under flushing with 0.01M NaNO 3 solution (pH5.5) and acidic solution (pH adjusted to 3.2 by HNO 3 :H 2 SO 4 =1:2), respectively. The resultant changes were assessed in terms of the SDBC surface characteristics and metal(loid) sorption capacities. Continuous leaching was found to gradually decrease the density of basic functional groups and increase the density of carboxyl groups as well as cation exchange capacity on the SDBC surface. It was attributed to the surface acidification and oxidation process by the leaching process, yet it occurred to a lesser extent than the atmospheric exposure. Continuous leaching increased Pb(II), Cr(VI), and As(III) sorption capacity of the SDBC, probably because the increase in carboxyl groups promoted inner-sphere complexation and Fe oxidation as revealed by spectroscopic analysis. It was noteworthy that the SDBC in the unsaturated and saturated zones under continuous leaching displayed distinctive effects on metal(loid) sorption capacity than the atmospheric exposure. Future investigations are needed for understanding the fate and interactions of the SDBC under varying redox conditions and intermittent leaching process. Copyright © 2017. Published by Elsevier B.V.

  17. Electrowinning of lead powder from chloride leach liquor

    Energy Technology Data Exchange (ETDEWEB)

    Owais, Ashour [Suez Canal Univ., Suez (Egypt). Metallurgical and Materials Engineering Dept.

    2012-11-15

    Electrowinning of lead powder from chloride leach liquor obtained from secondary lead slag leached in hydrochloric acid is the main aim of this work. The resulted lead chloride solution (leachate) containing 2.2 wt.-% Pb and 1.24 wt.-% HCl was electrowon in an electrolytic cell containing one graphite plate as inert anode and two lead sheets as starting permanent cathodes. Different electrolysis parameters such as current density, electrolyte temperature and electrolyte stirring rate were studied. As indicated by SEM, EDX and XRD analyses, fine and pure (100 % Pb) powders with a dispersed and needle-like shape were formed with cathodic current efficiency up to 67.9 % and electrical energy demand ranges from 0.809 to 4.998 kWh/kg Pb with productivity up to 2.63 g/Ah. (orig.)

  18. The acid solubility test of clay mineral under microwave

    International Nuclear Information System (INIS)

    Zheng Ying; Niu Yuqing; Wu Peisheng; Niu Xuejun

    2001-01-01

    The acid solubility test of Al 3+ in clay from some uranium ores under microwave is introduced. The result shows that the concentration of Al 3+ in solution and the acid consumption increase rapidly under microwave comparing with normal leaching condition. It is infeasible to adopt microwave slacking method for intensively leaching uranium from uranium ore containing more clay

  19. Selection of lixiviants for in situ uranium leaching. Information circular

    International Nuclear Information System (INIS)

    Tweeton, D.R.; Peterson, K.A.

    1981-10-01

    This Bureau of Mines publication provides information to assist in selecting a lixiviant (leach solution) for in situ uranium leaching. The cost, advantages, and disadvantages of lixiviants currently used and proposed are presented. Laboratory and field tests are described, and applications of geochemical models are discussed. Environmental, economic, and technical factors should all be considered. Satisfying environmental regulations on restoring groundwater quality is becoming an overriding factor, favoring sodium bicarbonate or dissolved carbon dioxide over ammonium carbonate. The cheapest lixiviant is dissolved carbon dioxide, but it is not effective in all deposits. Technical factors include clay swelling by sodium, acid consumption by calcite, and the low solubility of oxygen in shallow deposits

  20. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    Science.gov (United States)

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process

  1. Leach test methodology for the Waste/Rock Interactions Technology Program

    International Nuclear Information System (INIS)

    Bradley, D.J.; McVay, G.L.; Coles, D.G.

    1980-05-01

    Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100 0 C) and high temperature (above 100 0 C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing

  2. Leach studies of chelating agents and influence on radionuclide leaching from simulated LLW/ILW cement waste forms

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Ferrara, D.; Wacks, M.E.

    1990-01-01

    Leach studies were performed on cemented waste forms containing sodium nitrate, trace amounts of cesium-137, and cobalt-60, and a chelating agent (ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), or citric acid). Leaching of the chelates was measured in water and the effect of the chelates on the release of the Cs-137 and Co-60 was studied. The time dependence of the release rate of the chelates is comparable but the chelate concentration in solution and the released fractions are different. EDTA shows the highest release rate followed by NTA and citrate. The release of the non complex forming cesium is not affected by the presence of the chelates. Independent from the strong complex formation of cobalt with EDTA, NTA, and citrate in the alkaline region the cobalt release is also not affected by the presence of the chelates. The high calcium content of the system decreases the stability of the Co complexes in the high pH region (12-13). Experiments were performed to determine the equilibrium concentration of the chelates between liquid and solid phases. The liquid phases were deionized water, saturated sodium chloride, 24 percent magnesium chloride and Q-brine. The equilibrium studies are based on the assumption that in time a stable final condition is to be established in the near field of the waste form in which each compound is at chemical equilibrium between the dissolved and the various solid phases. The total release may be assessed from the concentration in solution and flow rate out of the near field. The fraction of EDTA released from the cement ranged from 0.2 in the Q-brine to 0.5 in the saturated sodium chloride. The concentration of EDSA in solution was dependent on the original amount in the cement sample, but the released fraction was independent of the initial loading. Indicating, EDTA concentration is not affected by solubility limits. 11 refs., 3 figs., 2 tabs

  3. ToF-SIMS analysis for leaching studies of potash–lime–silica glass

    International Nuclear Information System (INIS)

    De Bardi, Monica; Hutter, Herbert; Schreiner, Manfred

    2013-01-01

    In this work the durability to acidic solutions of two kinds of potash–lime–silica glasses with compositions typical for mediaeval stained glass was investigated. The low amount of network formers such as silica and alumina, and the high amount of network modifiers such as potassium and calcium, give to the glass a lower chemical stability compared to modern glass. Studies on its durability are of interest to understand degradation mechanisms. In particular the leaching procedure was focused on determining any correlation between the type of acid and the corrosion of glass independently from the pH value, which was kept constant during the different acidic treatments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a valuable tool to study compositional variations of glass, giving useful information concerning provenance, effects of the conservation environment, of weathering or leaching processes and about the compositional differences between the corroded layer and the bulk as a function of depth. In spite of that the insulating properties of glass, the surface roughness and the parameters used for the measurements can lead to possible misinterpretations of the results; in this paper these difficulties are discussed, in order to better interpret the analyses performed on leached glass. ToF-SIMS data are influenced by strong matrix effects making quantification difficult; for this reason the quantitative composition and surface morphology of the leached layer were additionally investigated with scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM–EDX)

  4. [Effect of simulated inorganic anion leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Chen, Yan; Huang, Fang; Xie, Xin-Yuan

    2014-04-01

    An Acidithiobacillus ferrooxidans strain WZ-1 (GenBank sequence number: JQ968461) was used as the research object. The effects of Cl-, NO3-, F- and 4 kinds of simulated inorganic anions leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Cl-, NO3(-)- didn't have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1), 1.0 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Cl- and NO3- (about 10.0 g x L(-1), 5.0 g x L(-1), respectively), but it had lower tolerance to F- (25 mg x L(-1)). Different kinds of simulated inorganic anions leaching solutions of electroplating sludge had significant differences in terms of their effects on bioactivity of WZ-1 with a sequence of Cl-/NO3(-)/F(-) > or = NO3(-)/F(-) > Cl-/F(-) > Cl(-)/NO3(-).

  5. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  6. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  7. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior.

    Science.gov (United States)

    Shih, Kaimin; White, Tim; Leckie, James O

    2006-09-01

    Stabilization efficiencies of spinel-based construction ceramics incorporating simulated nickel-laden waste sludge were evaluated and the leaching behavior of products investigated. To simulate the process of immobilization, nickel oxide was mixed alternatively with gamma-alumina, kaolinite, and hematite. These tailoring precursors are commonly used to prepare construction ceramics in the building industry. After sintering from 600 to 1480 degrees C at 3 h, the nickel aluminate spinel (NiAl204) and the nickel ferrite spinel (NiFe204) crystallized with the ferrite spinel formation commencing about 200-300 degrees C lower than for the aluminate spinel. All the precursors showed high nickel incorporation efficiencies when sintered at temperatures greater than 1250 degrees C. Prolonged leach tests (up to 26 days) of product phases were carried out using a pH 2.9 acetic acid solution, and the spinel products were invariably superior to nickel oxide for immobilization over longer leaching periods. The leaching behavior of NiAl2O4 was consistent with congruent dissolution without significant reprecipitation, but for NiFe2O4, ferric hydroxide precipitation was evident. The major leaching reaction of sintered kaolinite-based products was the dissolution of cristobalite rather than NiAl2O4. This study demonstrated the feasibility of transforming nickel-laden sludge into spinel phases with the use of readily available and inexpensive ceramic raw materials, and the successful reduction of metal mobility under acidic environments.

  9. Study of uranium leaching from industrial residues of Industrias Nucleares do Brazil S.A. (INB), Caetite, Bahia, Brazil

    International Nuclear Information System (INIS)

    Formiga, Thiago S.; Morais, Carlos A.; Gomiero, Luiz A.

    2011-01-01

    The uraniferous district of Lagoa Real, located in the south-central region of the state of Bahia, has reserves estimated at 100,000 tons of uranium, which is enough to supply Angra I, II and III for 100 more years. The process adopted for the beneficiation of the uranium ore from Lagoa Real is heap leaching, a static process in which the ore is crushed, disposed in heaps and irrigated with a sulfuric acid solution to remove the uranium. This technique has a relatively low cost of implementation, although the yield of uranium recovery is low, with an uranium content in the leached residue of 700 μg/g U 3 O 8 for ores with an initial content of 2,700 μg/g U 3 O 8 . With the deepening of the mine pit, an increase in the carbonate content in the ore was noted, which required a higher acid consumption in the leaching. In order to reduce the concentration of carbonates, a study of the ore concentration by flotation column was accomplished. The flotation reject had high carbonate content, with a uranium content of about 2,300 μg/g U 3 O 8 for flotation in one column and 1,100 μg/g U 3 O 8 for flotation in two columns. This paper presents the study of the leaching process for the recovery of the uranium present in the residue of the heap leaching and in the carbonated residue from the flotation of the anomaly 13 ore. The results indicate the feasibility of treating the waste of the heap leaching through dynamic leaching. The study of the uranium leaching from the flotation residue through acid leaching technique indicated a recovery of 96% of uranium, however with a high consumption of acid, around 450 kg/t, showing that for this case, the most suitable technique for the process is alkaline leaching. (author)

  10. Study of uranium leaching from industrial residues of Industrias Nucleares do Brazil S.A. (INB), Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Formiga, Thiago S.; Morais, Carlos A., E-mail: cmorais@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Gomiero, Luiz A., E-mail: gomiero@inb.gov.b [Industrias Nucleares do Brasil S/A (INB), Caetite, BA (Brazil)

    2011-07-01

    The uraniferous district of Lagoa Real, located in the south-central region of the state of Bahia, has reserves estimated at 100,000 tons of uranium, which is enough to supply Angra I, II and III for 100 more years. The process adopted for the beneficiation of the uranium ore from Lagoa Real is heap leaching, a static process in which the ore is crushed, disposed in heaps and irrigated with a sulfuric acid solution to remove the uranium. This technique has a relatively low cost of implementation, although the yield of uranium recovery is low, with an uranium content in the leached residue of 700 {mu}g/g U{sub 3}O{sub 8} for ores with an initial content of 2,700 {mu}g/g U{sub 3}O{sub 8}. With the deepening of the mine pit, an increase in the carbonate content in the ore was noted, which required a higher acid consumption in the leaching. In order to reduce the concentration of carbonates, a study of the ore concentration by flotation column was accomplished. The flotation reject had high carbonate content, with a uranium content of about 2,300 {mu}g/g U{sub 3}O{sub 8} for flotation in one column and 1,100 {mu}g/g U{sub 3}O{sub 8} for flotation in two columns. This paper presents the study of the leaching process for the recovery of the uranium present in the residue of the heap leaching and in the carbonated residue from the flotation of the anomaly 13 ore. The results indicate the feasibility of treating the waste of the heap leaching through dynamic leaching. The study of the uranium leaching from the flotation residue through acid leaching technique indicated a recovery of 96% of uranium, however with a high consumption of acid, around 450 kg/t, showing that for this case, the most suitable technique for the process is alkaline leaching. (author)

  11. In situ carbonate leaching and recovery of uranium from ore deposits

    International Nuclear Information System (INIS)

    Hunkin, G.G.; Fife, T.P.; Stano, J.R.

    1979-01-01

    Uranium is leached from redox roll ore deposits by selective in-situ leaching with a solution of pH 7.4 to 9 (preferably 7.5 to 8.5) containing from about 0.5 to 5g/l of NH 4 HCO 3 and from about 0.1 to 3g/l of peroxide (preferably aqueous H 2 O 2 ), and sufficient NH 3 to maintain the desired pH. The leach solution is then withdrawn from the ore deposit and contacted with a strong base anion exchange material to strip the uranium from the leach solution. The uranium is eluted from the anion exchange material by an aqueous eluant, and the uranium is recovered from the eluate by first acidifying it and then treating it with ammonia to produce a precipitate of relatively pure ammonium diuranate. The content of the three components in the stripped leach solution is adjusted, and then the leach solution is recirculated through the ore deposit. After the uranium ore is removed to the extent economically practicable, the leach solution is replaced with an aqueous reducing solution which when passed into the ore deposit precipitates and renders insoluble any uranium and elements such as vanadium, molybdenum, and selenium. This process produces above ground a very low volume of impurities and waste solutions requiring disposal and does not cause material contamination of the underground deposit or any aquifer associated with the deposit

  12. Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

    International Nuclear Information System (INIS)

    Kim, Chul-Joo; Yoon, Ho-Sung; Chung, Kyung Woo; Lee, Jin-Young; Kim, Sung-Don; Shin, Shun Myung; Kim, Hyung-Seop; Cho, Jong-Tae; Kim, Ji-Hye; Lee, Eun-Ji; Lee, Se-Il; Yoo, Seung-Joon

    2015-01-01

    A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid (H 2 SO 4 ) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of H 2 SO 4 was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol H 2 SO 4 , and the effect of temperatures was investigated under the condition of 30 to 80 .deg. C. As a result, praseodymium oxide (Pr 6 O 1 1) existing in the slag was completely converted into praseodymium sulfate (Pr 2 (SO 4 ) 3 ·8H 2 O) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be 9.195 kJmol -1 . In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be 19.106 kJmol -1 . These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag

  13. Extraction of nickel from Ramu laterite by sulphation roasting-water leaching

    Science.gov (United States)

    Wang, Weiwei; Du, Shangchao; Liu, Guo; Tang, Jianwen; Lu, Yeda; Lv, Dong

    2017-08-01

    Recovery of nickel from a PNG nickel laterite with high content of iron by a sulphation roasting-water leaching has been studied. The influences of sulfuric acid/ore ratio, temperature of roasting and water on recovery efficiency were investigated. The effective separation of nickel over the co-existed elements including iron was achieved by the process with mixing, curing, roasting and leaching stages. Near 100% of nickel was leached from the roasted laterite by water at 80°C in an atmospheric air, while co-leaching of about 2% of iron, under the optimal pre-treatment conditions with the ratio of acid: ore around 0.45:1 and the roasting temperature about 650°C. The advantages and disadvantages of sulphation atmospheric leaching are compared with pressure acid leaching with engineering consideration.

  14. Laboratory studies on leaching of low grade uranium ores and treatment of low level liquid waste generated by leaching experiments

    International Nuclear Information System (INIS)

    Palabrica, O.T.; Antonino, E.J.; Caluag, L.A.; Villamater, D.

    1980-07-01

    Acid leaching experiments of preconcentrated uranium ore were carried out at a pulp density of 50% solids, using sulfuric acid with sodium chlorate as oxidant. The different leaching parameters considered in this work were temperature, oxidant level and leaching time. In the experimental procedure, the concentration of oxidant and the temperature were varied to determine how they affect the leaching process. Experimental results are illustrated in tabulated form for better interpretation. Uranium analyses were done by fluorimetric and delayed-neutron activation analysis. An anion exchange method using Dowex 1 x 8, 200-400 mesh (Cl - ) was used in treating the low-level liquid waste generated by leaching experiments. The purpose of this treatment was to minimize radioactive contamination in the waste materials and also to recover some of the uranium left in the liquid waste. (author)

  15. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.

    Science.gov (United States)

    Li, Jinping; Gan, Jinhua; Li, Xianwang

    2009-07-30

    This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants, which integrates efficient extraction and reuse of the leached pellets together. The boiler slag was pelletized together with washed coal and lime prior to sintering and then was sintered at 800-1200 degrees C for different periods to produce sintered pellets for the leaching test. An elemental analysis of aqueous solutions leached by sulfuric acid was determined by EDTA-Na(2)-ZnCl(2) titration method. The components and microstructures of the samples, sintered pellets and leached residue were examined by means of XRF, XRD and SEM. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in the boiler slag. An aluminum extraction efficiency of 86.50% was achieved. The maximum extraction efficiency of Fe was 94.60% in the same conditions of that for the maximum extraction efficiency of Al. The extraction efficiencies of Al and Fe increased with an increase in temperature, leaching time and acidity. High Al extraction efficiency was obtained for pellets with high CaO content. The final product of alumina would be used directly for the production of metallic aluminum.

  16. Leaching process

    International Nuclear Information System (INIS)

    Heinen, H.J.; McClelland, G.E.; Lindstrom, R.E.

    1982-01-01

    A gold and uranium ore is heap leached in accordance with the process comprising initial agglomeration of fines in the feed by means of a binding agent and cyanide solution. The lixiviant comprises a compatible mixture of sodium cyanide and sodium bicarbonate

  17. Leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, H J; McClelland, G E; Lindstrom, R E

    1982-10-18

    A gold and uranium ore is heap leached in accordance with the process comprising initial agglomeration of fines in the feed by means of a binding agent and cyanide solution. The lixiviant comprises a compatible mixture of sodium cyanide and sodium bicarbonate.

  18. Photocatalytic properties of Co_3O_4/LiCoO_2 recycled from spent lithium-ion batteries using citric acid as leaching agent

    International Nuclear Information System (INIS)

    Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G.

    2017-01-01

    In this work, cobalt and lithium from the cathodes of spent lithium-ion batteries were recycled to synthesize a mixture of Co_3O_4 and LiCoO_2. The positive electrode was leached with citric acid in the green recycling. After being heated to 85 °C, the leaching solution formed a pink sol, and after being dried at 120 °C for 24 h, it formed a gel, which is a precursor material for Co_3O_4 and LiCoO_2 synthesis. A mixture of Co_3O_4 and LT-LiCoO_2 was obtained after the calcination of the precursor material at 450 °C for 3 h. The photocatalytic properties of the Co_3O_4 and LiCoO_2 were tested in the discoloration of methylene blue dye. The discoloration efficiency of methylene blue dye in the presence of Co_3O_4 and LiCoO_2 was 90% after 10 h and 100% after 24 h of heterogeneous catalysis. The contribution of this work is that it presents a means to produce valuable materials with photocatalytic properties from recycled batteries through a spent Li-ion battery recycling process without polluting the environment. - Highlights: • Synthesis a mixture of Co_3O_4/LiCoO_2 from spent Li-ion batteries. • Citric acid for leaching of the cathodes of the spent Li-ion batteries. • Co_3O_4/LiCoO_2 as catalysts in the photodegradation of the methylene blue dye.

  19. Kinetics of the Carbonate Leaching for Calcium Metavanadate

    Directory of Open Access Journals (Sweden)

    Peiyang Shi

    2016-10-01

    Full Text Available The sodium salt roasting process was widely used for extracting vanadium due to its high yield rate of vanadium. However, the serious pollution was a problem. The calcium roasting process was environmentally friendly, but the yield rate of vanadium was relatively lower. Focusing on the calcium metavanadate produced in the calcium roasting process of vanadium minerals, the mechanism of the carbonate leaching for calcium metavanadate and its leaching kinetics of calcium metavanadate were studied. With the increase of the leaching agent content, the decrease of the particle size, the increase of the temperature and the increase of the reaction time, the leaching rate of vanadium increased, and the constant of reaction rate increased. In the carbonate leaching process, the calcium carbonate was globular and attached to the surface of calcium metavanadate. In the solution containing bicarbonate radical, lots of cracks formed in the dissolution process. However, the cracks were relatively fewer in the solution containing carbonate. In the present study, the carbonate leaching for calcium metavanadate was controlled by diffusion, the activation energy reached maximum and minimum in the sodium bicarbonate and the sodium carbonate solution, respectively. The activation energy value in the ammonium bicarbonate solution was between those two solutions. The kinetic equations of the carbonate leaching for calcium metavanadate were as follows: 1 − 2/3η − (1 − η2/3 = 4.39[Na2CO3]0.75/r0 × exp(−2527.06/Tt; 1 − 2/3η − (1 − η2/3 = 7.89[NaHCO3]0.53/r0 × exp(−2530.67/Tt; 1 − 2/3η − (1 − η2/3 = 6.78[NH4HCO3]0.69/r0 × exp(−2459.71/Tt.

  20. Leaching of nuclear power reactor wastes forms

    International Nuclear Information System (INIS)

    Endo, L.S.; Villalobos, J.P.; Miyamoto, H.

    1986-01-01

    The leaching tests for power reactor wastes carried out at IPEN/CNEN-SP are described. These waste forms consist mainly of spent resins and boric acid concentrates solidified in ordinary Portland cement. All tests were conducted according to the ISO and IAEA recommendations. 3 years leaching results are reported, determining cesium and strontium diffusivity coefficients for boric acid waste form and ion-exchange resins. (Author) [pt

  1. Thiosulfate leaching of gold from waste mobile phones.

    Science.gov (United States)

    Ha, Vinh Hung; Lee, Jae-chun; Jeong, Jinki; Hai, Huynh Trung; Jha, Manis K

    2010-06-15

    The present communication deals with the leaching of gold from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a copper-ammonia-thiosulfate solution, as an alternative to the conventional and toxic cyanide leaching of gold. The influence of thiosulfate, ammonia and copper sulfate concentrations on the leaching of gold from PCBs of waste mobile phones was investigated. Gold extraction was found to be enhanced with solutions containing 15-20 mM cupric, 0.1-0.14 M thiosulfate, and 0.2-0.3 M ammonia. Similar trends were obtained for the leaching of gold from two different types of scraps and PCBs of waste mobile phones. From the scrap samples, 98% of the gold was leached out using a solution containing 20 mM copper, 0.12 M thiosulfate and 0.2 M ammonia. Similarly, the leaching of gold from the PCBs samples was also found to be good, but it was lower than that of scrap samples in similar experimental conditions. In this case, only 90% of the gold was leached, even with a contact time of 10h. The obtained data will be useful for the development of processes for the recycling of gold from waste mobile phones. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Development of the heap leaching of low-grade uranium ores for conditions of OJSC Priargunsky Mining and Chemical plant (PPGKhO)

    International Nuclear Information System (INIS)

    Morozov, A.; Litvinenko, V.

    2014-01-01

    The treatment of low-grade commercial uranium ores by heap leaching has been carried out at the enterprise since 1996. During the initial stage of development, the ore piles were formed of the raw ore having the run-of-mine coarseness with uranium content around 0.08%. Under such conditions, recovery of the metal to the solution is 60-65% in case of a pile treatment lasting 2 years. To intensify the process and to provide a stable concentration of uranium in the productive solutions transferred to sorption, the enterprise developed and implemented a method of percolation leaching of low-grade ores with re-circulation of productive solutions through the re-treated ore bulk (RF patent No. 2226564). The main peculiarity of such leaching is simultaneous moistening of the ore by productive solutions and by barren solutions that are sharpened with sulphuric acid; that gives the possibility to wet far bigger areas of piles under constant volume of productive solutions outputting to the sorption treatment. Such scheme enables to treat successively first the piles at the “re-treatment” (where the metal is mainly extracted), and then the piles at the “active leaching” stage (where the metal is mainly inside the ore bulk). The technical and economic indexes of the heap leaching of low-grade uranium ores were significantly increased in 2006, when the X-ray-radiometric treatment plant was commissioned. The technological scheme of ore treatment at the processing plant includes mould and grating of the raw material with delivery of undersized products enriched with uranium: -5 mm are transferred to the pulp process; fractions (-200+40) mm to the X-ray-radiometric separation; the material of size (-40+5) mm, washed-out from clayey and fine particles, are sent to the uranium heap leaching in piles. Delivery of the ore material having size (-40+5) mm to treatment by the acid leaching method excluded colmatage and creation of zones impermeable for water, and in combination

  3. Research on the effect of alkali roasting of copper dross on leaching rate of indium

    Science.gov (United States)

    Dafang, Liu; Fan, Xingxiang; Shi, Yifeng; Yang, Kunbin

    2017-11-01

    The byproduct copper dross produced during refining crude lead was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer (XRF), which showed that copper dross mainly contained lead, copper, zinc, arsenic, antimony, bismuth, sulfur and a small amount of indium and silver etc. The mineralogical phase change of oxidation roasting of copper dross by adding sodium hydroxide was analyzed with the help of XRD and SEM. The effects of water leaching, ratio of sodium hydroxide, roasting time, and roasting temperature on leaching rate of indium were investigated mainly. The experimental results showed that phase of lead metal and sulfides of lead, copper and zinc disappeared after oxidation roasting of copper dross by adding sodium hydroxide, new phase of oxides of lead, copper, zinc and sodium salt of arsenic and antimony appeared. Water leaching could remove arsenic, and acid leaching residue obtained was then leached with acid. The leaching rate of indium was higher 6.98% compared with alkali roasting of copper dross-acid leaching. It showed that removing arsenic by water leaching and acid leaching could increase the leaching rate of indium and be beneficial to reducing subsequent acid consumption of extracting indium by acid leaching. The roasting temperature had a significant effect on the leaching rate of indium, and leaching rate of indium increased with the rise of roasting temperature. When roasting temperature ranged from 450°C to 600°C, leaching rate of indium increased significantly with the rise of roasting temperature. When roasting temperature rose from 450°C to 600°C, leaching rate of indium increased by 60.29%. The amount of sodium hydroxide had an significant effect on the leaching rate of indium, and the leaching of indium increased with the increase of the amount of sodium hydroxide, and the leaching rate of indium was obviously higher than that of copper dross blank roasting and acid leaching.

  4. A device for uranium series leaching from glass fiber in HEPA filter

    International Nuclear Information System (INIS)

    Gye-Nam Kim; Hye-Min Park; Wang-Kyu Choi; Jei-Kwon Moon

    2012-01-01

    For the disposal of a high efficiency particulate air (HEPA) glass filter into the environment, the glass fiber should be leached to lower its radioactive concentration to the clearance level. To derive an optimum method for the removal of uranium series from a HEPA glass fiber, five methods were applied in this study. That is, chemical leaching by a 4.0 M HNO 3 -0.1 M Ce(IV) solution, chemical leaching by a 5 wt% NaOH solution, chemical leaching by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution, chemical consecutive chemical leaching by a 4.0 M HNO 3 solution, and repeated chemical leaching by a 4.0 M HNO 3 solution were used to remove the uranium series. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 5 h by the 4.0 M HNO 3 -0.1 M Ce(IV) solution were 2.1, 0.3, 1.1, and 1.2 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 36 h by 4.0 M HNO 3 -0.1 M Ce(IV) solution were 76.9, 3.4, 63.7, and 71.9 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after leaching for 8 h by a 0.5 M H 2 O 2 -1.0 M Na 2 CO 3 solution were 8.9, 0.0, 1.91, and 6.4 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after consecutive leaching for 8 h by the 4.0 M HNO 3 solution were 2.08, 0.12, 1.55, and 2.0 Bq/g. The residual radioactivity concentrations of 238 U, 235 U, 226 Ra, and 234 Th in glass after three repetitions of leaching for 3 h by the 4.0 M HNO 3 solution were 0.02, 0.02, 0.29, and 0.26 Bq/g. Meanwhile, the removal efficiencies of 238 U, 235 U, 226 Ra, and 234 Th from the waste solution after its precipitation-filtration treatment with NaOH and alum for reuse of the 4.0 M HNO 3 waste solution were 100, 100, 93.3, and 100%. (author)

  5. Indium flotation from hydrometallurgical solutions

    International Nuclear Information System (INIS)

    Sviridov, V.V.; Mal'tsev, G.I.; Petryakova, N.K.; Gomzikov, A.I.

    1980-01-01

    The principal possibility of flotation of indium small quantities (10 -4 gxion/l) is established from sulphuric-acid solutions of leaching converter dusts of the copper melting production in the form of complex compounds with sodium hexametaphosphate and cation-active nitrogen-containing surfactants. It is shown that the flotation process effectiveness is determined by the molar ratio of hexametaphosphate and collector introduced into the solution, solution oxidity and surfactant nature

  6. Uranium extraction history using pressure leaching

    International Nuclear Information System (INIS)

    Fraser, K.S.; Thomas, K.G.

    2010-01-01

    Over the past 60 years of uranium process development only a few commercial uranium plants have adopted a pressure leaching process in their flowsheet. The selection of acid versus alkaline pressure leaching is related to the uranium and gangue mineralogy. Tetravalent (U"+"4) uranium has to be oxidized to hexavalent (U"+"6) uranium to be soluble. Refractory tetravalent uranium requires higher temperature and pressure, as practised in pressure leaching, for conversation to soluble hexavalent uranium. This paper chronicles the history of these uranium pressure leaching facilities over the past 60 years, with specific details of each design and operation. (author)

  7. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Awakura, Y; Hirato, T [Kyoto University, Kyoto (Japan)

    1997-02-01

    Studies are conducted to develop a new wet method for copper concentrates to replace the conventional dry smelting method for the settlement of problems involving the processing of impurities for environmental protection. A specimen of pyrites polycrystals is subjected to leaching at 80 {degree}C in a strongly acidic cupric solution. Findings are that the element sulfur generated in this process does not impede leaching and only approximately 4% of the sulfur is oxidized into sulfur ions; that the presence of more than 2g/liter of bromide ions produced during bromine-aid leaching of gold changes the structure of sulfur for the inhibition of leaching; that circulation of a bromine-containing leaching liquid is not desired since even a small amount of approximately 0.02mol/liter inhibits the leaching rate. Controlled potential electrolysis is performed for the anode in an acid solution containing CuCl, NaCl, and NaBr, for the observation of oxidation/reduction potentials predicted by Nernst`s equation. It is then disclosed that bromine is more effective than chlorine in gold leaching and that the solution potential during leaching agent regeneration enables the monitoring of solution constitution. 2 refs.

  8. Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul-Joo; Yoon, Ho-Sung; Chung, Kyung Woo; Lee, Jin-Young; Kim, Sung-Don; Shin, Shun Myung [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Kim, Hyung-Seop; Cho, Jong-Tae; Kim, Ji-Hye; Lee, Eun-Ji; Lee, Se-Il; Yoo, Seung-Joon [Seonam University, Asan (Korea, Republic of)

    2015-02-15

    A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid (H{sub 2}SO{sub 4}) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of H{sub 2}SO{sub 4} was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol H{sub 2}SO{sub 4}, and the effect of temperatures was investigated under the condition of 30 to 80 .deg. C. As a result, praseodymium oxide (Pr{sub 6}O{sub 1}1) existing in the slag was completely converted into praseodymium sulfate (Pr{sub 2}(SO{sub 4}){sub 3}·8H{sub 2}O) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be 9.195 kJmol{sup -1}. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be 19.106 kJmol{sup -1}. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.

  9. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V

    2013-01-01

    The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.

  10. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy.

    Science.gov (United States)

    Liu, Li; Song, Cunyi; Yan, Zengguang; Li, Fasheng

    2009-09-01

    Although excitation-emission matrix spectroscopy (EEMS) has been widely used to characterize dissolved organic matter (DOM), there has no report that EEMS has been used to study the effects of acid rain on DOM and its composition in soil. In this work, we employed three-dimensional EEMS to characterize the compositions of DOM leached by simulated acid rain from red soil. The red soil was subjected to leaching of simulated acid rain of different acidity, and the leached DOM presented five main peaks in its EEMS: peak-A, related to humic acid-like (HA-like) material, at Ex/Em of 310-330/395-420nm; peak-B, related to UV fulvic acid-like (FA-like) material, at Ex/Em of 230-280/400-435nm; peak-C and peak-D, both related to microbial byproduct-like material, at Ex/Em of 250-280/335-355nm and 260-280/290-320nm, respectively; and peak-E, related to simple aromatic proteins, at Ex/Em of 210-240/290-340nm. EEMS analysis results indicated that most DOM could be lost from red soil in the early phase of acid rain leaching. In addition to the effects of the pH of acid rain, the loss of DOM also depended on the properties of its compositions and the solubility of their complexes with aluminum. HA-like and microbial byproduct-like materials could be more easily released from red soil by acid rain at both higher pH (4.5 and 5.6) and lower pH (2.5 and 3) than that at middle pH (3.5). On the contrary, FA-like material lost in a similar manner under the action of different acid rains with pH ranging from 2.5 to 5.6.

  11. Investigation of ATR-FTIR spectroscopy as an alternative to the Water Leach Free Acidity test for cellulose acetate-based film

    DEFF Research Database (Denmark)

    Johansen, Karin Bonde; Shashoua, Yvonne

    2005-01-01

    Cellulose acetate film loses acetate groups on ageing which results in the formation of damaging acetic acid. Water-Leach Free Acidity Test (WLFAT) is the definitive technique to quantify acidity, but requires 1g film and 26 hours. ATR-FTIR spectroscopy is a non-destructive, rapid technique which...

  12. Study of parameters affecting the extraction of Ytterbium from anomaly No.5 of Saghand ore Leach Solution

    International Nuclear Information System (INIS)

    Abdollahy, M.; Alamdar Milani, S.; Koleini, M. J.; Samadzadeh Yazdi, M. R.

    2010-01-01

    Extraction of ytterbium from anomaly No.5 of Saghand leach solution using D 2 EHPA as extractant, kerosene as a diluent, and optimization of the effective parameters were investigated. In addition to uranium and thorium, rare earths elements also exist in Saghand ore. The effect of p H on the extraction of Yb and other existing elements shows that their extractions increase by increasing p H. The extraction of Yb, U, La, Y, Ce and Fe in p H=2 were 99.9, 83, 13.5, 99.8, 8.5 and 27.4%, respectively. The increasing of the A/O ratio decreases the extraction of other elements more than Yb where it resulted in the increasing of the Yb separation. The theoretical number of extraction stages were determined in p H=2 and A/O=9 using McCabe-Thiele diagram. Stripping of the organic phase was also carried out by different concentrations of nitric acid.

  13. Leaching of uranium and thorium from monazite: III. Leaching of radiogenic daughters

    International Nuclear Information System (INIS)

    Olander, D.; Eyal, Y.

    1990-01-01

    The solid-state diffusion model of actinide leaching developed in Part II of this series is applied to leaching of radiogenic daughters of the actinide decay chains. For an untreated natural monazite, the direct leaching component of 228 Th release is larger than that for 232 Th because of enhanced solid-state mobility for 228 Th provided by 228 Ra-recoil tracks. A significant portion of the 228 Th which appears in the leachate, however, is attributed to decay of insoluble 228 Ra which is continually released from the mineral by matrix dissolution and recoil ejection. For a monazite sample that was annealed at 800 degree C prior to leaching, the bulk of the 228 Th in solution was supplied by decay of 228 Ra rejected from the mineral matrix during annealing. The radiogenic 234 U daughter of the 238 U decay chain did not exhibit similarly enhanced leaching because the long half-life of 234 U permitted local radiation damage to be annealed out at ambient temperature prior to 234 U decay

  14. Mechanism for elevated temperature leaching

    International Nuclear Information System (INIS)

    Kenna, B.T.; Murphy, K.D.

    1979-01-01

    Long-term, elevated temperature leaching and subsequent electron microprobe analysis of simulated waste glass and ceramic materials have been completed. A cyclic leaching pattern was found in all systems over a 20-month period. It appears that the leaching of mobile ions by simple diffusional processes is modified by more complex chemical interactions. The release of immobile ions is primarily a function of their chemical interactions in the matrix which suggests that these ions may be complex species when released into solution. A mechanism is proposed which incorporates these ideas and the cyclic phenomenon observed

  15. Recovery of uranium from uranium mine waters and copper ore leaching solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, D R; Ross, J R [Salt Lake City Metallurgy Research Center, Salt Lake City, UT (United States)

    1967-06-15

    Waters pumped from uranium mines in New Mexico are processed by ion exchange to recover uranium. Production is approximately 200 lb U{sub 3}O{sub 8}/d from waters containing 5 to 15 ppm U{sub 3}O{sub 8}. Recoveries range from 80 to 90%. Processing plants are described. Uranium has been found in the solutions resulting from the leaching of copper-bearing waste rock at most of the major copper mines in western United States. These solutions, which are processed on a very large scale for recovery of copper, contain 2 to 12 ppm U{sub 3}O{sub 8}. Currently, uranium is not being recovered, but a potential production of up to 6000 lb U{sub 3}O{sub 8}/d is indicated. Ion exchange and solvent extraction research studies are described. (author)

  16. Recovery of alumina from khushab bauxite by leaching with sulphuric acid and removal of iron impurity by ethanol

    International Nuclear Information System (INIS)

    Tariq, M.; Iqbal, M.M.; Shafiq, M.; Aziz, A.

    2014-01-01

    Bauxite is heterogeneous material principally composed of aluminum oxide minerals and found in all continents. It is being used in chemical, cement, refractory, abrasive, fertilizer, steel and other industries. In order to extract the alumina, the calcined samples of bauxite of Khushab area were ground to -710 meum. Sulphuric acid of purity 40% was used as leaching agent and slurry of pulp density 14% was prepared by dissolving 60 ml acid in 20 gm sample. The leaching was carried out at 90 degree C for 2 hours. The iron impurity was removed by ethanol of purity 68%. The drying, dehydration and desulphurization temperatures were kept 105 degree C, 450 degree C and 850 degree C respectively in all the stages of the process. Alumina recoveries from four samples of Sultan Mehdhi, Chamil More, Niaz Mine and Nadi locations were 20.8%, 9.81%, 15.47% and 7.78% respectively. Iron was almost completely removed as the analysis shows that the Fe/sub 2/O/sub 3/ removal was from 97.8% to 99.6%. It is concluded that leaching efficiency was quite encouraging except Nadi ore sample. However the iron free alumina recoveries were low as the analysis of Fe/sub 2/O/sub 3/ processed residue shows that it contains 72.72% to 92.94% of leached alumina in all the four experiments. (author)

  17. Method for improving solution flow in solution mining of a mineral

    International Nuclear Information System (INIS)

    Moore, T.

    1980-01-01

    An improved method for the solution mining of a mineral from a subterranean formation containing same in which an injection and production well are drilled and completed within said formation, leach solution and an oxidant are injected through said injection well into said formation to dissolve said mineral, and said dissolved mineral is recovered via said production well, wherein the improvement comprises pretreating said formation with an acid gas to improve the permeabiltiy thereof

  18. Effects of increased deposition of atmospheric nitrogen on an upland moor: leaching of N species and soil solution chemistry.

    Science.gov (United States)

    Pilkington, M G; Caporn, S J M; Carroll, J A; Cresswell, N; Lee, J A; Ashenden, T W; Brittain, S A; Reynolds, B; Emmett, B A

    2005-05-01

    This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.

  19. In-situ leach mining: the next quantum leap?

    International Nuclear Information System (INIS)

    Hancock, S.

    1988-01-01

    The opportunities and problems which in-situ leach mining technology presents to the mining industry are considered. These are exemplified by concerns addressed in the development of a proposal to mine uranium by in-situ leach techniques at Beverley in South Australia. The technique proposed at Beverley will use sulphuric acid with hydrogen peroxide or dissolved oxygen as the lixivient. Pre-treatment of the aquifer will be necessary to remove excess calcium carbonate, and the system will employ a slightly overpumped output of fluid through the wellfield to reduce the risk of excursions of mining solutions. The input and output patterns will also be varied to take account of the hydrogeological conditions such as confining bed thickness and permeability. Much study has been directed towards the post mining condition of the ore zone and the threat it may pose to the water resources of the region. 10 refs., 1 fig

  20. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate; Lixiviacion de concentrados de cobre utilizando NaCl y el cobre soluble aportado por el propio concentrado

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-07-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs.

  1. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  2. Economic leaching at Roessing Uranium Limited

    International Nuclear Information System (INIS)

    Johnson, C.C.

    1990-01-01

    In the fourteen years that Roessing Uranium Limited has been in production, the metallurgical operations and controls on the leaching plant have envolved through four basic stages. Initially, the emphasis was placed on the achievement of consistent plant operation by overcoming severe start-up difficulties. The second stage involved the attainment of the design operating targets and also the commissioning of the ferric-leaching reactors in order to achieve a ferric ion concentration of more than 3.0 g/l. Improvements in control then became the priority, with the emphasis on consistently achieving the target concentrations of ferric ions, total iron, and terminal acidity. The latest phase has concentrated on the optimization of costs by means of adjustments to the historically established operating parameters in order to achieve large savings on consumables while maintaining the leaching efficiencies. Apart from the obvious incentive of reducing costs in an inflationary economy and a depressed uranium market, impetus for this work was given by a change in the type of ore from the open pit, which has the effect of reducing the extraction efficiency while increasing the consumption of consumable materials. These problems and their solutions are discussed in detail, and the importance to cost-effective optimization of an accurate up-to-date cost-reporting structure is stressed. 9 figs., 2 tabs

  3. Permeability restoration and lowering of uranium leakage from leached ore beds

    International Nuclear Information System (INIS)

    Burgman, H.A.; Grant, D.C.

    1981-01-01

    The injection of an ammonium sulfite or bisulfite solution increases the permeability of an uranium ore bed that has suffered permeability losses during the in-situ mining of uranium with an alkaline leach solution containing a peroxide or dissolved oxygen oxidant. Such an injection recovers much of the lost formation permeability, thus decreasing costs and effort required to put needed restoration solutions or further leach solutions through the ore bed. In addition, uranium contamination of the ground water normally occurring after cessation of leaching is significantly lowered by such injection

  4. Study on extraction of uranium from clayey sandstone with floatation-leaching process

    International Nuclear Information System (INIS)

    Meng Guangshou; Zhao Manchang; Wu Peisheng; Song Wenlan; Li Wenxia.

    1985-01-01

    An improved floatation-leaching process is proposed to extract uranium from some clayey sandstone type of ore. By two-step flotation, the ground feed ore can be divided into three urani-ferous sections, i.e., the sulfidic concentrate carrying organic matter, the carbonate concentrate, and the tailings. The sulfidic concentrate is mixed with the tailings and then treated by acid-leaching with the result that 93% uranium extraction can be attained. The excess free acid of the leached slurry is further neutralized with the carbonate concentrate instead of lime commonly used. As a result, approximately 60% uranium extraction can be attained. As a whole, by the flotation-leaching process the acid consumption can be reduced from 200 kg/t down to < 80 kg/t and the uranium extraction can be raised from 85% to 90% as compared with the conventional acid-leaching process

  5. The experimental study of bacterial leaching at condition of different ore's diameter

    International Nuclear Information System (INIS)

    Liu Jinhui; Li Lin; Liu Yajie

    2006-01-01

    This papper compared the effect of leaching rate of uranium and the adaptability of bacteria with the condition of different ore's diameter (2-5 mm, 5-10 mm), which use the way of inleakage-leaching. The experiment use the way that firstly acid leaching, and then 2 bacterial leaching. As a reasult that the total leaching-rate of minute diameter ore are always high than the big diameter one. But for the quantum of consumed acid its just a opposition. During bacterial leaching the adaptability of bacteria in big diameter ore are high than in the minute one. So this experiment may offer a bases for a latter industry experiment which use big diameter ore's bacterial leaching. (authors)

  6. Leaching characteristics of trace elements in desulfurization gypsum from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.K.; Zhuo, Y.Q.; Zhu, Z.W.; Chen, C.H. [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering

    2013-07-01

    The contents and leaching characteristics of Cr, Cd, As, Pb and Se in FGD gypsum from a 200 MW coal-fired power plant were investigated in this study. Experimental results revealed that: the leaching characteristics of As and Se were similar, both leaching rates were not obviously affected by pH but increased with increase of the liquid-solid ratio. Pb and Cr had similar leaching characteristics, their leaching rates were closely related with the pH of leaching solution and increased with the lowering of pH and both increased with the increasing of solid-liquid ratio. Along with the increase of the liquid-solid ratio, the leaching gradually achieved balance, and the balanced liquid-solid ratio was bigger when pH of leaching solution was lower. Cd content of leaching solution was below detect limit, and thus failed to get its leaching characteristics. The order of trace element content in leaching solution is Pb < Cr < As < Se, and the order of leaching rates is Cr < As < Pb < Se. BCR extraction procedure revealed that trace elements in FGD gypsum were mainly existed as available fraction and migration ability was stronger than that of trace elements in fly ash from coal-fired power plants.

  7. Leaching of gold from a mechanically and mechanochemically activated waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2010-03-01

    Full Text Available The intensification of leaching of gold from a waste using mechanical activation (milling in water and mechanochemical activation(milling in thiourea solution were studied as the pretreatment steps. The leaching of “as-received“ sample in an acid thiourea solutionresulted in 78 % Au dissolution, after mechanical activation 98 % and mechanochemical activation up to 99 % of the gold was leachedduring 120 min. The mechanochemical activation resulted in an increase of the specific surface area of the waste from 0.6 m2g-1to a maximum value of 20.5 m2g-1. The activation was performed in an attritor using variable milling times. The physico-chemical changesin the waste as a consequence of mechanochemical activation had a pronounced influence on the subsequent gold extraction.

  8. Alkaline autoclave leaching of refractory uranium-thorium minerals

    International Nuclear Information System (INIS)

    Milani, S. A.; Sam, S.

    2011-01-01

    This paper deals with the study of an innovative method for processing the Oman placer ores by alkaline leaching in ball mill autoclaves, where grinding and leaching of the refractory minerals take place simultaneously. This was followed by the selective separation of thorium and uranium from lanthanides by autoclave leaching of the hydroxide cake with ammonium carbonate-bicarbonate solutions. The introduced method is based on the fact that thorium and uranium form soluble carbonate complexes with ammonium carbonate, while lanthanides form sparingly soluble double carbonates. It was found that a complete alkaline leaching of Oman placer ores (98.0 P ercent ) was attained at 150 and 175 d egree C within 2.5 and 2h, respectively. Oman placer ores leaching was intensified and accelerated in a ball mill autoclaves as a result of the grinding action of steel balls, removal of the hydroxide layer covering ores grains and the continuous contact of fresh ore grains with alkaline solution. The study of selective carbonate processing of hydroxide cake with ammonium carbonate-bicarbonate solutions on autoclave under pressure revealed that the complete thorium recovery (97.5 P ercent ) with uranium recovery (90.8 P ercent ) and their separation from the lanthanides were attained at 70-80 d egree C during l-2h. The extraction of lanthanides in carbonate solution was low and did not exceed 4.6 P ercent .

  9. Chlorine-assisted leaching of Key Lake uranium ore

    International Nuclear Information System (INIS)

    Haque, K.E.

    1981-04-01

    Bench-scale chlorine-assisted leach tests were conducted on the Key Lake uranium ore. Leach tests conducted at 80 0 C on a slurry containing 50% solids during 10 hours of agitation gave the maximum extraction of uranium - 96% and radium-226 - 91%. Chlorine was added at 23.0 Kg Cl 2 /tonne of ore to maintain the leach slurry pH in the range of 1.5-1.0. To obtain residue almost free of radionuclides, hydrochloric acid leaches were conducted on the first stage leach residues. The second stage leach residue still was found to contain uranium - 0.0076% and radium-226 - 200 pCi/g of solids

  10. Solvent Extraction of Co, Ni and Mn from NCM Sulfate Leaching Solution of Li(NCMO2 Secondary Battery Scraps

    Directory of Open Access Journals (Sweden)

    Hong Hyun Seon

    2017-06-01

    Full Text Available As a part of the study on recycling Li(NCMO2 lithium-ion battery scraps, solvent extraction experiments were performed using different extraction agents such as PC88A, Cyanex272 and D2EHPA to separate Co, Ni and Mn from the leaching solution. When the ratio of Mn to Ni was about 0.4 in the leaching solution, the separation factor for Co and Mn was found to be less than 10 so that the separation of Co and Ni was insufficient. When solvent extraction was done using the solution with the lower Mn/Ni ratio of 0.05 where Mn was removed by potassium permanganate and chlorine dioxide, more than 99% of Mn could be extracted through five courses of extraction using 30vol% D2EHPA while the extraction rates of Co and Ni were around 17% and 11%, respectively. In the case that Mn was removed from the solution, the extraction rate of Co was higher than 99% whereas less than 7% Ni was extracted using Cyanex272 suggesting that Co and Ni elements were effectively separated.

  11. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    Science.gov (United States)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pHleaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  12. Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho-Sung; Kim, Chul-Joo; Chung, Kyung Woo; Lee, Jin-Young; Shin, Shun Myung [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of); Lee, Su-Jeong; Joe, A-Ram; Lee, Se-Il; Yoo, Seung-Joon [Seonam University, Asan (Korea, Republic of)

    2014-10-15

    We studied the leaching kinetics of recovering neodymium in sulfuric acid from the rare earth elements (REE) slag concentrated by smelting reduction from a magnetite ore containing monazite. The leaching kinetics on neodymium was conducted at a reactant concentration of 1.5 g REE slag per L of 0.3M H{sub 2}SO{sub 4}, agitation of 750 rpm and temperature ranging from 30 to 80 .deg. C. Neodymium oxide included in the REE slag was completely converted into neodymium sulfate phase (Nd{sub 2}(SO{sub 4}){sub 3}) in H{sub 2}SO{sub 4} after the leaching of 5 h, 80 .deg. C. As a result, the leaching mechanism was determined in a two-stage model based on the shrinking core model with spherical particles. The first step was determined by chemical reaction, and the second step was determined by ash layer diffusion because the leaching of REEs by the first chemical reaction increases the formation of the ash layer affecting as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction step was found to be 9 kJmol{sup -1}. After the first chemical reaction, leaching reaction rate was determined by the ash layer diffusion. The apparent activation energy of ash layer diffusion was found to be 32 kJmol{sup -1}.

  13. Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Kim, Chul-Joo; Chung, Kyung Woo; Lee, Jin-Young; Shin, Shun Myung; Lee, Su-Jeong; Joe, A-Ram; Lee, Se-Il; Yoo, Seung-Joon

    2014-01-01

    We studied the leaching kinetics of recovering neodymium in sulfuric acid from the rare earth elements (REE) slag concentrated by smelting reduction from a magnetite ore containing monazite. The leaching kinetics on neodymium was conducted at a reactant concentration of 1.5 g REE slag per L of 0.3M H 2 SO 4 , agitation of 750 rpm and temperature ranging from 30 to 80 .deg. C. Neodymium oxide included in the REE slag was completely converted into neodymium sulfate phase (Nd 2 (SO 4 ) 3 ) in H 2 SO 4 after the leaching of 5 h, 80 .deg. C. As a result, the leaching mechanism was determined in a two-stage model based on the shrinking core model with spherical particles. The first step was determined by chemical reaction, and the second step was determined by ash layer diffusion because the leaching of REEs by the first chemical reaction increases the formation of the ash layer affecting as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction step was found to be 9 kJmol -1 . After the first chemical reaction, leaching reaction rate was determined by the ash layer diffusion. The apparent activation energy of ash layer diffusion was found to be 32 kJmol -1

  14. Determination of optimal conditions for pressure oxidative leaching of Sarcheshmeh Molybdenite concentrate using Taguchi method

    Directory of Open Access Journals (Sweden)

    Khoshnevisana A.

    2012-01-01

    Full Text Available The present research work is based on finding the optimum conditions for pressure oxidative leaching of the molybdenite concentrate to produce technical-grade molybdic oxide (MoO3 with high recovery through further treatment of the filtrate solution. The Taguchi method was used to design and minimize the number of experiments. By using Taguchi orthogonal (L25 array, five parameters (time, temperature, oxygen pressure, pulp density and acid concentration at five levels were selected for 25 experiments. The experiments were designed and carried out in a high-pressure reactor in the presence of nitric acid as solvent and oxidizing agent for the molybdenite concentrate and its ReS2 content. The optimum conditions for pressure leaching of molybdenite were obtained through using Signal to Noise analysis and modified by using Minitab software prediction tool. Furthermore, the optimum condition for an economical pressure leaching of rhenium sulfide (ReS2 was achieved with the same process. Analysis of variance (ANOVA showed that the pulp density is of paramount importance in this process.

  15. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  16. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  17. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.

    2011-01-01

    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  18. Preparation of industrial chemicals by acid leaching from the koga nepheline syenite, southern Swat, lesser Himalayas-Pakistan

    International Nuclear Information System (INIS)

    Nizami, A.R.

    2012-01-01

    This paper encompasses the study on the preparation of industrial chemicals by acid leaching from the Koga nepheline syenite, Southern Swat, Lesser Himalayas-Pakistan. These rocks have been studied in detail by many workers to exploit their industrial utility in the form of powdered rock material in glass and ceramics and steel industry. The present authors for the first time carried out acid leaching studies and prepared a number of industrial chemicals, like, alumina, aluminium sulphate, sodium and ammonium alums, sodium sulphate) and sodium bisulphate by simple chemical reactions at bench scale successfully. The developed process is simple and economically viable. It is recommended to exploit this process in cottage industry in the mountainous areas hosting these rocks for the benefit of local population. The research and development work for production of these chemicals at pilot plant and industrial scale is recommended as well. (author)

  19. Modeling long-term leaching experiments of full scale cemented wastes: effect of solution composition on diffusion

    International Nuclear Information System (INIS)

    Borkel, C.; Montoya, V.; Kienzler, B.

    2015-01-01

    The code PHREECQ V3.1 has been used to simulate leaching experiments performed with cemented simulated waste products in tap water for more than 30 years. In this work the main focus is related with the leaching of Cs explained by diffusion processes. A simplifying model using the code PHREECQ V3.1 was used to investigate the influence of different parameters on the release of Cs from the cement solid to the leaching solution. The model setup bases on four main assumptions: a) the solid as well as the distribution of Cs is homogeneous and of isotropic texture, b) there is no preferential direction regarding cement degradation or water intrusion into the solid, c) the pore space is entirely connected and d) Cs adsorption to the cement or container is negligible. In the modeling the constraint of charge balance was stressed. Effective diffusion coefficients (D e ) were obtained analytically and from modeling the diffusive release of Cs from cemented waste simulates. The obtained values D e for Cs leaching are in perfect agreement with the values published in literature. Contradictory results to diffusive release were obtained from XRD analysis of the solids, suggesting that water may not have penetrated the cement monoliths entirely, but only to some centimeters depth. XRD analysis have been done to determine the solid phases present in cement and are used to help outlining strength and weaknesses of the different models

  20. Evaluation of the toxic effect on zebrafish (Danio rerio) exposed to uranium mill tailings leaching solution

    International Nuclear Information System (INIS)

    Fang Geng; Nan Hu; Ji-Fang Zheng; Cheng-Lei Wang; Xin Chen; Jia Yu; De-Xin Ding

    2012-01-01

    The objective of this study was to evaluate the potential ecological danger and toxic effect of uranium mill tailings leaching solution (UMTLS) on aquatic animals. UMTLS was identified to contain two radioactive elements, nine heavy metal elements, and five non-metallic materials. The acute toxicity test indicated that the 1, 12, 24, 48, 72, 96 h LC 50 values of UMTLS to the zebrafish were 12.1, 7.1, 4.4, 3.8, 3.4, and 2.9%, respectively. In sub-lethal toxicity tests, superoxide dismutase, catalase, Na + -K + -ATPase activities, and malondialdehyde content were respectively determined and analyzed in the zebrafish gill, gonad, muscle, and liver after exposed to four different concentration levels of UMTLS for 7 and 14 days, respectively. The result showed that the most sensitivity of the antioxidant system in zebrafish tissues in UMTLS was gill, and then decreased in gonad, muscle and liver respectively. Na + -K + -ATPase activity in the liver and gonad may be considered as a reference biomarker of UMTLS stress. The data in this study may be valuable that the toxicity of such as the leaching solution of potentially hazardous material was compared with that of each constituent. (author)

  1. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  2. Heap Leaching Technology. Moving the Frontier for Treatment: Applications in Niger and Namibia

    International Nuclear Information System (INIS)

    Thiry, Jacques; Bustos, Sergio

    2014-01-01

    • Uranium is being successfully extracted from low grade ores by heap leaching operations; • The response of the reaction system both at acid or alkaline leaching conditions is well know; • Proper characterization of ore feed is required to anticipate agglomeration quality, heap permeability and stability, and uranium dissolution kinetics and final recovery; • Many laboratory, bench scale tests and pilot plant demonstration at proper scale are necessary to provide suitable design parameters and to fit modeling efforts to actual results; • Large space for optimization opportunities to reduce ore throughput, water and reagents consumption; • Proper effluent solution management and control as well as proper residue disposal are required for safe and clean operation

  3. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    Energy Technology Data Exchange (ETDEWEB)

    Bertron, A., E-mail: bertron@insa-toulouse.fr [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Jacquemet, N. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Erable, B. [Université de Toulouse (France); INPT, UPS (France); CNRS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31030 Toulouse (France); Sablayrolles, C. [Université de Toulouse (France); INP (France); LCA (Laboratoire de Chimie Agro-Industrielle), ENSIACET, 4 allée Emile Monso, BP 44 362, 31432 Toulouse Cedex 4 (France); INRA (France); LCA (Laboratoire de Chimie Agro-Industrielle), F-31029 Toulouse (France); Escadeillas, G. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Albrecht, A. [Andra, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry (France)

    2014-03-01

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  4. Role of metal ion solubility in leaching of nuclear waste glasses

    International Nuclear Information System (INIS)

    Grambow, B.

    1982-04-01

    From the results of a variety of experiments it can be concluded that reaction of the matrix is the fundamental process that occurs in the leaching of PNL 76-68 glass. This reaction has two aspects. Without solubility restrictions, congruent leaching behavior occurs at all pH values and leachant compositions. When this reaction raises solution concentrations of certain elements to the level at which new solid phases form, these phases will regulate the solution concentration. These solid phases are dominant constituents of the leached layer. For the leaching of PNL 76-68 glass, the solubilities of these reaction products regulate the solution concentration as if the solution is in equilibrium with pure Fe(OH) 3 (amorphous), Zn(OH) 2 (amorphous), Nd(OH) 3 , SrCO 3 or CaCO 3 . The experimental conditions, in particular the pH value, that govern the formation of solid reaction products and control of the solution concentrations can be identified

  5. Measurement of chemical leaching potential of sulfate from landfill disposed sulfate containing wastes.

    Science.gov (United States)

    Sun, Wenjie; Barlaz, Morton A

    2015-02-01

    A number of sulfate-containing wastes are disposed in municipal solid wastes (MSW) landfills including residues from coal, wood, and MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, the sulfate can be reduced to hydrogen sulfide which is problematic for several reasons including its low odor threshold, toxicity, and corrosive nature. The overall objective of this study was to evaluate existing protocols for the quantification of total leachable sulfate from solid samples and to compare their effectiveness and efficiency with a new protocol described in this study. Methods compared include two existing acid extraction protocols commonly used in the U.S., a pH neutral protocol that requires multiple changes of the leaching solution, and a new acid extraction method. The new acid extraction method was shown to be simple and effective to measure the leaching potential of sulfate from a range of landfill disposed sulfate-containing wastes. However, the acid extraction methods do not distinguish between sulfate and other forms of sulfur and are thus most useful when sulfate is the only form of sulfur present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies

    Directory of Open Access Journals (Sweden)

    Shorouq I. Alghanmi

    2015-09-01

    Full Text Available Urban soils polluted with heavy metals are of increasing concern because it is greatly affecting human health and the ecological systems. Hence, it is mandatory to understand the reasons behind this pollution and remediate the contaminated solid. The removal of heavy metals from contaminated soil samples collected from the vicinity of the sewage lake in Jeddah, Saudi Arabia, was explored. The leaching process was studied kinetically and thermodynamically for better understanding of the remediation process. The results showed that the soil samples were slightly basic in nature, and tend to be more neutral away from the main contaminated sewage lake area. The total metal content in the soil samples was measured using the aqua regia extractions by ICP-OES and the results showed that many of the heavy metals present have significant concentrations above the tolerable limits. In general, the metal concentrations at different sites indicated that the heavy metal pollution is mainly due to the sewage discharge to the lake. The results showed excellent correlation between the concentrations of Co, As, and Hg with the distance from the main contaminated area. The leaching of Co, As, and Hg using 1.0 M hydrochloric acid from the soil was studied kinetically at different temperatures and the experimental results were fitted using different kinetics models. The experimental data were best described with two-constant rate and Elovich equation kinetic models. Also, the thermodynamic study showed that the leaching process was spontaneous, endothermic and accompanied with increase in the entropy. In general, the polluted soil could be remediated successfully from the heavy metals using the acid leaching procedure in a short period of time.

  7. Simulated Leaching (Migration) Study for a Model Container-Closure System Applicable to Parenteral and Ophthalmic Drug Products.

    Science.gov (United States)

    Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid

    2017-01-01

    A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the

  8. Acid leaching of oxide-sulphide copper ore prior the flotation: A way for an increased metal recovery

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2015-01-01

    Full Text Available Copper mine "Cerovo"- East Serbia as well as the other ore bodies in its vicinity contain a significant amount of oxide copper minerals in their uper layers (>40%. Processing of such mixed ores by the existing concentration technologies leads to a substantial copper losses (<60%. Reduction of "oxide copper", by acid leaching prior the flotation concentration, can increase the overall copper efficiency up to more than 70% in the single-stage leaching, achieving an efficiency in the flotation concentration stage higher than 75%. Based on the performed experimental results the flow sheet for processing of the mixed oxide-sulphide copper ore is proposed.

  9. Process for the leaching of AP from propellant

    Science.gov (United States)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)

    1980-01-01

    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  10. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  11. Method of continuous pressure leaching of ores

    International Nuclear Information System (INIS)

    Fiala, P.; Baloun, S.; Polansky, M.

    1987-01-01

    Ore leaching, especially suspensions of ground ore or fine ore fractions from physical treatment was divided into two operations. The former, i.e., ore mixing with technical grade concentrated sulfuric acid proceeded in a separate mixer. The mixture was then transported into an autoclave where the actual leaching proceeded for 2 to 4 hours. The extracted mixture was discharged through the autoclave bottom. The leaching autoclave used can be without any inner structures. The separation of mixing from the actual leaching allows processing ores with high levels of clay components, increasing operating reliability of the facility, reducing consumption of special structural materials and energy, and increasing process efficiency. (E.S.)

  12. Supplementary recovery of uranium by in-situ leaching at the Brugeaud deposit (Limousin, France)

    International Nuclear Information System (INIS)

    Lyaudet, G.

    1980-01-01

    The actual mining operations at the Brugeaud Deposit (West Brugeaud and East Brugeaud) were followed by supplementary recoveries of uranium by means of in-situ leaching. There were a number of factors which favoured consideration of these operations: the amounts of uranium present at the edge of the stoped areas; the underground mining infrastructure, which did not require supplementary operations for the recovery of solutions; the nature of the rock, which presented a dense network of fractures and micro-fractures conducive to impregnation by the acid solutions; and the immediate proximity of a concentration plant. The amount of uranium recovered by in-situ leaching is close to 200 t. This production is approximately nine per cent of all the uranium extracted from the deposit. The cost of the metal obtained in this way was always less than FF 100 (FF of 1978) per kilogram of uranium. (author)

  13. Waste water treatment of CO2+O2 in-situ leaching uranium

    International Nuclear Information System (INIS)

    Xu Lechang; Liu Naizhong; Du Zhiming; Wang Hongying

    2012-01-01

    An in-situ leaching uranium mine located in Northern China uses CO 2 +O 2 leaching process to leach uranium. The consumption of industrial reagent and water, and generation and discharge of waste water are minimized by comprehensive waste water treatment technology with process water recycle, reverse osmosis and natural evaporation. The process water of the mine that can be recycled and reused includes barren fluid, solution washing loaded resin, precipitating mother solution and filtered liquor of yellow cake. Solution regenerating barren resin is treated by reverse osmosis. Concentrated water from reverse osmosis and solution washing barren resin are naturally evaporated. (authors)

  14. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  15. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    Science.gov (United States)

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  16. Recovery of gold with ion exchange resin from leaching solution by acidothioureation. Ion kokan jushiho ni yoru ryusan sansei chio nyoso kinshinshutsueki kara no kin no kaishu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakahiro, Y.; Ninae, M.; Kusaka, E.; Wakamatsu, T. (Kyoto University, Kyoto (Japan). Faculty of Engineering); Horio, Y. (Yamaha Co. Ltd., Tokyo (Japan))

    1991-12-25

    Recovery of gold with ion exchange resin from leaching solution by acidothioureation, and elution of gold from ion exchange resin with gold were studied experimentally. As the result of batch adsorption experiments of Au(TU){sub 2}{sup +} into various kinds of ion exchange resins, strong acidic cation exchange resin was most suitable, and gold was fully adsorbed into such resin in the pH range from 1.2 to 2.0 without any effects of thiourea in the leaching solution on adsorption of gold. As the result of batch elution experiments in various kinds of eluates, copper was eluted in HNO{sub 3}(1 N) + H{sub 2}O{sub 2}(1wt%) elute, both iron and zinc in NH{sub 4}NO{sub 3}(0.5 M) elute, and gold in Na{sub 2}S{sub 2} O{sub 3}(0.05 M) elute resulting in the recovery of gold. As the result of column elution experiments, Amberlite 200C was most effective among some ion exchangers used for recovery of Au(CS(NH{sub 2}){sub 2}){sub 2}{sup +}. 16 refs., 15 figs.

  17. Method of repair of short circuits for in-situ leaching

    International Nuclear Information System (INIS)

    Baughman, D.R.; Bergeson, J.R.

    1984-01-01

    In an acidic in-situ leaching system, a short circuit passage through a subterranean formation between a fracture associated with an injection well and a fracture associated with a production well can be plugged by introducing a non-acidic liquid for displacing acidic leach liquid from the short circuit passage, introducing into the injection well a basic composition including a sealing material that gels under acidic conditions, and introducing sufficient liquid into the injection well to displace at least a portion of the basic composition containing sealing material from the injection well into the short circuit passage. Liquid flow between the injection well and the production well is then discontinued for a sufficient time for residual acid in the subterranean formation surrounding the short circuit passage to contact the sealing material and cause gelation of the sealing material in the short circuit passage. The introduction of acidic leach liquid to the formation can then continue. The sealing material may be a polymer or a water soluble silicate

  18. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Rachi, T.; Yokouchi, M.; Kamimoto, Y. [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan); Okada, K. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama, Kanagawa 226-8503 (Japan)

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  19. Recover of some rare earth elements from leach liquor of the Saghand uranium ore using combined precipitation and cation exchange methods

    International Nuclear Information System (INIS)

    Khanchi, A. R.; Rafati, H.; Rezvaniyanzadeh, M. R.

    2008-01-01

    In this research work, the recovery and separation of La(III), Ce(III), Sm(III), Dy(III) and Nd(III) from Saghand uranium ore have been studied by precipitation and ion-exchange chromatography methods using Dowex 50 W-X 8 cation exchanger. At first, some preliminary and preconcentration experiments such as comminution, sieve analysis, gravity table and electrostatic in preconcentration of lanthanides were performed. Then, acidic digesting and leaching procedure were used. The results of experiments showed that rare earth elements, along with interfering ions such as Al(III), Fe(III), Mg(II) and Mn(II) present in the leach liquor solution. The investigation of separation process by precipitation method revealed that precipitation and then fast separation using centrifugal technique had the best results in the elimination of interference elements. In order to separate the lanthanides and to obtain their elution curves, the chromatographic column containing Dowex 50 W-X 8 resin was employed. For efficient separation of lanthanides from interference elements the hydrochloric acid with concentration of two and six molar was used respectively. Recovery of lanthanides from the leach liquor solution was achieved more than 85%

  20. Recovery of tungsten from wolframite from the Igarape Manteiga mine (Rondonia - Brazil) via acidic leaching

    International Nuclear Information System (INIS)

    Paulino, Jessica Frontino; Afonso, Julio Carlos; Mantovano, Jose Luiz; Vianna, Claudio Augusto; Cunha, Jose Waldemar Silva Dias da

    2012-01-01

    We report results of the efficiency of tungsten extraction from wolframite concentrate (containing 61.5 wt % WO 3 ) from the Igarape Manteiga mine (state of Rondonia, Brazil) through acid leaching with strong mineral acids at 100 deg C and 400 rpm for 2-4 h. HCl yielded insoluble matter containing the highest WO 3 content (90 wt %). This solid was dissolved in concentrated NH 3(aq) at 25 deg C and the insoluble matter filtrated. The filtrate was slowly evaporated. 70 wt % of the tungsten present in the starting concentrate material was recovered as ammonium paratungstate (APT). (author)

  1. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  2. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Studies on the mechanism for in-place leaching of fragmented uranium ore by blasting

    International Nuclear Information System (INIS)

    Wu Hengshan; Wang Changhan

    2001-01-01

    The report is based on the locale test studies at No.745 Mine and Baifang Copper (Uranium) Mine. According to hydrokinetics of porous medium. The character of mining methods of in-place leaching of fragmented uranium are, the best application conditions, in-place leaching theory, the fittest composite of fragments of crashing uranium ore, the lowest velocity of flow in solution liquid, the reasonable parameter of stop structure, the technology of leaching, meaning, the equation of solution liquid, the name of solution mining and its classification are studied. Especially some creation in the theory of leaching in mud ore and the technology of strengthened leaching are given. It would be helpful to the design and production

  4. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Avraamides, J.; Senanayake, G.; Clegg, R. [A.J. Parker Cooperative Research Centre for Hydrometallurgy, Murdoch University, Perth, WA 6150 (Australia)

    2006-09-22

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25{sup o}C. Alkaline leaching with 6M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30min at 30{sup o}C using 0.1-1.0M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1M to 2M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide. (author)

  5. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Science.gov (United States)

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  6. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Directory of Open Access Journals (Sweden)

    Toni Gutknecht

    2015-01-01

    Full Text Available Metal oxide varistors (MOVs are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  7. Column leaching experiments of a uranium ore by atomizing irrigation technique

    International Nuclear Information System (INIS)

    Zeng Yingying; Lei Zeyong; Chen Haihui

    2007-01-01

    Column leaching experiments ora uranium ore were made by atomizing irrigation technique. The leaching results are compared with the results obtained by spray irrigation and drip irrigation techniques respectively under the same conditions of column leaching experiments. The results show that the atomizing irrigation technique has more uniform solution distribution, higher leaching rate, shorter leaching period, and less ratio of liquid to solid. Consequently, the atomizing irrigation technique is suitable to the ore. (authors)

  8. Study of hydrated Portland cement composition in regard to leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  9. Experimental investigation of coating degradation during simultaneous acid and erosive particle exposure

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria

    When used in industrial processes, such as stirred acid leaching in the mineral industry, thermoset coatings are exposed to a combination of aggressive chemicals and erosive particlewear. While each exposure condition has been studied separately, no research has been presented on the effects...... of a simultaneous exposure. To investigate this, a pilot-scale stirred acid leaching tank, containing erosive particles and acidic solutions, has been designed and constructed. Resin types considered are amine-cured novolac epoxy and vinyl ester. Transient coating degradation is mapped through visual inspection...

  10. Study on gold concentrate leaching by iodine-iodide

    Science.gov (United States)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  11. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  13. Uraniferous minerals heap leaching process by counter techique

    International Nuclear Information System (INIS)

    Fuentes G, D.A.

    1978-01-01

    An experimental study was made at laboratory level with respect to a process for the treatment of an uranium ore by counter current acid heap leaching with maturity periods and washing. This mineral with an average grade of 0.24% of U 3 O 8 from the levels zero-fourty of the El Nopal uraniferous deposit, located in the Sierra of Pena Blanca, State of Chihuahua (Mexico). The process which is proposed consist of 4 consecutive stages: a) The prehumectation with a fertile solution of a 0.0034 g U 3 O 8 /1 and 3 g H 2 SO 4 /l concentration, b) The counter current acid attack, c) The maturity or hardening, d) The washing with current water. The relaton liquid-solid in the stages of prehumectation, acid attack, as well as washing stage was of 0.3 m 3 /t. The average efficiency was of 77% of recovered *uranium. (author)

  14. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.

    Science.gov (United States)

    Pociecha, Maja; Lestan, Domen

    2010-02-15

    Electrocoagulation with an Al sacrificial anode was tested for the separation of chelant and heavy metals from a washing solution obtained after leaching Pb (3200 mg kg(-1)), Zn (1100 mg kg(-1)), and Cd (21 mg kg(-1)) contaminated soil with EDTA. In the electrochemical process, the sacrificial anode corroded to release Al(3+) which served as coagulant for precipitation of chelant and metals. A constant current density of 16-128 mAc m(-2) applied between the Al anode and the stainless-steel cathode removed up to 95% Pb, 68% Zn and 66% Cd from the soil washing solution. Approximately half of the initial EDTA remained in the washing solution after treatment, up to 16.3% of the EDTA was adsorbed on Al coagulant and precipitated, the rest of the EDTA was degraded by anodic oxidation. In a separate laboratory-scale remediation experiment, we leached a soil with 40 mmol EDTA per kg of soil and reused the washing solution (after electrocoagulation) in a closed loop. It removed 53% of Pb, 26% of Zn and 52% of Cd from the soil. The discharge solution was clear and colourless, with pH 7.52 and 170 mg L(-1) Pb, 50 mg L(-1) Zn, 1.5 mg L(-1) Cd and 11 mM EDTA.

  15. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  16. Trace elemental analysis of leaching solutions of hijiki seaweeds by a portable total reflection X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Liu, Ying; Imashuku, Susumu; Kawai, Jun

    2014-01-01

    A portable total reflection X-ray fluorescence spectrometer (TXRF) was used to analyze leaching solutions of hijiki seaweeds. S, Cl, K, Ca, Ti, Fe, Ni, As and Br were detected in the solutions. Arsenic quantification results were compared to those from ICP-AES. The TXRF quantification results of arsenic were not significantly different from those of ICP-AES, as two-way analysis of variance (ANOVA) method was applied to the significance test. This kind of small and high sensitive TXRF spectrometer can be used in food quality and environmental pollution investigation. (author)

  17. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO 2 ), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established

  18. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst.

    Science.gov (United States)

    Dai, Zejun; Wang, Lele; Tang, Hao; Sun, Zhijun; Liu, Wei; Sun, Yi; Su, Sheng; Hu, Song; Wang, Yi; Xu, Kai; Liu, Liang; Ling, Peng; Xiang, Jun

    2018-09-01

    This study investigated heavy metal chemical speciation and leaching behavior from a board-type spent selective catalytic reduction (SCR) catalyst containing high concentrations of vanadium, chromium, nickel, copper, zinc, and lead. A three-step sequential extraction method, standard toxicity characteristic leaching procedure (TCLP), and leaching characteristic tests have been performed. It was found that the mobility of six heavy metals in the spent SCR catalyst was significantly different. The mobility of the six heavy metals exhibited the following order: Ni > Zn > V > Cr > As > Cu. Meanwhile, TCLP test results revealed relatively high Zn and Cr leaching rate of 83.20% and 10.35%, respectively. It was found that leaching rate was positively correlated with available contents (sum of acid soluble, reducible and oxidizable fractions). Leaching characteristics tests indicated that pH substantially affected the leaching of these heavy metals. In particular, the leaching of Cr, Ni, Cu, and Zn was positively influenced by strong acid, while V and As were easily released in the presence of strong acid and strong alkali (pH 11). In terms of kinetics, the leaching of Cr, Ni, Cu, Zn, and As within the spent catalyst was dominated by erosion and dissolution processes, which were rapid reaction processes. V was released in large amounts within 1 h, but its leaching amount sharply decreased with time due to readsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Photocatalytic properties of Co{sub 3}O{sub 4}/LiCoO{sub 2} recycled from spent lithium-ion batteries using citric acid as leaching agent

    Energy Technology Data Exchange (ETDEWEB)

    Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G., E-mail: marcosbjg@gmail.com

    2017-04-01

    In this work, cobalt and lithium from the cathodes of spent lithium-ion batteries were recycled to synthesize a mixture of Co{sub 3}O{sub 4} and LiCoO{sub 2}. The positive electrode was leached with citric acid in the green recycling. After being heated to 85 °C, the leaching solution formed a pink sol, and after being dried at 120 °C for 24 h, it formed a gel, which is a precursor material for Co{sub 3}O{sub 4} and LiCoO{sub 2} synthesis. A mixture of Co{sub 3}O{sub 4} and LT-LiCoO{sub 2} was obtained after the calcination of the precursor material at 450 °C for 3 h. The photocatalytic properties of the Co{sub 3}O{sub 4} and LiCoO{sub 2} were tested in the discoloration of methylene blue dye. The discoloration efficiency of methylene blue dye in the presence of Co{sub 3}O{sub 4} and LiCoO{sub 2} was 90% after 10 h and 100% after 24 h of heterogeneous catalysis. The contribution of this work is that it presents a means to produce valuable materials with photocatalytic properties from recycled batteries through a spent Li-ion battery recycling process without polluting the environment. - Highlights: • Synthesis a mixture of Co{sub 3}O{sub 4}/LiCoO{sub 2} from spent Li-ion batteries. • Citric acid for leaching of the cathodes of the spent Li-ion batteries. • Co{sub 3}O{sub 4}/LiCoO{sub 2} as catalysts in the photodegradation of the methylene blue dye.

  20. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.

    Science.gov (United States)

    Funari, V; Mäkinen, J; Salminen, J; Braga, R; Dinelli, E; Revitzer, H

    2017-02-01

    Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H 2 SO 4 leaching and bioleaching; the latter involved the use of H 2 SO 4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H 2 SO 4 , i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Small-scale and large-scale testing of photo-electrochemically activated leaching technology in Aprelkovo and Delmachik Mines

    Science.gov (United States)

    Sekisov, AG; Lavrov, AYu; Rubtsov, YuI

    2017-02-01

    The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.

  2. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain.

    Science.gov (United States)

    Cui, Hongbiao; Zhang, Shiwen; Li, Ruyan; Yi, Qitao; Zheng, Xuebo; Hu, Youbiao; Zhou, Jing

    2017-09-01

    Phosphate amendments have been used to immobilize heavy metal-contaminated soils. However, phosphate amendments contain large amounts of phosphorus, which could leach out to potentially contaminate groundwater and surface water. A laboratory column leaching experiment was designed to study the effects of simulated acid rain (SAR) on the potential release of copper (Cu), lead (Pb), cadmium (Cd), and phosphorus (P), and their availability after immobilizing with hydroxyapatite (HAP) and potassium dihydrogen phosphate (PDP). The application of HAP and PDP enhanced the leachate electrical conductivity, total organic carbon, and pH. Higher P was found in the PDP- (>4.29 mg L -1 ) and HAP-treated (>1.69 mg L -1 ) columns than that in untreated (phosphate amendments might promote the leaching of some metals while immobilizing others.

  3. Commercial test on uranium ore percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Cai Chunhui

    2002-01-01

    Commercial test on uranium ore percolation leaching was carried out according to ore characteristics of Fuzhou Uranium Mine and results from small test. Technological and economic indexes, such as leaching rate, acid consumption, leaching cycle, etc. are discussed. The general idea applying the test results to commercial production is presented, too

  4. Study of solutions flow in a pilot copper leaching pile, using tritium as radiotracer

    International Nuclear Information System (INIS)

    Diaz V, Francisco; Duran P, Oscar

    1997-01-01

    The general objective of this work is featuring the flow of a solution in a pilot cooper leaching pile. The irrigating solutions were labeled with Tritium in the form of tritiated water, and the solution flow path is determined in a duct which recover all the solution at the outlet of the pile. This work is an important tool for describing the pipe's hydrodynamic behavior.It also provide experimental semi-industrial data profitable for defining parameters for the calibration or validation of models. The pile has 3788 tons of mineral ore with a high of 6 meters and upper and lower areas of 144 m 2 and 672 m 2 , respectively. The tracer is injected as a pulse, at the entry of the irrigating system and the mean residence time is about 30 hours. The tracer come forth before than expected; nevertheless, this is not due to a short-circuit nor an anomaly of the system, it just reflect the behavior of the process, because the feeding of the pile is by drops and sprinklers that irrigate the pipe. (author). 3 refs., 3 figs

  5. A perspective of stepwise utilisation of Bayer red mud: Step two—Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation

    International Nuclear Information System (INIS)

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-01-01

    Highlights: • An integrated process for the stepwise disposal of red mud was proposed. • Extracting and recovering Ti from Ti-enriched tailing was the second step. • The factors influencing acid leaching and precipitate flotation were examined. • The extracting of metals in concentrated H 2 SO 4 was controlled by diffusion reactions. • [Hbet][Tf 2 N] was an effective precipitating reagent with its coordination mechanism. - Abstract: The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti 4+ , Al 3+ and Fe 3+ , and the mechanism of selectively Fe 3+ removal using [Hbet][Tf 2 N] as precipitating reagent were discussed. The extracting of Ti 4+ , Al 3+ and Fe 3+ in concentrated H 2 SO 4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti 4+ is approximately 92.3%, whereas Al 3+ and Fe 3+ leaching are respectively 75.8% and 84.2%. [Hbet][Tf 2 N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti 4+ , whereas the dosage of precipitating reagent is that for Al 3+ recovery. The maximum flotation recovery of Ti 4+ is 92.7%, whereas the maximum Al 3+ recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti 4+ of 15.5 g/L, Al 3+ of 30.4 g/L and Fe 3+ of 0.48 g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation.

  6. [Effect of simulated heavy metal leaching solution of electroplating sludge on the bioactivity of Acidithiobacillus ferrooxidans].

    Science.gov (United States)

    Xie, Xin-Yuan; Sun, Pei-De; Lou, Ju-Qing; Guo, Mao-Xin; Ma, Wang-Gang

    2013-01-01

    An Acidithiobacillus ferrooxidans strain WZ-1 was isolated from the tannery sludge in Wenzhou, Zhejiang Province in China. The cell of WZ-1 strain is Gram negative and rod-shaped, its 16S rDNA sequence is closely related to that of Acidithiobacillus ferrooxidans ATCC23270 with 99% similarity. These results reveal that WZ-1 is a strain of Acidithiobacillus ferrooxidans. The effects of Ni2+, Cr3+, Cu2+, Zn2+ and 5 kinds of simulated leaching solutions of electroplating sludge on the bioactivity of Fe2+ oxidation and apparent respiratory rate of WZ-1 were investigated. The results showed that Ni2+ and Cr3+ did not have any influence on the bioactivity of WZ-1 at concentrations of 5.0 g x L(-1) and 0.1 g x L(-1), respectively. WZ-1 showed tolerance to high levels of Ni2+, Zn2+ (about 30.0 g x L(-1)), but it had lower tolerance to Cr3+ and Cu2+ (0.1 g x L(-1) Cr3+ and 2.5 g x L(-1) Cu2+). Different kinds of simulated leaching solution of electroplating sludge had significant differences in terms of their effects on the bioactivity of WZ-1 with a sequence of Cu/Ni/Cr/Zn > Cu/Ni/Zn > Cu/Cr/Zn > Cu/Ni/Cr > Ni/Cr/Zn.

  7. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco

    2016-12-15

    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching.

    Science.gov (United States)

    Xie, Yan; Lan, Xiao-Rong; Bao, Rui-Ying; Lei, Yang; Cao, Zhi-Qiang; Yang, Ming-Bo; Yang, Wei; Wang, Yun-Bing

    2018-09-01

    Biodegradable stereocomplex crystallite polylactide (SC-PLA) porous scaffolds with well-defined pore structures, high heat resistance, mechanical strength, and solvent resistance together with good biocompatibility, were obtained through solution casting of mixed poly(l-lactide) and poly(d-lactide) solution and subsequent leaching of sodium chloride particles. The pore structure of the SC-PLA scaffolds can be perfectly maintained after a high-pressure sterilization treatment at 121 °C, owing to the extensive formation of stereocomplex crystallites in the scaffolds. In vivo pilot study demonstrates that the fibroblasts of rats can infiltrate into the SC-PLA scaffolds well through the open pores. Degradation tests in phosphate-buffered saline solution reveal that the structure of SC-PLA scaffolds was quite stable due to the enhanced hydrolysis-resistance and improved mechanical properties of the scaffolds. These results reveal that SC-PLA scaffolds with good biocompatibility are potentially to be used as implanted biomaterials for the regeneration and restoration of tissues or organs. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Separation of uranium and rare earth elements from Rirang ore leach solution by two-step precipitation

    International Nuclear Information System (INIS)

    Sradjono; Erni Rifandriyah, A.; Zahardi

    1995-01-01

    Separation of uranium and rare-earth elements from Rirang ore leach solution was carried out through a two-step precipitation. Several condition affecting the separation processes were examined including solution pH, reagent concentration, and reaction prepitation time. Optimum conditions for the first and second precipitation steps include adjustment of precipitation pH to 1.3 and 2.3, respectively by the addition of 7.3% of NH 4 OH solution and allowing 60 minutes precipitation/reaction time. Based on the conditions, about 6% of Th, 3% of U, 0.9% of PO 4 3- , and none of RE were recovered in the first precipitation step meanwhile, about 99% of RE, 55% of U, 76% of PO 4 3- , and of the Th were recovered in the second step. (author). 3 refs. 4 tabs. 4 figs

  10. Comparison of oxidants in alkaline leaching of uranium ore

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Srinivas, K.; Anand Rao, K.; Manmadha Rao, M.; Venkatakrishnan, R.R.; Padmanabhan, N.P.H.

    2007-01-01

    The uranium minerals occurring in various ore deposits consists of predominantly uranous ion (U +4 ), necessitating use of an oxidant and other lixiviants for efficient dissolution during leaching. Unlike acid leaching route, where uranium minerals dissolution could be achieved efficiently with cheaper lixiviants, processing of ores by alkaline leaching route involve expensive lixiviants and drastic leaching conditions. Alkaline leaching of uranium ores becomes economical only upon using cheaper and efficient oxidants and conservation of other reagents by their recycle. The present paper gives efficacy of various oxidants - KMnO 4 , NaOCl, Cu - NH 3 , air and oxygen, in the leaching of uranium from a low-grade dolostone hosted uranium ore of India. A comparison based on technical merits and cost of the oxidant chemicals is discussed. (author)

  11. Biocatalytic and chemical leaching of a low-grade nickel laterite ore

    Science.gov (United States)

    Ciftci, Hasan; Atik, Suleyman; Gurbuz, Fatma

    2018-04-01

    Nickel and cobalt recovery from a low-grade nickel laterite ore, supplied from Çaldağ deposit (Manisa, Turkey) were investigated by bio and chemical leaching processes. The fungus, Aspergillus niger was used for biocatalytic leaching experiments. The effects of parameters (solid ratio and sucrose concentration) on the biocatalytic leaching of the ore were initially tested in flasks to obtain the optimum conditions for the A. niger. Then chemical leaching was applied as a comparison to bioleaching, using organic acids (citric, oxalic, acetic and gluconic acids) as well as a mixture of acids. According the results, the maximum dissolution yield of nickel, cobalt and iron were detected respectively as 95.3%, 74.3% and 50.0% by biocatalytic processes which containing 25% (w/v) sucrose and 1% (w/v) solids. The increase in the solid ratio adversely influenced the biocatalytic activity of A. niger. Finally, further tests in reactors (v = 1 and 10 L) were performed using the optimum conditions from the flask tests. The difference in metals recovery between biocatalytic and chemical leaching was significantly important. Bioleaching produced higher Ni and Co extractions (34.3-75.6%) than chemical process.

  12. Remediation of hazardous waste sites by heap leaching

    International Nuclear Information System (INIS)

    Samani, Z.; Hanson, A.; Dwyer, B.

    1994-01-01

    Efforts are being made to devise technologies and treatment systems to remediate contaminated soil-on site without generating significant wastes for off-site disposal. Heap leaching, a technique used extensively in the mining industry, has been investigated as a method for remediation of hazardous chemical contamination of the vadose zone. In the mining industry, metal-bearing ore is excavated and mounded on a pad. The metals are removed by passing a special leaching solution through the ore. In this study, the removal of chromium(VI) from the New Mexico soils (sand, sandy loam, and clay) using heap leaching was evaluated at a column scale. The heap leaching study demonstrated greater than 99% removal of Cr(VI) from all three soils using tap water as the leaching agent. (author) 13 figs., 5 tabs., 21 refs

  13. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-12

    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  14. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  15. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    OpenAIRE

    Yiqian Ma; Srecko Stopic; Lars Gronen; Milovan Milivojevic; Srdjan Obradovic; Bernd Friedrich

    2018-01-01

    Eudialyte is a promising mineral for rare earth elements (REE) extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time ...

  16. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  17. Leaching of nuclear power reactor waste forms

    International Nuclear Information System (INIS)

    Endo, L.S.; Villalobos, J.P.; Miyamoto, H.

    1987-01-01

    The leaching tests for immobilized power reactor wastes carried out at IPEN are described. These wastes forms consist mainly of spent resins and boric acid concentrates solidified in ordinary Portland cement. All tests were conducted according to the ISO and IAEA recommendations. Three years leaching results are reported. The cesium diffuvity coefficients determined out of these results are about 1 x 10 -8 cm 2 /s for boric acid waste form and 9 x 10 -9 cm 2 /s for ion-exchange resin waste. Strontium diffusivity coefficients found are about 3 x 10 -11 cm 2 /s and 9 x 10 -11 cm 2 /s respectively. (Author) [pt

  18. Leaching of Major and Minor Elements during the Transport and Storage of Coal Ash Obtained in Power Plant

    Directory of Open Access Journals (Sweden)

    Rada Krgović

    2014-01-01

    Full Text Available In power plant, coal ash obtained by combustion is mixed with river water and transported to the dump. Sequential extraction was used in order to assess pollution caused by leaching of elements during ash transport through the pipeline and in the storage (cassettes. A total of 80 samples of filter ash as well as the ash from active (currently filled and passive (previously filled cassettes were studied. Samples were extracted with distilled water, ammonium acetate, ammonium oxalate/oxalic acid, acidic solution of hydrogen-peroxide, and a hydrochloric acid. Concentrations of the several elements (Al, As, Cd, Co, Cu, Cr, Fe, Ba, Ca, Mg, Ni, Pb, and Zn in all extracts were determined by inductively coupled plasma atomic emission spectrometry. Pattern recognition method was carried out in order to provide better understanding of the nature of distribution of elements according to their origins. Results indicate possible leaching of As, Ca, Cd, Cu, Zn, and Pb. Among these elements As, Cd, and Pb are toxicologically the most important but they were not present in the first two phases with the exception of As. The leaching could be destructive and cause negative effects on plants, water pollution, and damage to some life forms.

  19. A method of measuring airborne acidity: its application for the determination of acid content on long-distance transported particles and in drainage water from spruces

    Science.gov (United States)

    Cyrill Brosset

    1976-01-01

    The acid properties of particles have been investigated by means of measuring the content of mainly strong acid in leaching solutions of particle samples and in drain water from trees. The measurements are based on Gran's plot and on a study of its curvature.

  20. Ageing behaviour of unary hydroxides in trivalent metal salt solutions

    Indian Academy of Sciences (India)

    LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of ...

  1. Hydrometallurgical Process and Kinetics of Leaching Manganese from Semi-Oxidized Manganese Ores with Sucrose

    Directory of Open Access Journals (Sweden)

    Yuhong Wang

    2017-02-01

    Full Text Available The extraction of manganese from a semi-oxidized manganese ore was investigated with sucrose as the reducing agent in dilute sulfuric acid medium. The kinetics of leaching manganese from the complex ore containing MnCO3 and MnO2 was also investigated. The effects of sucrose and sulfuric acid concentrations, leaching temperature and reaction time on the total Mn (TMn, MnO2 and MnCO3 leaching were investigated. Results showed that MnCO3 could more easily react with hydrogen ions than MnO2 in ores, and MnO2 decomposition could be advantageous for MnCO3 leaching. The leaching efficiencies of 91.8% for total Mn, 91.4% for MnO2 and 96.9% for MnCO3 were obtained under the following optimized conditions: 0.035 mol/L sucrose concentration, 5 mol/L sulfuric acid concentration, 60 min of reaction time and 363.2 K of leaching temperature. In addition, it was found that the leaching process of semi-oxidized manganese ore follows the shrinking core model and the leaching rate was controlled by chemical reaction and diffusion. The apparent activation energy of the total manganese, MnO2, and MnCO3 leaching were 40.83, 40.59, and 53.33 kJ·mol−1, respectively.

  2. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  3. Uranium Leaching from Contaminated Soil Utilizing Rhamnolipid, EDTA, and Citric Acid

    Directory of Open Access Journals (Sweden)

    Sara Asselin

    2014-01-01

    Full Text Available Biosurfactants have recently gained attention as “green” agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining and Leupp (control—no mining. The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 μM was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash.

  4. Rates of leaching of radium from contaminated soils: an experimental investigation of radium bearing soils from Port Hope, Ontario

    International Nuclear Information System (INIS)

    Nathwani, J.S.; Phillips, C.R.

    1978-01-01

    The leachability of Ra-226 from soil at Port Hope, Ontario contaminated by waste from a long established U refinery is described here. A small-scale static leach test was devised to provide information to permit an assessment of hazard due to leaching in the environment. Two different leaching solutions were prepared to simulate a range of infiltrating water quality in disposal environments: one by bubbling CO 2 into distilled water to pH 5.5, and another by bubbling SO 2 into water to pH 3.5. Narrow-range size fractions of the soils (i.e. 0.250 to 0.105 mm) were leached for 30 to 45 days (equivalent rainfall of 2 to 3 yr). It was found that leaching is significantly affected by soil texture, total amounts leached and the maximum concentrations reached being much greater for coarser, and intermediate size fractions than for fine soil fractions. Also, leachant acidity significantly increased leaching rates and resulted in enhanced mobility in soils. A straight line for the plot of Q/Q 0 (cumulative fraction released) vs. Tsup(1/2) (T is leaching time in days) indicated that leaching could be considered to be a diffusion phenomenon in accordance with Fick's law. Diffusion coefficients ranging from 5 X 10 -11 to 2 X 10 -13 cm 2 day -1 were found. These coefficients provide a basis for estimating the fraction that would be leached over longer periods. (Auth.)

  5. Treatment of the acid mine drainage residue for uranium recovery

    International Nuclear Information System (INIS)

    Dias, M.M.; Horta, D.G.; Fukuma, H.T.; Villegas, R.A.S.; Carvalho, C.H.T. de; Silva, A.C. da

    2017-01-01

    Acid mine drainage (AMD) is a process that occurs in many mining that have sulfide ores. With water and oxygen, several metals are oxidized, one example being uranium. At the mine pit of the Osamu Utsumi Mine located at INB - Caldas and in two other boot-wastes (mining waste pile), AMD is present and currently, without a technological solution. The acidic water present in the pit is treated with hydrated lime, generating water for disposal and an alkaline residue called calcium diuranate - DUCA. The DUCA has a concentration of approximately 0.32% U 3 O 8 , which makes interesting the development of a process for extracting that metal. One of the processes that can be used is leaching. For this study, it was decided to evaluate the alkaline leaching to extract the uranium present in the residue. It is necessary to optimize operational parameters for the process: percentage of solids, concentration of leaching agent in solution, temperature and reaction time. With these parameters, it is possible to improve the leaching so that the largest amount of uranium is extracted from the sample, to help solve the environmental impact caused by the wastewater from the treatment of acid waters and, in addition, to give an economical destination for this metal that is contained in the deposited DUCA

  6. The study on the pH behavior of the HFSC leached solution. The development of model considering the pozzolanic reaction

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Mihara, Morihiro

    2005-09-01

    The development of low alkalinity cement (high fly-ash contained silica-fume cement, HFSC) has been carried out in JNC. Low alkalinity for this cement is achieved by adding pozzolan materials to ordinary portland cement and Ca ion attributed to high alkalinity is consumed by forming CHS gel. This report shows the calculation model to predict the composition for HFSC reacted solution which considers cement mineral dissolution/precipitation as equilibrium reactions and dissolution for pozzolan material as a kinetic reaction. The dissolution kinetic equation for pozzolan material is also derived from leaching experiment. This calculation model is applied to the leaching experiment where powdered HFSC was reacted with distilled water. As a result of comparison between calculation and experimental measurement at the early stage for leaching the tendency for pH, pH decrease from 12.5 to 11.5 drastically, could be interpreted by this calculation model, however, after this drastic pH decreasing pH predicted by calculation model also shows drastic decrease whereas pH for experiment decreased mildly around pH 11.5. It could be thought that this difference between experiment and calculation is caused by inappropriate modelling for CSH gel dissolution/precipitation of C/S value lower than 1.0. For this C/S range thermodynamic data for intermediate and end member for solid solution for CSH gel and in addition the reaction kinetic for CSH gel should be examined in detail. (author)

  7. Extraction of uranium and copper from sulphate leach liquors of West Central Sinai uraniferrous siltstone of Egypt

    International Nuclear Information System (INIS)

    Amer, T.E.; Mahdy, M.A.; El-Hazek, N.T.; El Bayoumi, R.M.; Hassanein, S.

    2000-01-01

    Extraction of uranium and copper from sulphate leach liquors of west central Sinai ore samples were performed using solvent extraction technique. Sulphate leach solutions were processed for the extraction of copper using 3% v/v LIX 973N. Copper extractions higher than 98.1% were obtained. Then, uranium was extracted using a tertiary amine. Two amines have been studied 2% v/v tri-n-octyl amine and 1.5% Alamine 336. Parameters studied included solvents concentration, contact time and solution pH. Stripping of uranium and copper were studied using sodium carbonate and sulphuric acid, respectively. Conditions were established for determining the number of stages required for extraction and stripping of copper and uranium through the construction of the corresponding McCabe-Theile diagrams. The results obtained have been utilized to formulate a proposed flowsheet for the production of uranium and copper from west central Sinai ore samples. (author)

  8. Commercial application of bacterial heap leaching in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Liu Jian; Fan Baotuan; Meng Yunsheng; Xiao Jinfeng; Chen Sencai; Wu Jinjing; Liu Chengwu; Wu Yichang; Zeng Ruilong

    2003-01-01

    In this paper the situation of commercial application on bacterial heap leaching in Ganzhou Uranium Mine is introduced, and the construction of biomembrane oxidizing tank, regeneration and recycled utilization of barren solution are summarized. Total five heaps, 18436 t, uranium ore are leached by bacteria during the half of a year. The result is consistent with that of commercial experiment. The technology of bacterial heap leaching is more perfected

  9. Leaching studies on SYNROC at 950C and 2000C

    International Nuclear Information System (INIS)

    Oversby, V.M.; Ringwood, A.E.

    1982-01-01

    Crushed samples of SYNROC containing 9%, 16% and 20% of simulated high-level nuclear waste were tested for leaching behavior in distilled water at 95 0 C and 200 0 . Leach solutions were analyzed for Cs, Ca, Ba, Sr, Ti, Zr, Nd and U. Results showed that leach rates based on these elements did not change significantly as the waste loading was increased from 9 to 20%. At both temperatures, leach rates showed a decrease as leaching progressed until a plateau level was reached. Plateau leach rates, which were between 10 and 100 times lower than initial leach rates, reflect the expected long term leaching behaviour of the samples. Plateau values of leach rates for SYNROC depend on the element being leached. Highest values are found for Cs and Ba (1 to 2 x 10 -7 g/cm 2 d at 95 0 C) and lowest values for U (5 x 10 -10 g/cm 2 d at 95 0 C). Increasing leaching temperature to 200 0 C produces higher leach rates for all elements except Nd. Comparison of SYNROC leach rate data with that for PNL 76-68 glass shows that at 200 0 C the leach rate for U from SYNROC is 3000 times less than that from glass. (Auth.)

  10. Indium recovery from acidic aqueous solutions by solvent extraction with D2EHPA: a statistical approach to the experimental design

    Directory of Open Access Journals (Sweden)

    Fortes M.C.B.

    2003-01-01

    Full Text Available This experimental work presents the optimization results of obtaining a high indium concentration solution and minimum iron poisoning by solvent extraction with D2EHPA solubilized in isoparaffin and exxsol. The variables studied in the extraction step were D2EHPA concentration, acidity of the aqueous phase and time of contact between phases. Different hydrochloric and sulfuric acid concentrations were studied for the stripping step. The optimum experimental conditions resulted in a solution with 99% indium extraction and less than 4% iron. The construction of a McCabe-Thiele diagram indicated two theoretical countercurrent stages for indium extraction and at least six stages for indium stripping. Finally, the influence of associated metals found in typical sulfate leach liquors from zinc plants was studied. Under the experimental conditions for maximum indium extraction, 96% indium extraction was obtained, iron extraction was about 4% and no Ga, Cu and Zn were co-extracted.

  11. URANIUM LEACHING AND RECOVERY PROCESS

    Science.gov (United States)

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  12. A recovery of gold from electronic scrap by mechanical separation, acid leaching and electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, K.I.; Lee, J.C.; Lee, C.K.; Joo, K.H.; Yoon, J.K.; Kang, H.R.; Kim, Y.S.; Sohn, H.J.

    1995-12-31

    A series of processes to recover the gold from electronic scrap which contains initially about 200--600 ppm Au have been developed. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The scrap was leached in 50% aqua regia solution and gold was dissolved completely at 60 C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. This resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour in electrowinning process.

  13. Leaching characteristics of Wadi Belih uraniferous Hammamat sediments,eastern desert,Egypt

    International Nuclear Information System (INIS)

    Mahdy, M.A.; EL-Hazek, M.N.

    1998-01-01

    This work deals with the direct chemical treatment of Wadi Belih uraniferous ore material using the agitation leaching technique. The study ore is mainly localized in siltstones belonging to the Hammamat sediments situated in the northern part of the eastern desert. The uranium mineral in the ore are mainly represented by the silicate mineral uranophane, the vanadate mineral tyuyamunite and to a laser extent the sulphate mineral shroekingerite, both acid (sulphuric acid) alkaline (sodium carbonate and bicarbonate) leaching methods have been applied beside sodium and ferric chlorides. The latter leaching reagents are greatly beneficial in removing radium together with uranium, a matter which is greatly important for environmental concerns

  14. A perspective of stepwise utilisation of Bayer red mud: Step two—Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanfang; Chai, Wencui; Han, Guihong, E-mail: guihong-han@hotmail.com; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    Highlights: • An integrated process for the stepwise disposal of red mud was proposed. • Extracting and recovering Ti from Ti-enriched tailing was the second step. • The factors influencing acid leaching and precipitate flotation were examined. • The extracting of metals in concentrated H{sub 2}SO{sub 4} was controlled by diffusion reactions. • [Hbet][Tf{sub 2}N] was an effective precipitating reagent with its coordination mechanism. - Abstract: The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti{sup 4+}, Al{sup 3+} and Fe{sup 3+}, and the mechanism of selectively Fe{sup 3+} removal using [Hbet][Tf{sub 2}N] as precipitating reagent were discussed. The extracting of Ti{sup 4+}, Al{sup 3+} and Fe{sup 3+} in concentrated H{sub 2}SO{sub 4} is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti{sup 4+} is approximately 92.3%, whereas Al{sup 3+} and Fe{sup 3+} leaching are respectively 75.8% and 84.2%. [Hbet][Tf{sub 2}N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti{sup 4+}, whereas the dosage of precipitating reagent is that for Al{sup 3+} recovery. The maximum flotation recovery of Ti{sup 4+} is 92.7%, whereas the maximum Al{sup 3+} recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti{sup 4+} of 15.5 g/L, Al{sup 3+} of 30.4 g/L and Fe{sup 3+} of 0.48 g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation.

  15. Leaching from denture base materials in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lygre, H.; Solheim, E.; Gjerdet, N.R. [School of Medicine, Univ. of Bergen (Norway)

    1995-04-01

    Specimens made from denture base materials were leached in Ringer Solution and in ethanol. The specimens comprised a heat-cured product processed in two different ways and two cold-cured materials. The organic compounds leaching from the specimens to the solutions were separated, identified, and quantified by a combined gas-chromatography and gas-chromatography/mass-spectrometry technique. Additives and degradation products, possibly made by free radical reactions, were released from the denture base materials. In Ringer solution only phthalates could be quantified. In ethanol solvent, biphenyl, dibutyl phthalate, dicyclohexyl phthalate, phenyl benzoate, and phenyl salicylate were quantified. In addition, copper was found in the ethanol solvent from one of the denture base materials. The amount of leachable organic compounds varies among different materials. Processing temperature influences the initial amount of leachable compounds. 36 refs., 7 figs., 1 tab.

  16. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    International Nuclear Information System (INIS)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60 degree C) or long extraction times (23 h). Adding KMnO 4 in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium

  17. Investigation of the effect of some parameters on the degree of leaching antimony from stibnite

    Directory of Open Access Journals (Sweden)

    Remeteiová Dagmar

    1998-12-01

    Full Text Available The paper presents results of experiments of agitation leaching of antimony from stibnite in alkaline solutions of Na2S +NaOH. The influence of different solution solutions ratio of the reacting phases and of different rate of stirring on the degree of leaching of antimony was investigated.

  18. LEACHING AND DEGRADATION OF 2,4-DICHLOROPHENOXIACETIC ACID, IN COLOMBIA RICE FLOODED SOIL.

    Science.gov (United States)

    Huertas, J; Guerrero, J A; Martinez-Cordon, M J

    2015-01-01

    Rice is mostly cultivated on soil held under flooded conditions. Under these conditions pesticides undergo reductive transformations which are characteristic to rice fields and other anaerobic systems. The present study was undertaken to evaluate the mobility and persistence of 2,4-dichlorophenoxy acetic acid (2,4-D) under laboratory conditions for the rice crop in Espinal, Colombia. A displacement study was performed on a hand packed soil column 30 cm length. After leaching experiment, the soil from column was sliced into six successive sections (5 cm). Methanol acidified (H3PO4 0.25%) extraction was used to determine the herbicide residues in each section. 2,4-D experimental breakthrough curve was analyzed using Stanmod program (inverse problem) to obtain transport parameters. The non-equilibrium physical model fitted well the experimental breakthrough curve. The recovery percent of 2,4-D in leachates was 36.44% after 3.4 pore volumes, and retardation factor was 2.1, indicating low adsorption in that conditions. 2,4-D was rapidly degraded, with DT50 = 11.4 days. The results suggest that 2,4-D under flooded conditions have a high potential for leaching through the soil profile, although the elevated rate of degradation reduced the ground water contamination risk.

  19. Multistage dilute acid leaching of a medium grade iron ore to super-concentrate

    Directory of Open Access Journals (Sweden)

    Adeleke A.A.

    2014-01-01

    Full Text Available The phosphorous laden Koton Karfe iron ore is a medium grade iron ore deposit in Nigeria that can be upgraded as a super-concentrate for use at the Aladja Steel Midrex plant. The 75 μm size sample fraction of the ore was preconcentrated with shaking table and leached in the oven at atmospheric pressure with dilute hydrochloric acid in single and multistage leaching sequences of H2O-HCl-H2O and HCl-H2O-H2O. The as-received, as-tabled and asleached samples were then subjected to X-ray fluorescence and microscopic analyses. The results obtained showed that the H2O-HCl-H2O route produced a higher grade concentrate that assayed 68.54% Fe indicating about 58% upgrade in iron content; while the phosphorus and sulphur contents were reduced by about 77 and 99.6% respectively. In addition, the silicon, manganese, and titanium contents were drastically reduced, while potassium was completely eliminated. The upgrade of iron content in the ore to 68.54% and the drastic reduction in phosphorous and sulphur contents has thus rendered the Koton Karfe iron ore suitable for use as a super concentrate for the Aladja steel plant direct reduction iron making process.

  20. Transport and reaction kinetics at the glass:solution interface region: results of repository-oriented leaching experiments

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Bates, J.K.

    1987-01-01

    Repository-oriented leaching experiments involving Savannah River Laboratory (SRL) 165 type glass under a γ-radiation field (1 +/- 0.2 x 10 4 R/h) have been performed by the Nevada Nuclear Waste Storage Investigations (NNWSI) project. In this communication, they discuss glass surface analyses obtained by SEM, nuclear resonance profiling, and SIMS together with leachate solution data in relation to a mechanism that couples diffusion, hydrolysis (etching and gelation), and precipitation to qualitatively describe the release of different glass components to the leachant solutions. The release of mobile (e.g., Li) and partly mobile (e.g., B) species is controlled primarily by interdiffusion with water species across the interdiffusion zone. Glass components that are immobile in the interdiffusion zone are released to the solution by etching. For prediction of long-term steady-state concentrations of glass components with low solubility, the relative rates of release from the glass and secondary mineral precipitation must be taken into account. 20 references, 5 figures, 1 table

  1. Investigation of Enhanced Leaching of Lithium from α-Spodumene Using Hydrofluoric and Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2017-10-01

    Full Text Available An effective method using hydrofluoric and sulfuric acid was proposed to enhance the leaching of lithium from α-spodumene, without calcination that is subjected to 1000 °C for phase transformation. The thermodynamic feasibility of the reactions was firstly verified. Dissolution conditions were tested to maximize the leaching efficiency of lithium and with efficient utilization of hydrofluoric acid (HF served as evaluation criteria. The results showed that 96% of lithium could be transferred into lixivium with an ore/HF/H2SO4 ratio of 1:3:2 (g/mL/mL, at 100 °C for 3 h. Due to the fact that HF molecules were the main reaction form, the dissolution behaviors were theoretically represented and investigated by dissolution in HF/H2SO4. When combined with chemical elements analyses and characterizations, the results of the dissolution behaviors revealed that α-spodumene and albite were preferentially dissolved over quartz. Insoluble fluoroaluminates, such as AlF3, cryolite (Na3AlF6 and cryolithionite (Na3Li3Al2F12, were generated and might be further partially dissolved by H2SO4. Fluorosilicates, such as K2SiF6, Na2SiF6, or KNaSiF6, were also generated as a part of the insoluble residues. This work provides fundamental insight into the role of HF/H2SO4 played in the dissolution of α-spodumene, and sheds light on a novel and promising process to efficiently extract lithium.

  2. Temporal and spatial variation in the status of acid rivers and potential prevention methods of AS soil-related leaching in peatland forestry

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.

    2013-06-01

    This thesis examines temporal and spatial variations in the status of different rivers and streams of western Finland in terms of acidity and sources of acid load derived from the catchment area. It also examines the monitoring of acid runoff water derived from maintenance drainage in peatland forestry and suggests potential mitigation methods. A total of 17 river basins of different sizes in western Finland were selected for study, including rivers affected by both drainage of agricultural AS soils and forested peatlands. Old data from 1911-1931 were available, but most data were from the 1960s onwards and were taken from the HERTTA database. During 2009-2011, pH and conductivity measurements and water sampling were conducted. Biological monitoring for ecological classification was conducted in the Sanginjoki river system during 2008 and 2009. Three peatland forestry sites were selected to study acid leaching via pH and EC measurements and water sampling. Fluctuations in groundwater level in different drainage conditions were simulated and acid leaching was investigated in laboratory experiments in order to replicate a situation where the groundwater level drops and allows oxidation of sulphidic materials. It was found that river pH decreased and metal concentrations increased with runoff. The highest acidity observed coincided with periods of intense drainage in the 1970s and after dry summers in the past decade. Together with pH, electric conductivity and sulphate in river water were identified as suitable indicators of AS soils in a catchment, because they directly respond to acid leaching derived from AS soils. Acidity derived from organic acids was clearly observed in catchments dominated by forested peatlands and wetlands. Temporal and spatial variations in ecological status were observed, but monitoring at whole-catchment scale and during consecutive years is needed to increase the reliability of the results. Simulations on the potential effects of

  3. Use of low-cost heat sources to improve the efficiency of heap leaching of uranium ores. Part of a coordinated programme on bacterial leaching of uranium ores

    International Nuclear Information System (INIS)

    Ajuria, S.

    1977-12-01

    Basic technical parameters are given of two solar heaters designed for use in heap leaching of uranium ores. Inexpensive and easily available materials such as flat glass panes, glass tubing and corrugated metal sheets were used in the construction of the heaters. Under optimum conditions, the heaters can produce temperature differentials of 52 0 C (50 0 C) at the flow rate of 30ml/min. The dependence of percent recovery on the temperature of solutions in heap leaching of ore from 'El Nopal' was studied. Even though no precise correlation was found, an increase in the temperature of solutions seems to improve the efficiency of heap leaching

  4. Dynamic leaching test of personal computer components.

    Science.gov (United States)

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.

  5. Separation of thiosulfate and the polythionates in gold thiosulfate leach solutions by capillary electrophoresis.

    Science.gov (United States)

    O'Reilly, John W; Dicinoski, Greg W; Miura, Yasuyuki; Haddad, Paul R

    2003-06-01

    A technique for the separation of thiosulfate (S(2)O(3) (2-)), polythionates (S(x)O(6) (2-), x = 3 to 5) and the gold(I) thiosulfate complex (Au(S(2)O(3))(2) (3-)) using capillary electrophoresis with simultaneous UV detection at 195 and 214 nm is presented. The five species were separated in under 3 min with a total analysis time of 8 min, using an electrolyte containing 25 mM 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol (bis-tris) adjusted to pH 6.0 with sulfuric acid and an applied voltage of -30 kV. While the gold(I) thiosulfate complex could be separated from the other analytes of interest under these conditions, the quantification of this complex was not possible due to inconsistent peak areas and peak splitting effects induced by the sulfur-oxygen species in the leach matrix. Detection limits calculated for 3s pressure injection at 50 mbar ranged between 0.5-2 microM. The method was linear over the ranges 40-8000, 10-2000, 10-2000, and 5-2000 microM for thiosulfate, trithionate, tetrathionate, and pentathionate, respectively. The technique was applied successfully to leach liquors containing 0.5 M ammonium thiosulfate, 2 M ammonia, 0.05 M copper sulfate and 20% w/v gold ore, diluted 1:100 prior to analysis.

  6. Commercial experimental on bacteria heap leaching of uranium ore from Caotaobei mining area in Ganzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Meng Yunsheng; Liu Jian; Xiao Jinfeng; Chen Sencai; Cao Jianbo; Wu Yichang; Liu Chengwu

    2002-01-01

    The author presents the result of commercial experiment on bacteria heap leaching of uranium ore from Caotaobei mining area in Ganzhou Uranium Mine and summarizes the heap situation, installation of spraying and sprinkling devices, and operation management of continuous oxidizing tank of bio-membrane. The leaching rate is 92.95% and 91.88% respectively by liquid and residue measurement during 85 d bacterial leaching experiment. The acid consumption is 2.1% and the total liquid-solid ratio is 2.9 m 3 /t. Compared with conventional heap leaching, the time of bacteria heap leaching shorted about 75 d, the acid consumption reduced by 0.35% and the leaching rate improved by 2%. It is an optimize plan to reform the heap leaching technology for Caotaobei ore

  7. Recovery of uranium from different acidic solutions by di-nonyl phenyl phosphoric acid (DNPPA) and TOPO

    International Nuclear Information System (INIS)

    Mishra, S.L.; Vijayalakshmi, R.; Singh, H.

    2004-01-01

    The extraction mechanism of uranium with DNPPA in combination with TOPO has been established from different acidic media. The extraction order of uranium from these media has been found as perchlorate>nitrate>chloride>sulphate>phosphate. Based on these results extraction of uranium from samples of leach liquors generated in the plant has been carried out and >99% recovery was obtained

  8. Extraction of seawater-derived neodymium from different phases of deep sea sediments by selective leaching

    Science.gov (United States)

    Blaser, P.; Lippold, J. A.; Frank, N.; Gutjahr, M.; Böhm, E.

    2014-12-01

    In order to deduce reliable information about the interaction of the oceans with the climate system as a whole in the past, the reconstruction of water mass circulation is crucial. The analysis of seawater-derived neodymium isotopes (143Nd/144Nd, expressed as ɛNd) in marine sediments provides a unique proxy for deep water provenance in particular in the Atlantic [1]. The ɛNd signature and thus the mixing proportion of the local bottom water masses is archived in authigenic phases in the sediment. Obtaining seawater ɛNd from authigenic accretions bound to foraminiferal tests has lately become the preferred since most reliable method [2]. Attempts have also been made to extract the Nd-rich authigenic metal fraction by leaching it off the bulk sediment and thereby use this proxy with less effort, in the highest possible resolution and in sediments where foraminifera are not sufficiently present. However, often other sedimentary components are also leached in the process and contaminate the extracted Nd [3,4]. In this project several core-top and older sediments across the Atlantic have been leached in ten consecutive steps with either dilute buffered acetic acid or an acid-reductive solution. The leachates were analysed on their elemental and Nd isotope compositions, as well as rare earth element (REE) distributions. By graduating the total leaching procedure into smaller stages the results display which processes take place in the course of sediment leaching in the laboratory and which components of the sediment are most reactive. Thus, they help to better evaluate the quality of sediment leaches for ɛNd analysis. Clearly, organic calcite acts as a fast reacting buffer and at the point where its amount is sufficiently reduced the leaching of other components commences and the Nd concentration peaks. Corruption of the extracted ɛNd signal by non-authigenic sources in many cases occured early in the leaching sequence, indicating that only very cautious leaching

  9. Main means for reducing the production costs in process of leaching uranium

    International Nuclear Information System (INIS)

    Jiang Lang

    2000-01-01

    The production costs in process of leaching uranium have been reduced by controlling mixture ratio of crudes, milling particle size, liquid/solid mass ratio of leaching pulp, potential and residue acidity, and improving power equipment

  10. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  11. Leaching of actinides and technetium from simulated high-level waste glass

    International Nuclear Information System (INIS)

    Bradley, D.J.; Harvey, C.O.; Turcotte, R.P.

    1979-08-01

    Leach tests were conducted using a modified version of the IAEA procedure to study the behavior of glass waste-solution interactions. Release rates were determined for Tc, U, Np, Pu, Am, Cm, and Si in the following solutions: WIPP B salt brine, NaCl (287 g/l), NaCl (1.76 g/1), CaCl 2 (1.66 g/l), NaHCO 3 (2.52 g/l), and deionized water. The leach rates for all elements decreased an order of magnitude from their initial values during the first 20 to 30 days leaching time. The sodium bicarbonate solution produced the highest elemental release rates, while the saturated salt brine and deionized water in general gave the lowest release. Technetium has the highest initial release of all elements studied. The technetium release rates, however, decreased by over four orders of magnitude in 150 days of leaching time. In the prepared glass, technetium was phase separated, concentrating on internal pore surfaces. Neptunium, in all cases except CaCl 2 solution, shows the highest actinide release rate. In general, curium and uranium have the lowest release rates. The range of actinide release rates is from 10 -5 to 10 -8 g/cm 2 /day. 25 figures, 7 tables

  12. Percolation leaching and uranium recovery of El erediya granitic rocks, eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abdel Monem, H.M.; Ali, M.M.; Hassan, M.A.

    1998-01-01

    El erediya uranium occurrence is located in the vicinity of qena-safaga road, central eastern desert. A bulk head sample of about 50 kg was prepared for this study. mineralogically, uranophane is the essential uranium mineral identified in the studied bulk head sample. It occurs as yellow flakes and acicular grains filling fractures, whereas the gangue minerals are mainly composed of quartz, altered potash feldspar, and minor plagioclase. The head sample assays as 74.36% SiO 2 , 13.81% Al 2 O 3 and 0.091% U. Percolation leaching utilizing H 2 SO 4 was performed at a fairly low Ph value. The examined factors include Ph of the leach solution, the grain size beside the duration time. More than 97% leaching of the uranium was reported after percolating the leach solution for 6 weeks at ph 1.4. Thus it could be possible to produce a pregnant leach solution assaying more than 1.2 g U/L by using a multi-stage leaching system. For recovering uranium, tri-octyl-phosphine oxide (TOPO) in kerosene was found to be the most powerful U-extractant. Good U-distribution coefficient (E) of 103 has been obtained with 0.1 M TOPO in the presence of 0.1 M HNO 3

  13. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    Science.gov (United States)

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  14. Alpha spectrum profiling of plutonium in leached simulated high-level radioactive waste-glass

    International Nuclear Information System (INIS)

    Diamond, H.; Friedman, A.M.

    1981-01-01

    Low-geometry X-ray spectra from /sup 239/Pu and /sup 237/Np, incorporated into simulated high-level radioactive waste-glass, were transformed into depth distributions for these elements. Changes in the depth profiles were observed for a series of static leachings in 75/degree/C water. Radiochemical assay of the leach solutions revealed that little neptunium or plutonium was leached, and that the amount leached was independent of leaching time. The depth profiles of the leached specimens showed that there was selective leaching of nonradioactive components of the glass, concentrating the remaining neptunium and plutonium in a broad zone near (but not at) the glass surface. Eventual redeposition of nonradioactive material onto the glass surface inhibited further leaching

  15. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions

    International Nuclear Information System (INIS)

    Asadieraghi, Masoud; Wan Daud, Wan Mohd Ashri

    2014-01-01

    Highlights: • HF showed interesting results on EFB (empty fruit bunches) and PMF (palm mesocarp fibre) deashing. • HCl indicated maximum ash removal from PKS (palm kernel shell). • Significant pyrolysis reactions took place at ∼250 °C to ∼400 °C. • Inorganics played a considerable catalytic role during the biomasses pyrolysis. • Acid pretreatment introduced some impacts on the biomasses structure. - Abstract: To eliminate the negative impacts of inorganic constituents during biomass thermochemical processes, leaching method by different diluted acid solutions was chosen. The different palm oil biomass samples (palm kernel shell (PKS), empty fruit bunches (EFB) and palm mesocarp fiber (PMF)) were pretreated by various diluted acid solutions (H 2 SO 4 , HClO 4 , HF, HNO 3 , HCl). Acids with the highest degrees of demineralization were selected to investigate the dematerialization impacts on the biomass thermal characteristics and physiochemical structure. Thermogravimetric analysis coupled with mass spectroscopy (TGA-MS) and Fourier transform infrared spectroscopy (TGA-FTIR) were employed to examine the biomass thermal degradation. TGA and DTG (Derivative thermogravimetry) indicated that the maximum degradation temperatures increased after acid pretreatment due to the minerals catalytic effects. The main permanent evolved gases comprising H 2 , CO 2 , CO were detected online during analysis. The major permanent gases produced at the temperature range of 250–750 °C were attributed to the condensable vapors cracking and probably some secondary reactions. The physiochemical structure change of the acid-treated biomass samples was examined by using Brunauer Emmett Teller (BET) method, Scanning Electron Microscope (SEM) and FTIR. The pyrolysis kinetics of the different palm oil biomasses were investigated using first order reaction model

  16. Low leaching and low LWR photoresist development for 193 nm immersion lithography

    Science.gov (United States)

    Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara

    2006-03-01

    With no apparent showstopper in sight, the adoption of ArF immersion technology into device mass production is not a matter of 'if' but a matter of 'when'. As the technology matures at an unprecedented speed, many of initial technical difficulties have been cleared away and the use of a protective layer known as top coat, initially regarded as a must, now becomes optional, for example. Our focus of interest has also sifted to more practical and production related issues such as defect reducing and performance enhancement. Two major types of immersion specific defects, bubbles and a large number of microbridges, were observed and reported elsewhere. The bubble defects seem to decrease by improvement of exposure tool. But the other type defect - probably from residual water spots - is still a problem. We suspect that the acid leaching from resist film causes microbridges. When small water spots were remained on resist surface after exposure, acid catalyst in resist film is leaching into the water spots even though at room temperature. After water from the spot is dried up, acid molecules are condensed at resist film surface. As a result, in the bulk of resist film, acid depletion region is generated underneath the water spot. Acid catalyzed deprotection reaction is not completed at this acid shortage region later in the PEB process resulting in microbridge type defect formation. Similar mechanism was suggested by Kanna et al, they suggested the water evaporation on PEB plate. This hypothesis led us to focus on reducing acid leaching to decrease residual water spot-related defect. This paper reports our leaching measurement results and low leaching photoresist materials satisfying the current leaching requirements outlined by tool makers without topcoat layer. On the other hand, Nakano et al reported that the higher receding contact angle reduced defectivity. The higher receding contact angle is also a key item to increase scan speed. The effort to increase the

  17. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Science.gov (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  18. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  19. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.

    Science.gov (United States)

    Kumari, Aarti; Sinha, Manish Kumar; Pramanik, Swati; Sahu, Sushanta Kumar

    2018-05-01

    Increasing demands of rare earth (RE) metals for advanced technological applications coupled with the scarcity of primary resources have led to the development of processes to treat secondary resources like scraps or end of life products that are often rich in such metals. Spent NdFeB magnet may serve as a potential source of rare earths containing around ∼30% of neodymium and other rare earths. In the present investigation, a pyro-hydrometallurgical process has been developed to recover rare earth elements (Nd, Pr and Dy) from the spent wind turbine magnet. The spent magnet is demagnetized and roasted at 1123 K to convert rare earths and iron to their respective oxides. Roasting of the magnet not only provides selectivity, but enhances the leaching efficiency also. The leaching of the roasted sample with 0.5 M hydrochloric acid at 368 K, 100 g/L pulp density and 500 rpm for 300 min selectively recovers the rare earth elements almost quantitatively leaving iron oxide in the residue. Leaching of rare earth elements with hydrochloric acid follows the mixed controlled kinetic model with activation energy (E a ) of 30.1 kJ/mol in the temperature range 348-368 K. The leaching mechanism is further established by characterizing the leach residues obtained at different time intervals by scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Individual rare earth elements from the leach solution containing 16.8 g/L of Nd, 3.8 g/L Pr, 0.28 g/L of Dy and other minor impurity elements could be separated by solvent extraction. However, mixed rare earth oxide of 99% purity was produced by oxalate precipitation followed by roasting. The leach residue comprising of pure hematite has a potential to be used as pigment or can find other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.

    Science.gov (United States)

    Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi

    2017-07-01

    A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    Science.gov (United States)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-04-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  2. Kinetic and Mechanism Study of Vanadium Acid Leaching from Black Shale Using Microwave Heating Method

    Science.gov (United States)

    Wang, Jing-peng; Zhang, Yi-min; Huang, Jing; Liu, Tao

    2018-06-01

    The leaching kinetics of the vanadium leaching process were investigated by the comparison of microwave heating and conventional heating methods. Microwave heating with CaF2 had a synergistic effect and improved the vanadium leaching efficiency. In contrast to conventional heating leaching, microwave heating accelerated the vanadium leaching rate by approximately 1-3% and by approximately 15% when CaF2 was also used. The kinetics analysis showed that the calculated activation energy decreased in the microwave heating method in the presence and absence of CaF2. The control procedure of leaching also changed from a chemical reaction control step to a mixed chemical diffusion control step upon the addition of CaF2. Microwave heating was shown to be suitable for leaching systems with diffusion or mixed chemical diffusion control steps when the target mineral does not have a microwave absorbing ability.

  3. Leaching of RA-226 contaminated gravel using different aqueous treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A; Abulfaraj, W H; Sohsah, M A [King Abdulaziz University, Jeddah, Saudi Arbabia (Saudi Arabia)

    1997-12-31

    Investigation of the efficiencies of different aqueous leaching treatments was carried out on gravel artificially contaminated with Ra-226. The extent of leaching efficiency was determined in terms of Ra-226 and its daughter Rn-222. Liquid scintillation counting using high efficiency mineral oil based liquid scintillator was the technique adopted for measuring Ra-226 and Rn-222 leached off the contaminated gravel. Water, dilute solutions of barium chloride and HCl were used as leachants. Different masses of gravel were leached with 200 mL of leachant for various contact time periods. The leached Rn-222 activity measured was plotted vs the decay factor e; from which Rn-222 and Ra-226 originally present in the sample were determined. Several leaching parameters were tested; namely type of leachant, leachant volume/gravel mass ratio, leachant contact time, effect of varying Ba Cl{sub 2} concentration, and successive leaching. Optimization of the leaching parameters for desorption of Ra-226 off the contaminated gravel under laboratory conditions may help determine the ideal conditions for remediating soil contaminated with radium or chemically similar radionuclides. 7 figs.

  4. Process and equipment for in situ ore leaching

    International Nuclear Information System (INIS)

    Roussel, J.

    1983-01-01

    A solution for the leaching of uranium, cobalt, copper, ... ores is injected then extracted in a recovery well after extraction of the metal the solution is pressurized and oxygenated. During injection the pressure is maintained constant for a maximum oxygenation without bubble formation [fr

  5. Identification of chemical processes influencing constituent mobility during in-situ uranium leaching

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Hostetler, C.J.; Deutsch, W.J.

    1984-07-01

    In-situ leaching of uranium has become a widely accepted method for production of uranium concentrate from ore zones that are too small, too deep, and/or too low in grade to be mined by conventional techniques. One major environmental concern that exists with in-situ leaching of uranium is the possible adverse effects mining might have on regional ground water quality. The leaching solution (lixiviant), which extracts uranium from the ore zone, might also mobilize other potential contaminants (As, Se, Mo, and SO 4 ) associated with uranium ore. Column experiments were performed to investigate the geochemical interactions between a lixiviant and a uranium ore during in-situ leaching and to identify chemical processes that might influence contaminant mobility. The analytical composition data for selected column effluents were used with the MINTEQ code to develop a computerized geochemical model of the system. MINTEQ was used to calculate saturation indices for solid phases based on the composition of the solution. A potential constraint on uranium leaching efficiency appears to be the solubility control of schoepite. Gypsum and powellite solubilities may limit the mobilities of sulfate and molybdenum, respectively. In contrast, the mobilities of arsenic and selenium were not limited by solubility constraints, but were influenced by other chemical interaction between the solution and sediment, perhaps adsorption. Bulk chemical and mineralogical analyses were performed on both the original and leached ores. Using these analyses together with the column effluent data, mass balance calculations were performed on five constituents based on solution chemical analysis and bulk chemical and γ-spectroscopy analysis for the sediment. 6 references, 10 figures, 10 tables

  6. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility.

    Science.gov (United States)

    Missong, Anna; Holzmann, Stefan; Bol, Roland; Nischwitz, Volker; Puhlmann, Heike; V Wilpert, Klaus; Siemens, Jan; Klumpp, Erwin

    2018-09-01

    The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; C org : 3-17%; Al: leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Leaching studies of heavy concrete material for nuclear fuel waste immobilization containers

    International Nuclear Information System (INIS)

    Onofrei, M.; Raine, D.; Brown, L.; Hooton, R.D.

    1989-08-01

    The leaching behaviour of a high-density concrete was studied as part of a program to evaluate its potential use as a container material for nuclear fuel waste under conditions of deep geologic disposal. Samples of concrete material were leached in deionized distilled water, Standard Canadian Shield Saline Solution (SCSSS), SCSSS plus 20% Na-bentonite, and SCSSS plus granite and 20% Na-bentonite under static conditions at 100 degrees celsius for periods up to 365 days. The results of these leaching experiments suggest that the stability of concrete depends on the possible internal structural changes due to hydration reactions of unhydrated components, leading to the formation of C-S-H gel plus portlandite (Ca(OH) 2 ). The factors controlling the concrete leaching process were the composition of the leachant and the concentration of elements in solution capable of forming precipitates on the concrete surface, e.g., silicon, Mg 2+ and Ca 2+ . The main effect observed during leaching was an increase in groundwater pH (from 7 to 9). However, the addition of Na-bentonite suppressed the normal tendency of the pH of the groundwater in contact with concrete to rise rapidly. It was shown that the solution concentration of elements released from the concrete, particularly potassium, increased in the presence of Na-bentonite

  8. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  9. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Determination of metals and rare earths in leach solution of phosphogypsum by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Costa, Gabriela J.L.; Saueia, Catia H.R.; Mazzilli, Barbara P.

    2011-01-01

    The phosphogypsum is a sub-product of the fertilizer industries and is composed of the gypsum matrix (CaSO 4 .2H 2 O) which naturally contains high tenors of impurities such as 2P O 5 and metals coming from the original phosphat rock. The Brazilian phosphogypsum and the various uses has been researched through his elementary and radiochemistry characterization. This work determine the metals (As, Ba, Co and Se) and rare earths (La, Ce, Sm, Eu, Tb and Lu) presents in samples of phosphogypsum leach solutions

  11. Leaching of the antimony and accompanying of elements Sb2S3 in the alkaline medium

    Directory of Open Access Journals (Sweden)

    Dagmar Remeteiová

    2007-06-01

    Full Text Available This paper presents results of the laboratory investigation of alkaline leaching of stibnite that is an important mineral occuring in the antimony-bearing raw materials. The following components were present in stibnite: Sb2S3, SiO2, ZnS, FeS2. The aim of this study was to establish the effect of composition of the aqueous alkaline leaching medium (1 % NaOH, 1 % NaOH + 1 % Na2S2O3, 1 % NaOH + 1 % Na2S on the recoveries of Sb, Fe, Pb, Zn, Cu, Ni and Hg. The antimony recoveries in the leaching solutions NaOH and NaOH + Na2S2O3 solutions were lower in comparison with the leaching in NaOH + Na2S. The Fe, Pb, Zn recoveries in alkaline solutions were found to decrease in the following order: Fe, Pb, Zn. The mercury recovery in the leaching test with the solution containing 1 % NaOH+1 % Na2S was 3,7 %.

  12. Alkaline leaching of coal by the mechanochemical treatment

    Directory of Open Access Journals (Sweden)

    Turèániová ¼udmila

    1998-09-01

    Full Text Available The possibility of application of a new process GACL (Grinding and Aqueous Caustic Leaching for the reduction of mineral components in the brown coal Nováky was tested. The simultaneous grinding and chemical leaching enable us to extract 41 % total sulphur, 95 % arsenic and to reduce the ash content to 43 %. The process proceeds at the atmospheric pressure, temperature 90oC and in diluted NaOH solutions (5 %.

  13. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T

    2004-10-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am{sup -2}) conditions in the FM-01 LC flow cell.

  14. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    International Nuclear Information System (INIS)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T.

    2004-01-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am -2 ) conditions in the FM-01 LC flow cell

  15. Studies on Benzo-DODA encapsulated polymeric beads for separation of Pu from acidic solution

    International Nuclear Information System (INIS)

    Singh, K.K.; Panja, S.; Kumar, M.; Ruhela, R.; Tripathi, S.C.; Singh, A.K.; Hubli, R.C.; Bajaj, P.N.

    2014-01-01

    High level liquid waste (HLLW) generated during the reprocessing of spent fuel contains a few mg of Pu per litre of waste volume. Therefore, there is a need for selective separation of Pu from above solution as well as other such acidic waste streams. The widely used technology for separation and recovery of metal ions from radioactive wastes is liquid-liquid extraction.Though, such technologies play major role in all the bulk separation processes, they have marked limitations involving the losses of extractant in aqueous phase, third phase problems at higher metal loading, etc. These limitations have necessitated the exploration of advance, more efficient and technically feasible alternatives. In this regard it is thought that solid-liquid based Extractant Encapsulated Polymeric Beads (EEPBs) may solve some of the problems. Benzodioxodiamide (BenzoDODA) is a recently reported extractant for the separation of plutonium from radioactive waste, containing nitric acid. BenzoDODA extractant encapsulated polymeric beads were prepared by phase inversion technique and found to be quite stable as no significant structural deformation or leaching out of the extractant was observed in 4.0 M HNO 3 solution, up to studied equilibration time of 8 days. These beads have been characterized by FT-IR, TGA and SEM techniques to gain insight into their structure and morphology. Morphology and porosity of the beads, as studied by the SEM analysis, indicate that the surface of the beads is quite rough, and has enough porosity. Thermo gravimetric analysis of the synthesized composite beads shows a weight loss of ∼74% during the heating from room temperature to 120℃, due to the loss of water present in the swollen beads. Such high water content also confirms that the beads have enough porosity for efficient exchange of metal ions.The synthesized beads were evaluated, for their ability to absorb Pu from acidic solution. The kinetics measurement showed that about 45 min of

  16. Leaching of a Cu-Co ore from Congo using sulphuric acidhydrogen peroxide leachants

    Directory of Open Access Journals (Sweden)

    Seo S.Y.

    2013-01-01

    Full Text Available A Cu-Co ore from Katinga Province, the Republic of Congo containing 1.5% Co and 1.6% Cu was tested to determine the leachability of Cu and Co using sulphuric acid and hydrogen peroxide mixtures at different conditions. Without hydrogen peroxide, the maximum extraction of copper and cobalt were found to be ~80% and ~15%, respectively when the acid concentration was varied between 0.36 - 1.1M. When hydrogen peroxide was added (0.008-0.042M, Cu recovery was enhanced to ~90%. Recoveries of ~90% of Co could be achieved at 20ºC, using leachants consisting of 0.36M sulphuric acid and 0.025M hydrogen peroxide after 3 hours. The reaction time to reach 90% Co extraction was reduced to less than 2 hours at 30ºC. Stabcal modelling of the Eh-pH diagrams shows the importance of hydrogen peroxide as a reductant. The decrease of solution potential (300-350 mV by adding hydrogen peroxide was confirmed by Eh measurements during the tests. The leaching follows the shrinking core model kinetics, where the rate constant is linearly dependent on hydrogen peroxide concentration in the range 0-0.025M and proportional to (1/r2 where r is the average radius of the mineral particles. The activation energy for the leaching process is 72.3 kJ/mol.

  17. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  18. Experimental Study of Leaching and Penetration of Nitrite ions in Nitrite-type Repair Materials on the Surface of Concrete

    Directory of Open Access Journals (Sweden)

    Masumi Inoue

    2017-01-01

    Full Text Available This study aimed to clarify the leaching properties of nitrite ions in nitrite-type repair materials exposed to rainfall. Repaired concrete specimens were prepared for leaching tests using a lithium nitrite solution, and the amounts of leaching and penetration of nitrite ions were measured under simulated rainfall. The results demonstrated that the amount of leaching could be controlled by using polymer cement paste and mortar surface coatings containing lithium nitrite solution, and by using polymer cement mortar surface coatings following direct lithium nitrite solution coatings. Furthermore, the amount of nitrite ion leaching in all cases was lower than the discharge standard value established by the water pollution control law.

  19. A perspective of stepwise utilisation of Bayer red mud: Step two--Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation.

    Science.gov (United States)

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of Medicinal Plants Cultivation on the Physicochemical Properties of Leached Chernozem

    Science.gov (United States)

    Svistova, I. D.; Stekol'nikov, K. E.; Paramonov, A. Yu.; Kuvshinova, N. M.

    2016-02-01

    For the first time, a nonspecific neutralizing effect of rhizodeposits of medicinal plants has been found in a leached chernozem. The neutralization of actual, exchangeable, and total acidity of the soil takes place against the background of a decrease in the activity of calcium ions in the soil solution. It can be supposed that this effect is due to the release of secondary metabolites of phenol nature in the rhizodeposits. These substances can change the anionic composition of the soil adsorption complex. Plant species with the maximum effect on the composition of the soil adsorption complex have been identified.

  1. Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover ( L.) and Oak Wood ( spp.).

    Science.gov (United States)

    Hollister, C Colin; Bisogni, James J; Lehmann, Johannes

    2013-01-01

    Biochar (BC) was evaluated for nitrogen (N) and phosphorus (P) removal from aqueous solution to quantify its nutrient pollution mitigation potential in agroecosystems. Sorption isotherms were prepared for solutions of ammonium (NH), nitrate (NO), and phosphate (PO-P) using BC of corn ( L.) and oak ( spp.) feedstock, each pyrolyzed at 350 and 550°C highest treatment temperature (HTT). Sorption experiments were performed on original BC as well as on BC that went through a water extraction pretreatment (denoted WX-BC). Ammonium sorption was observed for WX-Oak-BC and WX-Corn-BC, and Freundlich model linearization showed that a 200°C increase in HTT resulted in a 55% decrease in * values for WX-Oak-BC and a 69% decrease in * for WX-Corn-BC. Nitrate sorption was not observed for any BC. Removing metals by water extraction from WX-Oak-350 and WX-Oak-550 resulted in a 25 to 100% decrease in phosphate removal efficiency relative to original Oak-350 and Oak-550, respectively. No PO-P sorption was observed using any Corn-BC. Calcium (Ca) leached from BC produced at 550°C was 63 and 104% higher than from BC produced at 350°C for corn and oak, respectively. Leaching of P was two orders of magnitude lower in WX-Oak-BC than in WX-Corn-BC, concurrent with similar difference in magnesium (Mg). Nitrate and NH leaching from consecutive water extractions of all tested BCs was mostly below detection limits. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  3. Standardization of a sulfur quantitative analysis method by X ray fluorescence in a leaching solution for bio-available sulfates in soil

    International Nuclear Information System (INIS)

    Morales S, E.; Aguilar S, E.

    1989-11-01

    A method for bio-available sulfate analysis in soils is described. A Ca(H2PO4) leaching solution was used for soil samples treatment. A standard NaSO4 solution was used for preparing a calibration curve and also the fundamental parameters method approach was employed. An Am-241 (100 mCi) source and a Si-Li detector were employed. Analysis could be done in 5 minutes; good reproducibility, 5 and accuracy, 5 were obtained. The method is very competitive with conventional nephelometry where good and reproducible suspensions are difficult to obtain. (author)

  4. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Guo, Chunxiu; Ma, Hongrui; Li, Jiazhu; Zhou, Tao; Cao, Ling; Kang, Duozhi

    2018-05-01

    It is significant to recover metal values from spent lithium ion batteries (LIBs) for the alleviation or prevention of potential risks towards environmental pollution and public health, as well as for the conservation of valuable metals. Herein a hydrometallurgical process was proposed to explore the possibility for the leaching of different metals from waste cathodic materials (LiCoO 2 ) of spent LIBs using organics as reductant in sulfuric acid medium. According to the leaching results, about 98% Co and 96% Li can be leached under the optimal experimental conditions of reaction temperature - 95 °C, reaction time - 120 min, reductive agent dosage - 0.4 g/g, slurry density - 25 g/L, concentration of sulfuric acid-3 mol/L in H 2 SO 4  + glucose leaching system. Similar results (96% Co and 100% Li) can be obtained in H 2 SO 4  + sucrose leaching system under optimized leaching conditions. Despite a complete leaching of Li (∼100%), only 54% Co can be dissolved in the H 2 SO 4  + cellulose leaching system under optimized leaching conditions. Finally, different characterization methods, including UV-Vis, FT-IR, SEM and XRD, were employed for the tentative exploration of reductive leaching reactions using organic as reductant in sulfuric acid medium. All the leaching and characterization results confirm that both glucose and sucrose are effective reductants during leaching, while cellulose should be further degraded to organics with low molecular weights to achieve a satisfactory leaching performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Predictive geochemical modeling of uranium and other contaminants in laboratory columns in relatively oxidizing, carbonate-rich solutions

    International Nuclear Information System (INIS)

    Longmire, P.; Turney, W.R.; Mason, C.F.V.

    1994-01-01

    Carbonate heap leaching of uranium-contaminated soils and sediments represents a viable, cost-effective remediation technology. Column experiments have been conducted using 0.1, 0.25, and 0.5 M Na 2 CO 3 /NaHCO 3 solutions for leaching uranium from soils located adjacent to an incinerator at the Fernald Environmental Management Project (FEMP) site. Results from column experiments and geochemical modeling are used to quantitatively evaluate the effectiveness of heap leaching. Leach efficiencies of up to 72 wt.% of total uranium in CaO-agglomerated soil result from dissolution of uranium (U(VI)-dominated) minerals, formation of the soluble complex UO 2 (CO 3 ) 3 4- , and uranium desorption from clay minerals, ferric hydroxides, and humic acids. Parameters that control the extent of uranium extraction include pH, Eh, temperature, carbonate concentration, lixiviant-flow rate, pore-solution chemistry, solid phases, and soil texture

  6. Package characterization by laboratory leaching and diffusion experiments using radionuclides

    International Nuclear Information System (INIS)

    Das, H.A.

    1989-01-01

    The leaching of solid inorganic waste from loaded concrete or cement by incoming water can be described in terms of a steady-state outward diffusion of the saturated solution, formed inside the pores. In this paper, the derived equations permit the prediction of long-term leaching behavior. Radiotracer experiments enable the determination of the parameters involved

  7. NIR spectroscopic properties of aqueous acids solutions.

    Science.gov (United States)

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  8. Groundwater restoration with in situ uranium leach mining

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1984-01-01

    In situ leach mining of uranium has developed into a major mining technology. Since 1975, when the first commercial mine was licensed in the United States, the percentage or uranium produced by in situ mining has steadily grown from 0.6 to 10 percent in 1980. Part of the reason for this growth is that in situ mining offers less initial capital investment, shorter start-up times, greater safety, and less labor than conventional mining methods. There is little disturbance of the surface terrain or surface waters, no mill tailings piles, and no large open pits, but in situ leaching mining does have environmental disadvantages. During the mining, large amounts of ground water are cirulated and there is some withdrawal from an area where aquifers constitute a major portion of the water supply for other purposes. When an ammonia-based leach system is used, the ammonium ion is introduced into an area where cation exchange on clays (and some production of nitrate) may occur. Also, injection of an oxidant with the leach solution causes valence and phase changes of indigenous elements such as As, Cu, Fe, Mo, Se, S, and V as well as U. Furthermore, the surrounding ground water can become contaminated by escape of the leach solution from the mining zone. This chapter presents an overview of the in situ mining technology, including uranium deposition, mining techniques, and ground water restoration alternatives. The latter part of the chapter covers the situation in South Texas. Economics and development of the industry, groundwater resources, regulation, and restoration activities are also reviewed

  9. Role of oxidizing agent in the chemistry of in-situ uranium leaching

    International Nuclear Information System (INIS)

    Carlson, R.H.; Norris, R.D.; Schellinger, R.

    1982-01-01

    Synthetic two-component mixtures (uraninite and iron sulfide) as well as native uranium ores obtained from Texas and Wyoming have been examined. Physical/chemical ore properties are correlated with observed laboratory leach response. Data show a large inherent selectivity of oxidant for uranium in the early stages of a leach period. Uranium head grade was found to increase in a nearly linear fashion with hydrogen peroxide concentration in the leach solution. As uranium in the ore is depleted, uranium response decreases and the oxidant serves mainly to leach iron sulfide gangue material. 6 refs

  10. Effect of γ-dose on the crystal structure and leaching behavior of TiO2 matrix labeled with 181Hf/181Ta tracer

    International Nuclear Information System (INIS)

    Banerjee, D.; Guin, R.; Das, S.K.; Thakare, S.V.

    2011-01-01

    A new method for the possible incorporation of nuclear wastes has been attempted here by using ceramic matrix of TiO 2 as a host precursor for confinement. Hafnium is used as a simulant for actinide high-level waste. After incorporating 181 Hf tracer into TiO 2 matrix, the leaching property of the resulting matrix was studied in water, sodium chloride and humic acid solutions. The leaching was measured in each of the case by following the radioactivity of 181 Hf. TiO 2 matrix has also been exposed to γ-radiation in order to simulate the radiation field for nuclear waste. It has been investigated with a nuclear technique called time differential perturbed Angular Correlation (TDPAC) that the lattice structure of titania remains undisturbed even under a strong radiation field. The leaching of 181 Hf has also been studied after irradiating the TiO 2 matrix with ?-radiation and the leaching behavior was observed not to change from that before irradiation. (author)

  11. The leaching of lead from lead-based paint in landfill environments.

    Science.gov (United States)

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  12. Leaching of artificial radionuclide out of minerals

    International Nuclear Information System (INIS)

    Bogdanov, R.V.; Osipova, I.V.; Sergeev, A.S.

    1992-01-01

    Leaching of radionuclides induced by neutron bombardment in natural silicates and silicophosphate of rare earth elements and calcium, is studied using gamma-spectrometry. It is shown that solution of minerals under the effect of artificial subsoil water at 75 deg C is incongruent character: difference in leaching of cobalt and actinides reaches value equal to two magnitudes. Behaviour of lanthanides as analogs of transplutonium elements is of special interest. Essential role of specimen microphase composition is pointed out. The suggested methodological approach is efficient at selection of matricies for fixaton of radioactive wastes

  13. Relationship between reaction layer thickness and leach rate for nuclear waste glasses

    International Nuclear Information System (INIS)

    Chick, L.A.; Pederson, L.R.

    1984-02-01

    Three leaching tests, devised to distinguish among several proposed nuclear waste glass leaching mechanisms, were carried out for four different waste glasses. In the first test, the influence of a pre-formed reaction layer on elemental release was evaluated. In the second test, glass specimens were replaced with fresh samples halfway through the leaching experiment, to evaluate the influence of the concentration of glass components in leaching. Finally, regular replacement of the leachant at fixed time intervals essentially removed the variable changing solution concentration, and allowed an assessment of the influence of reaction layer thickness on the leaching rate. Results for all glasses tested indicated that the reaction layer presented little or no barrier to leaching, and that most of the retardation on leaching rates generally observed are attributable to saturation effects. 20 references, 6 figures, 1 table

  14. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    Science.gov (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Aluminium leaching from red mud by filamentous fungi.

    Science.gov (United States)

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Containment of Nitric Acid Solutions of Plutonium-238

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Silver, G.L.; Pansoy-Hjelvik, L.; Ramsey, K.

    1999-01-01

    The corrosion of various metals that could be used to contain nitric acid solutions of Pu-238 has been studied. Tantalum and tantalum/2.5% tungsten resisted the test solvent better than 304L stainless steel and several INCONEL alloys. The solvent used to imitate nitric acid solutions of Pu-238 contained 70% nitric acid, hydrofluoric acid, and ammonium hexanitratocerate

  17. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    International Nuclear Information System (INIS)

    Bayat, Belgin; Sari, Bulent

    2010-01-01

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  18. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  19. Influence of the leaching mode on the durability of a glass for fission product containment

    International Nuclear Information System (INIS)

    Nogues, J.L.; Terki, A.

    1984-06-01

    The chemical durability of a glass containing wastes from light water reactor (LWR) has been studied with three different lixiviation modes: ''static'' leach test, ''soxhlet'' test and ''continuous flow'' test. After a description of these tests, the leaching mode influence on the glass durability is reported as obtained from weight loss measurements, analyses of the leaching solutions and surface analyses of the samples. Finally, the corrosion mechanisms of this type of glass are approached and a phenomenological explanation of attack from an aqueous solution is proposed [fr

  20. Leaching studies of low-level radioactive waste forms

    International Nuclear Information System (INIS)

    Dayal, R.; Arora, H.; Milian, L.; Clinton, J.

    1985-01-01

    A research program has been underway at the Brookhaven National Laboratory to investigate the release of radionuclides from low-level waste forms under laboratory conditions. This paper describes the leaching behavior of Cs-137 from two major low-level waste streams, that is, ion exchange bead resin and boric acid concentrate, solidified in Portland cement. The resultant leach data are employed to evaluate and predict the release behavior of Cs-137 from low-level waste forms under field burial conditions

  1. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  2. Preparation of ore blocks for mine leaching by reagent explosion injection

    Science.gov (United States)

    Shevchenko, YuS

    2017-02-01

    The current drilling-and-blasting operations fail to prepare intact ore body underlying a production horizon for subsequent mining and leaching. It is found that the required preparation quality is possible by means of advanced implementation of ore body discontinuity and filling of the resultant system of joints with active leaching solutions.

  3. Dynamic Characteristics and Model for Centralization Reaction of Acidic Tailings From Heap Leaching of Uranium Ore

    International Nuclear Information System (INIS)

    Ding Dexin; Liu Yulong; Li Guangyue; Wang Youtuan

    2010-01-01

    Centralization tests were carried out on acidic tailings from heap leaching of uranium ore by using CaO, NaOH and NH 4 OH. The variations of pH with time were measured for the three centralization systems and the dynamic models for the systems were set up by regressing the measured data. The centralization process consists of the fast reaction phase representing the reaction between the centralization agent and the acid on the surface of the tailing's particles and the slow diffusion-reaction phase representing the diffusion-reaction between the centralization agent and the acid within the tailing's particles. The non-linear coupling and feedback function model for the diffusion-reaction of the centralization agent can reflect the process and mode of the centralization reaction. There is a non-linear oscillation in the variation of pH within the centralization systems. The dynamic model for the tailing's centralization reaction can fit the pH variation within the centralization systems. (authors)

  4. Potentiometric titration of free acid in uranium solutions

    International Nuclear Information System (INIS)

    Suh, M. Y.; Kim, W. H.; Kim, J. S.; Sohn, S. C.; Eom, T. Y.; Lee, C. H.; Jeon, Y. S.; Han, S. H.

    1998-02-01

    Hydrolysis properties of metal cations and fundamental principles of the potentiometric titration of free acid in aqueous solutions containing metal cations were described. The published papers and reports for the alkalimetric and acidimetric titration of free acid were surveyed, and the applicability of these titration methods to the uranium and/or plutonium solutions were discussed. This technical report also includes the various results obtained from the authors' researches to establish the alkalimetric and acidimetric titration methods for the determination of free acid in nitric acid solutions containing uranium and/or oxalic acid, and aluminum. The procedure manuals used in chemical processes and the newly prepared manuals based on the authors' researches are appended. (author). 26 refs., 54 figs

  5. Potentiometric titration of free acid in uranium solutions

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Kim, W. H.; Kim, J. S.; Sohn, S. C.; Eom, T. Y.; Lee, C. H.; Jeon, Y. S.; Han, S. H.

    1998-02-01

    Hydrolysis properties of metal cations and fundamental principles of the potentiometric titration of free acid in aqueous solutions containing metal cations were described. The published papers and reports for the alkalimetric and acidimetric titration of free acid were surveyed, and the applicability of these titration methods to the uranium and/or plutonium solutions were discussed. This technical report also includes the various results obtained from the authors` researches to establish the alkalimetric and acidimetric titration methods for the determination of free acid in nitric acid solutions containing uranium and/or oxalic acid, and aluminum. The procedure manuals used in chemical processes and the newly prepared manuals based on the authors` researches are appended. (author). 26 refs., 54 figs.

  6. Modelling inorganic and organic biocide leaching from CBA-amine (Copper–Boron–Azole) treated wood based on characterisation leaching tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupsea, Maria [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Tiruta-Barna, Ligia, E-mail: ligia.barna@insa-toulouse.fr [University of Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F–31077 Toulouse (France); INRA, UMR 792, F-31400 Toulouse (France); CNRS, UMR 5504, F-31400 Toulouse (France); Schiopu, Nicoleta [Paris-Est University, CSTB — Scientific and Technical Centre for the Building Industry, DEE/Environment and Life Cycle Engineering Team, 24 Rue Joseph Fourier, F-38400 Saint Martin d' Hères (France); Schoknecht, Ute [BAM — Federal Institute for Materials Research and Testing, Division 4.1, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-09-01

    Numerical simulation of the leaching behaviour of treated wood is the most pertinent and less expensive method for the prediction of biocides' release in water. Few studies based on mechanistic leaching models have been carried out so far. In this work, a coupled chemistry-mass transport model is developed for simulating the leaching behaviour of inorganic (Cu, B) and organic (Tebuconazole) biocides from CBA-amine treated wood. The model is based on experimental investigations (lab-scale leaching tests coupled with chemical and structural analysis). It considers biocides' interactions with wood solid components and with extractives (literature confirmed reactions), as well as transport mechanisms (diffusion, convection) in different compartments. Simulation results helped at identifying the main fixation mechanisms, like (i) direct complexation of Cu by wood-phenolic and -carboxylic sites (and not via monoethanolamine; complex) on lignin and hemicellulose and strong dependence on extractives' nature, (ii) pH dependent binding of tebuconazole on polarized -OH moieties on wood. The role of monoethanolamine is to provide a pore-solution pH of about 7.5, when copper solubility is found to be weakest. The capability of the developed model to simulate the chemical and transport behaviour is the main result of this study. Moreover, it proved that characterization leaching tests (pH dependency and dynamic tests), combined with appropriate analytical methods are useful experimental tools. Due to its flexibility for representing and simulating various leaching conditions, chemical-transport model developed could be used to further simulate the leaching behaviour of CBA treated wood at larger scales. - Highlights: • Biocide and extractives leaching from ammonia-CBA treated wood were modelled. • The chemical-transport model identifies the main fixation/solubilisation mechanisms. • The model describes well the results of equilibrium and dynamic leaching

  7. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  8. Radiation protection by ascorbic acid in sodium alginate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aliste, A.J.; Mastro, N.L. Del [Center of Radiation Technology, IPEN/CNEN/SP, University City, 05508-000 Sao Paulo (Brazil)]. E-mail: ajaliste@ipen.br

    2004-07-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of {sup 60} Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  9. Radiation protection by ascorbic acid in sodium alginate solutions

    International Nuclear Information System (INIS)

    Aliste, A.J.; Mastro, N.L. Del

    2004-01-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of 60 Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  10. Influence of acidified acidity to uranium bioleaching

    International Nuclear Information System (INIS)

    Li Jiang; Liu Yajie; Zheng Zhihong; Yuan Baohua; Shen Chuan; Shi Weijun

    2012-01-01

    The relationship between the acidified acidity and the acid consumption and uranium leaching rate in the process of uranium bioleaching is investigated. Results indicate that higher uranium leaching rate is obtained when the relatively high acidity was applied at beginning. For different minerals, although the original acidity should be different, lower original acidity was not better for shortening leaching period and improving uranium leaching rate. It confirms 30-40 g/L sulfuric acid as the original acidity was more suitable and more than 30 g/ L should be applied if the mineral particle sizes were larger. (authors)

  11. Leaching behavior of gamma-emitting fission products and Np from neutron-irradiated UO_2-ZrO_2 solid solutions in non-filtered surface seawater

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Takeno, Yuu; Kobayashi, Taishi; Kirishima, Akira; Sato, Nobuaki

    2016-01-01

    The gamma ray radionuclides Cs-137, Ba-140, I-131, Ce-141, Ru-103, Zr-95, and Np-239 were produced by neutron irradiation of UO_2-ZrO_2 solid solutions that were synthesized as simulated fuel debris under reducing and oxidizing conditions. The leaching ratio of radionuclides was investigated under atmospheric conditions at 25°C for non-filtered natural surface seawater, as well as deionized water after filtration with a membrane of 0.45-μm pore size or that of nominal molecular weight limit of 3 kDa. The uranium molar concentration was affected by the oxidation state in the solid solution samples. The congruent dissolution of Cs, I, and Ba with the hexavalent uranium of U_3O_8 was facilitated in the seawater samples, whereas a lower leaching ratio of nuclides was observed in the deionized water samples. Neptunium-239, originally produced from uranium-238 in U_3O_8, showed behavior that was similar to that of Cs, I, and Ba. However, the dissolution of Np (as a parent nuclide of Pu-239) in the debris of UO_2 and UO_2-ZrO_2 was suppressed in the same manner as Zr(IV) and Ce(IV). The concentration exhibited no filtration dependence after 15 d, which shows that most of the leached nuclides can exist in their ionic form in seawater. (author)

  12. Studies on removal of plutonium from oxalic acid containing hydrochloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghadse, D R; Noronha, D M; Joshi, A R [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Solution containing hydrochloric acid, oxalic acid and considerable quantities of plutonium may be generated while recycling of scrap produced during the metallic fuel fabrication. Plutonium from such waste is normally recovered by anion exchange method after the destruction of oxalic acid using suitable oxidising agent. Solvent extraction and ion exchange methods are being explored in this laboratory for recovery of Pu from oxalic acid containing HCl solutions without prior destruction of oxalic acid. This paper describes the results on the determination of distribution ratios for extraction of Pu(IV) from hydrochloric acid using Aliquot-336 or HDEHP under varying experimental conditions. (author). 5 refs., 5 tabs.

  13. Exploration on trickle leaching of uranium ore by refreshed liquor of bacterial oxidation

    International Nuclear Information System (INIS)

    Chen Shian; Huang Xiangfu; Fan Baotuan

    1995-01-01

    The paper describes the adaptation of the domesticated thiobacillus ferroxidans to the trickle leaching conditions of uranium ore. When the bacterial leaching liquor through multiple cycles of oxidation and regeneration was used to return to the trickle leaching, the following results were obtained: the extraction rate was more than 95%, the acid consumption was saved by 30%, and the consumed 2.0% pyrolusite (MnO 2 40%) was eliminated. The following problems are discussed: the basic principle, process and some factors influencing the process of the trickle leaching of uranium ore using regenerated liquor of bacterial oxidation, counter-current trickle leaching mode, oxidation and regeneration techniques of bacterial leaching liquor and other technological problems on the process of uranium extraction by thiobacillus ferroxidans

  14. Resistance evaluation expanded perlite the leaching acid: variation of parameters concentration, time and leaching agent; Avaliacao da resistencia da perlita expandida a lixiviacao acida: variacao dos parametros concentracao, tempo e agente lixiviante

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J.M.F. de; Damasceno Junior, E.; Oliveira, E.S.; Fernandes, N.S., E-mail: janielequimicaufrn@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Instituto de Quimica. Laboratorio de Quimica Analitica e Meio Ambiente

    2016-07-01

    The expanded perlite is an amorphous aluminosilicate which presents in its composition about 75.0% silicon oxide (SiO2), also having other species in the composition as oxides of some metals. Silicas and silicates have been used in the environmental field, in relevant anti-corrosive activity. In this context, materials that exposes too many highly acidic media, require preservation against this type of wear, as this type of damage causes a great financial loss, thereby requiring low-cost, abundant materials, non-toxic and easy to purchase as some silica coating. The study evaluated the perlite expanded resistance against an acid leaching process. With undeniability the use of strong acids and different working conditions were not able to remove the oxides present on the expanded perlite sample, thus demonstrating the high strength of the expanded perlite against acid attacks. (author)

  15. Cross-current leaching of indium from end-of-life LCD panels

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ubaldini, Stefano [Institute of Environmental Geology and Geoengineering IGAG, National Research Council, Via Salaria km 29300, 00015 Montelibretti, Rome (Italy); De Michelis, Ida [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Kopacek, Bernd [ISL Kopacek KG, Beckmanngasse 51, 1140 Wien (Austria); Vegliò, Francesco [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Beolchini, Francesca, E-mail: f.beolchini@univpm.it [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  16. Gold leaching by organic base polythionates: new non-toxic and secure technology.

    Science.gov (United States)

    Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail

    2014-01-01

    The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching with thiosulfates and organic salts of polythionic acids (organic base polythionates). The method of production of these polythionates based on the Smolyaninov reaction is described in stages and in details for the first time. Possible application of the polythionates application in the gold leaching is discussed and its advantages are compared with the gold leaching by cyanation.

  17. Partitioning of elements during coal combustion and leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen-feng; Qin Yong; Song Dang-yu; Wang Jun-yi [China University of Mining & Technology, Xuzhou (China). School of Resources and Earth Science

    2009-04-15

    The mineral component and content of sulfur and 42 major and trace elements of the feed coal, fly and bottom ashes collected from Shizuishan coal-fired power plant, Ningxia, China were analyzed using AFS, INAA, ICP-MS, ICP-AES, XRD. Based on the coal combustion and leaching experiments, the partitioning of these elements during coal combustion and the leaching behavior of the 11 potentially hazardous elements, including As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Se, Th and U were investigated. The results show that the distribution of elements in the fly and bottom ashes is controlled by their volatilities and modes of occurrence in the coal. The degree of volatilization of elements may be mainly associated with boiling/melting points of these elements and their compounds. The elements easily volatilized, organically bound or associated with sub-micrometer and nano minerals (e.g. Al and Na) tend to be enriched in the fine fractions of fly ash, and most elements do not vaporize which are approximately equally partitioned in the fly and bottom ashes. The emission rates of As, Cr, K, Mg, Mn, Mo, Pb, Sb, and Zn are notably influenced by the temperature ranging from 877 to 1300{sup o}C. The leaching behavior of elements depend significantly on their geochemical properties and modes of occurrence. The elements with a low degree of volatilization are not easily leached, while volatile elements easily leached under the acid conditions. Arsenic, B Br, Cd, Cu, Hg, Pb, S, Sb and Se show a higher emission rate during coal combustion, and the leached concentrations of Cd, Co, Mo, Ni and U in the acid media exceed their limited concentrations recommended in relevant environment quality standards for water, which will harm the environment. 32 refs., 4 figs., 4 tabs.

  18. Extraction of cesium from acid solutions

    International Nuclear Information System (INIS)

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  19. Separation of Ce and La from Synthetic Chloride Leach Solution of Monazite Sand by Precipitation and Solvent Extraction

    Science.gov (United States)

    Banda, Raju; Jeon, Ho Seok; Lee, Man Seung

    2014-12-01

    Precipitation and solvent extraction experiments have been performed to recover light rare earths from simulated monazite sand chloride leach solutions. Precipitation conditions were obtained to recover Ce by adding NaClO as an oxidant. Among some cationic extractants (PC 88A, D2EHPA, Cyanex 272, LIX 63), PC 88A showed the best performance to separate La from the resulting chloride solution. Furthermore, the mixture of PC 88A with other solvating (TBP, TOPO) and amine extractants (Alamine 336, Aliquat 336) was tested to increase the separation factor of La from Pr and Nd. The use of mixed extractants greatly enhanced the separation of La from the two other metals. McCabe-Thiele diagrams for the extraction of Pr and Nd with the PC 88A/Alamine 336 mixture were constructed.

  20. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.