WorldWideScience

Sample records for acid induces apoptosis

  1. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  2. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  3. Trihydroxybenzoic Acid Dimer-induced Apoptosis Effects in vitro

    Institute of Scientific and Technical Information of China (English)

    NIU Feng-lan; WANG Xue-dong; WANG Ying-li; SONG Lian-sheng

    2005-01-01

    The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] reduction method. The morphological changes of HeLa cells were observed by means of an optical microscope and a transmission electron microscope(TEM); the cell circles and apoptosis were detected by a flow cytometer. It was found that TAD can significantly inhibit the growth of Hela cells and can induce the apoptosis of HeLa cells. It was also found that the inhibition to the growth of Hela cells and the induction to the apoptosis of HeLa cells have a dosage-dependent feature. The inhibiting rates of TAD with mass concentrations of 25.000, 12.500 and 6.250 mg/L to the HeLa cell growth were 52.04%, 34.44% and 23.72% after 30 h, respectively, while those with TAD mass concentrations of 100.000, 50.000, 25.000, 12.500, 6.250 and 3.125 mg/L showed positive correlation with a correlation coefficient value of r=0.9859(P<0.01) and a IC50 value of 10.90 mg/L. Observed by means of TEM, the HeLa cells exposed to 25.000, 12.500 and 6.250 mg/L TAD showed apoptosis to various extents, shrinkage of the cell nuclei, condensation and margination of chromatin, and cavitation of mitochondrion. An apoptosis peak was detected via a flow cytometer. It can be drawn from the results that TAD extracted from Trapabispinosd roxb has an evident inhibitory effect on the proliferation of and an inductive effect on the apoptosis of HeLa cells, but has no obvious arrest action towards the cell circles of HeLa cells.

  4. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  5. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  6. Apoptosis of Human Pancreatic Carcinoma Cells Induced By All-Trans Retinoic Acid and Interferon

    Institute of Scientific and Technical Information of China (English)

    Xiao-hua Wang; Yuan-qin Yin; Ping Ma; Cheng-guang Sui; Fan-dong Meng; Jiang You-hong

    2009-01-01

    Objective: To investigate the apoptosis of human pancreatic carcinoma PC3 cells induced by the combination of all-trans retinoic acid (ATRA) with interferon alpha (IFN-α). Methods: PC3 cells were treated with ATRA and IFN-α. The inhibitory rate of PC3 cell proliferation was detected using MTT method. Cellular apoptosis was determined with flow cytometry. The percentage of PC3 cell apoptosis was assayed using TUNEL methods. Results: ATRA and IFN-α could inhibit cellular proliferation and induces cellular apoptosis of PC3 cells. The inhibitory effect was stronger when the ATRA and IFN-α were combined as a therapy. Conclusion: ATRA inhibits the proliferation of PC3 cells and induce the apoptosis of PC3 cells. The combination of IFN-α with ATRA may enhance these effects on PC3 cells.

  7. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    Science.gov (United States)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  8. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  9. PKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Jian-lin Zhou

    2013-12-01

    The results may be showed that PKCa regulate the expresion of caspase-3, which contribute to the apoptosis of chondrocytes induced by NO. PKC α agonists enhance the protective effect of hyaluronic acid on nitric oxide-induced articular chondrocytes apoptosis.

  10. Mitochondria-dependent apoptosis of con A-activated T lymphocytes induced by asiatic acid for preventing murine fulminant hepatitis.

    Science.gov (United States)

    Guo, Wenjie; Liu, Wen; Hong, Shaocheng; Liu, Hailiang; Qian, Cheng; Shen, Yan; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2012-01-01

    Selectively facilitating apoptosis of activated T cells is essential for the clearance of pathogenic injurious cells and subsequent efficient resolution of inflammation. However, few chemicals have been reported to trigger apoptosis of activated T cells for the treatment of hepatitis without affecting quiescent T cells. In the present study, we found that asiatic acid, a natural triterpenoid, selectively triggered apoptosis of concanavalin A (Con A)-activated T cells in a mitochondria-dependent manner indicated by the disruption of the mitochondrial transmembrane potential, release of cytochrome c from mitochondria to cytosol, caspases activation, and cleavage of PARP. In addition, asiatic acid also induced the cleavage of caspase 8 and Bid and augmented Fas expression in Con A-activated T cells. However, following activation of T cells from MRL(lpr/lpr) mice with mutation of Fas demonstrated a similar susceptibility to asiatic acid-induced apoptosis compared with normal T cells, suggesting that Fas-mediated death-receptor apoptotic pathway does not mainly contribute to asiatic acid-induced cell death. Furthermore, asiatic acid significantly alleviated Con A-induced T cell-dependent fulminant hepatitis in mice, as assessed by reduced serum transaminases, pro-inflammatory cytokines, and pathologic parameters. Consistent with the in vitro results, asiatic acid also induced apoptosis of activated CD4(+) T cells in vivo. Taken together, our results demonstrated that the ability of asiatic acid to induce apoptosis of activated T cells and its potential use in the treatment of T-cell-mediated inflammatory diseases.

  11. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells.

    Science.gov (United States)

    Wen, Chuangyu; Huang, Lanlan; Chen, Junxiong; Lin, Mengmeng; Li, Wen; Lu, Biyan; Rutnam, Zina Jeyapalan; Iwamoto, Aikichi; Wang, Zhongyang; Yang, Xiangling; Liu, Huanliang

    2015-11-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  12. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    International Nuclear Information System (INIS)

    Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. These data, therefore, demonstrate that ER

  13. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Science.gov (United States)

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  14. Glycyrrhetinic Acid Inhibits Cell Growth and Induces Apoptosis in Ovarian Cancer A2780 Cells

    Directory of Open Access Journals (Sweden)

    Venus Haghshenas

    2014-10-01

    Full Text Available Purpose: Accumulating evidence indicates that glycyrrhizin (GZ and its hydrolyzed metabolite 18-β glycyrrhetinic acid (GA exhibit anti-inflammatory and anticancer activities. The objective of this study was to examine the in vitro cytotoxic activity of GA on human ovarian cancer A2780 cells. Methods: A2780 cells were cultured in RPMI1640 containing 10% fetal bovine serum. Cells were treated with different doses of GA and cell viability and proliferation were detected by dye exclusion and 3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT assays. Apoptosis induction and expression of Fas and Fas ligand (FasL were analyzed by flow cytometry. Results: We observed that GA decreases cell viability and suppressed cells proliferation in a dose-dependent manner as detected by dye-exclusion and XTT assayes. In addition, our flow cytometry data show that GA not only induces apoptosis in A2780 cells but also upregulates both Fas and FasL on these cells in a dose-dependent manner. Conclusion: we demonstrate that GA causes cell death in A2780 cells by inducing apoptosis.

  15. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  16. Ellagic acid induces apoptosis through inhibition of nuclear factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mouad Edderkaoui; Irina Odinokova; Izumi Ohno; Ilya Gukovsky; Vay Liang W Go; Stephen J Pandol; Anna S Gukovskaya

    2008-01-01

    AIM: To determine the effect of ellagic acid on apoptosis and proliferation in pancreatic cancer cells and to determine the mechanism of the pro-survival effects of ellagic acid.METHODS: The effect of ellagic acid on apoptosis was assessed by measuring Phosphatidylserine externalization, caspase activity, mitochondrial membrane potential and DNA fragmentation; and proliferation by measuring DNA thymidine incorporation. Mitochondrial membrane potential was measured in permeabilized cells, and in isolated mitochondria. Nuclear factor kB (NF-kB) activity was measured by electromobility shift assay (EMSA).RESULTS: We show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Further, ellagic acid decreases proliferation by up to 20-fold at 50 mmol/L Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kB binding activity. Furthermore, inhibition of NF-kB activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.CONCLUSION: Our data indicate that ellagic acid stimulates apoptosis through inhibition of the prosurvival transcription factor NF-kB.

  17. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. PMID:27630308

  18. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    Science.gov (United States)

    Björklund, H V; Johansson, T R; Rinne, A

    1997-07-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  19. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    OpenAIRE

    Björklund, H V; Johansson, T R; Rinne, A

    1997-01-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor.

  20. Protection of INS-1 Cells from Free Fatty Acid-induced Apoptosis by Inhibiting the Glycogen Synthase Kinase-3

    Institute of Scientific and Technical Information of China (English)

    WU Wei; LUO Xiaoping

    2007-01-01

    To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 dia-betes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhib-ited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS-1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmol/L of LiCl, a inhibitor of GSK-3, the OA-induced apop-tosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.

  1. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells

    OpenAIRE

    Qin, Ying; NAITO, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko

    2011-01-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intest...

  2. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  3. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  4. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    Science.gov (United States)

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  5. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells

    OpenAIRE

    Jingshu Wang; Liqun Liu; Huijuan Qiu; Xiaohong Zhang; Wei Guo; Wangbing Chen; Yun Tian; Lingyi Fu; Dingbo Shi; Jianding Cheng; Wenlin Huang; Wuguo Deng

    2013-01-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viabi...

  6. Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field

    Directory of Open Access Journals (Sweden)

    Wen J

    2014-04-01

    Full Text Available Jian Wen,1 Shulian Jiang,1 Zhiqiang Chen,1 Wei Zhao,1 Yongxiang Yi,1 Ruili Yang,1 Baoan Chen2 1Second Affiliated Hospital of Southeast University, 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China Objective: To explore the effect of folic acid-modified magnetic nanoparticles (FA-MNPs combined with a 100 Hz extremely low-frequency electromagnetic field (ELF-EMF on the apoptosis of liver cancer BEL-7402 cells. Materials and methods: MNPs (20 nm were prepared by coprecipitation, and then folic acid was coated onto MNPs to prepare FA-MNPs. BEL-7402 cells and HL7702 cells were selected as liver cancer cells and normal liver cells, respectively. The ELF-EMF was generated from a solenoid coil. Cellular uptake of NPs was determined by inductively coupled plasma atomic emission spectroscopy. A 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was used to evaluate cell inhibition. Apoptosis was analyzed by flow cytometry. Statistical analyses were performed using two-way analysis of variance. Results: FA-MNPs combined with a 100 Hz magnetic field significantly inhibited cell proliferation and induced higher apoptosis compared to either the ELF-EMF alone or FA-MNPs alone. FA-MNPs showed a better apoptosis effect and higher iron uptake in BEL-7402 cells compared to in HL7702 cells. On the basis of the ELF-EMF, higher doses of FA-MNPs brought higher apoptosis and higher iron uptake in either BEL-7402 cells or HL7702 cells. Conclusion: These results suggest that FA-MNPs may induce apoptosis in a cellular iron uptake-dependent manner when combined with an ELF-EMF in BEL-7402 cells.Keywords: extremely low-frequency magnetic field, magnetic nanoparticle, apoptosis, liver cancer, folic acid

  7. Growth Inhibition and Apoptosis Induced by Retinoic Acid Combined with Interferon Alpha-2a on Transitional Cell Carcinoma of Bladder

    Institute of Scientific and Technical Information of China (English)

    QIANLi-xin; LIUXun-liang; ZHOUJian-wei; MonicaLiebert; ZOUChang-chun; ZOUChang-ping

    2004-01-01

    To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and invesligate the effects of combination of relinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods: Four bladder cancer cell lines, grade 1 to 3,and two retinoids, all-trans-retinoic acid(ATRA) ,9.cis retinoic acid(9cRA) ,combined with inteferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth, induce apoptosis, affect the exptession of nuclear retinoid receptors, and modulate STAT1 protein. Resu/ts: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction, even at higher concentration (10-5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α-2a.Combination of ATRA and IFNa-2a induced ~ and Slat 1 expression in three bladder cancer cell lines, ~: The results demonstrated that INFw2a synergize with the inhibitory effect of ATRA and 9c RA on the growth intn'bition and apoptosis of bladder cancer cells in vitro, which suggested that it has a potenlJal intexest for the trealment of transitimml cell carcinmna of bladder.

  8. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells.

    Science.gov (United States)

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-01-01

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells. PMID:27626409

  9. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Jan Šrámek

    2016-09-01

    Full Text Available Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK, protein kinase C (PKC, p38 mitogen-activated protein kinase (p38 MAPK, extracellular signal-regulated kinase (ERK, and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.

  10. Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis.

    Science.gov (United States)

    Pišlar, A; Sabotič, J; Šlenc, J; Brzin, J; Kos, J

    2016-01-01

    L-amino-acid oxidases (LAO) purified from fungi induce cell death in various mammalian cells including human tumor cell lines. The mechanism, however, remains poorly understood. In this study, we aimed to define a precise mechanism of cell death induced in Jurkat and MCF7 cancer cell lines by ApLAO and CgLAO, LAOs isolated from Amanita phalloides and Clitocybe geotropa, respectively. Cell death induced by both LAOs is shown to be concentration- and time-dependent, with higher toxic effects in Jurkat cells. LAO activity is required for the cytotoxicity. Detailed study on Jurkat cells further demonstrated that ApLAO and CgLAO both induce the intrinsic mitochondrial pathway of apoptosis, accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species. Treatment with the LAOs resulted in an increased ratio of the expression of proapoptotic Bax to that of antiapoptotic Bcl-2, subsequently leading to the activation of caspase-9 and -3. However, the pancaspase inhibitor, Z-VAD-FMK, did not completely abolish the cell death induced by either ApLAO or CgLAO, suggesting an alternative pathway for LAO-induced apoptosis. Indeed, caspase-8 activity in ApLAO- and CgLAO-treated cells was increased. Further, Fas/FasL (Fas ligand) antagonist caused a slight reduction in toxin-induced cell death, supporting the involvement of ApLAO and CgLAO in death-receptor-mediated apoptosis. These results thus provide new evidence that ApLAO and CgLAO induce apoptosis in Jurkat cells via both the intrinsic and extrinsic pathways, although the significantly higher increase of caspase-9 over caspase-8 activity suggests that it is the intrinsic pathway that is the predominant mode of ApLAO- and CgLAO-induced apoptosis. PMID:27551514

  11. Pseudolaric Acid B Induces Caspase-Dependent and Caspase-Independent Apoptosis in U87 Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Khan

    2012-01-01

    Full Text Available Pseudolaric acid B (PLAB is one of the major bioactive components of Pseudolarix kaempferi. It has been reported to exhibit inhibitory effect on cell proliferation in several types of cancer cells. However, there is no report elucidating its effect on glioma cells and organ toxicity in vivo. In the present study, we found that PLAB inhibited growth of U87 glioblastoma cells in a dose-dependent manner with IC50~10 μM. Flow cytometry analysis showed that apoptotic cell death mediated by PLAB was accompanied with cell cycle arrest at G2/M phase. Using Western blot, we found that PLAB induced G2/M phase arrest by inhibiting tubulin polymerization in U87 cells. Apoptotic cell death was only partially inhibited by pancaspase inhibitor, z-VAD-fmk, which suggested that PLAB-induced apoptosis in U87 cells is partially caspase-independent. Further mechanistic study demonstrated that PLAB induced caspase-dependent apoptosis via upregulation of p53, increased level of proapoptotic protein Bax, decreased level of antiapoptotic protein Bcl-2, release of cytochrome c from mitochondria, activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose polymerase (PARP and caspase-independent apoptosis through apoptosis inducing factor (AIF. Furthermore, in vivo toxicity study demonstrated that PLAB did not induce significant structural and biochemical changes in mouse liver and kidneys at a dose of 25 mg/kg. Therefore, PLAB may become a potential lead compound for future development of antiglioma therapy.

  12. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells

    Directory of Open Access Journals (Sweden)

    Tomizawa,Kazuhito

    2007-06-01

    Full Text Available Neuronal apoptosis is involved in neurodegenerative diseases such as Alzheimer's disease and Parkinson.s disease. An efficient means of preventing it remains to be found. Some n-3 polyunsaturated fatty acids (PUFAs such as docosahexaenoic acid (DHA, 22 : 6n-3 and eicosapentaenoic acid (EPA, 20 : 5n-3 have been reported to be protective against the neuronal apoptosis and neuronal degeneration seen after spinal cord injury (SCI [1]. However, it is unclear which kinds of PUFAs have the most potent ability to inhibit neuronal apoptosis and whether the simultaneous treatment of PUFAs inhibits the apoptosis. In the present study, we compared the abilities of various n-3- and n-6- PUFAs to inhibit the apoptosis induced after the administration of different apoptotic inducers, etoposide, okadaic acid, and AraC, in mouse neuroblastoma cells (Neuro2a. Preincubation with DHA (22 : 6n-3, eicosapentaenoic acid (EPA, 20 : 5n-3, alpha-linolenic acid (alpha-LNA, 18 : 3n-3, linoleic acid (LA, 18 : 2n-6, arachidonic acid (AA, 20 : 4n-3, and gamma-linolenic acid (gamma-LNA, 18 : 3n-6 significantly inhibited caspase-3 activity and LDH leakage but simultaneous treatment with the PUFAs had no effect on the apoptosis of Neuro2a cells. There were no significant differences of the anti-apoptotic eff ect among the PUFAs. These results suggest that PUFAs may not be effective for inhibiting neuronal cell death after acute and chronic neurodegenerative disorders. However, dietary supplementation with PUFAs may be beneficial as a potential means to delay the onset of the diseases and/or their rate of progression.

  13. Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress.

    Science.gov (United States)

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N; Sandusky, George E; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.

  14. Inhibition of acid-induced apoptosis by targeting ASIC1a mRNA with short hairpin RNA

    Institute of Scientific and Technical Information of China (English)

    Xie-chuan WENG; Jian-quan ZHENG; Qing-e JIN; Xiao-yun MA

    2007-01-01

    Aim: To study the role of acid-sensing ion channel (ASIC) la in the cell death and apoptosis induced by extracellular acid in C6 glioma cells. Methods: The stable ASICla-silenced C6 cell line, built with RNA interference technology, were con-firmed by RT-PCR and Western blot analysis. The cell viability following acid exposure was analyzed with lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The apoptotic cells dyed with Annexin-V and propidium iodide were measured with a flow cytometer, while the changes of cell cycle were also assayed. Results: The downregulation of ASIC 1 a proteins by stable transfection of short hairpin RNA decreased the cell death percentage and increased cell viability following acid exposure with LDH and the MTT assay. The rate of apoptosis was lower in the ASIC la-silenced cell line than that in the wild-type C6 cell line. The percentage of sub-G0 cells was lower in the ASICla-silenced C6 cells than that in the wild-type cells. Conclusion: Extracellular acid induced cell death and apoptosis viaASICla mechanisms in the C6 glioma cells.

  15. Correlation of HSP110 expression with all-trans retinoic acid-induced apoptosis.

    Science.gov (United States)

    Evrard, L; Vanmuylder, N; Dourov, N; Hermans, C; Biermans, J; Werry-Huet, A; Rooze, M; Louryan, S

    2000-01-01

    In a previous study, we observed the strong expression of a stress protein of the HSP100/Clp family (HSP110) in apoptotic mesectodermal cells during early mouse facial development. In the present study, we describe the strong expression of the same HSP110 in mesectodermal cells undergoing apoptosis after all-trans retinoic acid (RA) administration. We used a teratological model known to increase cell deaths mainly in the first and second branchial arches during mammalian cephalogenesis: the treatment of E9 mouse embryos with all-trans RA, which results in craniofacial malformations comparable to those that characterize mandibulofacial dysostosis in man. Pregnant NMRI mice were treated with 60 mg/kg body weight of all-trans RA, given orally on day 9 of gestation; embryos were taken 4, 12 or 24 hr after RA administration. The apoptotic pattern of RA-induced cell deaths was confirmed using the dUTP biotin nick-end labeling (TUNEL) method and transmission electron microscopy (TEM). HSP110 expression was detected using an immunohistochemical approach. The increase in the number of TUNEL-positive cells and HSP110-positive cells after all-trans RA administration was quantified in the first branchial arch using a computerized method. Twelve hours after RA administration, the increase in the number of HSP110-positive cells is greater than the increase in the number of TUNEL-positive cells. Twenty-four hours after RA administration, only TUNEL-positive cells remain strong in number. We suggest that HSP110 expression could represent a biochemical event of apoptotic cell death induced by RA, associated with early stages of the apoptotic process. In order to find out if HSP110 expression resulted from neosynthesis, we performed in situ hybridization, which demonstrated that the expression of HSP110 occurred at the level of mRNA.

  16. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages

    OpenAIRE

    Rosaria Varì; Beatrice Scazzocchio; Carmela Santangelo; Carmelina Filesi; Fabio Galvano; Massimo D’Archivio; Roberta Masella; Claudio Giovannini

    2015-01-01

    Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 mac...

  17. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  18. PKCzeta protects against UV-C-induced apoptosis by inhibiting acid sphingomyelinase-dependent ceramide production

    OpenAIRE

    Charruyer, Alexandra; Jean, Christine; Colomba, Audrey; Jaffrézou, Jean-Pierre; Quillet-Mary, Anne; Laurent, Guy; Bezombes, Christine

    2007-01-01

    Abstract In a recent study, we described that UV-C irradiation resulted in redox-dependent activation and relocalization of acid sphingomyelinase (A-SMase) to the external surface of raft membrane microdomains, hydrolysis of sphingomyelin (SM) associated to the plasma membrane outer leaflet, ceramide (CER) generation and apoptosis. In the present study, we have investigated the influence of PKC? , an atypical form of PKC on this pathway. This study shows that PKC? overexpression r...

  19. Modulation of the retinoic acid-induced cell apoptosis and differentiation by the human TR4 orphan nuclear receptor

    International Nuclear Information System (INIS)

    In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells

  20. Apoptosis of pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid in combination with horseradish peroxidase

    Institute of Scientific and Technical Information of China (English)

    Chen Huang; Lu-Sheng Si; Li-Ying Liu; Tu-Sheng Song; Lei Ni; Ling Yang; Xiao-Yan Hu; Jing-Song Hu; Li-Ping Song; Yu Luo

    2005-01-01

    AIM: To explore the mechanisms underlying the apoptosis of human pancreatic cancer BXPC-3 cells induced by indole-3-acetic acid (TAA) in combination with horseradish peroxidase (HRP).METHODS: BXPC-3 cells derived from human pancreatic cancer were exposed to 40 or 80 μmol/L IAA and 1.2 μg/mL HRP at different times. Then, MTT assay was used to detect the cell proliferation. Flow cytometry was performed to analyze cell cycle. Terminal deoxynucleotidyl transferasemediated dUTP nick end labeling assay was used to detect apoptosis. 2,7-Dichlorofluorescin diacetate uptake was measured by confocal microscopy to determine free radicals. Level of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) were measured by biochemical methods.RESULTS: IAA/HRP initiated growth inhibition of BXPC-3 cells in a dose- and time-dependent manner. Flow cytometry revealed that the cells treated for 48 h were arrested at G1/G0. After exposure to 80 μmol/L IAA plus 1.2 μg/mL HRP for 72 h, the apoptosis rate increased to 72.5‰,which was nine times that of control. Content of MDA and activity of SOD increased respectively after treatment compared to control. Meanwhile, IAA/HRP stimulated the formation of free radicals.CONCLUSION: The combination of IAA and HRP can inhibit the growth of human pancreatic cancer BXPC-3 cells in vitro by inducing apoptosis.

  1. Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies.

    Science.gov (United States)

    Dalmazzo, Leandro F F; Santana-Lemos, Bárbara A; Jácomo, Rafael H; Garcia, Aglair B; Rego, Eduardo M; da Fonseca, Luiz M; Falcão, Roberto P

    2011-05-01

    Indole-3-acetic acid (IAA), when oxidized by horseradish peroxidase (HRP), is transformed into cytotoxic molecules capable of inducing cell injury. The aim of this study was to test if, by targeting hematopoietic tumors with HRP-conjugated antibodies in association with IAA treatment, there is induction of apoptosis. We used two lineages of hematologic tumors: NB4, derived from acute promyelocytic leukemia (APL) and Granta-519 from mantle cell lymphoma (MCL). We also tested cells from 12 patients with acute myeloid leukemia (AML) and from 10 patients with chronic lymphocytic leukemia (CLL). HRP targeting was performed with anti-CD33 or anti-CD19 antibodies (depending on the origin of the cell), followed by incubation with goat anti-mouse antibody conjugated with HRP. Eight experimental groups were analyzed: control, HRP targeted, HRP targeted and incubated with 1, 5 and 10mM IAA, and cells not HRP targeted but incubated with 1, 5 and 10mM IAA. Apoptosis was analyzed by flow cytometry using annexin V-FITC and propidium iodide labeling. Results showed that apoptosis was dependent on the dose of IAA utilized, the duration of exposure to the prodrug and the origin of the neoplasia. Targeting HRP with antibodies was efficient in activating IAA and inducing apoptosis. PMID:21168913

  2. Reactive oxygen species and autophagy associated apoptosis and limitation of clonogenic survival induced by zoledronic acid in salivary adenoid cystic carcinoma cell line SACC-83.

    Directory of Open Access Journals (Sweden)

    Xi-Yuan Ge

    Full Text Available Salivary adenoid cystic carcinoma is an epithelial tumor in the head and neck region. Despite its slow growth, patients with salivary adenoid cystic carcinoma exhibit poor long term survival because of a high rate of distant metastasis. Lung and bone are common distant metastasis sites. Zoledronic acid, a third generation bisphosphonate, has been used for tumor-induced osteolysis due to bone metastasis and has direct antitumor activity in several human neoplasms. Here, we observed that zoledronic acid inhibited salivary adenoid cystic carcinoma cell line SACC-83 xenograft tumor growth in nude mice. In vitro, zoledronic acid induced apoptosis and reduced clonogenic survival in SACC-83. Flow cytometry and western blotting indicated that the cell cycle was arrested at G0/G1. Zoledronic acid treatment upregulated reactive oxygen species as well as the autophagy marker protein LC-3B. Reactive oxygen species scavenger N-acetylcysteine and autophagy antagonist 3-methyladenine decreased zoledronic acid-induced apoptosis and increased clonogenic survival. Silencing of the autophagy related gene Beclin-1 also decreased zoledronic acid-induced apoptosis and inhibition of clonogenic formation. In addition, isobolographic analysis revealed synergistic effects on apoptosis when zoledronic acid and paclitaxel/cisplatin were combined. Taken together, our results suggest that zoledronic acid induced apoptosis and reduced clonogenic survival via upregulation of reactive oxygen species and autophagy in the SACC-83 cell line. Thus, zoledronic acid should be considered a promising drug for the treatment of salivary adenoid cystic carcinoma.

  3. Retinoic Acid Induces Apoptosis of Prostate Cancer DU145 Cells through Cdk5 Overactivation

    OpenAIRE

    Mei-Chih Chen; Chih-Yang Huang; Shih-Lan Hsu; Eugene Lin; Chien-Te Ku; Ho Lin; Chuan-Mu Chen

    2012-01-01

    Retinoic acid (RA) has been believed to be an anticancer drug for a long history. However, the molecular mechanisms of RA actions on cancer cells remain diverse. In this study, the dose-dependent inhibition of RA on DU145 cell proliferation was identified. Interestingly, RA treatment triggered p35 cleavage (p25 formation) and Cdk5 overactivation, and all could be blocked by Calpain inhibitor, Calpeptin (CP). Subsequently, RA-triggered DU145 apoptosis detected by sub-G1 phase accumulation and ...

  4. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  5. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    OpenAIRE

    Yi Ding; Lan Xie; Cun-Qing Chang; Zhi-Min Chen; Hua Ai

    2015-01-01

    Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in thi...

  6. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages.

    Science.gov (United States)

    Varì, Rosaria; Scazzocchio, Beatrice; Santangelo, Carmela; Filesi, Carmelina; Galvano, Fabio; D'Archivio, Massimo; Masella, Roberta; Giovannini, Claudio

    2015-01-01

    Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power. PMID:26180584

  7. Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages

    Directory of Open Access Journals (Sweden)

    Rosaria Varì

    2015-01-01

    Full Text Available Protocatechuic acid (PCA, one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power.

  8. Retinoic Acid Induces Apoptosis of Prostate Cancer DU145 Cells through Cdk5 Overactivation

    Directory of Open Access Journals (Sweden)

    Mei-Chih Chen

    2012-01-01

    Full Text Available Retinoic acid (RA has been believed to be an anticancer drug for a long history. However, the molecular mechanisms of RA actions on cancer cells remain diverse. In this study, the dose-dependent inhibition of RA on DU145 cell proliferation was identified. Interestingly, RA treatment triggered p35 cleavage (p25 formation and Cdk5 overactivation, and all could be blocked by Calpain inhibitor, Calpeptin (CP. Subsequently, RA-triggered DU145 apoptosis detected by sub-G1 phase accumulation and Annexin V staining could also be blocked by CP treatment. Furthermore, RA-triggered caspase 3 activation and following Cdk5 over-activation were destroyed by treatments of both CP and Cdk5 knockdown. In conclusion, we report a new mechanism in which RA could cause apoptosis of androgen-independent prostate cancer cells through p35 cleavage and Cdk5 over-activation. This finding may contribute to constructing a clearer image of RA function and bring RA as a valuable chemoprevention agent for prostate cancer patients.

  9. Melatonin reduces bacterial translocation and apoptosis in trinitrobenzene sulphonic acid-induced colitis of rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the effects of exogenous melatonin on bacterial translocation and apoptosis in a rat ulcerative colitis model.METHODS:Rats were randomly assigned to three groups:group Ⅰ:control,group Ⅱ: experimental colitis,group Ⅲ:colitis plus melatonin treatment.On d 11 after colitis,plasma tumor necrosis factor-α,portal blood endotoxin levels,colon tissue myeloperoxidase and caspase-3 activity were measured.Bacterial translocation was quantified by blood,lymph node,liver and spleen culture.RESULTS:We observed a significantly reduced incidence of bacterial translocation to the liver,spleen,mesenteric lymph nodes,portal and systemic blood in animals treated with melatonin.Treatment with melatonin significantly decreased the caspase-3 activity in colonic tissues compared to that in trinitrobenzene sulphonic acid-treated rats (16.11 ± 2.46 vs 32.97 ± 3.91,P < 0.01).CONCLUSION:Melatonin has a protective effect on bacterial translocation and apoptosis.

  10. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  11. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  12. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells.

    Science.gov (United States)

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-09-22

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma.

  13. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells.

    Science.gov (United States)

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-01-01

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma. PMID:27669220

  14. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    Science.gov (United States)

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells. PMID:24792323

  15. Protective role of metallothionein (Ⅰ/Ⅱ) against pathological damage and apoptosis induced by dimethylarsinic acid

    Institute of Scientific and Technical Information of China (English)

    Guang Jia; Yi-Qun Gu; Kung-Tung Chen; You-Yong Lu; Lei Yan; Jian-Ling Wang; Ya-Ping Su; J. C. Gaston Wu

    2004-01-01

    AIM: To better clarify the main target organs of dimethylarsinic acid toxicity and the role of metallothionein (MTs) in modifying dimethylarsinic acid (DMAA) toxicity.METHODS: MT-Ⅰ/Ⅱ null (MT-/-) mice and the corresponding wild-type mice (MT+/+), six in each group, were exposed to DMAA (0-750 mg/kg body weight) by a single oral injection.Twenty four hours later, the lungs, livers and kidneys were collected and undergone pathological analysis, induction of apoptotic cells as determined by TUNEL and MT concentration was detected by radio-immunoassay.RESULTS: Remarkable pathological lesions were observed at the doses ranging from 350 to 750 mg/kg body weight in the lungs, livers and kidneys and MT+/+ mice exhibited a relatively slight destruction when compared with that in dose matched MT-/- mice. The number of apoptotic cells was increased in a dose dependent manner in the lungs and livers in both types of mice. DMAA produced more necrotic cells rather than apoptotic cells at the highest dose of 750 mg/kg,however, no significant increase was observed in the kidney.Hepatic MT level in MT+/+ mice was significantly increased by DMAA in a dose-dependent manner and there was nodetectable amount of hepatic MT in untreated MT-/- mice.CONCLUSION: DMAA treatment can lead to the induction of apoptosis and pathological damage in both types of mice.MT exhibits a protective effect against DMAA toxicity.

  16. Evidence of caspase-mediated apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom.

    Science.gov (United States)

    Alves, Raquel Melo; Antonucci, Gilmara Ausech; Paiva, Helder Henrique; Cintra, Adélia Cristina Oliveira; Franco, João José; Mendonça-Franqueiro, Elaine Paula; Dorta, Daniel Junqueira; Giglio, José Roberto; Rosa, José César; Fuly, André Lopes; Dias-Baruffi, Marcelo; Soares, Andreimar Martins; Sampaio, Suely Vilela

    2008-12-01

    The aim of this work was to investigate the involvement of caspases in apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAAO. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in "Asp and Glu" residues. It displays high specificity toward hydrophobic l-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H2O2 production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. PMID:18804547

  17. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1 Cells

    Directory of Open Access Journals (Sweden)

    Wai Wing So

    2015-08-01

    Full Text Available Omega-3 (n-3 fatty acids are dietary long-chain fatty acids with an array of health benefits. Previous research has demonstrated the growth-inhibitory effect of n-3 fatty acids on different cancer cell lines in vitro, yet their anti-tumor effects and underlying action mechanisms on human neuroblastoma LA-N-1 cells have not yet been reported. In this study, we showed that docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA exhibited time- and concentration-dependent anti-proliferative effect on the human neuroblastoma LA-N-1 cells, but had minimal cytotoxicity on the normal or non-tumorigenic cells, as measured by MTT reduction assay. Mechanistic studies indicated that DHA and EPA triggered G0/G1 cell cycle arrest in LA-N-1 cells, as detected by flow cytometry, which was accompanied by a decrease in the expression of CDK2 and cyclin E proteins. Moreover, DHA and EPA could also induce apoptosis in LA-N-1 cells as revealed by an increase in DNA fragmentation, phosphatidylserine externalization and mitochondrial membrane depolarization. Up-regulation of Bax, activated caspase-3 and caspase-9 proteins, and down-regulation of Bcl-XL protein, might account for the occurrence of apoptotic events. Collectively, our results suggest that the growth-inhibitory effect of DHA and EPA on LA-N-1 cells might be mediated, at least in part, via triggering of cell cycle arrest and apoptosis. Therefore, DHA and EPA are potential anti-cancer agents which might be used for the adjuvant therapy or combination therapy with the conventional anti-cancer drugs for the treatment of some forms of human neuroblastoma with minimal toxicity.

  18. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  19. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    Science.gov (United States)

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  20. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells.

    Science.gov (United States)

    Xiang, Qisen; Ma, Yunfang; Dong, Jilin; Shen, Ruiling

    2015-02-01

    Carnosic acid (CA), a phenolic diterpene isolated from rosemary, shows potential benefits in health promotion and disease prevention. In the present study, the cytotoxic and apoptotic-inducing effects of CA on human hepatocellular carcinoma HepG2 cells were investigated. The MTT assay results indicated that CA decreased cell viability in HepG2 cells in a dose-dependent manner. Treatment with CA caused a rapid Caspase-3 activation and subsequently proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), both of which were markers of cells undergoing apoptosis. CA also dissipated mitochondrial membrane potential and decreased the ratio of Bcl-2/Bax protein, which mediated cytosolic translocation of cytochrome c from the mitochondria. Furthermore, CA reduced the phosphorylation of Akt, which was partially inhibited by insulin, an activator of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. In conclusion, our data suggest that the mitochondrial dysfunction and deactivation of Akt may contribute to the apoptosis-inducing effects of CA. PMID:25265205

  1. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Villar

    Full Text Available Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA, being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR, in human soft tissue sarcoma cells. UA (5-50 μM strongly inhibited (up to 80% the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6-9 h strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10-15 μM enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS.

  2. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Martín-Broto, Javier; Martínez-Serra, Jordi; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2016-01-01

    Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA), being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR), in human soft tissue sarcoma cells. UA (5–50 μM) strongly inhibited (up to 80%) the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6–9 h) strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10–15 μM) enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS. PMID:27219337

  3. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA.

    Directory of Open Access Journals (Sweden)

    Mari Gotoh

    Full Text Available Cyclic phosphatidic acid (cPA is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2 to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A cells with CoCl(2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1, LPA(2, and LPA(6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1 and LPA(2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1 and LPA(2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1 and LPA(3 antagonist, was adopted to know the LPA(1 function and siRNA was used to knockdown the expression of LPA(2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2-induced hypoxia damage is mediated via LPA(2.

  4. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis.

    Science.gov (United States)

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin

    2015-12-01

    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  5. Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro.

    Science.gov (United States)

    Qu, Liping; Zhang, Huiqing; Yang, Yanlong; Yang, Geliang; Xin, Hailiang; Ling, Changquan

    2016-08-01

    Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine. Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines. Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4'-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays. Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio. Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway. PMID:26810384

  6. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  7. Alpha lipoic acid protects lens from H2O2-induced cataract by inhibiting apoptosis of lens epithelial cells and inducing activation of anti-oxidative enzymes

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Ya-Zhen Liu; Jing-Ming Shi; Song-Bai Jia

    2013-01-01

    Objective: To determine whether alpha lipoic acid (LA) can effectively protect lenses from hydrogen peroxide (H2O2)-induced cataract. Methods: Lens from adult Sprague-Dawley rats were cultured in 24-well plates and treated without or with 0.2 mM of H2O2, 0.2 mM of H2O2 plus 0.5 mM, 1.0 mM, or 2.0 mM of LA for 24 h. Cataract was assessed using cross line grey scale measurement. Superoxide dismutase (SOD), glutathione (GSH-Px), lactate dehydrogenase (LDH), and malondialdehyde (MDA) activity or level in lens homogenates was measured. Apoptosis of lens epithelial cells in each group were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay. Results: A total of 0.2 mM of H2O2 induced obvious cataract formation and apoptosis in lens’ epithelial cells, but 0.5-2.0 mM of LA could block the effect of 0.2 mM H2O2 in inducing cataract and apoptosis. Furthermore, 0.2 mM of H2O2 significantly decreased SOD, GSH-Px, and LDH activity and significant increased MDA level in the lens, but 0.5-2.0 mM of LA blocked the effect of 0.2 mM H2O2. One mM of LA was found to be the most effective. Conclusions: LA can protect lens from H2O2-induced cataract. LA exerts protective effects through inhibition of lens’ epithelial cell apoptosis and activation of anti-oxidative enzymes.

  8. Effect of apoptosis on gastric adenocarcinoma cell line SGC—7901 induced by cis—9,trans—11—conjugated linoleic acid

    Institute of Scientific and Technical Information of China (English)

    Jia-RenLiu; Bing-QingChen; Yan-MeiYang; Xuan-LingWang; Ying-BenXue

    2002-01-01

    AIM:To determine the effect of apoptosis on gastric cancer cells(SGC-7901)induced by cis-9,trans-11-conjugated linoleic acid(c9,t11-CLA)and its possible mechanism in the inhibition of cancer cells growth.

  9. Oleanolic acid-induced apoptosis and its relation with intracellular calcium in human lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    Asmitanand; Thakur

    2010-01-01

    Objective To investigate the effect of oleanolic acid (OA) on apoptosis,correlation between apoptosis and intracellular calcium,and its mechanism in human lung adenocarcinoma cell line A549. Methods Human lung adenocarcinoma A549 cells were incubated in vitro and assigned with OA concentrations of 0,10,20 and 40μg/mL. The apoptosis status of A549 cell line was detected with Annexin V-FITC/PI by flow cytometry (FCM); fluorescence intensity (FI) of A549 cells was assessed and the level of intracellular calciu...

  10. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins.

    Science.gov (United States)

    Marin, Jose J G; Hernandez, Alicia; Revuelta, Isabel E; Gonzalez-Sanchez, Ester; Gonzalez-Buitrago, Jose M; Perez, Maria J

    2013-08-01

    Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis. PMID:23597504

  11. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver.

    Science.gov (United States)

    Perez, Maria J; Velasco, Elena; Monte, Maria J; Gonzalez-Buitrago, Jose M; Marin, Jose J G

    2006-08-15

    Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.

  12. c-Abl is an upstream regulator of acid sphingomyelinase in apoptosis induced by inhibition of integrins αvβ3 and αvβ5.

    Directory of Open Access Journals (Sweden)

    Xiuhai Ren

    Full Text Available Inhibition of integrins αvβ3/αvβ5 by the cyclic function-blocking peptide, RGDfV (Arg-Gly-Asp-Phe-Val can induce apoptosis in both normal cells and tumor cells. We show that RGDfV induced apoptosis in ECV-304 carcinoma cells, increased activity and mRNA expression of acid sphingomyelinase (ASM, and increased ceramides C(16, C(18:0, C(24:0 and C(24:1 while decreasing the corresponding sphingomyelins. siRNA to ASM decreased RGDfV-induced apoptosis as measured by TUNEL, PARP cleavage, mitochondrial depolarization, and caspase-3 and caspase-8 activities, as well as by annexinV in a 3D collagen model. These findings indicate a causal role for ASM in RGDfV-induced apoptosis in ECV-304. We have shown that c-Abl, a non-receptor tyrosine kinase, also mediates RGDfV-induced apoptosis. However, c-Abl, has not been previously linked to ASM in any system. Here we show that STI-571 (imatinib, inhibitor of c-Abl inhibited RGDfV-induced ASM activity. Furthermore, STI-571 and c-Abl-siRNA both inhibited RGDfV-induced increase in ASM mRNA, but ASM-siRNA did not affect c-Abl phosphorylation or expression, supporting that c-Abl regulates the RGDfV-induced increase in ASM expression. These studies implicate ASM as a mediator of apoptosis induced by inhibition of integrins αvβ3/αvβ5, and for the first time place c-Abl as an upstream regulator of ASM expression and activity.

  13. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zheng, Hao; Yu, Wei; Chai, Hongyan [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390,USA (United States); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yue, Jiang; Peng, Renxiu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  14. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model

    OpenAIRE

    Qi Xu; Kanthasamy, Anumantha G.; Reddy, Manju B.

    2011-01-01

    Iron may play an important role in Parkinson's disease (PD) since it can induce oxidative stress-dependent neurodegeneration. The objective of this study was to determine whether the iron chelator, phytic acid (IP6) can protect against 6-hydroxydopamine- (6-OHDA-) induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions. Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; < . 0 0 1 ) and 30 μmol/L I...

  15. Retinoic acid protects human breast cancer cells against etoposide-induced apoptosis by NF-kappaB-dependent but cIAP2-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Gronemeyer Hinrich

    2010-01-01

    Full Text Available Abstract Background Retinoids, through their cognate nuclear receptors, exert potent effects on cell growth, differentiation and apoptosis, and have significant promise for cancer therapy and chemoprevention. These ligands can determine the ultimate fate of target cells by stimulating or repressing gene expression directly, or indirectly through crosstalking with other signal transducers. Results Using different breast cancer cell models, we show here that depending on the cellular context retinoids can signal either towards cell death or cell survival. Indeed, retinoids can induce the expression of pro-apoptotic (i.e. TRAIL, TNF-Related Apoptosis-Inducing Ligand, Apo2L/TNFSF10 and anti-apoptotic (i.e. cIAP2, inhibitor of apoptosis protein-2 genes. Promoter mapping, gel retardation and chromatin immunoprecipitation assays revealed that retinoids induce the expression of this gene mainly through crosstalk with NF-kappaB. Supporting this crosstalk, the activation of NF-kappaB by retinoids in T47D cells antagonizes the apoptosis triggered by the chemotherapeutic drugs etoposide, camptothecin or doxorubicin. Notably apoptosis induced by death ligands (i.e. TRAIL or antiFAS is not antagonized by retinoids. That knockdown of cIAP2 expression by small interfering RNA does not alter the inhibition of etoposide-induced apoptosis by retinoids in T47D cells reveals that stimulation of cIAP2 expression is not the cause of their anti-apoptotic action. However, ectopic overexpression of a NF-kappaB repressor increases apoptosis by retinoids moderately and abrogates almost completely the retinoid-dependent inhibition of etoposide-induced apoptosis. Our data exclude cIAP2 and suggest that retinoids target other regulator(s of the NF-kappaB signaling pathway to induce resistance to etoposide on certain breast cancer cells. Conclusions This study shows an important role for the NF-kappaB pathway in retinoic acid signaling and retinoic acid-mediated resistance to

  16. Inhibitor of fatty acid synthase induced apoptosis in human colonic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei Lin Huang; Zhen Sheng Dai; Yue Lin Jin; Shi Neng Zhu; Shi Lun Lu

    2000-01-01

    @@INTRODUCTION The treatment of human epithelial malignancies is limited by drug resistance and toxic and side effects,which results in the failure in the treatment of majority of advanced cancer victims. To seek for a new, and specific antineoplastic therapy will provide hope for tumor treatment. Although disordered intermediary metabolism in cancer cells has been known for many years, much of the work focused on abnormal glucose catabolism. At the same time, little attention has been paid to fatty acid synthasis in tumor tissues, dispite of the significance of fatty acid synthase (FAS) in some clinical human ovarian[1], breast[2], colorectal[3],and prostatic cancers[4,5]. Tumor cells which express high levels of fatty acid synthesizing enzymes use endogeneously synthesized fatty acids for membrance biosynthesis and appear to export large amounts of lipid. In contrast, normal cells preferentially utilize diary lipid.

  17. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Han, Lirong [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Qi, Wentao [Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037 (China); Cheng, Dai; Ma, Xiaolei; Hou, Lihua [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Cao, Xiaohong, E-mail: caoxh@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Wang, Chunling, E-mail: wangchunling@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China)

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  18. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    International Nuclear Information System (INIS)

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 μM) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-κB and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  19. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines

    Directory of Open Access Journals (Sweden)

    Cristiane Tavares

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Myeloproliferative neoplasms are Philadelphia chromosome-negative diseases characterized by hyperproliferation of mature myeloid cells, associated or not with the Janus kinase 2 tyrosine kinase mutation, JAK2V617F. As there is no curative therapy, researchers have been investigating new drugs to treat myeloproliferative neoplasms, including l-amino acid oxidase from Calloselasma rhodostoma snake venom (CR-LAAO, which is a toxin capable of eliciting apoptosis in several tumor cell lines. OBJECTIVE: To evaluate the effects of l-amino acid oxidase from C. rhodostoma snake venom in the apoptotic machinery of JAK2-mutated cell lines. METHODS: The HEL 92.1.7 and SET-2 cell lines were cultured with l-amino acid oxidase and catalase for 12 h at 37 °C in 5% carbon dioxide. The cell viability was assessed by the multi-table tournament method, the level of apoptosis was measured by flow cytometry, and the expression of cysteine-dependent aspartate-specific proteases and cleaved Poly(ADP-ribose polymerase were analyzed by Western blotting. RESULTS: l-Amino acid oxidase from C. rhodostoma snake venom was cytotoxic to HEL 92.1.7 and SET-2 cells (50% inhibitory concentration = 0.15 µg/mL and 1.5 µg/mL, respectively and induced apoptosis in a concentration-dependent manner. Cell treatment with catalase mitigated the l-amino acid oxidase toxicity, indicating that hydrogen peroxide is a key component of its cytotoxic effect.The activated caspases 3 and 8 expression and cleaved PARP in HEL 92.1.7 and SET-2 cells confirmed the apoptosis activation by CR-LAAO. CONCLUSIONS: l-Amino acid oxidase from C. rhodostoma snake venom is a potential antineoplastic agent against HEL 92.1.7 and SET-2 JAK2V617F-positive cells as it activates the extrinsic apoptosis pathway.

  20. Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide.

    Science.gov (United States)

    Bian, Yuan-Yuan; Guo, Jia; Majeed, Hamid; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2015-08-01

    The application of antioxidants has been considered as an important and effective approach against conditions in which oxidative stress occurs. Especially, ferulic acid (FA) is an important antioxidant which exerts potency against cellular damage in the presence of oxidants. In the current study, the resistance effect of FA on hydrogen peroxide (H2O2)-stressed human embryonic kidney 293 cells (HEK293) in vitro was investigated. FA (1 mM) increased HEK293 cells' viability and significantly reduced H2O2-induced cellular apoptosis, which was confirmed with flow cytometry and morphological results. Cell cycle analysis indicated low percentage of sub-G0 population of FA-treated HEK293 cells that confirmed its resistance effect. The FA-treated HEK293 cells followed by H2O2 exposure resulted in decreased ROS levels compared to control (H2O2-treated only). The results indicated that pretreatment of FA on cell prior to H2O2 exposure could significantly improve cell survival and increase catalase (CAT) and superoxide dismutase (SOD) levels. On the other hand, reduction in the levels of MDA and ROS was obvious. It can be concluded that FA may protect HEK293 cells from injury induced by H2O2 through regulation of intracellular antioxidant enzyme activities and cell cycle distribution. The reduction in mitochondrial membrane potential was also inhibited by FA treatment. These results suggested the importance of naturally occurring antioxidants such as FA in therapeutic intervention methodology against oxidative stress-related diseases.

  1. An antibody to de-N-acetyl sialic acid containing-polysialic acid identifies an intracellular antigen and induces apoptosis in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Lindsay M Steirer

    Full Text Available Polysialic acid (PSA, an α2,8-linked homopolymer of N-acetylneuraminic acid (Neu5Ac, is developmentally regulated and its expression is thought to be restricted to a few tissues in adults. Recently, we showed that two human pathogens expressed a derivative of PSA containing de-N-acetyl sialic acid residues (NeuPSA. Here we show that an epitope identified by the anti-NeuPSA monoclonal antibody, SEAM 3 (SEAM 3-reactive antigen or S3RA, is expressed in human melanomas, and also intracellularly in a human melanoma cell line (SK-MEL-28, a human T cell leukemia cell line (Jurkat, and two neuroblastoma cell lines (CHP-134 and SH-SY5Y. SEAM 3 binding induced apoptosis in the four cell lines tested. The unusual intracellular distribution of S3RA was similar to that described for the PSA polysialyltransferases, STX and PST, which are also expressed in the four cell lines used here. Interestingly, suppression of PST mRNA expression by transfection of SK-MEL-28 cells with PST-specific short interfering RNA (siRNA resulted in decreased SEAM 3 binding. The results suggest further studies of the utility of antibodies such as SEAM 3 as therapeutic agents for certain malignancies.

  2. Poly-γ-Glutamic Acid Induces Apoptosis via Reduction of COX-2 Expression in TPA-Induced HT-29 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ju Shin

    2015-04-01

    Full Text Available Poly-γ-glutamic acid (PGA is one of the bioactive compounds found in cheonggukjang, a fast-fermented soybean paste widely utilized in Korean cooking. PGA is reported to have a number of beneficial health effects, and interestingly, it has been identified as a possible anti-cancer compound through its ability to promote apoptosis in cancer cells, although the precise molecular mechanisms remain unclear. Our findings demonstrate that PGA inhibits the pro-proliferative functions of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, a known chemical carcinogen in HT-29 human colorectal cancer cells. This inhibition was accompanied by hallmark apoptotic phenotypes, including DNA fragmentation and the cleavage of poly (ADP-ribose polymerase (PARP and caspase 3. In addition, PGA treatment reduced the expression of genes known to be overexpressed in colorectal cancer cells, including cyclooxygenase 2 (COX-2 and inducible nitric oxide synthase (iNOS. Lastly, PGA promoted activation of 5' adenosine monophosphate-activated protein (AMPK in HT-29 cells. Taken together, our results suggest that PGA treatment enhances apoptosis in colorectal cancer cells, in part by modulating the activity of the COX-2 and AMPK signaling pathways. These anti-cancer functions of PGA make it a promising compound for future study.

  3. Gambogic acid induces mitochondria-dependent apoptosis by modulation of Bcl-2 and Bax in mantle cell lymphoma JeKo-1 cells

    Institute of Scientific and Technical Information of China (English)

    Jingyan Xu; Min Zhou; Jian Ouyang; Jing Wang; Qiguo Zhang; Yong Xu; Yueyi Xu

    2013-01-01

    Objective:To study the mechanisms in gambogic acid (GA)-induced JeKo-1 human Mantle Cell Lymphoma cell apoptosis in vitro.Methods:The proliferation of GA-treated JeKo-1 cells was measured by CCK-8 assay and Ki-67 immunocytochemical detection.Apoptosis,cell cycle and mitochondrial membrane potential were measured by flow cytometric analysis.Caspase-3,-8 and-9 were detected by colorimetric assay.Bcl-2 and Bax were analyzed by Western blotting.Results:GA inhibited cell growth in a time-and dose-dependent manner.GA induces apoptosis in JeKo-1 cells but not in normal bone marrow cells,which was involved in reducing the membrane potential of mitochondria,activating caspases-3,-8 and-9 and decreasing the ratio of Bcl-2 and Bax without cell cycle arresting.Conclusions:GA induced apoptosis in human MCL JeKo-1 cells by regulating Bcl-2/Bax and activating caspase-3,-8 and-9 via mitochondrial pathway without affecting cell cycle.

  4. Vitamin E Succinic Acid enhances the effect of mDRA-6 to eradicate leukemia cells by inducing apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Shulian Li; Jingfang Du; Yuanfang Ma

    2012-01-01

    Objective: The aim of our study was to detect whether Vitamin E Succinic Acid (VES) could regulate the expression level of DR5 in the cells and further elucidate the potential mechanisms involving that VES enhances the effect of mDRA-6 to eradicate leukemia Raji and K562 cells.Methods: MTT method was used to detect the growth inhibition of VES and mDRA-6 to Raji and K562 cells.Annexin V-FITC/PI double staining assay was used to analysis the apoptosis of leukemia cell.Flow cytometry was used to detect the cell surface DR5 expression.Immunoblotting technique was used to detect the DR5 protein expression.Results: MTT detection showed that 10 μmol/L mDRA-6 on the cell death rates of Raji and K562 cells were 21.98% and 5.23%, respectively.While increasing concentration of VES (5 μmol/L, 10 μmol/L, 20 μmol/L) and mDRA-6 both on the cell viability of Raji or K562 cells, the mortality of Raji cells elevated to 24.67%, 35.65% (P < 0.01) and 40.22% (P < 0.01), respectively.Similarly, the mortality of K562 cells increase to 6%, 7.89% (P < 0.01) and 8.67% (P < 0.01), respectively.To further specify the increased cell death rate induced by mDRA-6 and VES, the treated cells were analyzed by Annexin-V/PI staining assay.As shown in Fig.1, the apoptosis rates of Raji and K562 cells treated with 2 μg/mL mDRA-6 for 12 h were 20.79% and 7.74%.Compared with this, the proportion of apoptotic cells increased upon exposure to 2 μg/mL mDRA-6 combination with 10 μmol/L VES, the apoptosis rates of Raji and K562 cells were 43.18% and 16.99%, respectively.To examine the anticancer effects of a combination strategy based on mDRA-6 and VES.We analyzed whether VES could elevated the expression level of DR5 on Raji and K562 cytomembrane by FACS.Interestingly, after treated with 10 μmol/L VES for 12 h, the expression level of DR5 on Raji and K562 cell surface increased from 50.66% to 70.08%, and 15.02% to 16.38%, respectively.Immune imprinting technology test showed that, different

  5. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cells.

    Science.gov (United States)

    Hassan, Lama; Pinon, Aline; Limami, Youness; Seeman, Josiane; Fidanzi-Dugas, Chloe; Martin, Frederique; Badran, Bassam; Simon, Alain; Liagre, Bertrand

    2016-07-01

    Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE2 pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention. PMID:27262506

  6. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    Science.gov (United States)

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  7. Stearoyl-CoA desaturase-1 (SCD1 augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Hiroki Matsui

    Full Text Available Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1 is a rate-limiting enzyme that converts saturated fatty acids (SFAs to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.

  8. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation.

    Directory of Open Access Journals (Sweden)

    Ki Sung Kang

    Full Text Available BACKGROUND: The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA, with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively. CONCLUSIONS/SIGNIFICANCE: DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.

  9. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    Directory of Open Access Journals (Sweden)

    Li Qiao

    2006-12-01

    Full Text Available Abstract Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.

  10. Alpha-picolinic acid,a fungal toxin and mammal apoptosis-inducing agent,elicits hypersensitive-like response and enhances disease resistance in rice

    Institute of Scientific and Technical Information of China (English)

    Hai Kuo ZHANG; Xin ZHANG; Bi Zeng MAO; Qun LI; Zu Hua HE

    2004-01-01

    Alpha-picolinic acid (PA),a metabolite of tryptophan and an inducer of apoptosis in the animal cell,has been reported to be a toxin produced by some of plant fungal pathogens and used in screening for disease resistant mutants. Here,we report that PA is an efficient apoptosis agent triggering cell death of hypersensitive-like response in planta. Confirmed by Fluorescence Activated Cell Sorter (FACS),rice suspension cells and leaves exhibited programmed cell death induced by PA. The PA-induced cell death was associated with the accumulation of reactive oxygen species that could be blocked by diphenylene iodonium chloride,indicating that the generation of reactive oxygen species was NADPHoxidase dependent. We also demonstrated the induction of rice defense-related genes and subsequent resistant enhancement by PA against the rice blast fungus Magnaporthe grisea. Hence,it was concluded that the PA-stimulated defense response likely involves the onset of the hypersensitive response in rice,which also provides a simple eliciting tool for studying apoptosis in the plant cell.

  11. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Annika Sommerfeld

    2015-05-01

    Full Text Available Background/Aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP signal with induction of the dual specificity mitogen-activated protein (MAP kinase phosphatase 1 (MKP-1, which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4 and c-jun-NH2-terminal kinase (JNK activation. Furthermore, TUDC induced a protein kinase A (PKA-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.

  12. Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells

    Directory of Open Access Journals (Sweden)

    Li HF

    2015-06-01

    Full Text Available Huai-Feng Li,1–3,* Xu-An Wang,1–3,* Shan-Shan Xiang,1–3,* Yun-Ping Hu,1–3 Lin Jiang,1–3 Yi-Jun Shu,1–3 Mao-Lan Li,1–3 Xiang-Song Wu,1–3 Fei Zhang,1–3 Yuan-Yuan Ye,1–3 Hao Weng,1–3 Run-Fa Bao,1–3 Yang Cao,1–3 Wei Lu,1–3 Qian Dong,1–3 Ying-Bin Liu1–3 1Department of General Surgery, 2Laboratory of General Surgery, 3Institute of Biliary Tract Disease, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Oleanolic acid (OA, a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma. Keywords: oleanolic acid, gallbladder carcinoma, apoptosis, cell cycle arrest, mitochondrial pathway

  13. 18β-glycyrrhetinic Acid-induced Apoptosis and Relation with Intracellular Ca2+ Release in Human Breast Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    LUOHuiling; HUANGWei; ZHANGZhiling; WUQinian; HUANGMinshan; ZHANGDongfang; YANGFengyi

    2004-01-01

    To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apoptotic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast carcinoma (MCF-7) cells. Methods: After MCF-7 cells were treated with GA at the concentrations from 50 μmol/L to 250 μmol/L for 24 h, cell viability of proliferation was as sessed by MTTassay. After the cells were treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L GA for 24 h, the rates of cell apoptosis were examined by terminal deoxynucleotide transferase mediated dUTP nick-end-labeling method and flow cytometry with Annexin V/propidium iodide fluorescent stain. After the cells treated with 150 μmol/L GA for 24 h, intracellular Ca2+ concentration was measured by Fure-2 fluorescein load method. Results: After the cells were treated with GA at the concentrations from 100 μmol/L to 250 μmol/L, the rates of proliferative inhibition were increased significantly (P<0.05 and P<0.01) in a dosedependent fashion. IC50 of the proliferation inhibition was 234.33 μmol/L. Treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L, the rates of cell apoptosis were increased significantly (P<0.01). Intracellular Ca2+ concentration after treatment with GA was higher evidently than that of control (P<0.05). Conclusion: 18β-glycyrrhetinic acid has the effects of the proliferation inhibition and the apoptotic induction on MCF-7 cells. The rise of intracellular Ca2+ level may be depended on apoptosis induced by GA in MCF-7 cells.

  14. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    Institute of Scientific and Technical Information of China (English)

    Yi Ding; Lan Xie; Cun-Qing Chang; Zhi-Min Chen; Hua Ai

    2015-01-01

    Background:Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage,excessive apoptosis,and dysfunction.Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation.NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR).Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis,damage,or dysfunction will be studied in this study.Methods:According to dose test,rats were randomly divided into control (Con),Ex,muscimol (MUS,0.l mg/kg) and bicuculline (BIC,0.5 mg/kg) groups,then all rats underwent once swimming Ex except ones in Con group only underwent training.Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester;glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed;apoptosis were displayed by dUTP nick end labeling (TUNEL) stain;endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis;Morris water maze was used to detect learning ability and spatial memory.Results:The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC.Ex group showed significantly increased [Ca2+]i and astrogliosis;TUNEL positive cells and levels of GFAP,B cell lymphoma-2 (Bcl-2) associated X protein (Bax),caspase-3,caspase-12 cleavage,CCAAT/enhancer binding protein homologous protein (CHOP),and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group,while SYP,synapse plasticity,and Bcl-2 levels in Ex group were significantly lower than those in Con group.These indexes were back to normal in MUS group.BIC group had the highest levels of [Ca2+]i,astrogliosis,TUNEL positive cell,GFAP,Bax,caspase-3,caspase-12 cleavage,CHOP,and p-JNK,it also gained the lowest SYP,synapse plasticity,and Bcl-2 levels among all groups.Water maze test showed that Ex group had longer

  15. Protein tyrosine kinase, JNK, and ERK involvement in p seudolaric acid B-induced apoptosis of human breast cancer MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Jing-hua YU; Hong-jun WANG; Xiang-ru LI; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2008-01-01

    Aim:To investigate the apoptotic mechanism ofpseudolaric acid B (PAB) in hu-man breast cancer MCF-7 cells. Methods: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide analysis and morphological changes were applied to detect apoptosis. The percentage of apoptotic and necrotic cells were calculated by the lactate dehydrogenase activity-based cytotoxicity assay, and the protein expression was examined by Western blot analysis. Results: PAB and/or the mitogen-activated protein kinases, including p38, c-Jun-N-terrninal kinase (JNK) and extracellular signal-regulated kinase (ERK), did not participate in necrosis. P38 had no obvious function on apoptosis after 4 μmol/L PAB treatment for 36 h, but PAB induced JNK phosphorylation and inhibited ERK phosphorylation in the apoptotic process. In this study the inhibitor of protein tyrosine kinase (PTK) genistein inverted the inhibitory effect of PAB, instead promoting the survival of MCF-7 cells. Like genistein, another PTK inhibitor AG1024 had a similar ef-fect on PAB-treated MCF-7 cells, indicating that PAB activated PTK to induce apoptosis. Together with PAB, genistein increased the expression of p-ERK, and decreased the expressions of JNK and p-JNK in PAB-treated MCF-7 cells at 36 h. And it is considered that the p-ERK and p-JNK were active patterns of ERK and JNK, respectively. Conclusion: PTK were upstream of ERK and JNK, and PTK induced apoptosis through activating JNK and inactivating ERK in PAB-treated MCF-7 cells.

  16. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    Science.gov (United States)

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.

  17. Apoptosis-induced cell death due to oleanolic acid in HaCaT keratinocyte cells--a proof-of-principle approach for chemopreventive drug development.

    Science.gov (United States)

    George, V Cijo; Kumar, D R Naveen; Suresh, P K; Kumar, R Ashok

    2012-01-01

    Oleanolic acid (OA) is a naturally occurring triterpenoid in food materials and is a component of the leaves and roots of Olea europaea, Viscum album L., Aralia chinensis L. and more than 120 other plant species. There are several reports validating its antitumor activity against different cancer cells apart from its hepatoprotective activity. However, antitumor activity against skin cancer has not been studied well thus far. Hence the present study of effects of OA against HaCaT (immortalized keratinocyte) cells--a cell-based epithelial model system for toxicity/ethnopharmacology-based studies--was conducted. Radical scavenging activity (DPPH·) and FRAP were determined spectrophotometrically. Proliferation was assessed by XTT assay at 24, 48 and 72 hrs with exposure to various concentrations (12.5-200 μM) of OA. Apoptotic induction potential of OA was demonstrated using a cellular DNA fragmentation ELISA method. Morphological studies were also carried out to elucidate its antitumor potential. The results revealed that OA induces apoptosis by altering cellular morphology as well as DNA integrity in HaCaT cells in a dose-dependent manner, with comparatively low cytotoxicity. The moderate toxicity observed in HaCaT cells, with induction of apoptosis, possibly suggests greater involvement of programmed-cell death-mediated mechanisms. We conclude that OA has relatively low toxicity and has the potential to induce apoptosis in HaCaT cells and hence provides a substantial and sound scientific basis for further validation studies. PMID:22901164

  18. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Cascante Marta

    2011-04-01

    Full Text Available Abstract Background Maslinic acid, a pentacyclic triterpene found in the protective wax-like coating of the leaves and fruit of Olea europaea L., is a promising agent for the prevention of colon cancer. We have shown elsewhere that maslinic acid inhibits cell proliferation to a significant extent and activates mitochondrial apoptosis in colon cancer cells. In our latest work we have investigated further this compound's apoptotic molecular mechanism. Methods We used HT29 adenocarcinoma cells. Changes genotoxicity were analyzed by single-cell gel electrophoresis (comet assay. The cell cycle was determined by flow cytometry. Finally, changes in protein expression were examined by western blotting. Student's t-test was used for statistical comparison. Results HT29 cells treated with maslinic acid showed significant increases in genotoxicity and cell-cycle arrest during the G0/G1 phase after 72 hours' treatment and an apoptotic sub-G0/G1 peak after 96 hours. Nevertheless, the molecular mechanism for this cytotoxic effect of maslinic acid has never been properly explored. We show here that the anti-tumoral activity of maslinic acid might proceed via p53-mediated apoptosis by acting upon the main signaling components that lead to an increase in p53 activity and the induction of the rest of the factors that participate in the apoptotic pathway. We found that in HT29 cells maslinic acid activated the expression of c-Jun NH2-terminal kinase (JNK, thus inducing p53. Treatment of tumor cells with maslinic acid also resulted in an increase in the expression of Bid and Bax, repression of Bcl-2, release of cytochrome-c and an increase in the expression of caspases -9, -3, and -7. Moreover, maslinic acid produced belated caspase-8 activity, thus amplifying the initial mitochondrial apoptotic signaling. Conclusion All these results suggest that maslinic acid induces apoptosis in human HT29 colon-cancer cells through the JNK-Bid-mediated mitochondrial apoptotic

  19. In vitro study on arsenic sulfide (realgar)-induced apoptosis of retinoic acid susceptible or resistant acute promyelocytic leukemia cell lines

    Institute of Scientific and Technical Information of China (English)

    CHEN Si-yu; LIU Shan-xi; LI Xin-min

    2002-01-01

    Objective: To further understand the possible mechanisms of arsenic sulfide (realgar) in the treatment of acute promyelocytic leukemia (APL). Methods: All-trans retinoic acid (ATRA)-susceptible APL cell line (NB4 cells) and ATRA-resistant APL cell line (MR2 subclone) were used as models in vitro. At various times after incubated with various concentrations of realgar, NB4 and MR2 cells were observed by cell viability, cell proliferation and cell morphology; cell cycle and the expression of Annexin V were assayed by flow cytometry. Results: Cell viability and proliferation of NB4 and MR2 cells were inhibited after the treatment,to some extent, in a dose and time dependent manner. 177-711 μg/L of realgar treated NB4 and MR2 cell presented morphologically some features of apoptotic cells such as intact cell membrane, chromatin condensation and nuclear fragmentation, apoptosis body could be found by electron microscopy as well. Sub-G1 ceils andcell cycle arrest were observed by flow cytometry. The proportion of Annexin V -FITC+/PI cells, which represent apoptotic cells, was up-regulated. Conclusion: Realgar could induce apoptosis of acute promyelocytic leukemia cell despite its susceptibility to retinoic acid in the way that may be different from retinoic acid.

  20. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  1. Quinovic acid glycosides purified fraction from Uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line.

    Science.gov (United States)

    Dietrich, Fabrícia; Kaiser, Samuel; Rockenbach, Liliana; Figueiró, Fabrício; Bergamin, Letícia Scussel; da Cunha, Fernanda Monte; Morrone, Fernanda Bueno; Ortega, George González; Battastini, Ana Maria Oliveira

    2014-05-01

    Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases. The objective of this study was to investigate the antitumor effect of one purified bioactive fraction of U.tomentosa bark on cell proliferation in two human bladder cancer cell lines, T24 and RT4. Quinovic acid glycosides purified fraction (QAPF) of U.tomentosa decreased the growth and viability of both T24 and RT4 cell lines. In T24 cells, QAPF induced apoptosis by activating caspase-3 and NF-κB. Further study showed that this fraction does not induce cell cycle arrest and does not alter PTEN and ERK levels. In conclusion, we demonstrated that QAPF of U.tomentosa has a potent inhibitory effect on the growth of human bladder cancer cell lines by inducing apoptosis through modulation of NF-κB, and we suggest that QAPF may become a potential therapeutic agent for the prevention and/or treatment of this cancer.

  2. Quinovic acid glycosides purified fraction from Uncaria tomentosa induces cell death by apoptosis in the T24 human bladder cancer cell line.

    Science.gov (United States)

    Dietrich, Fabrícia; Kaiser, Samuel; Rockenbach, Liliana; Figueiró, Fabrício; Bergamin, Letícia Scussel; da Cunha, Fernanda Monte; Morrone, Fernanda Bueno; Ortega, George González; Battastini, Ana Maria Oliveira

    2014-05-01

    Bladder cancer is the second most prevalent malignancy in the genitourinary tract and remains a therapeutic challenge. In the search for new treatments, researchers have attempted to find compounds with low toxicity. With this goal in mind, Uncaria tomentosa is noteworthy because the bark and root of this species are widely used in traditional medicine and in adjuvant therapy for the treatment of numerous diseases. The objective of this study was to investigate the antitumor effect of one purified bioactive fraction of U.tomentosa bark on cell proliferation in two human bladder cancer cell lines, T24 and RT4. Quinovic acid glycosides purified fraction (QAPF) of U.tomentosa decreased the growth and viability of both T24 and RT4 cell lines. In T24 cells, QAPF induced apoptosis by activating caspase-3 and NF-κB. Further study showed that this fraction does not induce cell cycle arrest and does not alter PTEN and ERK levels. In conclusion, we demonstrated that QAPF of U.tomentosa has a potent inhibitory effect on the growth of human bladder cancer cell lines by inducing apoptosis through modulation of NF-κB, and we suggest that QAPF may become a potential therapeutic agent for the prevention and/or treatment of this cancer. PMID:24607820

  3. Retinoids induce Nur77-dependent apoptosis in mouse thymocytes.

    Science.gov (United States)

    Kiss, Beáta; Tóth, Katalin; Sarang, Zsolt; Garabuczi, Éva; Szondy, Zsuzsa

    2015-03-01

    Nur77 is a transcription factor, which plays a determinant role in mediating T cell receptor-induced cell death of thymocytes. In addition to regulation of transcription, Nur77 contributes to apoptosis induction by targeting mitochondria, where it can convert Bcl-2, an anti-apoptotic protein into a proapoptotic molecule. Previous studies have demonstrated that retinoids are actively produced in the mouse thymus and can induce a transcription-dependent apoptosis in mouse thymocytes. Here we show that retinoic acids induce the expression of Nur77, and retinoid-induced apoptosis is completely dependent on Nur77, as retinoids were unable to induce apoptosis in Nur77 null thymocytes. In wild-type thymocytes retinoids induced enhanced expression of the apoptosis-related genes FasL, TRAIL, NDG-1, Gpr65 and Bid, all of them in a Nur77-dependent manner. The combined action of these proteins led to Caspase 8-dependent Bid cleavage in the mitochondria. In addition, we could demonstrate the Nur77-dependent induction of STAT1 leading to enhanced Bim expression, and the mitochondrial translocation of Nur77 leading to the exposure of the Bcl-2/BH3 domain. The retinoid-induced apoptosis was dependent on both Caspase 8 and STAT1. Our data together indicate that retinoids induce a Nur77-dependent cell death program in thymocytes activating the mitochondrial pathway of apoptosis. PMID:25576519

  4. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Raja Kumar Vadivelu

    2012-01-01

    Full Text Available Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P<0.05. Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

  5. Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: studies on oxidative stress, inflammation and apoptosis.

    Science.gov (United States)

    Xia, Xiaomin; Su, Chuanyang; Fu, Juanli; Zhang, Pu; Jiang, Xiaoji; Xu, Demei; Hu, Lihua; Song, Erqun; Song, Yang

    2014-10-01

    This study investigated the protective effect of α-lipoic acid (LA) on lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced fulminant hepatic failure in mice. First, we found that LA markedly reduced LPS/d-GalN-induced increases in serum ALT and AST activities, which were supplemented with histopathological examination, suggested that LA has a protective effect on this model of hepatic damage. Livers challenged with LPS/d-GalN exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. On the contrary, these pathological alterations were ameliorated by LA treatment. Next, we found that ROS and TBARS levels were increased in LPS/d-GalN treated liver homogenates, which were attenuated by LA administration. Consistently, decreases in hepatic CAT and GPx activities were observed in LPS/d-GalN group and were significantly restored by LA administration. Moreover, pretreatment with LA markedly reduced LPS/d-GalN-induced iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6 expressions. Furthermore, our data showed that TUNEL-positive cells increased in LPS/d-GalN-treated mice liver which was counteracted by LA administration. LPS/d-GalN induced apoptosis of hepatocytes, as estimated by caspase 3, caspase 8 and caspase 9 activations. Also, the increasing of Bax and the decreasing of Bcl-2 expressions also supported LPS/d-GalN induced apoptosis. Interestingly, LA marked relieved these apoptotic features. Taking together, our results indicated that LA plays an important role on LPS/d-GalN-induced fulminant hepatic failure through its antioxidant, anti-inflammatory and anti-apoptotic activities.

  6. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation.

    Science.gov (United States)

    Yaguchi, Takahiro; Fujikawa, Hirokazu; Nishizaki, Tomoyuki

    2010-05-01

    The present study aimed at understanding the effect of the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) on oxidative stress-induced neuronal death. Sodium nitroprusside (SNP; 1 mM) reduced viability of cultured rat cerebral cortical neurons to 50% of basal levels, but DCP-LA significantly prevented the SNP effect in a concentration (1-100 nM)-dependent manner. In addition, DCP-LA (100 nM) rescued neurons from SNP-induced degradation. SNP (1 mM) activated caspase-3 and -9 in cultured rat cerebral cortical neurons, but DCP-LA (100 nM) abolished the caspase activation. For a mouse model of middle cerebral artery occlusion, oral administration with DCP-LA (1 mg/kg) significantly diminished degraded area due to cerebral infarction. The results of the present study, thus, demonstrate that DCP-LA protects neurons at least in part from oxidative stress-induced apoptosis by inhibiting activation of caspase-3/-9. PMID:20099079

  7. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation.

    Science.gov (United States)

    Yaguchi, Takahiro; Fujikawa, Hirokazu; Nishizaki, Tomoyuki

    2010-05-01

    The present study aimed at understanding the effect of the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) on oxidative stress-induced neuronal death. Sodium nitroprusside (SNP; 1 mM) reduced viability of cultured rat cerebral cortical neurons to 50% of basal levels, but DCP-LA significantly prevented the SNP effect in a concentration (1-100 nM)-dependent manner. In addition, DCP-LA (100 nM) rescued neurons from SNP-induced degradation. SNP (1 mM) activated caspase-3 and -9 in cultured rat cerebral cortical neurons, but DCP-LA (100 nM) abolished the caspase activation. For a mouse model of middle cerebral artery occlusion, oral administration with DCP-LA (1 mg/kg) significantly diminished degraded area due to cerebral infarction. The results of the present study, thus, demonstrate that DCP-LA protects neurons at least in part from oxidative stress-induced apoptosis by inhibiting activation of caspase-3/-9.

  8. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway.

    Science.gov (United States)

    Xavier, Cristina P R; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2009-01-01

    Epidemiological studies have shown that nutrition is a key factor in modulating sporadic colorectal carcinoma (CRC) risk. Aromatic plants of the genus Salvia (sage) have been attributed many medicinal properties, which include anticancer activity. In the present study, the antiproliferative and proapoptotic effects of water extracts of Salvia fruticosa (SF) and Salvia officinalis (SO) and of their main phenolic compound rosmarinic acid (RA) were evaluated in two human colon carcinoma-derived cell lines, HCT15 and CO115, which have different mutations in the MAPK/ERK and PI3K/Akt signalling pathways. These pathways are commonly altered in CRC, leading to increased proliferation and inhibition of apoptosis. Our results show that SF, SO, and RA induce apoptosis in both cell lines, whereas cell proliferation was inhibited by the two sage extracts only in HCT15. SO, SF, and RA inhibited ERK phosphorylation in HCT15 and had no effects on Akt phosphorylation in CO115 cells. The activity of sage extracts seems to be due, at least in part, to the inhibition of MAPK/ERK pathway.

  9. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    International Nuclear Information System (INIS)

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr288 and subsequently impaired p53 phosphorylation at Ser315 which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss

  10. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiling; Li, Ridong [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Li, Li [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Ge, Zemei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China); Zhou, Rouli, E-mail: rlzhou@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Runtao, E-mail: lirt@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  11. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice.

    Science.gov (United States)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning; Wang, Miao; Chen, Mu; Hou, Jinsong; Huang, Hongzhang

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. PMID:27343556

  12. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Min-fang XU; Yu-yun XIONG; Jian-kang LIU; Jin-jun QIAN; Li ZHU; Jing GAO

    2012-01-01

    To investigate whether asiatic acid (AA),a pentacyclic triterpene in Centella asiatica,exerted neuroprotective effects in vitro and in vivo,and to determine the underlying mechanisms.Methods:Human neuroblastoma SH-SY5Y cells were used for in vitro study.Cell viability was determined with the MTT assay.Hoechst 33342 staining and flow cytometry were used to examine the apoptosis.The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye.PGC-1α and Sift1 levels were examined using Western blotting.Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13,and orally administered with AA on PD 14 daily for 30 d.The learning and memory of the mice were evaluated with the Morris water maze test.HE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions.Results:Pretreatment of SH-SY5Y cells with AA (0.1-100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner.AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS),stabilized the mitochondrial membrane potential (MMP),and promoted the expression of PGC-1α and Sirt1.In the mice models,oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test,and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels.AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer In the CA1 and CA3 regions.Conclusion:AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro.

  13. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells.

    Science.gov (United States)

    Martelli, Maria Paola; Gionfriddo, Ilaria; Mezzasoma, Federica; Milano, Francesca; Pierangeli, Sara; Mulas, Floriana; Pacini, Roberta; Tabarrini, Alessia; Pettirossi, Valentina; Rossi, Roberta; Vetro, Calogero; Brunetti, Lorenzo; Sportoletti, Paolo; Tiacci, Enrico; Di Raimondo, Francesco; Falini, Brunangelo

    2015-05-28

    Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics. PMID:25795919

  14. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  15. Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of bombesin (BBS) and neurotensin (NTS) on apoptosis and colitis in an ulcerative colitis model. METHODS: In this study, a total of 50 rats were divided equally into 5 groups. In the control group, no colitis induction or drug administration was performed. Colitis was induced in all other groups. Following the induction of colitis, BBS, NTS or both were applied to three groups of rats. The remaining group (colitis group) received no treatment. On the 11th d after induction of colitis and drug treatment, blood samples were collected for TNF-α and IL-6 level studies. Malondialdehyde (MDA), carbonyl, myeloperoxidase (MPO) and caspase-3 activities, as well as histopathological findings, evaluated in colonic tissues. RESULTS: According to the macroscopic and microscopic findings, the study groups treated with BBS,NTS and BBS+NTS showed significantly lower damage and inflammation compared with the colitis group (macroscopic score,2.1±0.87,3.7±0.94 and 2.1±0.87 vs 7.3 ± 0.94; microscopic score,2.0 ±0.66,3.3±0.82 and 1.8±0.63 vs 5.2±0.78,P<0.01=.TNF-αand IL-6 levels were increased significantly in all groups compared with the control group. These increases were significantly smaller in the BBS,NTS and BBS+NTS groups compared with the colitis group (TNF-α levels,169.69±53.56,245.86±64.85 and 175.54 4±42.19vs 556.44±49.82; IL-6 levels,443.30±53.99,612.80±70.39 and 396.80±78.43 vs 1505.90±222.23,P<0.05=.The colonic MPO and MDA levels were significantly lower in control, BBS, NTS and BBS+NTS groups than in the colitis group (MPO levels,24.36±8.10,40.51±8.67 and 25.83±6.43 vs 161.47±38.24; MDA levels,4.70±1.41,6.55±1.12 and 4.51±0.54 vs15.60±1.88,P<0.05=.Carbonyl content and caspase-3 levels were higher in the colitis and NTS groups than in control, BBS and BBS+NTS groups (carbonyl levels,553.99±59.58and 336.26±35.72 vs 209.76±30.92,219.76±25.77and 220.34 36.95; caspase-3 levels,451.70±68.27and 216.20

  16. Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling.

    Science.gov (United States)

    Fontani, Filippo; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2015-04-01

    Osteocyte apoptosis due to microdamage and/or oxidative stress is related to increased local bone turnover and resorption observed in various bone diseases. Previous data on osteoblasts and osteoclasts have linked reactive oxygen species and antioxidants to bone remodelling. This study performs a comprehensive analysis on the effect of antioxidants such as glutathione (GSH), N-acetylcysteine and lipoic acid (LA) on starvation-induced osteocyte apoptosis and on cytokines involved in bone remodelling such as the receptor activator kB ligand (RANKL), osteoprotegerin (OPG) and sclerostin. For this study, apoptosis was induced by serum starvation in a murine osteocyte-like cell line MLO-Y4; this condition mimics in part osteocyte apoptosis due to microdamage. The results show that starvation-induced apoptosis and expression of RANKL, OPG and sclerostin are redox regulated processes. All antioxidants are able to inhibit the apoptosis due to starvation. They down-regulate the expression and the release of RANKL, the expression of sclerostin and RANKL/OPG ratio, whereas they only in part up-regulate OPG expression. Antioxidants mediate their effect on starvation-induced apoptosis by JNK signalling and on cytokine expression by both JNK and ERK1/2 activities. This study shows the possible involvement of biological antioxidants such as GSH and LA on redox regulated mechanisms related to apoptosis and expression of cytokines involved in bone remodelling. Moreover, it suggests that both JNK and ERK1/2 may be useful biological targets for drugs affecting bone diseases associated with increased oxidative stress. PMID:25660312

  17. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Liu, Yamin; Shen, Shengnan; Li, Zongyang; Jiang, Yumao; Si, Jianyong; Chang, Qi; Liu, Xinmin; Pan, Ruile

    2014-12-01

    It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway. PMID:25193317

  18. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.

    Science.gov (United States)

    Wang, Ruixuan; Ma, Lijie; Weng, Dan; Yao, Jiahui; Liu, Xueying; Jin, Faguang

    2016-05-01

    Small cell lung cancer (SCLC) is the most aggressive lung cancer subtype and accounts for more than 15% of all lung cancer cases. Cisplatin [cis-diamminedichloroplatinum (CDDP)]-based combination chemotherapy is the cornerstone for all stages of SCLC. However, acquired multidrug resistance (MDR) and intolerable toxicities lead to a high mortality rate in SCLC patients. Gallic acid [3,4,5-trihydroxybenzoic acid (GA)] is a natural botanic phenolic compound which can induce cell apoptosis in several types of cancers. In the present study, we aimed to explore the anticancer effects of GA on human SCLC H446 cells and its promotive effects on the anticancer activities of cisplatin. The viability of the H446 cells was analyzed by MTT assay. Morphological changes in the H446 cells were observed under an inverted microscope. Apoptosis induction was determined by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The level of reactive oxygen species (ROS) was assessed by 2'7'-dichlorofluorescein diacetate (DCFH‑DA), mitochondrial membrane potential (MMP) by JC-1, and western blotting was used to examine the expression of mitochondrial apoptosis-related proteins. The results showed that both GA and cisplatin changed the morphology, inhibited the growth and induced apoptosis in the H446 cells by inducing generation of ROS, disruption of MMP, downregulation of XIAP expression, and upregulation of Bax, Apaf-1, DIABLO and p53 expression. More importantly, GA combined with cisplatin exhibited synergistic effects on inducing of these pro-apoptotic mediators and modulating the activation of apoptosis-related molecules. However, inhibition of the generation of ROS by N-acetyl-l-cysteine (NAC), a specific ROS inhibitor, reversed the cell apoptosis induced by cisplatin combined with GA. In conclusion, the results from the present study revealed that GA exhibited an anticancer effect on human SCLC H446 cells and enhanced the antitumor activities of cisplatin

  19. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  20. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  1. Baicalin induced dendritic cell apoptosis in vitro

    Directory of Open Access Journals (Sweden)

    Huahua eZhang

    2011-03-01

    Full Text Available This study was aimed to investigate the effects of Baicalin (BA, a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs. DCs were generated by culturing murine bone marrow cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin-4, and lipopolysaccharide (LPS was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86 were assessed by flow cytometry using direct immunofluorescence method. Interleukin-12 (IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after Annexin V/propidium iodide staining. The mitochondrial membrane potential changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1. Exposure of DCs to BA (2-50 microM during bone marrow cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced mitochondrial membrane potential changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway.

  2. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  3. SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells.

    NARCIS (Netherlands)

    Wu, Jingjun; Yang, Chun; Guo, Chao; Li, Xiaorui; Hang, Hongdong; Wang, Shisheng; Tang, Zeyao

    2016-01-01

    Breast cancer is one of the most common cancers among women with high mortality and morbidity. The present study was aimed to investigate the cytotoxic mechanism of SZC015, a synthetic oleanolic acid (OA) derivative, in MCF-7 human breast cancer cells. SZC015 reduced MCF-7 cell viability with an IC5

  4. The role of ceramide in receptor- and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells

    OpenAIRE

    Burek, C. J.; Roth, J.; Koch, H. G.; Harzer, K.; Los, Marek Jan; Schulze-Osthoff, Klaus

    2001-01-01

    The activation of sphingomyelinases leading to the generation of ceramide has been implicated in various apoptotic pathways. However, the role of ceramide as an essential death mediator remains highly controversial. In the present study, we investigated the functional relevance of ceramide in a genetic model by using primary cells from a Farber disease patient. These cells accumulate ceramide as the result of an inherited deficiency of acidic ceramidase. We demonstrate that Farber disease lym...

  5. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  6. Methylseleninic acid potentiates multiple types of cancer cells to ABT-737-induced apoptosis by targeting Mcl-1 and Bad

    DEFF Research Database (Denmark)

    Yin, Shutao; Dong, Yinhui; Li, Jinghua;

    2012-01-01

    -737, as evidenced by greater than additive enhancement of Annexin V/FITC positive (apoptotic) cells and activation of multiple caspases and PARP cleavage. Mechanistic investigation demonstrated that MSeA significantly decreased basal Mcl-1 expression and ABT-737-induced Mcl-1 expression. Knocking down...... of Mcl-1 with RNAi approach supported the functional significance of this molecular target. More importantly, we identified inactivation of Bad by phosphorylation on ser-136 and ser-112 as a novel mechanism involved in ABT-737 resistance, which can be overcome by combining with MSeA. In addition, we...

  7. 1,5-dicaffeoylquinic acid protects primary neurons from amyloid β1-42-induced apoptosis via PI3K/Akt signaling pathway

    Institute of Scientific and Technical Information of China (English)

    XIAO Hai-bing; CAO Xu; WANG Lei; RUN Xiao-qin; SU Ying; TIAN Cheng; SUN Sheng-gang; LIANG Zhi-hou

    2011-01-01

    Background Recently,1,5-dicaffeoylquinic acid (1,5-DQA),a caffeoylquinic acid derivative isolated from Aster scaber,was found to have neuroprotective effects.However,the protective mechanisms of 1,5-DQA have not yet been clearly identified.The purpose of this study was to explore the protective mechanisms of 1,5-DQA on neuronal culture.Methods We investigated the neuroprotective effects of 1,5-DQA against amyloid β1-42 (Aβ42)-induced neurotoxicity in primary neuronal culture.To evaluate the neuroprotective effects of 1,5-DQA,primary cultured cortical neurons from neonate rats were pretreated with 1,5-DQA for 2 hours and then treated with 40 μmol/L Aβ42 for 6 hours.Cell counting kit-8,Hoechst staining and Western blotting were used for detecting the protective mechanism.Comparisons between two groups were evaluated by independent t test,and multiple comparisons were analyzed by one-way analysis of variance (ANOVA).Results 1,5-DQA treated neurons showed increased neuronal cell viability against Aβ42 toxicity in a concentration-dependent manner,both phosphoinositide 3-kinase (P13K)/Akt and extracellular regulated protein kinase 1/2 (Erk1/2)were activated by 1,5-DQA with stimulating their upstream tyrosine kinase A (Trk A).However,the neuroprotective effects of 1,5-DQA were blocked by LY294002,a PI3K inhibitor,but not by PD98059,an inhibitor of mitogen-activated protein kinase kinase.Furthermore,1,5-DQA's anti-apoptotic potential was related to the enhanced inactivating phosphorylation of glycogen synthase kinase 3β (GSK3β) and the modulation of expression of apoptosis-related protein Bcl-2/Bax.Conclusion These results suggest that 1,5-DQA prevents Aβ42-induced neurotoxicity through the activation of PI3K/Akt followed by the stimulation of Trk A,then the inhibition of GSK3β as well as the modulation of Bcl-2/Bax.

  8. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  9. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells.

    Science.gov (United States)

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-09-25

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.

  10. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells*

    Science.gov (United States)

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-01-01

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak. PMID:26253170

  11. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  12. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  13. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  14. Artesunate induces AIF-dependent apoptosis in A549 cells

    Science.gov (United States)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  15. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    Science.gov (United States)

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research. PMID:26794209

  16. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    Science.gov (United States)

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  17. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.

  18. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  19. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in glioma U87 cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhong; Xiangyuan Wu; Chunkui Shao; Qu Lin; Min Dong; Jingyun Wen; Xiaokun Ma; Li Wei

    2010-01-01

    Studies have shown that tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)exhibits strong induction of apoptosis in human glioma cells.It remains unclear whether the mitochondrion pathway,an important apoptosis signaling pathway,is involved in TRAIL-induced glioma cell apoptosis.In the present study,in vitro cultured human glioma U87 cells were treated with human recombinant soluble TRAIL.Apoptosis of glioma U87 cells,mitochondrial transmembrane potential(Δψm),cytoplasmic cytochrome c concentration and changes in caspase-3,-8 and-9 activity following human recombinant soluble TRAIL treatment were investigated to determine the mechanism of glioma U87 cell apoptosis induced by TRAIL.Additionally,blocking caspase-8resulted in TRAIL-induced mitochondrion pathway activation,suggesting that TRAIL,through activating caspase-8,initiated a series of mitochondrial events and resulted in apoptosis of glioma U87 cells.

  20. Activation of PPARδ up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic β-cells

    International Nuclear Information System (INIS)

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor δ (PPARδ) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic β-cells. After HIT-T15 cells (a β-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPARδ), we found that administration of GW increased the expression of PPARδ mRNA. GW-induced activation of PPARδ up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPARδ plays an important role in protecting pancreatic β-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  1. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  2. All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein

    Directory of Open Access Journals (Sweden)

    Taguchi Takahiro

    2010-12-01

    Full Text Available Abstract Background Imatinib, a selective tyrosine kinase inhibitor, has been used as a standard first-line therapy for irresectable and metastasized gastrointestinal stromal tumor (GIST patients. Unfortunately, most patients responding to imatinib will eventually exhibit imatinib-resistance, the cause of which is not fully understood. The serious clinical problem of imatinib-resistance demands alternative therapeutic strategy. This study was conducted to investigate the effect of all-trans retinoic acid (ATRA on GIST cell lines. Methods Cell proliferation was determined by trypan blue dye exclusion test. Western blot analysis was performed to test the expression of activated KIT, its downstream proteins, and apoptosis associated proteins. The cytotoxic interactions of imatinib with ATRA were evaluated using the isobologram of Steel and Peckham. Results and conclusion In this work, for the first time we have demonstrated that ATRA affected on cell proliferation of GIST-T1 and GIST-882 cell line through inhibition of cell growth in a dose dependent manner and induced apoptosis. High dose of ATRA induced morphologic change in GIST-T1 cells, rounded-up cells, and activated the caspase-3 protein. In further examination, we found that the ATRA-induced apoptosis in GIST-T1 cells was accompanied by the down-regulated expression of survivin and up-regulated expression of Bax protein. Moreover, ATRA suppressed the activity of KIT protein in GIST-T1 cells and its downstream signal, AKT activity, but not MAPK activity. We also have demonstrated that combination of ATRA with imatinib showed additive effect by isobologram, suggesting that the combination of ATRA and imatinib may be a novel potential therapeutic option for GIST treatment. Furthermore, the scracht assay result suggested that ATRA was a potential reagent to prevent the invasion or metastasis of GIST cells.

  3. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  4. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  5. 15-lipoxygenase-1 mediates cyclooxygenase-2 inhibitor induced apoptosis in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It has been found that expression of 15-lipoxygenasc-1(15-LOX-1) and its main product,13-C-hydroxyoctadecadienoic acid (13-S-HODE),are decreased in human colorectal and esophageal cancers and that nonsteroidal anti-inflammatory drugs(NSAIDs) can therspeutically induce 15-LOC-1 expression to trigger apoptosis in those cancer cells independently COX-2.We found that a specific COX-2 inhibitor SC-236 similarly induce apoptosis in gastric cancer cells,although the mechanisms of these effects remain to be defined.In the present study,we tested whether SC-236 induced apoptosis through up-regulation of 15-LOX-1 in gastric cancer cells.We found that,(a) SC-236 inhibited growth of gastric cancer cells mainly by apoptosis induced;(b) SC-236 induced 15-LOX-1 expression and increased endogenous 13-S-HODE product,instead of 15-S-HETE during apoptosis in gastric cancer cells without 15-LOX-1 expression before treatment by SC-236;(c)sc-236 didn't effect expression of COX-1,COX-2,5-LOX and 12-LOX;and (d)15-LOX-1 inhibition suppressed SC-236 induced apoptosis.These findings demonstrated that SC-236 induced apoptosis in gastric cancer cells via up-regulation of 25-LOX-1.They also support the concept that the loss of the proapopotic role of 15-LOX-1 in epithelial cancers is not limited to human colorectal and esophageal cancers.

  6. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    International Nuclear Information System (INIS)

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20–120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: ► Oxidative stress is suggested as a key event in the pathogenesis of diabetes. ► D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. ► DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. ► DSL inhibits pancreatic β-cells apoptosis

  7. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  8. Paclitaxel induces apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paditaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2and Bax.RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner.Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by downexpression of apoptosis-regulated gene Bcl-2 and upexpression of apoptosis-regulated gene Bax.

  9. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas

    2015-08-01

    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  10. Carbamate Pesticide-Induced Apoptosis in Human T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Qing Li

    2015-04-01

    Full Text Available We previously found that carbamate pesticides induced significant apoptosis in human natural killer cells. To investigate whether carbamate pesticides also induce apoptosis in human T lymphocytes, in the present study Jurkat human T cells were treated in vitro with thiram, maneb, carbaryl or ziram. Apoptosis was determined by FITC-Annexin-V/PI staining. To explore the mechanism of apoptosis, intracellular levels of active caspase 3 and mitochondrial cytochrome-c release were determined by flow cytometry. We found that thiram, ziram, maneb and carbaryl also induced apoptosis in a time- and dose-dependent manner in the human T cells. However, the strength of the apoptosis-inducing effect differed among the pesticides, with the: thiram > ziram > maneb > carbaryl. Moreover, thiram significantly increased the intracellular level of active caspase 3 and caspase inhibitors significantly inhibited apoptosis. Thiram also significantly caused mitochondrial cytochrome-c release. These findings indicate that carbamate pesticides can induce apoptosis in human T cells, and the apoptosis is mediated by the activation of caspases and the release of mitochondrial cytochrome-c.

  11. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: identification of phenolic acids with cytotoxic potential

    OpenAIRE

    Vaz, Josiana A.; Almeida, Gabriela M.; Ferreira, Isabel C.F.R.; Martins, Anabela; Vasconcelos, M. Helena

    2012-01-01

    Mushrooms are a possible rich source of biologically active compounds with potential for drug discovery. The aim of this work was to gain further insight into the citotoxicity mechanism of action of Clitocybe alexandri ethanolic extract against a lung cancer cell line (NCI-H460 cells). The effects on cell cycle profile and levels of apoptosis were evaluated by flow cytometry, and the effect on the expression levels of proteins related to cellular apoptosis was also investigated by Western blo...

  12. 红藻氨酸诱导PC12细胞凋亡及阿魏酸对神经元的保护作用%Ferulic acid protects against apoptosis of PC12 cells induced by kainic acid

    Institute of Scientific and Technical Information of China (English)

    陈勤; 叶海燕; 陈逸青; 余嗣明

    2013-01-01

    AIM:To investigate the effect of ferulic acid (FA) on the apoptosis of PC12 cells induced by kainic acid (KA) in vitro.METHODS:In order to establish an Alzheimer disease neuronal cell model,the rat pheochromocytoma cell line PC12 was treated with KA at a concentration of 50 μmol/L.These model neurons were divided into KA model group and3 groups treated with FA at doses of 25,50 and 100 μmol/L,respectively.At the same time,normal group was established without KA pretreatment.The viability of the PC12 cells was detected by MTT assay.The expression of Bcl-2,Bax and cytochrome C (Cyt C) was determined by immunocytochemical method.Apoptotic rate of the PC12 cells was measured by flow cytometry with annexin V/PI double staining.The protein levels of Bcl-2,Bax and Cyt C were analyzed by Western blotting.RESULTS:The cell survival rate,the expression of Bcl-2 and the ratio of Bcl-2 to Bax in KA model group were significantly decreased (P <0.01),while the expression of Bax and Cyt C was obviously increased com pared with normal control group (P <0.01).The apoptotie rate in KA model group was obviously increased compared with normal control group (P <0.01) After the intervention of FA,the cell survival rates were increased and the apoptotic rates were decreased.Furthermore,the positive rate and expression of Bcl-2,and the ratio of Bcl-2 to Bax in each dose of FA treatment group were significantly increased,while the expression of Bax and Cyt C in each dose group was significantly reduced as compared with KA model group (P < 0.05 or P < 0.01).CONCLUSION:KA obviously induces apoptosis of PC12 cells.FA had obvious protective effect on PC12 cells against the toxicity of KA.FA blocks endogenous apoptic pathway through inhibiting the expression of Bax and Cyt C and increasing the expression of Bcl-2 and the ratio of Bcl-2/Bax,thus improving the survival rate of PC12 cells.%目的:探讨阿魏酸(ferulic acid,FA)对红藻氨酸(kainic acid,KA)诱导的PC12细胞凋亡

  13. Dimerization of two novel apoptosis-inducing proteins and its function in regulating cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    刘青珍; 甘淼; 齐义鹏; 李凌云; 齐兵

    2003-01-01

    Asy (apoptosis/saibousi Yutsudo) is a novel apoptosis-inducing gene found in 1999 by Yutsudo group in Japan. In 2000, Qi Bing et al. cloned another novel gene, named hap (homologue of ASY protein), which encoded the ASY interact ing protein, from human lung cell line (WI-38) cDNA library by using yeast two-h ybrid system. It has been proved that ASY formed homodimer in yeast and human ce ll line, ASY and HAP formed heterodimer in yeast cells, and both induced cell ap optosis in human tumor cell lines Sao2 and CGL4. This paper showed that HAP coul d form homodimer in yeast cells by yeast two-hybrid system; HAP and ASY could pr oduce heterodimer in human cell line by cross-immunoprecipitation test; by using apoptosis-testing technologies such as AnnexinV, TUNEL, DNA ladder and Flow Cyt ometry, the cell apoptosis in human normal or tumor cell lines transfected with hap or asy individually or cotransfected by the both was qualified or quantified . It was firstly demonstrated that ASY or HAP induced cell apoptosis not only in human tumor cell lines, but also in human normal cell lines. Moreover, we prove d that the heterodimer between ASY and HAP decreased apoptosis-inducing activity from the homodimer of ASY or HAP. It revealed that by choosing to form heterodi mer or homodimer between ASY and / or HAP is an important mechanism of regulatin g apoptosis in human cell lines.

  14. Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

    Science.gov (United States)

    Bi, Miao-Miao; Hong, Sen; Ma, Ling-Jun; Zhou, Hong-Yan; Lu, Jia; Zhao, Jing; Zheng, Ya-Juan

    2016-01-01

    Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Caspase-3 and -9 activities were determined by a colorimetric assay. The roles of ClC-2 in glutamate-induced apoptosis were examined by using ClC-2 complementary deoxyribonucleic acid (cDNA) and small inference ribonucleic acid (RNA) transfection technology. Results: Overexpression of ClC-2 in RGC-5 cells significantly decreased glutamate-induced apoptosis and increased cell viability, whereas silencing of ClC-2 with short hairpin (sh) RNA produced opposite effects. ClC-2 overexpression increased the expression of Bcl-2, decreased the expression of Bax, and decreased caspase-3 and -9 activation in RGC-5 cells treated with glutamate, but silencing of ClC-2 produced opposite effects. Conclusion: Our data suggest that ClC-2 chloride channels might play a protective role in glutamate-induced apoptosis in retinal ganglion cells via the mitochondria-dependent apoptosis pathway. PMID:27635193

  15. Apoptin induces apoptosis in an oral cancer mouse model

    NARCIS (Netherlands)

    R.A.L. Schoop (Remilio); R.J. Baatenburg de Jong (Robert Jan); M.H.M. Noteborn (Mathieu)

    2008-01-01

    textabstractApoptin, a chicken anemia virus-derived protein, induces apoptosis in various tumor cell lines and xenografted tumors. Its apoptotic activity is not hampered by tumor-suppressor p53 mutations or overexpression of anti-apoptosis proteins Bcl-2 or Bcl-xL. We report for the first time the e

  16. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Graziela Rosa Ravacci

    2015-01-01

    Full Text Available In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36, transport (FABP4, and storage (DGAT of exogenous fatty acids (FA, as well as increased activation of “de novo” FA synthesis (FASN. We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4 in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  17. Effect of oleanolic acid on apoptosis of vascular smooth muscle cell induced by hydrogen peroxide%齐墩果酸对过氧化氢诱导血管平滑肌细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    冯健; 何国祥

    2012-01-01

    Objective To investigate the protective effect of oleanolic acid(OA) against vascular smooth muscle cells(VSMCs) apoptosis induced by hydrogen peroxideC H2 O2) and to explore the related mechanism. Methods Rat aortic VSMCs were isolated, cultured and divided into normal control group, H2O2 group, H2O2 + OA group and H2O2 + OA + wortmannin group. Results Compared with normal control group, H2O2 significantly induced VSMCs apoptosis and reduced the protein level of p-Akt(P<0. 05). Compared with H2O2 group,OA attenuated H2O2-induced apoptosis of VSMCs and up-regulated the protein level of p-Akt(P<0, 05). Compared with H2O2+ OA group, pretreatment of VSMCs with wortmannin could increase the apoptosis of VSMCs and reduce the protein level of p-Akt(P<0. 05). Conclusions OA can reduce the apoptosis of VSMCs induced by H2O2,which may be brought about through PI3K/Akt signaling pathway.%目的 研究齐墩果酸(OA)对H2O2诱导血管平滑肌细胞( VSMCs)凋亡的影响.方法 采用贴块法培养大鼠主动脉VSMCs,随机分为对照组、H2O2组、H2O2 +OA组、阻断荆组.采用Hoechst 33342染色和Annexin V/FITC染色检测各组细胞凋亡情况;Western blot检测各组细胞中磷酸化Akt蛋白表达变化.结果 与对照组比较,H2O2组细胞凋亡率明显升高,p-Akt蛋白表达明显降低(P<0.05);与H2O2组比较,H2O2+OA组细胞凋亡率明显降低,p-Akt蛋白表达明显升高(P<0.05);与H2O2 +OA组比较,阻断剂组细胞凋亡率明显升高,p-Akt蛋白表达明显降低(P<0.05).荧光显微镜显示,对照组细胞核呈蓝色,H2O2组细胞核呈致密浓染,H2O2+ OA组细胞核呈蓝染,有少量细胞核致密浓染,阻断刺组细胞核呈致密浓染.结论 OA能减轻H2O2导致的VSMCs凋亡,其机制可能与激活细胞内磷脂酰肌醇-3激酶/Akt信号通路引起下游促生存基因的表达有关.

  18. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  19. Resveratrol induces apoptosis in human esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Yun Yan; Ya-Ni Sun; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in esophageal cancer cells induced by resveratrol, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTr assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of esophageal cancer cell line EC-9706 before and after the resveratrol treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2 and Bax.RESULTS: Resveratrol inhibited the growth of esophageal cancer cell line EC-9706 in a dose-and time-dependent manner. Resveratrol induced EC-9706 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. TUNEL assay showed that after the for 24 to 96 hours, the AIs were apparently increased with treated time (P<0.05). Immunohistochemical staining showed that after the treatment of EC-9706 cells with proteins were apparently reduced with treated time (P<0.05)and the PRs of Bax proteins were apparently increased with treated time (P<0.05).CONCLUSION: Resveratrol is able to induce the apoptosisin esophageal cancer. This apoptosis may be mediated by down-regulating the apoptosis-regulated gene Bcl-2 and upregulating the expression of apoptosis-regulated gene bax.

  20. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    Science.gov (United States)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  1. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Wu, Qiuling; Lv, Tingting; Chen, Yan; Wen, Lu; Zhang, Junli; Jiang, Xudong; Liu, Fang

    2015-07-01

    The toxicities of conventional chemotherapeutic agents to normal cells restrict their dosage and clinical efficacy in acute leukemia; therefore, it is important to develop novel chemotherapeutics, including natural products, which selectively target cancer-specific pathways. The present study aimed to explore the effect of the chemopreventive agent asiatic acid (AA) on the proliferation and apoptotic rate of the leukemia cell line HL-60 and investigated the mechanisms underlying its anti-tumor activity. The effect of AA on the proliferation of HL-60 cells was evaluated using the MTT assay. Annexin V-fluorescein isothiocyanate/propidium iodide double staining followed by flow cytometric analysis as well as Hoechst 33258 staining were used to analyze the apoptotic rate of the cells. Furthermore, changes of survivin, B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 expressions were detected by western blot analysis. AA blocked the growth of HL-60 cells in a dose- and time-dependent manner. The IC50-value of AA on HL-60 cells was 46.67 ± 5.08 µmol/l for 24 h. AA induced apoptosis in a dose-dependent manner, which was inhibited in the presence of Z-DEVD-FMK, a specific inhibitor of caspase. The anti-apoptotic proteins Bcl-2, Mcl-1 and survivin were downregulated by AA in a dose-dependent manner. Concurrently, AA inhibited ERK and p38 phosphorylation in a dose-dependent manner, while JNK phosphorylation was not affected. In conclusion, the present study indicated that the p38 and ERK pathways, as well as modulation of Bcl-2 family and survivin proteins were key regulators of apoptosis induced in HL-60 cells in response to AA.

  2. ING1 induces apoptosis through direct effects at the mitochondria

    DEFF Research Database (Denmark)

    Bose, P; Thakur, S; Thalappilly, S;

    2013-01-01

    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear...... translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation...... to the mitochondria after UV treatment. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX, and colocalizes with BAX in a UV-inducible manner. Ectopic expression of a mitochondria-targeted ING1 construct is more proficient in inducing apoptosis than the wild type ING1 protein...

  3. The interplays between autophagy and apoptosis induced by enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Xueyan Xi

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I to LC3-II and degradation of sequestosome 1 (SQSTM1/P62. Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. CONCLUSIONS/SIGNIFICANCE: In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.

  4. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  5. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, David; Strom, Joshua; Chen, Qin M., E-mail: qchen@email.arizona.edu

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  6. Experimental Study on Apoptosis in Leukemia Cells Induced by Econazole

    Institute of Scientific and Technical Information of China (English)

    LIUFang; ZOUPing; ZHANGMin; WUYaohui; XIAOJuan

    2005-01-01

    Objective: To investigate apoptosis in monse leukemia cell (WEHI-3) induced by Econazole and its mechanisin. Methods: Apoptosis induced by Econazole was examined by flow cytometry. Free calcium ([Ca2+]i) was determined by Fura-2 fluorescein load technique. The protein was isolated from endoplasinic reticulum of WEHI-3 cells, and then the expression of caspase-12 and caspase-7 was detected by Western blot. Results: WEHI-3 cells exhibited typical change of apoptosis when they were treated by Econazole.[Ca2+]i was significantly higher in Econazole-treated group t han in control group. The expression of caspase-12 and caspase-7 was increased with the increase of Econazole concentration. Conclusion: Caspase-12 may play a key role in WEHI-3 apoptosis induced by Econazole.

  7. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  8. Recovering drug-induced apoptosis subnetwork from Connectivity Map data.

    Science.gov (United States)

    Yu, Jiyang; Putcha, Preeti; Silva, Jose M

    2015-01-01

    The Connectivity Map (CMAP) project profiled human cancer cell lines exposed to a library of anticancer compounds with the goal of connecting cancer with underlying genes and potential treatments. Since the therapeutic goal of most anticancer drugs is to induce tumor-selective apoptosis, it is critical to understand the specific cell death pathways triggered by drugs. This can help to better understand the mechanism of how cancer cells respond to chemical stimulations and improve the treatment of human tumors. In this study, using CMAP microarray data from breast cancer cell line MCF7, we applied a Gaussian Bayesian network modeling approach and identified apoptosis as a major drug-induced cellular-pathway. We then focused on 13 apoptotic genes that showed significant differential expression across all drug-perturbed samples to reconstruct the apoptosis network. In our predicted subnetwork, 9 out of 15 high-confidence interactions were validated in the literature, and our inferred network captured two major cell death pathways by identifying BCL2L11 and PMAIP1 as key interacting players for the intrinsic apoptosis pathway and TAXBP1 and TNFAIP3 for the extrinsic apoptosis pathway. Our inferred apoptosis network also suggested the role of BCL2L11 and TNFAIP3 as "gateway" genes in the drug-induced intrinsic and extrinsic apoptosis pathways. PMID:25883971

  9. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  10. Apoptosis of Cancer Cells Induced by HAP Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; LI Shipu; YAN Yuhua; WANG Youfa; CAO Xianying

    2005-01-01

    To confirm apoptosis is one of the hepatoma cells death pathways after HAP nanoparticles absorption, hepatoma cells were collected for ultrathin sections preparation and examined under a transmission electron microscope (TEM) after 1 h incubation with HAP nanoparticle. Apoptosis was detected by TUNEL technique. After absorption, some vacuoles with membrane containing HAP nanoparticles were found in cytoplasma.The nuclear envelope shrinked, and some area pullulated from nucleus. The karyotin became pycnosis and assembled at the edge. An apoptosis body was found. And the data of IOD and numbers of the positive apoptosic signals in nuclear area of slides could illustrate much more apoptosis in the HAP group than those in the control group ( P < 0.001 ). The experimental results indicate that the HAP nanoparticles can induce cancer cells apoptosis.

  11. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    Science.gov (United States)

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-01

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  12. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory protei

  13. Paclitaxel sensitizes gastric cancer cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy as it has unique capacity to selectively trigger apoptosis in cancer cells. We reported here that paclitaxel sensitized gastric cancer cells to TRAIL-induced apoptosis.Methods: After drug exposure, apoptosis rate and caspase activation were examined. Various proteins were detected by western blot. Several interventions, including pharmacological inhibitors and siRNA transfection were used. hTe growth inhibition of tumors was evaluated in SGC-7901-implanted nude mice model.Results:We found gastric cancer cellsshowed a mixed response to TRAIL. Combined treatment with paclitaxel markedly enhanced TARIL-induced apoptosis in vitro and in vivo. The underlying mechanisms involved in synergistical activation of caspase proteins, up-regulation of receptors, down-regulation of antiapoptotic proteins and inactivation of MAPKs.Conclusion:TRAIL-induced cytotoxicity and apoptosis can be synergistically enhanced by paclitaxel, suggesting the therapeutic potential of combining TARIL plus paclitaxel in gastric cancer treatment.

  14. Apoptosis induced by dioscin in Hela cells.

    Science.gov (United States)

    Cai, Jing; Liu, Mingjie; Wang, Zhao; Ju, Yong

    2002-02-01

    Dioscin, a saponin extracted from the root of Polygonatum Zanlanscianense Pamp, markedly inhibited proliferation of Hela cells. The results indicated that Hela cells underwent apoptosis in dose- and time-dependent manners when treated with Dioscin. Caspase-3, -8 and -9 activities were also detected. The low enzymatic activity of caspase-8 and high activity of caspase-9 showed that the mitochondrial pathway was activated in apoptosis. The reduced expression of the survival protein Bcl-2 also confirmed this result. These studies may be significant in finding a new drug to treat human cervical cancer. PMID:11853164

  15. 白桦脂酸联合沙利度胺诱导U266细胞凋亡机制研究%Research on Betulinic Acid Combined with Thalidomide Induce Apoptosis of U266 Cells and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    孙嘉; 马丹; 王萍; 方琴

    2015-01-01

    Objective:To investigate the betulinic acid combined with Thalidomide induce apoptosis of U266 cells and its mechanism. Methods:U266 cells were treated with betulinic acid(20,40,60 and 80 mg/L,betulinic acid group ),Thalidomide( 10 mg/L,50 mg/L,100 mg/L,Thalidomide group)and betulinic acid(40 mg/L)combined with Thalidomide( betulinic acid 40 mg/L,10,50 and 100 mg/L of Thalidomide,combined group)coupled with control group. Proliferation inhibition rate and apoptosis rate of U266 cells from different concentrations were detected with MTT and flow cy-tometry;Real-time PCR was used to detect the expression levels of Survivin,Cyto-C,Bcl-2,Bax gene. Western blotting was used to detect the expression of Survivin,Cyto-C,Bcl-2,Bax protein. Re-sults:With the increase of betulinic acid concentration,inhibition rate of U266 cells was also in-creased,differences were statistically significant( P <0. 05),the most appropriate concentration was 40 mg/L ;comparing with Thalidomide,inhibition rate and apoptosis rate of U266 cells were obviously increased,differences were statistically significant(P<0. 05);comparing with Thalidomide group or betulinic acid group,Survivin and expression of Bcl-2 mRNA of U2666 cells obviously decreased,Cy-to-C and expression of Bax mRNA obviously increased,differences were statistically significant(P<0. 05 ). Conclusion:The betulinic acid combined with thalidomide induce apoptosis of multiple myeloma U266 cells and its mechanism may be correlated with the proapoptotic molecule of survivin,Bcl-2,Cy-to-c and Bax.%目的:探讨白桦脂酸联合沙利度胺诱导多发性骨髓瘤( MM)U266细胞凋亡的机制。方法:分别用白桦脂酸(20、40、60和80 mg/L,白桦脂酸组)、沙利度胺(10、50和100 mg/L,沙利度胺组)及白桦脂酸(40 mg/L)联合沙利度胺(联合组,白桦脂酸40 mg/L,沙利度胺10、50和100 mg/L)分别处理U266细胞,同期设对照组;MTT法和流式细胞术分别检测不同浓

  16. Cerebral ischemia—induced neuronal apoptosis mediated by nitric oxide

    Institute of Scientific and Technical Information of China (English)

    NomuY

    2002-01-01

    To elucidate the cellular and molecular mechanism of cerebral ischemia-induced neuronal apoptosis mediated by nitric oxide (NO) in the brain,we investigated:(1)cell death in hippocampal CA1 neurons of rats after a rransient four vessel occlusion (4VO)/reperfusion and (2) apoptosis induced by NOC18(NO releaser) using SHSY5Y cells,a human neuroblastoma cell line.We found that 4VO caused expression of inducible type of NO synthase (iNOS) in glial cells and neuronal apoptosis in CA1 region of rats.Next we examined in vitro apoptotic effects of NOC18 on SHSY5Y cells and suggest that NO decrease mitochondrial membrane potential,release cytochrome C from mitochondria,activates caspase-3,degrade inhibitor of caspase-activated DNase(Icad),and activated DNase translocate into nucleus and induce DNA fragmentation.Thus we conclude that the excess amount of NO produced by glial iNOS at cerebral ischemia could be involved in neuronal apoptosis in CA1 region.Regarding NO action on neurons,we further obtained that NO propects neuronal apoptosis in PC12 cells perhaps by nitrosylation of caspase,subsequent reduction of proteolytic activity.Taken together,we suggest that NO seem to exert dual effects(toxic and beneficial) on neuronal apoptosis,the one (toxic);apoptosis-induction throuth the decrease in mitochondrial membrane potentials and cytochrome C release and the othe (beneficial);protection against apoptosis through the inhibition of caspase activity.

  17. Experimental effect of retinoic acids on apoptosis during the development of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Nami Nishikiori

    2008-03-01

    Full Text Available Nami Nishikiori1,2, Makoto Osanai2, Hideki Chiba2, Takashi Kojima2, Shuichiro Inatomi1,2, Hiroshi Ohguro1, Norimasa Sawada2Departments of 1Ophthalmology and 2Pathology, Sapporo Medical University School of MedicinePurpose: This study was conducted to investigate whether retinoic acids (RAs had any effect on apoptosis during the development of diabetic retinopathy.Methods: To investigate whether RAs had any effect on apoptosis during the development of diabetic retinopathy, we housed 32 C57BL/6 male mice and induced diabetes in 24 by intra peritoneal injections of streptozotocin (STZ; Sigma, St Louis, MO and treated 16 of the diabetic mice with the RAs, all-trans-retinoic acid (ATRA (seven mice and 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylcarboxamido] benzoic acid (Am580 (nine mice. The other eight mice were used as diabetic controls. We then measured apoptosis in the retina by TdT-dUTP terminal nick-end labeling assay.Results: RAs inhibited the apoptosis of retinal cells in diabetic retinopathy. Many apoptotic cells were observed in retinas of the eight diabetic control mice (mean value and SD: 37.8 ± 6.9, whereas when diabetic mice were treated with RAs, the number of apoptotic cells significantly decreased (mean value and SD: 9.9 ± 6.4 for the seven ATRA-treated diabetic mice and 9.8 ± 5.9 for the nine Am580-treated diabetic mice (p < 0.05.Conclusion: Treatment with RAs decreases apoptosis during the development of diabetic retinopathy.Keywords: retinoic acids, apoptosis, diabetic retinopathy, glial cell line-derived neurotrophic factor

  18. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus.

    Science.gov (United States)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao

    2016-10-01

    Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not' been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225μgL(-1) (0.99μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. PMID:27561114

  19. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J;

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  20. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert;

    2003-01-01

    with the colchicine-induced apoptosis in 1-week-old cultures showed that colchicine-induced PI uptake and formation of apoptotic nuclei were temporarily prevented by coapplication of the protein synthesis inhibitor cycloheximide. Application of the pancaspase inhibitor z-VAD-fmk almost completely abolished...

  1. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  2. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  3. Denbinobin induces apoptosis by apoptosis-inducing factor releasing and DNA damage in human colorectal cancer HCT-116 cells.

    Science.gov (United States)

    Chen, Tzu-Hsuan; Pan, Shiow-Lin; Guh, Jih-Hwa; Chen, Chien-Chih; Huang, Yao-Ting; Pai, Hui-Chen; Teng, Che-Ming

    2008-11-01

    Denbinobin is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla. We showed that denbinobin induces apoptosis in human colorectal cancer cells (HCT-116) in a concentration-dependent manner. The addition of a pan-caspase inhibitor (zVAD-fmk) did not suppress the denbinobin-induced apoptotic effect, and denbinobin-induced apoptosis was not accompanied by processing of procaspase-3, -6, -7, -9, and -8. However, denbinobin triggered the translocation of the apoptosis-inducing factor (AIF) from the mitochondria into the nucleus. Small interfering RNA targeting of AIF effectively protected HCT-116 cells against denbinobin-induced apoptosis. Denbinobin treatment also caused DNA damage, activation of the p53 tumor suppressor gene, and upregulation of numerous downstream effectors (p21WAF1/CIP1, Bax, PUMA, and NOXA). A HCT-116 xenograft model demonstrated the in vivo efficacy and low toxicity of denbinobin. Taken together, our findings suggest that denbinobin induces apoptosis of human colorectal cancer HCT-116 cells via DNA damage and an AIF-mediated pathway. These results indicate that denbinobin has potential as a novel anticancer agent. PMID:18607570

  4. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  5. Apoptosis of human primary gastric carcinoma cells induced by genistein

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Juan-Juan Chen; Wen-Xia Wang; Jian-Ting Cai; Qin Du

    2004-01-01

    AIM: To investigate the apoptosis in primary gastric cancer cells induced by genistein, and the relationship between this apoptosis and expression of bcl-2 and bax.METHODS: MTT assay was used to determine the cell growth inhibitory rate in vitro. Transmission electron microscope and TUNEL staining were used to quantitatively and qualitatively detect the apoptosis of primary gastric cancer cells before and after genistein treatment. Immunohistochemical staining and RT-PCR were used to detect the expression of apoptosisassociated genes bcl-2 and bax.RESULTS: Genistein inhibited the growth of primary gastric cancer cells in dose-and time-dependent manner. Genistein induced primary gastric cancer cells to undergo apoptosis with typically apoptotic characteristics. TUNEL assay showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the apoptotic rates of primary gastric cancer cells increased time-dependently. Immunohistochemical staining showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the positivity rates of Bcl-2 proteins were apparently reduced with time and the positivity rates of Bax proteins were apparently increased with time. After exposed to genistein at 20 μmol/L for 24,48, 72 and 96 respectively, the density of bcl-2 mRNA decreased progressively and the density of bax mRNA increased progressively with elongation of time.CONCLUSION: Genistein is able to induce the apoptosis in primary gastric cancer cells. This apoptosis may be mediated by down-regulating the apoptosis- associated bcl-2 gene and up-regulating the expression of apoptosis-associated bax gene.

  6. Role of endoplasmic reticular stress in aortic endothelial apoptosis induced by intermittent/persistent hypoxia

    Institute of Scientific and Technical Information of China (English)

    YANG Yuan-yuan; SHANG Jin; LIU Hui-guo

    2013-01-01

    Background Accumulated evidence shows that hypoxia can induce endothelial apoptosis,however the mechanism is still unknown.We hypothesized whether intermittent or persistent hypoxia could induce endoplasmic reticular stress,leading to endothelial apoptosis.Methods Twenty-four 8-week male Sprague Dawley (SD) rats were divided into three groups:normoxia (NC) group,intermittent hypoxia (IH) group and persistent hypoxia (PH) group.TUNEL staining was performed to detect aortic arch endotheliar apoptosis,and immunohistochemistry for BIP,CHOP and caspase12 to test protein expression;human umbilical vein endothelial cells (HUVECs) of the line ECV304 were cultured (with or without taurodeoxycholic acid (TUDCA) 10 mmol/L,100 mmol/L) and divided into four groups:NC group (20.8% O2 for 4 hours),PH1 group (5% O2 for 4 hours),PH2 group (5% O2 for 12 hours) and IH group (20.8% O2 and 5% O2 alternatively for 8 hours).Annexin V-fluorescein-isothiocyanate/propidium iodide flow cytometry was used to assess apoptosis in each group.The expressions of GRP78,CHOP and caspase12 were detected by real-time quantitative reverse-transcription PCR.Result Intermittent and persistent hypoxia could increase the rate of endothelium apoptosis and the expressions of GRP78,CHOP and caspase12 compared with the control,induction by intermittent hypoxia was slightly higher than persistent hypoxia.In the HUVEC experiment,TUDCA significantly reduced apoptosis and the expressions of GRP78,CHOP and caspase12.Conclusion Hypoxia,especially intermittent,can induce endothelial cell apoptosis possibly through endoplasmic reticulum stress pathway,which can be attenuated by taurodeoxycholic acid.

  7. Nanoparticle-Mediated Mitochondrial Damage Induces Apoptosis in Cancer.

    Science.gov (United States)

    Mallick, Abhik; More, Piyush; Syed, Muhammed Muazzam Kamil; Basu, Sudipta

    2016-06-01

    Detouring of conventional DNA damaging anticancer drugs into mitochondria to damage mitochondrial DNA is evolving as a promising strategy in chemotherapy. Inhibiting single target in mitochondria would eventually lead to the emergence of drug resistance. Moreover, targeting mitochondria selectively in cancer cells, keeping them intact in healthy cells, remains a major challenge. Herein, triphenylphosphine (TPP)-coated positively charged 131.6 nm spherical nanoparticles (NPs) comprised of α-tocopheryl succinate (TOS, inhibitor of complex II in electron transport chain) and obatoclax (Obt, inhibitor of Bcl-2) were engineered. The TOS-TPP-Obt-NPs entered into acidic lysosomes via macropinocytosis, followed by lysosomal escape and finally homed into mitochondria over a period of 24 h. Subsequently, these TOS-TPP-Obt-NPs triggered mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to Cytochrome C release. These TOS-TPP-Obt-NPs mediated mitochondrial damage induced cellular apoptosis through caspase-9 and caspase-3 cleavage to show improved efficacy in HeLa cells. Moreover, TOS-TPP-Obt-NPs induced MOMP in drug-resistant triple negative breast cancer cells (MDA-MB-231), leading to remarkable efficacy, compared to the combination of free drugs in higher drug concentrations. Results presented here clearly stimulate the usage of multiple drugs to perturb simultaneously diverse targets, selectively in mitochondria, as next-generation cancer therapeutics. PMID:27160664

  8. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  9. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To explore the effect of six bile salts, including glycocholate (GC), glycochenodeoxycholate (GCDC), glycodeoxycholate (GDC), taurocholate (TC), taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and two bile acids including cholic acid (CA) and deoxycholic acid (DCA) on esophageal cancer Eca109 cell line.METHODS: Eca109 cells were exposed to six bile salts, two bile acids and the mixed bile salts at different concentrations for 24-72 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)assay. Sub-G1 DNA fragmentations and early apoptosis cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining. Apoptosis DNA ladders on agarose were observed. Activation of caspase-3 was assayed by FCM with FITC-conjugated monoclonal rabbit anti-active caspase3 antibody and expressions of Bcl-2 and Bax proteins were examined immunocytochemically in 500 μmol/L-TC-induced apoptosis cells.RESULTS: Five bile salts except for GC, and two bile acids and the mixed bile salts could initiate growth inhibition of Eca109 cells in a dose- and time-dependent manner.TUNEL, FCM, and DNA ladder assays all demonstrated apoptosis induced by bile salts and bile acids at 500 μmol/L,except for GC. Early apoptosis cell percentages in Eca109 cells treated with GCDC, GDC, TC, TCDC, TDC,CA at 500 μmol/L for 12 h, DCA at 500 μmol/L for 6 h,and mixed bile salts at 1 000 μmol/L for 12 h were 7.5%,8.7%, 14.8%, 8.9%, 7.8%, 9.3%, 22.6% and 12.5%,respectively, all were significantly higher than that in control (1.9%). About 22% of the cell population treated with TC at 500 μmol/L for 24 h had detectable active caspase-3, and were higher than that in the control (1%). Immunocytochemical assay suggested that TC down-regulated Bcl

  10. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  11. Study of the mechanism on the apoptosis induced in Human leukemia cell line K562 by the combination of indole-3-acetic acid and horseradish peroxidase

    Institute of Scientific and Technical Information of China (English)

    宋土生; 杨玲; 黄辰; 刘利英; 倪磊; 王爱英; 罗禹

    2007-01-01

    Indole-3-acetic acid(IAA)is an i mportant typeof the plant growth hor mone found in higherplants,and participate inthe regulation of plant celldivision,elongation and differentiation.It is pres-ent in human urine,blood plas ma and central nerv-ous system.IAAis well tolerated in human and isnot oxidized by mammalian peroxidase.Recent re-searches suggest that the combination of IAA andhorseradish peroxidase(HRP)is cytotoxic to mam-malian cells,and could be used as a novel cancertherapy[1-3],while neither IAAn...

  12. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  13. Cystamine induces AIF-mediated apoptosis through glutathione depletion.

    Science.gov (United States)

    Cho, Sung-Yup; Lee, Jin-Haeng; Ju, Mi-kyeong; Jeong, Eui Man; Kim, Hyo-Jun; Lim, Jisun; Lee, Seungun; Cho, Nam-Hyuk; Park, Hyun Ho; Choi, Kihang; Jeon, Ju-Hong; Kim, In-Gyu

    2015-03-01

    Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death. PMID:25549939

  14. Study of progesterone mechanisms in radio-induced apoptosis prevention

    International Nuclear Information System (INIS)

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  15. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    Science.gov (United States)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  16. Cyclooxygenase-2 level and culture conditions influence NS398-induced apoptosis and caspase activation in lung cancer cells.

    Science.gov (United States)

    Chang, H C; Weng, C F

    2001-01-01

    Cyclooxygenases (COXs) catalyze the synthesis of prostaglandins (PGs) from arachidonic acid. Overexpression of COX-2 is frequently found in human cancers and is suggested to play an important role in tumorigenesis. Recent studies indicated that COX-2 inhibitors exert potent anti-cancer effects on a number of cancers. Interestingly, some COX-2 inhibitors potently induce apoptosis, while other COX-2 inhibitors primarily induce growth inhibition. Therefore, there is a variability in the effects that different COX-2 inhibitors have on cancer cells. In this study, we demonstrated that induction of apoptosis of high COX-2-expressing A549 lung cancer cells by a specific COX-2 inhibitor NS398 was observed in cells cultured under serum-free condition. However, this drug induced G1 growth arrest rather than apoptosis in A549 cells maintained in 10% serum medium. Conversely, low COX-2-expressing H226 lung cancer cells were resistant to NS398-induced apoptosis under both serum-free and serum-containing conditions. Moreover, our results showed that NS398-induced apoptosis is associated with activation of caspase-3, a cysteine protease that plays a crucial role in the execution phase of apoptosis. These results suggest that the cytotoxic effect of COX-2 inhibitors on cancer cells may be influenced by extracellular environments and the anti-cancer action of these inhibitors in vivo needs careful evaluation. Additionally, a correlation between the level of COX-2 expression and the extent of apoptosis induced by COX-2 inhibitors was found. PMID:11605058

  17. Fermented wheat aleurone inhibits growth and induces apoptosis in human HT29 colon adenocarcinoma cells.

    Science.gov (United States)

    Borowicki, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Brenner-Weiss, Gerald; Obst, Ursula; Hollmann, Jürgen; Lindhauer, Meinolf; Wachter, Norbert; Glei, Michael

    2010-02-01

    Fermentation of dietary fibre by the gut microflora may enhance levels of SCFA, which are potentially chemoprotective against colon cancer. Functional food containing wheat aleurone may prevent cancer by influencing cell cycle and cell death. We investigated effects of fermented wheat aleurone on growth and apoptosis of HT29 cells. Wheat aleurone, flour and bran were digested and fermented in vitro. The resulting fermentation supernatants (fs) were analysed for their major metabolites (SCFA, bile acids and ammonia). HT29 cells were treated for 24-72 h with the fs or synthetic mixtures mimicking the fs in SCFA, butyrate or deoxycholic acid (DCA) contents, and the influence on cell growth was determined. Fs aleurone was used to investigate the modulation of apoptosis and cell cycle. The fermented wheat samples contained two- to threefold higher amounts of SCFA than the faeces control (blank), but reduced levels of bile acids and increased concentrations of ammonia. Fs aleurone and flour equally reduced cell growth of HT29 more effectively than the corresponding blank and the SCFA mixtures. The EC(50) (48 h) ranged from 10 % (flour) to 19 % (blank). Markedly after 48 h, fs aleurone (10 %) significantly induced apoptosis and inhibited cell proliferation by arresting the cell cycle in the G0/G1 phase. In conclusion, fermentation of wheat aleurone results in a reduced level of tumour-promoting DCA, but higher levels of potentially chemopreventive SCFA. Fermented wheat aleurone is able to induce apoptosis and to block cell cycle - two essential markers of secondary chemoprevention.

  18. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  19. Cadmium-induced ectopic apoptosis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Po Kwok; Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2003-02-01

    In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 {mu}M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages. (orig.)

  20. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  1. The role of Fas in radiation induced apoptosis in vivo

    International Nuclear Information System (INIS)

    It has been recognized that interaction of the Fas: Fas ligand plays an important role in radiation-induced apoptosis. The purpose of this study was to investigate the role of Fas mutation in radiation-induced apoptosis in vivo. Mice with mutations in Fas, MRL/Mpj Faslpr, and its normal control, MRL/Mpj, were used in this study. Eight-week old male mice were given whole body radiation. After irradiation, the mice were killed and their spleens were collected at different time intervals. Tissue samples were stained with hematoxylin-eosin and the numbers of apoptotic cells were scored. Regulating molecules of apoptosis including p53, Bcl-2, Bax, Bcl-XL, and Bcl-Xs were also analyzed by Western blotting. At 25 Gy irradiation, the level of apoptosis reached the peak value at 8 hr after radiation and recovered to the normal value at 24 hr after radiation in MRL/Mpj mice. In contrast, the peak apoptosis level appeared at 4 hr after radiation in MRL/Mpj-Faslpr mice. At 8 hr after radiation, the levels of apoptosis in MRL/Mpj mice and MRL/Mpj-Faslpr mice were 52.3 ± 7.8% and 8.0 ± 8.6%, respectively (ρ L, and Bcl-Xs, increased in MRL/Mpj mice in response to radiation; p53 with a peak level of 3-fold at 8 h, Bcl-XL with a peak level of 3.3-fold at 12 h, and Bcl-Xs with a peak level of 3-fold at 12 h after 25 Gy radiation. Bcl-2 and Bax did not show significant change in MRL/Mpj mice. However in MRL/Mpj-Faslpr mice, the expression levels of p53, Bcl-2, Bax, Bcl-XL, and Bcl-Xs showed no significant change. The level of radiation-induced apoptosis was lower in Fas mutated mice, lpr, than in control mice. This seemed to be related to the lack of radiation-induced p53 activation in the lpr mice. This result suggests that Fas plays an important role in radiation-induced apoptosis in vivo

  2. Hypoxia preconditioning protects corneal stromal cells against induced apoptosis

    OpenAIRE

    Xing, Dongmei; Sun, Xingcai; Li, Jinhua; CUI, MIAO; Tan-Allen, Kah; Bonanno, Joseph A

    2005-01-01

    The purpose of this study, was to determine whether hypoxia preconditioning can protect corneal stromal cells from UV stress and cytokine mediated apoptosis. Two models were implemented. First, primary cultured bovine corneal fibroblasts were preconditioned with 0.5–1.5% O2 for 4 hr and stressed with UV-irradiation or stimulation of Fas receptor. Second, bovine eyes were preconditioned with 0.5% O2 for 4 hr and stressed by epithelial scraping to induce anterior keratocyte apoptosis. Cell fate...

  3. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    OpenAIRE

    Greijer, A.E.; Wall

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory proteins are delicately balanced. In solid tumours, hypoxia is a common phenomenon. Cells adapt to this environmental stress, so that after repeated periods of hypoxia, selection for resistance to hypoxi...

  4. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.L.; Sato, Mitsuhiro; Cao, Boliang; Richie, J.P. [Harvard Medical School, Boston, MA (United States)

    1996-08-20

    UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirements for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-{alpha}-and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis. 40 refs., 5 figs.

  5. Recombinant soluble TRAIL induces apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    TRAIL is a tumor necrosis factor family member that selectively induces apoptosis of cancer cells but not of normal cells. To develop TRAIL into a potential cancer drug, three different sizes of soluble TRAIL fragments, including sTRAIL(74-281), sTRAIL(95-281) and sTRAIL(101-281), were expressed in E. coli and purified to homogeneity. Apoptosis assays indicated that sTRAIL(95-281) and sTRAIL(101-281), but not sTRAIL(74-281), can potently induce apoptosis of various cancer cell lines in 6 h, suggesting that the N-terminal fragment of aa101 has inhibitory effect on TRAIL-induced apoptosis. Moreover, we found that some cancer cells were resistant to TRAIL and the resistant cells could be converted into sensitive cells by treatment with the protein synthesis inhibitor cycloheximide, suggesting that one or more short-lived proteins are responsible for cells' resistance to TRAIL.

  6. Coxsackievirus B3-induced apoptosis and Caspase-3

    Institute of Scientific and Technical Information of China (English)

    JIAN PING YUAN; WEI ZHAO; HONG TAO WANG; KAI YU WU; TAO LI; XIAO KUI GUO; SHAN QING TONG

    2003-01-01

    Cell death can be classified into two categories: apoptosis and necrosis. Apoptotic pathway can beeither caspase-dependent or caspase-independent. Caspase-independent cytopathic effect (CPE) has beendescribed. In order to evaluate the pattern of HeLa cell death induced by Coxsackievirus B3 (CVB3)and whether apoptosis involves caspase activation, we co-cultivated HeLa cells with CVB3 and detectedthe cytopathic changes, the alteration of mRNA and protein expression of caspase-3 gene plus caspase-3activity, as well as analyzing DNA fragmentation before and after caspase-3 activity inhibition. Accordingto the results, we propose that CVB3 may induce apoptosis and necrosis in HeLa cells, the latter appearingmuch earlier. Caspase-3 is activated at the levels of both transcription and translation, and procaspase-3 isproteolytically cleaved, thus leading to the continuous increasing of both caspase-3 precursor protein and itssubunit. However, besides CPE, apoptosis induced by CVB3 is not a direct consequence of the activationof caspase-3, or caspase-3 is not the only effector molecule in apoptotic cell death, for caspase-3 inhibitorcan not decrease DNA fragmentation. Some other biochemical mechanisms may participate in the process,whose role weakens the effect of inhibiting caspase-3 activity.

  7. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  8. Phytoconstituents as apoptosis inducing agents: strategy to combat cancer.

    Science.gov (United States)

    Kumar, Manish; Kaur, Varinder; Kumar, Subodh; Kaur, Satwinderjeet

    2016-08-01

    Advancement in the field of cancer molecular biology has aided researchers to develop various new chemopreventive agents which can target cancer cells exclusively. Cancer chemopreventive agents have proficiency to inhibit, reverse and delay process of carcinogenesis during its early and later course. Chemopreventive agents can act as antioxidative, antimutagenic/antigenotoxic, anti-inflammatory agents or via aiming various molecular targets in a cell to induce cell death. Apoptosis is a kind of cell death which shows various cellular morphological alterations such as cell shrinkage, blebbing of membrane, chromatin condensation, DNA fragmentation, formation of apoptotic bodies etc. Nowadays, apoptosis is being one of the new approaches for the identification and development of novel anticancer therapies. For centuries, plants are known to play part in daily routine from providing food to management of human health. In the last two decades, diverse phytochemicals and various botanical formulations have been characterized as agents that possess potential to execute cancer cells via inducing apoptosis. Data obtained from the research carried out globally pointed out that natural products are the potential candidates which have capability to combat cancer. In the present review, we surveyed literature on natural products which throws light on the mechanism through which these phytochemicals induce apoptosis in cancer cells. PMID:26239338

  9. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  10. Lonidamine induces apoptosis in drug-resistant cells independently of the p53 gene.

    OpenAIRE

    Del Bufalo, D; Biroccio, A; Soddu, S; Laudonio, N; D'Angelo, C.; Sacchi, A; Zupi, G.

    1996-01-01

    Lonidamine, a dichlorinated derivative of indazole-3-carboxylic acid, was shown to play a significant role in reversing or overcoming multidrug resistance. Here, we show that exposure to 50 microg/ml of lonidamine induces apoptosis in adriamycin and nitrosourea-resistant cells (MCF-7 ADR(r) human breast cancer cell line, and LB9 glioblastoma multiform cell line), as demonstrated by sub-G1 peaks in DNA content histograms, condensation of nuclear chromatin, and internucleosomal DNA fragmentatio...

  11. Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca2+ overload and endoplasmic reticulum stress-induced apoptosis pathway

    Institute of Scientific and Technical Information of China (English)

    Ding Yi; Chang Cunqing; Xie Lan; Chen Zhimin; Ai Hua

    2014-01-01

    Background Intense exercise can cause injury and apoptosis,but few studies have reported its effect on the central nervous system (CNS).The initial reason for hippocampus injury is the excitotoxicity of glutamate and calcium overload.Intracellular free Ca2+ ([Ca2+]i) overload may trigger the apoptosis pathway and neuron damage.The aim of this study was to investigate whether intense exercise could cause hippocampus apoptosis and neuron damage and then to determine which pathway was activated by this apoptosis.Methods We used one bout of swimming exhaustion rats as models.Intracellular [Ca2+]i was measured to estimate the calcium overload by Fura-2/AM immediately after exhaustion; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP)immunofluorescence were performed for estimating astrocyte activation and synapse plasticity 24 hours after exhaustion.Apoptosis cells were displayed using dUTP nick end labelling (TUNEL) stain; endoplasmic reticulum (ER) stress-induced apoptosis pathway and mitochondrial apoptosis pathway were synchronously detected by Western blotting.Results An increasing level of intracellular [Ca2+]i (P <0.01) was found in the hippocampus immediately after exhaustion.GFAP and SYP immunofluorescence showed that the astrocytes are activated,and the synapse plasticity collapsed significantly 24 hours after exhaustion.TUNEL stain showed that the number of apoptosis cells were notably raised (P <0.01); Western blotting of the apoptosis pathway showed increasing levels of caspase-3 cleavage (P <0.01),Bax (P <0.01),caspase-12 cleavage (P <0.01),C/EBP-homologous protein (CHOP) (P <0.01),and phospho-Junaminoterminal kinases (p-JNK; P <0.01) and decreasing level of Bcl-2 (P <0.01).Our results proved that exhaustion can induce hippocampus injury and apoptosis by [Ca2+]i overload,with collapsed synaptic plasticity as the injury pattern and ER stress-induced apoptosis as the activated pathway.Conclusion Intense exercise can cause

  12. Sphingosine-1 phosphate prevents ethanol-induced corneal epithelial apoptosis

    Directory of Open Access Journals (Sweden)

    Pierre Fournie

    2012-01-01

    Full Text Available Background: Apoptosis is a programmed cell death in multicellular organisms, found in a wide variety of conditions, including inflammatory process, everywhere in the body, including the cornea and conjunctiva. Aim: To evaluate the effect of a new topical formulation of sphingosine-1 phosphate on preventing apoptosis of the corneal epithelium. Setting: Medical University. Materials and Methods: We tested several formulations suitable for topical application. Twenty-five rabbits were distributed among five groups. Group 1 comprised the controls. In Group 2, 20% ethanol was applied topically for 20 seconds; in Group 3, 50 μM topical sphingosine-1 phosphate was applied 2 hours prior to 20% ethanol application. In Group 4, 200 μM topical sphingosine-1 phosphate was applied 2 hours before the 20% ethanol application. In Group 5, only 200 μM topical sphingosine-1 phosphate was applied. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL assay. Pairwise comparisons were performed using t-tests with Scheffe′s correction. Data were analyzed using STATA 9.0 statistical software. Results: A suspension of sphingosine-1 phosphate in the presence of Montanox 80 was stable and could be formulated without sonication. Epithelial apoptosis was detected only in Groups 2 and 3. Conclusion: Sphingosine-1 phosphate can prevent ethanol-induced apoptosis in the corneal epithelium of rabbits.

  13. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  14. Electronegative low density lipoprotein induces renal apoptosis and fibrosis: STRA6 signaling involved.

    Science.gov (United States)

    Chen, Chao-Hung; Ke, Liang-Yin; Chan, Hua-Chen; Lee, An-Sheng; Lin, Kun-Der; Chu, Chih-Sheng; Lee, Mei-Yueh; Hsiao, Pi-Jung; Hsu, Chin; Chen, Chu-Huang; Shin, Shyi-Jang

    2016-08-01

    Dyslipidemia has been proven to capably develop and aggravate chronic kidney disease. We also report that electronegative LDL (L5) is the most atherogenic LDL. On the other hand, retinoic acid (RA) and RA receptor (RAR) agonist are reported to be beneficial in some kidney diseases. "Stimulated by retinoic acid 6" (STRA6), one retinol-binding protein 4 receptor, was recently identified to regulate retinoid homeostasis. Here, we observed that L5 suppressed STRA6 cascades [STRA6, cellular retinol-binding protein 1 (CRBP1), RARs, retinoid X receptor α, and retinol, RA], but L5 simultaneously induced apoptosis and fibrosis (TGFβ1, Smad2, collagen 1, hydroxyproline, and trichrome) in kidneys of L5-injected mice and L5-treated renal tubular cells. These L5-induced changes of STRA6 cascades, renal apoptosis, and fibrosis were reversed in kidneys of LOX1(-/-) mice. LOX1 RNA silencing and inhibitor of c-Jun N-terminal kinase and p38MAPK rescued the suppression of STRA6 cascades and apoptosis and fibrosis in L5-treated renal tubular cells. Furthermore, crbp1 gene transfection reversed downregulation of STRA6 cascades, apoptosis, and fibrosis in L5-treated renal tubular cells. For mimicking STRA6 deficiency, efficient silencing of STRA6 RNA was performed and was found to repress STRA6 cascades and caused apoptosis and fibrosis in L1-treated renal tubular cells. In summary, this study reveals that electronegative L5 can cause kidney apoptosis and fibrosis via the suppression of STRA6 cascades, and implicates that STRA6 signaling may be involved in dyslipidemia-mediated kidney disease. PMID:27256691

  15. Nuclear apoptosis induced by isolated mitochondria

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We isolated and purified mitochondria from mouse livers and spinach leaves. When added into egg extracts of Xenopus laevis, they caused nuclei of mouse liver to undergo apoptotic changes. Chromatin condensation, margination and DNA ladder were observed. After incubating isolated mitochondria in some hypotonic solutions, and centrifuging these mixtures at high speed, we got mitochondrial supernatants. It was found that in the absence of cytosolic factor, the supernatant alone was able to induce apoptotic changes in nuclei. The effective components were partly of protein. DNA fragmentation was partly inhibited by caspase inhibitors AC-DEVD-CHO and AC-YVADCHO. Meanwhile, caspase inhibitors fully blocked chromatin condensation. Primary characterization of the nuclear endonuclease(s) induced by mitochondrial supernatants was also conducted. It was found that this endonuclease is different from endonuclease G, cytochrome c-induced nuclease, or Ca2+-activated endonuclease.

  16. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Elham Safarzadeh

    2014-12-01

    Full Text Available Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  17. Herbal medicine as inducers of apoptosis in cancer treatment.

    Science.gov (United States)

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-10-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer. PMID:25364657

  18. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  19. Parvovirus B19-Induced Apoptosis of Hepatocytes

    OpenAIRE

    Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.

    2004-01-01

    Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell li...

  20. Full Length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Ward Manus W

    2007-02-01

    Full Text Available Abstract Background Bcl-2 homology domain (BH 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid, which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM. Results Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. Conclusion Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.

  1. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  2. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    Science.gov (United States)

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  3. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Science.gov (United States)

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency. PMID:26790610

  4. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury

    Science.gov (United States)

    Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu

    2016-01-01

    Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710

  5. Resveratrol Induces Apoptosis in Human Osteosarcoma MG63 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Xin Wang; Yuxin Xie; Jingui Zhang; Qingshan Wang; Xianhui Xu

    2008-01-01

    OBJECTIVE To investigate apoptosis in human osteosarcoma MG63 cells induced by resveratrol and the molecular mechanism involved.METHODS MG63 cells were treated with different concentrations of resveratrol and transmission electron microscopy was used to observe morphological changes occurring in apoptosis.The MTT method was used to determine the inhibitory rate and flow cytometry was used to assess apoptosis and to analyze the expression of the p21ciP1/WAF1 and survivin proteins;the expression of p21ciP1/WAF1 and survivin mRNAs was analyzed by the reverse transcriptase polymerase chain reaction (RT-PCR).RESULTS After resveratrol treatment,the growth of the MG63 cells was significantly inhibited in a time- and dose-dependent fashion.By transmission electron microscopy,the cells displayed morphological changes characteristic of apoptosis,including formation of cytoplasmic vacuoles,chromatin condensation and margination.Flow cytometry showed that the growth of the cells was inhibited after resveratrol (10 mg/L and 20 mg/L) treatment.The inhibitory rates were (11.9 ±0.63)% and (19.7 ± 0.88)%respectively.The quantity of treated cells in G0/G1 transition was increased,but the number in the S phase and G2/M transition was decreased.A subdiploid peak was observed.The expression of p21ciP1/WAF1 was up-regulated while survivin was down-regulated.CONCLUSION Resveratrol can inhibit growth and induce apoptosis of MG63 cells.Its molecular mechanism might be related to modulation of survivin and p21ciP1/WAF1 expression.

  6. Neem oil limonoids induces p53-independent apoptosis and autophagy

    OpenAIRE

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O’Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9,...

  7. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    OpenAIRE

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  8. Radiation-induced apoptosis in microvascular endothelial cells.

    OpenAIRE

    Langley, R. E.; Bump, E A; Quartuccio, S. G.; Medeiros, D.; Braunhut, S. J.

    1997-01-01

    The response of the microvasculature to ionizing radiation is thought to be an important factor in the overall response of both normal tissues and tumours. It has recently been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects large vessel endothelial cells from radiation-induced apoptosis in vitro. Microvessel cells are phenotypically distinct from large vessel cells. We studied the apoptotic response of confluent monolayers of capillary en...

  9. Acetaminophen induces apoptosis in rat cortical neurons.

    Directory of Open Access Journals (Sweden)

    Inmaculada Posadas

    Full Text Available BACKGROUND: Acetaminophen (AAP is widely prescribed for treatment of mild pain and fever in western countries. It is generally considered a safe drug and the most frequently reported adverse effect associated with acetaminophen is hepatotoxicity, which generally occurs after acute overdose. During AAP overdose, encephalopathy might develop and contribute to morbidity and mortality. Our hypothesis is that AAP causes direct neuronal toxicity contributing to the general AAP toxicity syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We report that AAP causes direct toxicity on rat cortical neurons both in vitro and in vivo as measured by LDH release. We have found that AAP causes concentration-dependent neuronal death in vitro at concentrations (1 and 2 mM that are reached in human plasma during AAP overdose, and that are also reached in the cerebrospinal fluid of rats for 3 hours following i.p injection of AAP doses (250 and 500 mg/kg that are below those required to induce acute hepatic failure in rats. AAP also increases both neuronal cytochrome P450 isoform CYP2E1 enzymatic activity and protein levels as determined by Western blot, leading to neuronal death through mitochondrial-mediated mechanisms that involve cytochrome c release and caspase 3 activation. In addition, in vivo experiments show that i.p. AAP (250 and 500 mg/kg injection induces neuronal death in the rat cortex as measured by TUNEL, validating the in vitro data. CONCLUSIONS/SIGNIFICANCE: The data presented here establish, for the first time, a direct neurotoxic action by AAP both in vivo and in vitro in rats at doses below those required to produce hepatotoxicity and suggest that this neurotoxicity might be involved in the general toxic syndrome observed during patient APP overdose and, possibly, also when AAP doses in the upper dosing schedule are used, especially if other risk factors (moderate drinking, fasting, nutritional impairment are present.

  10. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  11. A novel approach to enhancing ganoderic acid production by Ganoderma lucidum using apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Bang-Jau You

    Full Text Available Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11, 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24 production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi.

  12. Salinomycin simultaneously induces apoptosis and autophagy through generation of reactive oxygen species in osteosarcoma U2OS cells.

    Science.gov (United States)

    Kim, Sang-Hun; Choi, Young-Jun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Noh, Kyung-Tae; Suh, Jeung-Tak; Ahn, Soon-Cheol

    2016-04-29

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore. It was reported to anticancer activity on various cancer cell lines. In this study, salinomycin was examined on apoptosis and autophagy through generation of reactive oxygen species (ROS) in osteosarcoma U2OS cells. Apoptosis, autophagy, mitochondrial membrane potential (MMP) and ROS were analyzed using flow cytometry. Also, expressions of apoptosis- and autophagy-related proteins were determined by western blotting. As a result, salinomycin triggered apoptosis of U2OS cells, which was accompanied by change of MMP and cleavage of caspases-3 and poly (ADP-ribose) polymerase. And salinomycin increased the expression of autophagy-related protein and accumulation of acidic vesicular organelles (AVO). Salinomycin-induced ROS production promotes both apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-l-cysteine (NAC), a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of autophagy by 3-methyladenine (3 MA) enhanced the salinoymcin-induced apoptosis. Taken together, these results suggested that salinomycin-induced autophagy, as a survival mechanism, might be a potential strategy through ROS regulation in cancer therapy. PMID:27033598

  13. Trauma induces apoptosis in human thoracolumbar intervertebral discs

    Directory of Open Access Journals (Sweden)

    Ertel Wolfgang

    2006-05-01

    Full Text Available Abstract Background Vertebral fractures resulting from high energy trauma often comprise the risk of posttraumatic degenerative changes in the affected intervertebral discs (IVD. Particularly in conservatively treated patients, or in cases after implant removal of an exclusively posterior stabilization, consecutive disc degeneration and the associated functional losing of the spinal segment clearly represent detrimental treatment results. In this regard, apoptosis of IVD cells has been suggested to be involved in the critical changes of the extracellular matrix. Methods To investigate whether fractures of the vertebrae induce apoptosis in the affected IVD, disc tissue from patients (n = 17 undergoing open reduction and internal fixation of thoracolumbar spine fractures were analysed in regards to caspase activity, apoptosis-receptor expression levels and gene expression of apoptosis-regulating proteins such as Bax and Bcl-2. Healthy IVD tissue (n = 3 obtained from patients undergoing surgical resection of adjacent vertebrae were used as control samples. Results In contrast to healthy control IVD tissues, samples from traumatic thoracolumbar IVD showed positive TUNEL staining and a significant increase of caspase-3/7 activity. Interestingly, analyses of the initiator caspase-8 and -9 revealed significantly increased activation levels compared to control values, suggesting the coexistent activation of both the extrinsic (receptor-mediated and intrinsic (mitochondria-mediated apoptosis pathway. Accordingly, expression levels of the Fas receptor (FasR mRNA were significantly increased. Although the TNF receptor I (TNFR I was only slightly upregulated, corresponding TNFα from trauma IVD presented significantly increased mRNA expression values. Furthermore, traumatic IVD cells demonstrated significantly reduced expression of the mitochondria-bound anti-apoptotic Bcl-2, thereby maintaining baseline transcriptional levels of the pro-apoptotic Bax

  14. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    International Nuclear Information System (INIS)

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  15. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  16. APOPTOSIS INDUCTION BY THE RECOMBINANT FUSION APOPTOSIS INDUCING FACTOR ON HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    于翠娟; 孟艳玲; 桂俊豪; 赵晶; 金明; 王智; 王成济; 杨安钢

    2003-01-01

    Objective: To obtain the recombinant fusion AIF genes inserted into the eukaryotic expression vector Pires2-EGFP, to observe the expression and location of the fusion AIF genes (3NE: PE(280-358)-AIFΔ1-120, and 4NE: PE(280-364)-AIFΔ1-120), and to detect and compare their apoptosis inducing effects on the transfected HeLa cells. Methods: Full-length human AIF gene was cloned by RT-PCR, and its N-terminal mitochondrial localization sequence (MLS) was replaced by part sequence of Psuedomonas exotoxin A (PE) translocation domain (PEII(280-358/364)), then the recombinant fusion genes were inserted into the Pires2-EGFP eukaryotic expression vector. After these genes were transiently transfected into HeLa cells with LipofectAmine, the expression of the recombinant fusion AIF genes and their effects on HeLa cells were detected by fluorescent microscopy, laser confocal microscopy and electron microscopy. Results: The eukaryotic expression vectors containing the recombinant fusion AIF genes (Pires2-EGFP-PEII(280-358/364)- AIFΔ1- 120) were constructed successfully. It was demonstrated that the fusion AIF protein genes were expressed effectively in the transfected cells, with the GFP comco-expressed in cells by indirect immunofluorescence staining analysis. After transfection, expression of the genes could induce HeLa cells to exhibit the typical apoptosis features: such as plasma membrane blebbing and peripheral chromatin condensation. As compared with control groups, the untreated cells and the void vector transfected cells, the living cell number of the AIF gene transfected cells reduced distinctly. Conclusion: Our data prove that the expression of the recombinant human AIF fusion genes could induce apoptosis in transfected HeLa cells, which provides new strategy for cancer killing.

  17. PUMA and Bax-induced Autophagy Contributes to Apoptosis

    OpenAIRE

    Yee, Karen S.; Wilkinson, Simon; James, John; Ryan, Kevin M.; Vousden, Karen H.

    2009-01-01

    The p53-inducible BH3-only protein PUMA is a key mediator of p53-dependent apoptosis, and PUMA has been shown to function by activating Bax and mitochondrial outer membrane permeabilization. In this study we describe an ability of PUMA to induce autophagy that leads to the selective removal of mitochondria. This function of PUMA depends on Bax/Bak and can be reproduced by overexpression of Bax. The induction of autophagy coincides with cytochrome c release, and taken together the results sugg...

  18. PUMA- and Bax-induced autophagy contributes to apoptosis

    OpenAIRE

    Yee, K S; Wilkinson, S; James, J; Ryan, K M; Vousden, K H

    2009-01-01

    The p53-inducible BH3-only protein PUMA is a key mediator of p53-dependent apoptosis, and PUMA has been shown to function by activating Bax and mitochondrial outer membrane permeabilization. In this study, we describe an ability of PUMA to induce autophagy that leads to the selective removal of mitochondria. This function of PUMA depends on Bax/Bak and can be reproduced by overexpression of Bax. The induction of autophagy coincides with cytochrome c release, and taken together the results sug...

  19. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway.

    Science.gov (United States)

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-12-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9-39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through

  20. Focused ultrasound induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    GUO Qian; JIANG Li-xin; HU Bing

    2012-01-01

    Background The incidence and mortality rate of pancreatic cancer have increased dramatically in China over recent decades.Focused ultrasound (FU) has been somewhat successful in treating pancreatic cancer.The purpose of this study was to investigate apoptosis in pancreatic cancer cells induced by FU.Methods Suspension of human pancreatic carcinoma cell line PaTu 8988t was radiated by FU,using five doses with different radiation parameters and patterns,including one blank control.Temperature increase of the cell suspension was monitored.Cell apoptosis and death after FU radiation was observed using fluorescence microscopy and was tested by flow cytometer at 3,6,12,24,and 48 hours after ultrasound radiation.Results The maximum cell suspension temperatures following five radiation doses were 28°C,(42.20±2.17)°C,(50.80±0.84)°C,(55.80±2.17)°C,and (65.20±3.11)°C; differences between the doses were statistically significant (P <0.05).The apoptosis rate peaked at 24 hours after radiation,at (0.56±0.15)%,(1.28±0.16)%,(1.84±0.29)%,(5.74±1.15)%,and (2.00±0.84)% for the five doses; differences between the doses were statistically significant (P <0.05).Between doses 1-4,cell apoptosis rates increased as the Tmax increased.In dose 5,as the Tmax was above 60°C,the apoptosis rate decreased.Conclusion Sub-threshold thermal exposures of FU radiation with a continuous radiation pattern could result in higher oercentage of apoptosed cells.

  1. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    OpenAIRE

    Tan, S.; Wei, X; Song, M; Tao, J.; Yang, Y; Khatoon, S.; Liu, H.; J. Jiang; Wu, B

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of th...

  2. Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats

    OpenAIRE

    Liu, Miaobing; Zhang, Ping; Chen, Mulei; Zhang, Wuning; Yu, Liping; Yang, Xin-Chun; Fan, Qian

    2011-01-01

    Previous studies indicated aging results in the significant cardiac function decreasing and myocardial apoptosis increasing in normal humans or rats. Additionally, animal experiments demonstrated aging increased myocardial ischemia / reperfusion (MI/R)-induced apoptosis. However, whether more myocardial apoptosis happen in the old acute myocardial infarction (AMI) patients is unclear. Reperfusion injury-induced apoptosis is an important cause of heart failure. This study determined the effect...

  3. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  4. Alkannin, HSP70 inducer, protects against UVB-induced apoptosis in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yoko Yoshihisa

    Full Text Available Alkannin is an active constituent from the root extract of Alkanna tinctoria of the Boraginaceae family and it may have utility as a heat shock protein 70 (HSP70 inducer in living organisms. Here, the effects of alkannin-induced HSP70 on ultraviolet (UV B (40 mJ/cm(2-induced apoptosis were investigated in human keratinocyte HaCaT cells. Pretreatment of cells with alkannin (1 µM caused significant inhibition of UVB-induced apoptosis and caspase-3 cleavage. On the other hand, the addition of KNK437 (HSP70 inhibitor reversed the action of alkannin increasing UVB-induced apoptosis in a dose-dependent manner. In addition, differences in gene expression associated with the suppression of UVB-induced apoptosis in the presence of alkannin were investigated using Gene Chip assay. Our results indicate that alkannin suppresses UVB-induced apoptosis through the induction of HSP70 in human keratinocytes, and therefore, we suggest the usefulness of using alkannin as an antiaging agent.

  5. Roscovitine ameliorates endotoxin-induced uveitis through neutrophil apoptosis.

    Science.gov (United States)

    Jiang, Zhao-Xin; Qiu, Suo; Lou, Bing-Sheng; Yang, Yao; Wang, Wen-Cong; Lin, Xiao-Feng

    2016-08-01

    Neutrophils have been recognized as critical response cells during the pathogenesis of endotoxin‑induced uveitis (EIU). Apoptosis of neutrophils induced by roscovitine has previously been demonstrated to ameliorate inflammation in several in vivo models. The present study aimed to assess whether roscovitine ameliorates EIU. EIU was induced in female C57BL/6 mice by a single intravitreal injection of lipopolysaccharide (LPS; 250 ng). The mice were divided into three groups as follows: LPS alone, LPS plus vehicle, LPS plus roscovitine (50 mg/kg). The mice were euthanized 12, 24, 48 and 72 h after LPS‑induced uveitis. Accumulation of inflammatory cells in the vitreous body was confirmed by immunohistochemistry, and quantified following hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick‑end labeling was performed to detect of apoptotic cells. The mRNA levels of inflammatory cytokines were analyzed by reverse transcription‑quantitative polymerase chain reaction and the changes in protein levels were analyzed by western blotting. Inflammatory cells accumulated in the vitreous near the optic nerve head and the quantity peaked at 24 h after LPS injection. Immunohistochemistry revealed that the majority of the inflammatory cells were neutrophils. The number of infiltrating cells was similar in the LPS and LPS plus vehicle groups, while there were significantly less in the roscovitine group at 24 h. Apoptosis of neutrophils was observed between 12 and 48 h after roscovitine injection, while no apoptosis was observed in the other groups. The mRNA expression levels of GMCSF, CINC‑1 and ICAM‑1 peaked at 12 h after LPS injection, and decreased to normal levels at 72 h. This trend in mRNA expression was similar in the LPS and LPS plus vehicle groups; however, the expression levels decreased more quickly in the roscovitine group at 24 and 48 h. Following roscovitine administration, upregulated cleaved caspase 3 expression levels

  6. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等

    1997-01-01

    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  7. Nitric oxide damages neuronal mitochondria and induces apoptosis in neurons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The cytotoxic effect of nitric oxide on primarily cultured rat cerebellar granule cells was studied,and the mechanisms were discussed.The results showed that nitric oxide donor S-nitroso-N-acetyl-penicillamine (SNAP; 500 μmol/L) could induce apoptosis in immature cultures of cerebellar granule cells.Flow cytometry and HPLC analyses revealed that after treatment with SNAP,the mitochondrial transmembrane potential and the cellular ATP content decreased significantly.Nitric oxide scavenger hemoglobin could effectively prevent the neuronal mitochondria from dysfunction and attenuate apoptosis.The results suggested that nitric oxide activated the apoptotic program by inhibiting the activity of mitochondrial respiratory chain and thus decreasing the cellular ATP content.

  8. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    International Nuclear Information System (INIS)

    Highlights: ► AIRE induces apoptosis in epithelial cells. ► CARD domain of AIRE is sufficient for apoptosis induction. ► AIRE induced apoptosis involves GAPDH translocation to the nuclei. ► Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  9. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia); Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  10. Intracellular dopamine oxidation mediates rotenone-induced apoptosis in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Hua-qing LIU; Xing-zu ZHU; En-qi WENG

    2005-01-01

    Aim: To study the role of dopamine (DA) in rotenone-induced neurotoxicity in PC12 cells. Methods: Cell viability was assessed by detecting the leakage of lactate dehydrogenase (LDH) into the medium. Apoptosis rate was measured by flow cytometry. Caspase-3-1ike activity was measured by fluorescence assay using the probe Ac-DEVD-AMC. The level of intracellular hydrogen peroxide and other peroxides in PC12 cells were quantified by loading cells with 2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) in fluorescence assay. Lactic acid was measured spectrophotometrically. The DA levels in PC12 cells were determined by HPLC-ECD. Results: A 48-h incubation of PC12 cells with rotenone caused an apoptotic cell death and elevated intracellular reactive oxygen species (ROS) and lactic acid accumulation. Intracellular DA depletion with reserpine significantly attenuated rotenone-induced ROS accumulation and apoptotic cell death. No change was found in rotenone-induced ROS accumulation when cells were co-treated with deprenyl. Brief treatment with reserpine at the end of rotenone treatment had no effect on rotenone-induced neurotoxicity. However,when cells were first incubated with deprenyl, a monoamine oxidase-B inhibitor for 30 min then co-incubated with rotenone plus deprenyl, a brief treatment with reserpine enhanced cell injury. Conclusion: Rotenone-induced apoptosis in PC 12 cells was mediated by intracellular dopamine oxidation.

  11. INHIBITION OF BILE ACID ACCUMULATION DECREASED THE EXCESSIVE HEPATOCYTE APOPTOSIS AND IMPROVED THE LIVER SECRETION FUNCTIONS ON OBSTRUCTIVE JAUNDICE PATIENTS

    Directory of Open Access Journals (Sweden)

    Akmal Taher

    2011-06-01

    Full Text Available Excessive hepatocyte apoptosis induced by bile acid accumulation occurred in severe obstructive jaundice, and impair the liver secretion function. The objective of this study is to determine whether the inhibition of bile acid accumulation through bile duct decompression affect the excessive hepatocyte apoptosis and caused improvement the liver secretion functions on human model. In this study we use a before and after study on severe obstructive jaundice patients due to extra hepatic bile duct tumor was decompressed. Bile duct decompression was performed as a model of the role of inhibition of bile acid accumulation inhibition bile acid accumulation and excessive hepatocyte apoptosis. Bile acid and marker of liver secretion functions were serially measured. Liver biopsy pre and post decompression was performed for Hepatocyte apoptosis pathologic examination by TUNEL fluorescing, which measured by 2 people in double blinded system. Total bile acid, and liver secretion functions were measured by automated chemistry analyzer. The result of this study shows that twenty one severe obstructive jaundice patients were included. After decompression the hepatocyte apoptosis index decreased from an average of 53.1 (SD 105 to 11.7 (SD 13.6 (p < 0.05. Average of bile acid serum decreased from 96.4 (SD 53.8 to 19.9 (SD 39.5 until 13.0 (SD 12.6 μmol/L (p < 0.05 Total ilirubin decreased from 20.0 (SD 8.9 to 13.3 (SD 5.0 until 6.2 (SD 4.0 mg/dL (p < 0.05, while the phosphates alkaline (ALP and γ-glutamil transpeptidase (γ-GT activities also decreased ignificantly. In conclusion, bile acids accumulation and excessive hepatocyte poptosis through bile duct decompression improve the liver secretion functions by inhibition mechanism.

  12. Inhibition of ultraviolet B (UVB) induced apoptosis in A431 cells by mimosine is not dependent on cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Cliche, D.O.; Girouard, S.; Bissonnette, N.; Hunting, D.J. [CIHR Group in the Radiation Sciences, Faculte de Medecine, Univ. de Sherbrooke, Sherbrooke, Quebec (Canada)

    2002-07-01

    Ultraviolet (UV) radiation is a strong apoptotic trigger in many cell types. We have. previously reported that a plant amino acid, mimosine ({beta}-[N-(3-hydroxy-4-pyridone)]-{alpha}-aminopropionic acid), with a well-known reversible G1 cell cycle arrest activity can inhibit apoptosis induced by UV irradiation and RNA polymerase II blockage in human A431 cells. Here, apoptosis was measured with a fluorimetric caspase activation assay. Interestingly, the protective state was effective up to 24 h following removal of mimosine from the culture medium while cells were progressing in the cell cycle. Our results demonstrate that the protective effect of mimosine against UV-induced apoptosis can be dissociated from its G1 cell-cycle arrest activity. (author)

  13. Effects of lysophosphatidylcholine on β-amyloid-induced neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Zhen-xia QIN; Hui-yan ZHU; Ying-he HU

    2009-01-01

    Aim: We have investigated the effects of lysophosphatidylcholine (LPC), a product of lipid peroxidation, on Aβ1-42-induced SH-SY5Y cell apoptosis.Methods: The viability of cultured SH-SY5Y cells was measured using a CCK-8 kit. Apoptosis was determined by Chip-based flow cytometric assay. The mRNA transcription of Bcl-2, Bax, and caspase-3 were detected by using reverse transcrip-tion and real-time quantitative PCR and the protein levels of Bax and caspase-3 were analyzed by Western blotting. Thecytosolic calcium concentration of SH-SY5Y cells was tested by calcium influx assay. GZA expression in SH-SYSY cells wassilenced by small interfering RNA.Results: Long-term exposure of SH-SY5Y cells to LPC augmented the neurotoxicity of Aβ1-42. Furthermore, after LPC treatment, the Bax/Bcl-XL ratio and the expression levels, as well as the activity of caspase-3 were, elevated, whereas the expression level of TRAF1 was reduced. Because LPC was reported to be a specific ligand for the orphan G-protein coupled receptor, G2A, we investigated LPC-mediated changes in calcium levels in SH-SY5Y cells. Our results demonstrated that LPC can enhance the Aβ1-42-induced elevation of intracellular calcium. Interestingly, Aβ1-42 significantly increased the expression of G2A in SH-SY5Y cells, whereas knockdown of G2A using siRNA reduced the effects of LPC on Aβ1-42-induced neurotoxicity.Conclusion: The effects of LPC on Aβ1-42-induced apoptosis may occur through the signal pathways of the orphan G-protein coupled receptor.

  14. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats

    Institute of Scientific and Technical Information of China (English)

    Emey Suhana MOHD AZAMAI; Suhaniza SULAIMAN; Shafina Hanim MOHD HABIB; Mee Lee LOOI; Srijit DAS; Nor Aini ABDUL HAMID; Wan Zurinah WANG NGAH; Yasmin Anum MOHD YUSOF

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200-250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats.

  15. Curcumin and Omega-3 Fatty Acids Enhance NK Cell-Induced Apoptosis of Pancreatic Cancer Cells but Curcumin Inhibits Interferon-γ Production: Benefits of Omega-3 with Curcumin against Cancer

    Directory of Open Access Journals (Sweden)

    Milan Fiala

    2015-02-01

    Full Text Available STAT-3 and STAT-1 signaling have opposite effects in oncogenesis with STAT-3 acting as an oncogene and STAT-1 exerting anti-oncogenic activities through interferon-γ and interferon-α. The cytokine IL-6 promotes oncogenesis by stimulation of NFκB and STAT-3 signaling. Curcuminoids have bi-functional effects by blocking NFκB anti-apoptotic signaling but also blocking anti-oncogenic STAT-1 signaling and interferon-γ production. In our recent study (unpublished work [1] in pancreatic cancer cell cultures, curcuminoids enhanced cancer cell apoptosis both directly and by potentiating natural killer (NK cell cytotoxic function. The cytotoxic effects of curcuminoids were increased by incubation of cancer cells and NK cells in an emulsion with omega-3 fatty acids and antioxidants (Smartfish, which enhanced cancer cell apoptosis and protected NK cells against degradation. However, as also shown by others, curcuminoids blocked interferon-γ production by NK cells. The combined use of curcuminoids and omega-3 in cancer immunotherapy will require deeper understanding of their in vivo interactions with the immune system.

  16. RADIATION-INDUCED APOPTOSIS OF TWO NASOPHARANGEAL CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-wei; LIANG Ke; YIN Wei-bo; SHEN Yu; SHENG Xiu-gui

    1999-01-01

    Objective: To study apoptosis induced by radiation in two nasopharyngeal carcinoma (NPC) cell lines, CNE and CNE-2. Methods: Hoechst 33342 staining, immunohistochemical staining, RT-PCR, DNA dot blotting and Southern blotting were used to identify apoptosis.Results: A single dose of X-irradiation resulted in apoptosis, the apoptotic index (AI) was time- and dosedependent. Different apoptotic responses existed in the two cell lines. Immunohistochemical staining showed that bcl-2 protein was strongly positive in CNE but negative in CNE-2. However, RT-PCR revealed p53mRNA in CNE-2 but not in CNE. P53 and bcl-2 genes were both present in the two cell lines as shown by DNA blotting, but the 2.8 kb fragment of the p53 gene was much lower than the 5.6 kb fragment on CNE which was clearly shown in Southern hybridization, suggestive of partial deletion of p53 gene in CNE. Conclusion:Apoptotic response to radiation is different in two NPC cell lines. CNE is more radioresistant than CNE-2.Overexpression of bcl-2 protein and partial deletion of p53 gene may explain their difference in radiosensitivity.

  17. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  18. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  19. The apoptosis of HEL cells induced by hydroxyures

    Institute of Scientific and Technical Information of China (English)

    GUICHANGYUN; CHUJIANG; 等

    1997-01-01

    Hydroxyurea has been used to synchronize cultured cells to S-phase and used to treat patients with sicklecell anemia.Recently,we found that hydroxyurea can induce the apoptosis of HEL(human erythroleukemia) cells.The induced HEL cells showed ultrastructurally chromatin condensation with regular crescents at the nuclear edges and apoptotic bodies.However,the cells of K562,another human erythroleukemia cell line,did not show such morphological changes.Under fluoroscope,the HEL cells after induction of ten displayed a clear reduction in nuclear diameter and nuclear chromatin cleavage and condensation and the presence of nuclear ring and apoptotic bodies.Analysis with flow cytometry showed that the percentage of apoptotic cells is about 30-40% after HEL cells were induced by hydroxyurea for 3 days.DNA ladder can be observed by electrophoretic analysis.

  20. Effective chemotherapy induce apoptosis in vivo in patients with leukemia

    Institute of Scientific and Technical Information of China (English)

    岑溪南; 朱平; 虞积仁; 石永进; 马明信

    2003-01-01

    Objective To investigate apoptosis in vivo in patients with leukemia at different stages of the first cycle of chemotherapy.Methods We detected apoptosis of HL-60 cells and peripheral blood leukemia cells in 17 patients at different stages, using in situ terminal deoxynucleotidyl transferase (TdT) fluorescence measurement and DNA electrophoresis. Results When HL-60 cells were incubated with 0.02 mg/L harringtonine for 0 to 48 hours, agarose gel electrophoresis showed that DNA ladder patterns became evident only at 12 hour into the treatment. In situ TdT assay showed that apoptotic cells occurred after one hour of the treatment. Apoptotic cells were few (0-3.3%) before chemotherapy, but increased substantially (11.4%-87.5%) during chemotherapy in patients with complete remission (CR) or partial remission (PR). Apoptotic cells were few (0-6.1%) during chemotherapy in ten patients with no remission (NR). DNA ladder cannot be detected by agarose gel electrophoresis either before, during or after chemotherapy. Wilcoxon signed rank test shows: P=0.0012<0.01, apoptotic cells during chemotherapy were present in greater quantity than prior to chemotherapy. Wilcoxon rank sum test shows: P=0.0011<0.01, with the median of apoptotic cells during chemotherapy in patients with CR or PR more than with NR.Conclusions TdT assay can be used to detect apoptotic cells earlier and more sensitively than DNA agarose gel electrophoresis. In situ TdT assay is useful to detect apoptosis in vivo in the initial phase of chemotherapy for immediate modification of the chemotherapy regimen, whereas electrophoretic analysis is not sensitive enough to detect apoptotic cell in vivo. Where the median of apoptotic cells during chemotherapy in patients with CR or PR were greater than with NR, only effective drug therapy could induce apoptosis.

  1. Involvement of FKHR-Dependent TRADD Expression in Chemotherapeutic Drug-Induced Apoptosis

    OpenAIRE

    Rokudai, Susumu; Fujita, Naoya; Kitahara, Osamu; NAKAMURA, Yusuke; Tsuruo, Takashi

    2002-01-01

    Chemotherapeutic drugs exhibit their cytotoxic effect by inducing apoptosis in tumor cells. Because the serine/threonine kinase Akt is involved in apoptosis suppression, we investigated the relationship between Akt activity and drug sensitivity. We discovered that certain chemotherapeutic drugs induced apoptosis with caspase activation only when Akt was inactivated after drug treatment, while inactivation of Akt was not observed when tumor cells showed resistance to the drug-induced caspase a...

  2. Possible involvement of DNA methylation in 5-azacytidine-induced neuronal cell apoptosis

    OpenAIRE

    Nakayama, Hiroyuki; Kajikawa, S.; Shinozuka, J.; Su, W. P.; Doi, K

    1999-01-01

    Eight chemicals that are cytidine analogues or nucleosides (5-azacytidine (SAzC), 5-azadeoxycytidine, 6-azacytidine, 5-azacytosin, cytidine, 3-deazaadenine, 3-deazauridine and 6-azauridine) were examined for the ability to induce neuronal apoptosis. 5AzC and 5-azadeoxycytidine induced apoptosis in the brain and spinal cord of the fetuses at 24 hr after the injection to dams, while the other chemicals tested failed to induce apoptosis. In the system of PC12 cell...

  3. Morin, a Flavonoid from Moraceae, Induces Apoptosis by Induction of BAD Protein in Human Leukemic Cells

    OpenAIRE

    Cheol Park; Won Sup Lee; Se-Il Go; Arulkumar Nagappan; Min Ho Han; Su Hyun Hong; Gon Sup Kim; Gi Young Kim; Taeg Kyu Kwon; Chung Ho Ryu; Sung Chul Shin; Yung Hyun Choi

    2014-01-01

    Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP...

  4. SDZ诱导lovo细胞凋亡%SDZ-induced apoptosis in Iovo cells

    Institute of Scientific and Technical Information of China (English)

    Ruijin Song; Li Feng; Jinxue Tong

    2009-01-01

    Objective: To explore the inhibition effective of the SDZ on Iovo cell growth of colon cancer in vitro. Methods:The apoptosis was observed by Hoechst fluorescein stain and transmission electron microscope. Results: The apoptosis was observed after the Iovo ceils treated by SDZ (1000 μg/mL) for 24 h. The rate of apoptosis was 30.2%. Conclusion: The apoptosis of Iovo cells can be induced by SDZ in vitro.

  5. 藤黄酸诱导Burkitt淋巴瘤细胞株凋亡及增殖抑制的分子学机制%Molecular Mechanism of Apoptosis and Proliferation Inhibition Induced by Gambogic Acid in Burkitt Lymphoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    师宪平; 蓝晓莹; 李雅楠; 温创宇; 黄美近; 刘焕亮

    2013-01-01

    [Objective] To study the influence of gambogic acid on the proliferation and cell apoptosis of Burkitt lymphoma cells Namalva,and provide basis for clinical treatment of Burkitt lymphoma.[Methods] Burkitt lymphoma cells were treated with different doses of gambogic acid.The cell viability and proliferation were evaluated by MTS assay.Cells were treated with 0.25,0.5,and 0.75 μmol/L gambogic acid for 24 hours,and 0.75 μmol/L gambogic acid for respectively 6,12,and 24 h.The dose-dependent cell apoptosis was detected using flow cytometry with Annexin V-FTIC/PI staining.The dose-and time-dependent changes of apoptosis and proliferation-related proteins were tested by Western blotting.[Results] The cell viability was inhibited by gambogic acid.Gambogic acid induced Namalva cell apoptosis and the cleavage of PARP and caspase 8,upregulated Bax,and decreased the expression of Pro-caspase 3,Pro-caspase 9,and Bcl-2 as well as proliferation pathway and related protein STAT5,p-STAT5,ERK,p-ERK in a dose and time dependent manner.[Conclusion] Gambogic acid induces cell apoptosis by effecting the expression of apoptosis related proteins and inhibits cell proliferation by down-regulating the activation of JAKs/STATs,MEK/ERK signal transduction pathway in Burkitt lymphoma cells.%[目的]研究藤黄酸对Burkitt淋巴瘤细胞株Namalva细胞增殖与凋亡的影响及其分子学机制,探讨藤黄酸治疗Burkitt淋巴瘤的潜在应用价值.[方法]用不同剂量藤黄酸处理细胞,采用MTS法对淋巴瘤细胞进行细胞活力及增殖抑制测定;0.25、0.5、0.75μmol/L藤黄酸分别处理细胞24 h,0.75μmol/L藤黄酸分别处理细胞6、12、24h后收集细胞,采用Annexin V-FTIC/PI流式细胞术检测藤黄酸剂量依赖性细胞凋亡情况;利用Western blot方法检测凋亡相关蛋白和细胞增殖信号通路相关蛋白剂量与时间依赖的变化情况.[结果]藤黄酸明显抑制Namalva细胞的增殖,诱导Namalva细胞发生凋亡.随藤黄

  6. Research of BH3 domain protein inducing cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    FENG Wan-yu; LIU Yang; ZHANG Zhi-cheng

    2008-01-01

    Objective BH3 domain protein plays an important role in control mechanism of cell apoptosis. The article mainly discusses its mechanism of promoting cell apoptosis and control. Methods The article analyzed and evaluated the mechanism of BH3 domain protein promoting cell apoptosis by internal and overseas literature. Results Activation of BH3 domain protein could promote the increase of mitochondrial membrane permeability, then it would start mitoehondrial apoptosis pathway, and at the last the cell apoptosis. Conclusions BH3 domain protein is the necessary condition of starting cell apoptosis. Its activation can cause cell apoptosis.

  7. Aloe-emodin-induced apoptosis in human gastric carcinoma cells.

    Science.gov (United States)

    Chen, Sheng-Hsuan; Lin, Kai-Yuan; Chang, Chun-Chao; Fang, Chia-Lang; Lin, Chih-Ping

    2007-11-01

    The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma. PMID:17637488

  8. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor.

    Science.gov (United States)

    Jaiswal, Mukesh K; Agrawal, Varkha; Mallers, Timothy; Gilman-Sachs, Alice; Hirsch, Emmet; Beaman, Kenneth D

    2013-12-01

    An innate immune response is required for successful implantation and placentation. This is regulated, in part, by the a2 isoform of V-ATPase (a2V) and the concurrent infiltration of M1 (inflammatory) and M2 (anti-inflammatory) macrophages to the uterus and placenta. The objective of the present study was to identify the role of a2V during inflammation-induced preterm labor in mice and its relationship to the regulation of apoptosis and innate immune responses. Using a mouse model of infection-induced preterm delivery, gestational tissues were collected 8 h after intrauterine inoculation on day 14.5 of pregnancy with either saline or peptidoglycan (PGN; a TLR 2 agonist) and polyinosinic-polycytidylic acid [poly(I:C); a TLR3 agonist], modeling Gram-positive bacterial and viral infections, respectively. Expression of a2V decreased significantly in the placenta, uterus, and fetal membranes during PGN+poly(I:C)-induced preterm labor. Expression of inducible NO synthase was significantly upregulated in PGN+poly(I:C)-treated placenta and uterus. PGN+poly(I:C) treatment disturbed adherens junction proteins and increased apoptotic cell death via an extrinsic pathway of apoptosis among uterine decidual cells and spongiotrophoblasts. F4/80(+) macrophages were increased and polarization was skewed in PGN+poly(I:C)-treated uterus toward double-positive CD11c(+) (M1) and CD206(+) (M2) cells, which are critical for the clearance of dying cells and rapid resolution of inflammation. Expression of Nlrp3 and activation of caspase-1 were increased in PGN+poly(I:C)-treated uterus, which could induce pyroptosis. These results suggest that the double hit of PGN+poly(I:C) induces preterm labor via reduction of a2V expression and simultaneous activation of apoptosis and inflammatory processes. PMID:24163412

  9. Effects of topiramate on hippocampal neuronal apoptosis in rats after kainic acid-evoked seizures

    Institute of Scientific and Technical Information of China (English)

    Yuan Wu; Jiarong Pang; Jinou Zheng; Xiaoqing Deng; Xiulin Liang; Jiaquan Li; Zhiying Chen

    2008-01-01

    tissues of hippocampal dentate gyrus,CA1,CA2,and CA3 region were removed and prepared into sections.Neuronal apoptosis was detected with in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling.MAIN OUTCOME MEASURES:Hippocampal neuronal apoptosis in various rat brain areas was detected in the two groups.RESULTS:All 60 rats were included in the final analysis of results.In the topiramate-treated group,the number of apoptotic cells in hippocampal dentate gyrus and CA3 region at 1 day,1,and 4 weeks after seizures were significantly lower than the model group(P<0.054-0.01).The number of apoptotic cells in hippocampal CA1 and CA2 regions at 1 day and 4 weeks after seizures in the topiramate-treated group were significantly lower than the model group(P<0.05).CONCLUSION:Hippocampal apoptosis is closely associated with kainic acid-evoked seizures,and topiramate can alleviate early(1 day and 1 week)and delayed(4 weeks)hippocampal neuronal injury induced by kainic acid.

  10. Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling.

    Science.gov (United States)

    Yabu, T; Shiba, H; Shibasaki, Y; Nakanishi, T; Imamura, S; Touhata, K; Yamashita, M

    2015-02-01

    Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.

  11. NP24 induces apoptosis dependent on caspase-like activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Higuchi, Naoki; Ito, Yasuhiro; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2016-06-01

    Tomato NP24 is a homolog of osmotin, a PR-5 protein from tobacco that can initiate apoptosis in yeast via PHO36 in the plasma membrane. We cloned and sequenced NP24 from tomato cv. Momotaro. Based on phylogenetic analysis, NP24 from Momotaro belonged to the Solanaceae clade. The amino acid sequence was identical to that of cv. Ailsa Craig including signal peptide, but the residues predicted to interact with the adiponectin receptor, ADIPOR, were slightly different from osmotin. Recombinant NP24 (rNP24) was expressed in a reductase-deficient mutant of Escherichia coli as host cell, and purified from cell extract by affinity chromatography. Purified rNP24 significantly inhibited growth of Saccharomyces cerevisiae wild-type spheroplasts. In contrast, growth of PHO36 deletion mutant (ΔIzh2) spheroplasts was not inhibited. Moreover, rNP24 induced significant activity of reactive oxygen species, caspase-like activity, and also nuclear fragmentation in wild-type spheroplast cells. These results demonstrated that rNP24 from Momotaro greatly influenced cell viability due to triggering apoptosis through PHO36. Notably, apoptosis induced by NP24 was caspase-like protease dependent.

  12. Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Bobrowski Paul

    2001-12-01

    Full Text Available Abstract Background The potential of ascorbic acid and two botanical decoctions, green tea and cat's claw, to limit cell death in response to oxidants were evaluated in vitro. Methods Cultured human gastric epithelial cells (AGS or murine small intestinal epithelial cells (IEC-18 were exposed to oxidants – DPPH (3 μM, H2O2 (50 μM, peroxynitrite (300 μM – followed by incubation for 24 hours, with antioxidants (10 μg/ml administered as a 1 hour pretreatment. Cell number (MTT assay and death via apoptosis or necrosis (ELISA, LDH release was determined. The direct interactions between antioxidants and DPPH (100 μM or H2O2 (50 μM were evaluated by spectroscopy. Results The decoctions did not interact with H2O2, but quenched DPPH although less effectively than vitamin C. In contrast, vitamin C was significantly less effective in protecting human gastric epithelial cells (AGS from apoptosis induced by DPPH, peroxynitrite and H2O2 (P 2O2, but green tea was more effective than cat's claw in reducing DPPH-induced apoptosis (P 2O2, and was attenuated both by cat's claw and green tea (P Conclusions These results indicate that dietary antioxidants can limit epithelial cell death in response to oxidant stress. In the case of green tea and cat's claw, the cytoprotective response exceed their inherent ability to interact with the injurious oxidant, suggestive of actions on intracellular pathways regulating cell death.

  13. NP24 induces apoptosis dependent on caspase-like activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Higuchi, Naoki; Ito, Yasuhiro; Kato, Jun; Ogihara, Jun; Kasumi, Takafumi

    2016-06-01

    Tomato NP24 is a homolog of osmotin, a PR-5 protein from tobacco that can initiate apoptosis in yeast via PHO36 in the plasma membrane. We cloned and sequenced NP24 from tomato cv. Momotaro. Based on phylogenetic analysis, NP24 from Momotaro belonged to the Solanaceae clade. The amino acid sequence was identical to that of cv. Ailsa Craig including signal peptide, but the residues predicted to interact with the adiponectin receptor, ADIPOR, were slightly different from osmotin. Recombinant NP24 (rNP24) was expressed in a reductase-deficient mutant of Escherichia coli as host cell, and purified from cell extract by affinity chromatography. Purified rNP24 significantly inhibited growth of Saccharomyces cerevisiae wild-type spheroplasts. In contrast, growth of PHO36 deletion mutant (ΔIzh2) spheroplasts was not inhibited. Moreover, rNP24 induced significant activity of reactive oxygen species, caspase-like activity, and also nuclear fragmentation in wild-type spheroplast cells. These results demonstrated that rNP24 from Momotaro greatly influenced cell viability due to triggering apoptosis through PHO36. Notably, apoptosis induced by NP24 was caspase-like protease dependent. PMID:26589784

  14. Mechanism of retinoid receptors in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-wu; PENG Zhen-hui; FENG Jie; MA Hui-qun; LIU Chao; YUAN Jing-yi

    2005-01-01

    @@ Malignant melanoma is a common cancer of skin. Its incidence is growing rapidly in recent years,1 however, there is no effective therapy for this cancer. Retinoids are metabolites or derivatives of vitamin A. They are essential for growth, differentiation, and maintenance of epithelial tissues.2 Previous studies showed that retinoids could inhibit growth of many kinds of malignant tumor cell lines and induce its apoptosis,3,4 including malignant melanoma cell lines.5 Some retinoids have therapeutic action to malignant melanoma, such as all-trans retinoic acid (ATRA) and 13-cis-RA.6,7 Retinoids take effects mainly through two kinds of nuclear receptors, retinoic acid receptor (RAR) and retinoic acid X receptor (RXR). In this study, we have investigated the effects of diverse retinoids and receptor agonists in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375.

  15. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  16. HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT.

    Directory of Open Access Journals (Sweden)

    Joshua L Andersen

    2006-12-01

    Full Text Available The HIV-1 accessory protein viral protein R (Vpr causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage-signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45alpha was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4-3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.

  17. Germ cell apoptosis induced by progesterone in rats

    Institute of Scientific and Technical Information of China (English)

    Cui Yu-gui; Liao Ting-ting; Liu Jia-yin; Jia Yue; Cai Rui-fen; Gao Li; Wang Xing-hai; Tong Jian-sun; Ma Ding-zhi; Zhang Cai-ting; Wang Xue-song

    2007-01-01

    Objectives: To document the effect of progesterone exposure with large dose and long term on spermatogenesis,especially on the germ cell apoptosis in rats.This study was also to evaluate the toxicity of progesterone in the reproductive system when administered with large doses and long term in men.Methods: Groups of adult male SD rats were administered with 37.5, 75 and 150 mg/kg depotmedroxyprogesterone acetate (DMPA) per two-weeks for 12 or 18 weeks.At the end of treatment, each male rat was paired with one adult female SD rat to estimate the reproductive function.Serum testosterone concentration was analyzed in duplicate by radioimmunoassay (RIA).The pathological changes of testes, epididymis, and prostate were checked under light microscopic, epididymis was also used for sperm count, and fresh testis tissue was used for apoptosis assessment by flow cytometry.Results.After treatment with DMPA, weights of gonad, the ratio of testes/body, the ratio of epididymides/body,and the ratio of prostate/body decreased significantly (P<0.01).The level of serum testosterone, sperm count, sperm activity decreased significantly(P<0.01) while abnormality of sperm increased significantly (P<0.01).The embryonic number in uterus of pairing female rat decreased significantly after DMPA treatment.Compared with control, the number and the ratio of apoptotic germ cell increased dramatically (P<0.01) along with dose increase or treating prolongation of DMPA, which analyzed by flow cytometry.Conclusion: In summary, in addition to inhibition of pituitary gonadotrophin and subsequently deprivation of androgen, progesterone (DMPA)inhibits spermatogenesis by the induced germ cell apoptosis.The reproductive toxicity of DMPA administrated with large doses and long term is confirmed.

  18. Prolactin induces apoptosis of lactotropes in female rodents.

    Directory of Open Access Journals (Sweden)

    Jimena Ferraris

    Full Text Available Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR, we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes, suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1-9-G129R-hPRL, providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii partial or total deficiencies in PRLR signaling in the anterior pituitary

  19. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  20. CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs.

    Science.gov (United States)

    Liao, Ching-Fong; Luo, Shue-Fen; Shen, Tzu-Yun; Lin, Chin-Huang; Chien, Jung-Tsun; Du, Shin-Yi; Jiang, Ming-Chung

    2008-03-31

    CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.

  1. Radiation-induced apoptosis and developmental disturbance of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1995-03-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs.

  2. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  3. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner.

    Science.gov (United States)

    Pellegrini, Gretel G; Morales, Cynthya C; Wallace, Taylor C; Plotkin, Lilian I; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  4. Ad-IRF-1 Induces Apoptosis in Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Gregory A. Watson

    2006-01-01

    Full Text Available The nuclear transcription factor interferon regulatory factor-1 (IRF-1 is a putative tumor suppressor, but the expression and function of IRF-1 in esophageal adenocarcinoma (EA remain unknown. We hypothesized that IRF-1 expression was reduced or lost in EA and that restoration of IRF-1 would result in the apoptosis of EA cells in vitro and the inhibition of tumor growth in vivo. Three EA cell lines were used to examine IRF-1 expression, IFN-γ responsiveness, and the effects of IRF-1 overexpression using a recombinant adenoviral vector (Ad-IRF-1. All three EA cell lines produced IRF-1 protein following IFN-γ stimulation, although IFN-γ did not induce cell death. In contrast, Ad-IRF-1 infection resulted in high levels of IRF-1 protein and triggered apoptosis in all three EA cell lines. Potential mechanisms for the differential response to IFN-γ versus Ad-IRF-1-such as modulation of c-Met or extracellular regulated kinase signaling, or altered expression of IRF-2, Fas, or survivin-were investigated, but none of these mechanisms can account for this observation. In vivo administration of IRF-1 in a murine model of EA modestly inhibited tumor growth, but did not lead to tumor regression. Strategies aimed at increasing or restoring IRF-1 expression may have therapeutic benefits in EA.

  5. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  6. An Apoptosis-inducing Isoform of Neu Differentiation Factor (NDF) Identified Using a Novel Screen for Dominant, Apoptosis-inducing Genes

    OpenAIRE

    Grimm, Stefan; Leder, Philip

    1997-01-01

    Apoptosis is a genetically programmed series of events that results in cell death. As a consequence, it is difficult to identify dominant genes that play a role in this process using genetic selections in conventional cell culture systems. Accordingly, we have established an efficient expression screen to isolate dominant, apoptosis-inducing genes. The assay is based on the apoptotic morphology induced in the human kidney cell line 293 after transient transfection of small plasmid pools from ...

  7. N-acetylcholinesterase-induced apoptosis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Debra Toiber

    Full Text Available BACKGROUND: Alzheimer's disease (AD involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended "synaptic" acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena. METHODOLOGY AND PRINCIPAL FINDINGS: In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation. CONCLUSIONS: Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.

  8. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  9. Tumor Necrosis Factor-related Apoptosis Ligand Induces Apoptosis in Prostate Cancer PC-3M Cell Line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhohui; WANG Huafang; GU Longjie; YE Zhewei; XIAO Yajun

    2005-01-01

    To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24h. Annixin-Ⅴ fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time- and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor ceils, it may become a potential alternative for the treatment of advanced prostate cancer.

  10. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-induci

  11. Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes.

    Science.gov (United States)

    Li, Keyou; Yang, Wenhua; Li, Zhe; Jia, Wangwang; Li, Jiazhou; Zhang, Pengfei; Xiao, Tiancun

    2016-05-01

    Psoriasis is a chronic skin disease that affects approximately 2% of the world's population. Conventional therapeutic approaches are not effective or necessarily safe for treating symptoms due to the serious side effects and resistance to currently prescribed drugs. Traditionally, in oriental medicine, apricot seed (Semen Armeniacae amarum) is used to treat skin diseases. However, the underlying mechanism of action has not been systematically elucidated. In the present study, the anti-proliferative effect of bitter apricot essential oil (BAEO) on cultured HaCaT cells was evaluated and the mechanism of action investigated. BAEO was isolated by hydrodistillation, and gas chromatography-mass spectrometry (GC-MS) analysis identified benzaldehyde (75.35%), benzoic acid (6.21%) and mandelonitrile (5.38%). HaCaT cell growth, measured by sulforhodamine B assay (SRB), was inhibited by BAEO with an IC50 value of 142.45 μg/ml. Apoptosis of HaCaT cells treated with BAEO was detected by cell cycle, flow cytometry, and western blot analyses. These measurements revealed G0/G1 cell cycle arrest, elevated numbers of early and late stage apoptotic cells, and caspases-3/8/9 and PARP activation. Z-VAD-FMK, a broad-spectrum caspase inhibitor, attenuated BAEO-induced apoptosis. Also, increased Bax and decreased Bcl-2 levels suggest that BAEO-induced apoptosis is mediated through both death receptor and mitochondrial pathways. Moreover, reduced Rel/NF-κB levels suggest that BAEO-mediated apoptosis is also associated with inhibition of the NF-κB pathway. These data suggest that BAEO is a naturally occurring material that functions as a potent pro-apoptotic factor for human keratinocytes. Thus, it is a promising candidate to treat psoriasis. PMID:26971222

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  13. Zinc protects human kidney cells from depleted uranium-induced apoptosis.

    Science.gov (United States)

    Hao, Yuhui; Ren, Jiong; Liu, Cong; Li, Hong; Liu, Jing; Yang, Zhangyou; Li, Rong; Su, Yongping

    2014-03-01

    Depleted uranium (DU) is a weak radioactive heavy metal, and zinc (Zn) is an effective antidote to heavy metal poisoning. However, the effect of Zn on DU-induced cytotoxicity and apoptosis is not completely understood. The purpose of this study was to evaluate the effect of Zn on DU-induced cell apoptosis in human kidney cells (HK-2) and explore its molecular mechanism. Pre-treatment with Zn significantly inhibited DU-induced apoptosis. It reduced the formation of reactive oxygen species in the cells, increased the catalase (CAT) and glutathione (GSH) concentrations, suppressed the DU-induced soluble Fas receptor (sFasR) and soluble Fas ligand (sFasL) overexpression, suppressed the release of cytochrome c and apoptosis inhibitor factor (AIF) from mitochondria to cytoplasm, inhibited the activation of caspase-9, caspase-8 and caspase-3, and induced metallothionein (MT) expression. Furthermore, exogenous MT effectively inhibited DU-induced cell apoptosis. In conclusion, mitochondrial and FasR-mediated apoptosis pathways contribute to DU-induced apoptosis in HK-2 cells. Through independent mechanisms, such as indirect antioxidant effects, inhibition of the activation of caspase-9, caspase-8 and caspase-3, and induction of MT expression, Zn inhibits DU-induced apoptosis. PMID:24330236

  14. White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases.

    Science.gov (United States)

    Mao, Jenny T; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian Yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W; Serio, Kenneth J

    2010-09-01

    Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in non-small cell lung cancer cell lines A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for WTE-induced apoptosis, including the induction of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and the 15-lipoxygenase (15-LOX) signaling pathways. We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-gamma with GW9662 partially reversed WTE-induced apoptosis. We further show that WTE increased PPAR-gamma activation and mRNA expression, concomitantly increased 15(S)-hydroxy-eicosatetraenoic acid release, and upregulated 15-LOX-1 and 15-LOX-2 mRNA expression by A549 cells. Inhibition of 15-LOX with nordihydroguaiaretic acid (NGDA), as well as caffeic acid, abrogated WTE-induced PPAR-gamma activation and upregulation of PPAR-gamma mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A mRNA expression and activated caspase-3. Inhibition of caspase-3 abrogated WTE-induced apoptosis. Our findings indicate that WTE is capable of inducing apoptosis in non-small cell lung cancer cell lines. The induction of apoptosis seems to be mediated, in part, through the upregulation of the PPAR-gamma and 15-LOX signaling pathways, with enhanced activation of caspase-3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  15. HEAVY METALS INDUCE APOPTOSIS IN LIVER OF MICE

    Directory of Open Access Journals (Sweden)

    Khalid H. Gathwan

    2012-05-01

    Full Text Available Cadmium (C d and zinc (Zn are an industrial and environmental pollutant of aquatic system has attracted the attention of research's all over the world. In the present study the toxic effects of zinc (Zn and Cadmium (C d on the liver of male mice. Male Balb /c mice weighing 32-34 gm, 70 days old, were treated orally with (1-10 mg/kg body wt. CdCl2 and 1-8 mg/kg body wt. ZnCl2. The body weight, liver weight, histological examination of liver, along with DNA ladder for apoptosis was studied. Cadmium and zinc induced both a time, and dose dependent increase in apoptotic, severity of necrosis. Liver weight, body weight decreased with increase of dose. It has been concluded that cadmium and zinc caused necrotic effect in liver and apoptotic as well as decrease body weight and liver weight.

  16. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Junxiong Chen

    2015-10-01

    Full Text Available The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.

  17. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  18. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Moon, Eun-Yi [Department of Bioscience and Biotechnology, Sejong University, Seoul (Korea, Republic of); Hong, Sung Hee, E-mail: gobrian@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  19. Morin, a flavonoid from moraceae, induces apoptosis by induction of BAD protein in human leukemic cells.

    Science.gov (United States)

    Park, Cheol; Lee, Won Sup; Go, Se-Il; Nagappan, Arulkumar; Han, Min Ho; Hong, Su Hyun; Kim, Gon Sup; Kim, Gi Young; Kwon, Taeg Kyu; Ryu, Chung Ho; Shin, Sung Chul; Choi, Yung Hyun

    2015-01-01

    Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm) along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.

  20. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases

    Directory of Open Access Journals (Sweden)

    M.A. Barcinski

    1999-04-01

    Full Text Available Apoptosis, a form of programmed cell death (PCD, has been described as essential for normal organogenesis and tissue development, as well as for the proper function of cell-renewal systems in adult organisms. Apoptosis is also pivotal in the pathogenesis of several different diseases. In this paper we discuss, from two different points of view, the role of apoptosis in parasitic diseases. The description of apoptotic death in three different species of heteroxenic trypanosomatids is reviewed, and considerations on the phylogenesis of apoptosis and on the eventual role of PCD on their mechanism of pathogenesis are made. From a different perspective, an increasing body of evidence is making clear that regulation of host cell apoptosis is an important factor on the definition of a host-pathogen interaction. As an example, the molecular mechanisms by which Trypanosoma cruzi is able to induce apoptosis in immunocompetent cells, in a murine model of Chagas' disease, and the consequences of this phenomenon on the outcome of the experimental disease are discussed.

  1. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.

  2. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  3. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis

    Science.gov (United States)

    Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor

    2011-09-01

    The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival.The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in

  4. Modulation of Interleukin-15-induced Suppression of Human Neutrophil Apoptosis by TNFα

    Institute of Scientific and Technical Information of China (English)

    LIU Xiuping; XIONG Changyun; LI Chunhong; YANG Deguang

    2007-01-01

    Human interleukin-15 (IL-15) is a proinflammatory cytokine to suppress neutrophil apoptosis, which is a potential therapeutic agent. The modulatory effect of TNFα was investigated in IL-15-induced suppression of human neutrophil apoptosis. TNFα was shown to reverse the ability of IL-15 to delay neutrophil apoptosis within certain time course. Moreover, this reverse effect by TNFα might be associated with a reduction of the expression of the anti-apoptotic Bcl-Xl protein detected by Western blotting. It is concluded that TNFα can be used to modulate IL-15-induced suppression of neutrophil apoptosis within certain time course.

  5. Induction of apoptosis and change of bcl—2 expression in macrophage Ana—1 cells by all—trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    YINDELING; XIUHAIREN; 等

    1996-01-01

    Macrophage cells play an important role in the initiation and regulation of the immune response.All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids)affect a large number of biological processes.Recently,retinoids have been shown promise in the therapy and prevention of various cancers.However,many interesting questions related to the activities of retinoids remain to be answered:(I) Molecular mechanisms by which retinoids exert their effects;(Ⅱ)why the clinical uses of retinoids give undesirable side effects of varying severity with a higher frequency of blood system symptoms;(Ⅲ)little is known for its impacts on macrophage cells etc.We set up this experiment,therefore,to examine the apoptosis of ATRA on macrophage Ana-1 cell line.Apoptosis of the cells was quantitated,after staining cells with propidium iodide(PI),by both accounting nuclear condensation and flow cytometry.When the cells were treated with ATRA at or higher than 1μM for more than 24h,significant amount of the apoptotic cells was observed.Induction of apoptosis of Ana-1 cells by ATRA was in time-and dose-dependent manners,exhibiting the similar pattern as the apoptosis induced by actinomycin D (ACTD).ATRA treatment of Ana-1 cells also caused the changes of the mRNA levels of apoptosis-associated gene bcl-2,as detected by Northern blot analysis.The temporal changes of bcl-2 expression by ATRA was also parallel to that by ACTD.In conclusion,ATRA can induce apoptosis in macrophage cells,which may be helpful in understanding of immunological functions retinoids.

  6. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    Science.gov (United States)

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  7. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  8. Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand

    Institute of Scientific and Technical Information of China (English)

    Liu-Qin Yang; Dian-Chun Fang; Rong-Quan Wang; Shi-Ming Yang

    2004-01-01

    AIM: To study the effect of NF-κB, survivin, Bcl-2 and Caspase3 on tumor necrosis factors related apoptosis inducing ligand (TRAIL) induced apoptosis of gastric cancer cells.METHODS: Gastric cancer cells of SGC-7901, MKN28,MKN45 and AGS lines were cultured in PRMI-1640 medium and the apoptosis rates of the cells of 4 lines were observed after treatment of tumor necrosis factors related apoptosis inducing ligand (TRAIL) with a flow cytometer. The expression of NF-κB, survivin, Bcl-2 and Caspase3 in gastric cancer cells of 4 lines was analyzed with Western blot.RESULTS: After the gastric cancer cells were exposed to TRAIL 300 ng/ml for 24 hours, the apoptosis rate was 36.05%, 20.27%, 16.50% and 11.80% in MKN28, MKN45,AGS and SGC-7901cells respectively. Western blot revealed that the expressions of NF-κB and survivin were lower in MKN28 cells than in MKN45, AGS and SGC-7901 cells. In contrast, the expression of Caspase3 was higher in MKN28 cells than in MKN45, AGS and SGC-7901 cells.CONCLUSION: There is a selectivity of TRAIL potency to induce apoptosis in gastric cancer cells of different cell lines.The anticancer potency of TRAIL is associated with the decreased expression of NF-κB and survivin and increased expression of Caspase3 of gastric cancer cells.

  9. Minocycline protects the apoptosis of PC12 cells induced by 1-methyl-4-phenylpyridinium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To explore the protective effect of minocycline on the apoptosis of cellular parkinsonism models induced by MPP+ . Methods: Using PC12 cells as the apoptotic model of dopaminergic neurons, MC and MPP+ were added into the culture medium of PC12 cells, and using MTT to assay the cell viability and metabolic state; The cells apoptosis was assayed by electrophoresis method and using flow cytometry FACS to assay the apoptosis ratio. Results: Added the MPP+ to get the concentration of 10μmol/L, the cellular parkinsonism model of apoptosis had been prepared. The pre-treatment of MC (100 μmol/L) could significantly increase the PC12 cell viability. The apoptosis ratio of MC + MPP+ group was significantly lower than that of MPP+ group, but was still significantly higher than that of control group. Conclusion: MC may protect the cell apoptosis induced by MPP+ to some extent.

  10. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  11. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  12. Protection from Palmitate-Induced Mitochondrial DNA Damage Prevents from Mitochondrial Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Impaired Insulin Signaling in Rat L6 Skeletal Muscle Cells

    OpenAIRE

    Yuzefovych, Larysa V.; Solodushko, Viktoriya A.; Wilson, Glenn L.; Rachek, Lyudmila I.

    2011-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme ...

  13. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress.

    Science.gov (United States)

    Rong, Guang; Tang, Xun; Guo, Tingting; Duan, Na; Wang, Yue; Yang, Lei; Zhang, Jun; Liang, Xiujie

    2015-09-01

    Although podocyte apoptosis has been shown to be induced by the accumulation of advanced oxidation protein products (AOPPs), the mechanisms through which AOPPs trigger apoptosis in these cells remain unclear. In this study, we investigated the role of endoplasmic reticulum (ER) stress in AOPP-induced podocyte apoptosis. AOPP treatment induced overexpression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein (CHOP) in podocytes, indicating that AOPPs induced ER stress. Notably, AOPP-induced increase in the rate of podocyte apoptosis was partly reversed by salubrinal, an ER stress inhibitor, whereas the AOPP effect was reproduced by an inducer of ER stress, thapsigargin, suggesting that AOPPs triggered podocyte apoptosis by inducing ER stress. Furthermore, AOPP-induced reactive oxygen species (ROS) generation, ER stress, and podocyte apoptosis were significantly inhibited by an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, a ROS scavenger, or receptor of advanced glycation end products (RAGE) small interfering RNA (siRNA). Moreover, silencing of the three ER stress sensors, protein kinase-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring 1 (IRE1), respectively, significantly lowered the apoptotic rate of the cells compared with that of the scramble siRNA-transfected cells. Lastly, our data suggested that CHOP- and caspase-12-dependent pathways were involved in ER stress-mediated podocyte apoptosis and that Bcl-2 suppression was involved in CHOP-mediated apoptosis. Collectively, our results indicate for the first time that AOPPs trigger podocyte apoptosis through induction of ER stress, which might be regulated by NADPH oxidase-dependent ROS through RAGE, and that this apoptosis is mediated by three unfolded protein response pathways, the PERK, ATF6, and IRE1 pathways, and the mediators, CHOP and caspase-12. PMID:26197866

  14. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  15. Baicalein selectively induces apoptosis in activated lymphocytes and ameliorates concanavalin a-induced hepatitis in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Insufficient apoptosis in activated lymphocytes contributes to the development of autoimmune hepatitis (AIH. Baicalein (BE, a flavonoid originally isolated from the root of Scutellaria baicalensis Georgi, possesses anti-inflammatory properties. However, whether BE can selectively induce apoptosis in activated lymphocytes and exert therapeutic effect on AIH has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The pro-apoptotic properties of BE were evaluated in vitro on different types of immune cells, and in vivo effects of BE were examined in a murine model of Concanavalin A (Con A-induced hepatitis. In vitro treatment with BE resulted in a higher increase in the level of apoptosis in Con A-stimulated murine splenocytes, Con A-stimulated CD3(+ splenocytes, lipopolysaccharide (LPS-stimulated CD19(+ splenocytes, and phorbol 12-myristate 13-acetate/ionomycin-stimulated Jurkat T cells, compared with that in unstimulated naïve ones. Murine bone marrow-derived dentritic cells, peritoneal macrophages, and RAW264.7 cells, either stimulated with LPS or unstimulated, were all insensitive to the BE-induced apoptosis. BE treatment also led to a loss of mitochondrial membrane potential, an increase of cytochrome c release from mitochondria to the cytosol, a decrease in the ratio of Bcl-2/Bax, and activation of caspase-9,-3 in Con A-stimulated CD3(+ splenocytes and LPS-stimulated CD19(+ splenocytes, while showing no impact on Fas/FasL expressions and caspase-8 activation. In vivo administration of BE alleviated Con A-induced liver injury, suppressed serum level of TNF-α and IFN-γ, and reduced liver infiltration of mononuclear cells (MNCs. Furthermore, BE treatment increased the incidences of apoptosis in liver-infiltrating MNCs and splenocytes, as well as in CD3(+ and CD19(+ splenocytes. When liver MNCs and splenocytes from BE-treated mice were cultured in vitro for 24 h, they exhibited marked increase in apoptosis compared to vehicle

  16. p53-dependent apoptosis suppresses radiation-induced teratogenesis

    International Nuclear Information System (INIS)

    About half of human conceptions are estimated not to be implanted in the uterus, resulting in unrecognizable spontaneous abortions. Experimental studies with mice have established that irradiation during the preimplantation period of the embryo induces a high incidence of prenatal deaths but virtually no malformations. This suggests that some mechanism is screening out the damaged fetuses. In order to elucidate the mechanisms of tissue repair of radiation-induced teratogenic injury, we compared the incidences of radiation-induced malformations and abortions in p53 null (p53-/-) and wild-type (p53+/+) mice. After X-irradiation with 2 Gy on day 9.5 of gestation, p53-/- mice showed a 70% incidence of anomalies and a 7% incidence of deaths, whereas p53+/+ mice had a 20% incidence of anomalies and a 60% incidence of deaths. Similar results were obtained after irradiation on day 3.5 of gestation. This reciprocal relationship of radiosensitivity to anomalies and to embryonic or fetal lethality supports the notion that the p53 gene protects embryos and fetuses against the teratogenic effects of radiation by eliminating cells that have been badly damaged. In fact, after X-irradiation, the frequency of dying cells by apoptosis was greatly increased in tissues of the p53+/+ fetuses but not at all in those of the p53-/- fetuses. Mammals are protected from radiation-induced injury by two mechanisms, p53-dependent apoptotic tissue repair in addition to well known DNA repair. Therefore, there are threshold doses below which there is no induction of teratogenic and carcinogenic effects after exposure to low-level radiation. (author)

  17. Butylbenzyl phthalate induces spermatogenic cell apoptosis in prepubertal rats.

    Science.gov (United States)

    Alam, Mohammad Shah; Kurohmaru, Masamichi

    2016-02-01

    Butylbenzyl phthalate (BBP), a suspected endocrine disruptor, adversely affects male reproductive function. In this study, morphological alterations of prepubertal rat testes caused by single administration of BBP, were examined by light microscopy. Three-week-old male rats were given a single dose of 500 mg/kg BBP by oral gavage and sacrificed at 3, 12, and 24 h after administration. Histopathological examination revealed progressive detachment and sloughing of spermatogenic cells into the lumen, and a significant increase in the number of TUNEL-positive (apoptotic) spermatogenic cells in the treated groups, compared to the control. Semithin sections confirmed the apoptotic cells by their prominent basophilia, condensed chromatin, and shrunken cytoplasm, hallmarks of apoptotic cell death. Immunohistochemistry identified disruption of Sertoli cell vimentin and actin filaments in the treated groups. To elucidate the recovery effects of BBP, rats were treated in the same way and were sacrificed at D1-12h after administration. The apoptotic index returned to normal at D9. While, the testes revealed lower weight gain until D12. These results show for the first time that BBP induces collapse of vimentin filaments in Sertoli cells which may lead to disruption of Sertoli-spermatogenic cell physical interaction and induces spermatogenic cell apoptosis. PMID:26747412

  18. Strain difference in jejunal crypt cell susceptibility to radiation-induced apoptosis.

    Science.gov (United States)

    Weil, M M; Stephens, L C; Amos, C I; Ruifrok, A C; Mason, K A

    1996-11-01

    Levels of radiation-induced jejunal crypt cell apoptosis were compared in C57BL/6J, C3Hf/Kam and C3H/HeJ mice. Apoptosis levels were consistently lower in the C3H strains than in C57BL/6J. Although other explanations are possible, the strain difference is most likely to have a genetic basis, and in fact a preliminary analysis of the F2 progeny of C3H/HeJ and C57BL/6J mice indicates that more than one gene is involved. Both C3H strains also had lower levels of radiation-induced thymocyte apoptosis than C57BL/6J mice. Jejunal crypt cell apoptosis levels did not co-segregate with thymocyte apoptosis levels in the F2 progeny of C57BL/6J and C3H/HeJ mice. These results imply that the genes responsible for the difference in radiation-induced thymocyte apoptosis levels between these two strains are not the same as those responsible for the strain difference in radiation-induced jejunal crypt cell apoptosis levels. The experiments reported here identify strain-specific differences in levels of radiation-induced crypt cell apoptosis and are a first step towards identifying genetic polymorphisms that influence sensitivity of the small intestine to damage from ionizing radiation.

  19. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    Science.gov (United States)

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent. PMID:26893131

  20. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    Directory of Open Access Journals (Sweden)

    Wu QiNan

    2016-01-01

    Full Text Available Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.

  1. Nicotinamide-Induced Apoptosis Can Be Enhanced by Melatonin in Mouse Myeloma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiyou; SHENG Hongzhi; LIU Jia

    2006-01-01

    The mechanism of apoptosis induced by nicotinamide was investigated by treating mouse myeloma cells (Sp2/0) with various concentrations of nicotinamide. The typical hallmarks of apoptosis, including chromatin condensation and DNA fragmentation, were detected when cells were treated with nicotinamide at concentrations of 30, 40, 50, and 60 mmol/L. The apoptosis percentage increased with increasing nicotinamide concentration. Interestingly, the strong antioxidant melatonin did not restrain the apoptosis induced by nicotinamide in mouse myeloma cells but greatly increased the induction of nicotinamide on apoptosis. When cells were preincubated with 0.1, 1, and 10 mmol/L melatonin before nicotinamide induction, the percentage of apoptosis induced by 50 mmol/L nicotinamide markedly increased with increasing melatonin concentration. These results suggest that apoptosis induced by nicotinamide has no relationship with oxidative stress and melatonin could enhance nicotinamide-induced apoptosis in mouse myeloma cells by stimulating cell division in a certain manner. Nicotinamide may provide a new method to treat some kinds of tumors with no damage to normal tissues.

  2. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  3. Game and players: mitochondrial apoptosis and the therapeutic potential of ursodeoxycholic acid.

    Science.gov (United States)

    Solá, Susana; Aranha, Márcia M; Steer, Clifford J; Rodrigues, Cecília M P

    2007-07-01

    Apoptosis represents a universal and exquisitely efficient cellular suicide pathway essential for a variety of normal biological processes ranging from embryonic development to ageing. In fact, tissue homeostasis is dependent on the perfect balance between positive and negative signals that determines the decision between life and death. Therefore, any imbalance can result in a wide range of pathologic disorders associated with unwanted apoptosis or cell growth. During the apoptotic process, the molecular players interact closely with each other in ways relevant to accelerate or interrupt the cellular death process. In addition, two major pathways of apoptosis activation have been recognized as the "intrinsic" mitochondrial pathway and the "extrinsic" death receptor pathway. Although these pathways act independently to initiate apoptosis, a delicate balance and cross-talk between the extrinsic and intrinsic pathways is thought to occur in many cell types. Interestingly, we have shown that ursodeoxycholic acid (UDCA), an endogenous hydrophilic bile acid, is a potent inhibitor of apoptosis by either stabilizing the mitochondrial membrane or modulating the expression of specific upstream targets. Herein, we review the main effectors involved in the death machinery, describe how they interact to regulate apoptosis, and discuss the main pathways that control cell death and survival. Further, we address multiple interesting targets as well as the potential application of UDCA as a therapeutic modality for apoptosis-related disorders. PMID:17489439

  4. 4-Hydroxybenzyl modification of the highly teratogenic retinoid, 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB), yields a compound that induces apoptosis in breast cancer cells and shows reduced teratogenicity.

    Science.gov (United States)

    Anding, Allyson L; Nieves, Nirca J; Abzianidze, Victoria V; Collins, Michael D; Curley, Robert W; Clagett-Dame, Margaret

    2011-11-21

    Retinoids are a class of compounds with structural similarity to vitamin A. These compounds inhibit the proliferation of many cancer cell lines but have had limited medical application as they are often toxic at therapeutic levels. Efforts to synthesize retinoids with a greater therapeutic index have met with limited success. 4-[(1E)-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propen-1-yl]benzoic acid (TTNPB) is one of the most biologically active all-trans-retinoic acid (atRA) analogues and is highly teratogenic. In this study, we show that modification of the TTNPB carboxyl group with an N-(4-hydroxyphenyl)amido (4HPTTNPB) or a 4-hydroxybenzyl (4HBTTNPB) group changes the activity of the compound in cell culture and in vivo. Unlike TTNPB, both compounds induce apoptosis in cancer cells and bind poorly to the retinoic acid receptors (RARs). Like the similarly modified all-trans-retinoic acid (atRA) analogues N-(4-hydroxyphenyl)retinamide (4-HPR/fenretinide) and 4-hydroxybenzylretinone (4-HBR), 4HBTTNPB is a potent activator of components of the ER stress pathway. The amide-linked analogue, 4HPTTNPB, is less toxic to developing embryos than the parent TTNPB, and most significantly, the 4-hydroxybenzyl-modified compound (4HBTTNPB) that cannot be hydrolyzed in vivo to the parent TTNPB compound is nearly devoid of teratogenic liability. PMID:21939267

  5. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  6. Comparison of bleomycin-induced pulmonary apoptosis between NMRI mice and C57BL/6 mice

    OpenAIRE

    Safaeian, L.; Jafarian-Dehkordi, A.; Rabbani, M.; Sadeghi, H.M.; Afshar-Moghaddam, N.; Sarahroodi, S.

    2013-01-01

    Apoptosis has a critical role in the pathogenesis of bleomycin induced-pulmonary fibrosis. The severity of fibrosis varies among different strains of mice. Recent studies have indicated that expression of apoptotic regulatory genes may be specific in different cell types in various strains. In this study, bleomycin-induced pulmonary apoptosis in NMRI (Naval Medical Research Institute, USA) albino mice were compared with C57BL/6 black mice. Pulmonary fibrosis induced by single intratracheal ad...

  7. Androgen via p21 Inhibits Tumor Necrosis Factor α-induced JNK Activation and Apoptosis*

    OpenAIRE

    Tang, Fangming; Kokontis, John; Lin, Yuting; Liao, Shutsung; Lin, Anning; Xiang, Jialing

    2009-01-01

    The male hormone androgen is a growth/survival factor for its target tissues or organs. Yet, the underlying mechanism is incompletely understood. Here, we report that androgen via p21 inhibits tumor necrosis factor α-induced JNK activation and apoptosis. Inhibition by androgen requires the transcription activity of androgen receptor (AR) and de novo protein synthesis. Androgen·AR induces expression of p21 that in turn inhibits tumor necrosis factor α-induced JNK and apoptosis. Furthermore, ge...

  8. Inonotus obliquus Protects against Oxidative Stress-Induced Apoptosis and Premature Senescence

    OpenAIRE

    Yun, Jong Seok; Pahk, Jung Woon; Lee, Jong Seok; Shin, Won Cheol; Lee, Shin Young; Hong, Eock Kee

    2011-01-01

    In this study, we investigated the cytoprotective effects of Inonotus obliquus against oxidative stress-induced apoptosis and premature senescence. Pretreatment with I. obliquus scavenged intracellular ROS and prevented lipid peroxidation in hydrogen peroxide-treated human fibroblasts. As a result, I. obliquus exerted protective effects against hydrogen peroxide-induced apoptosis and premature senescence in human fibroblasts. In addition, I. obliquus suppressed UV-induced morphologic skin cha...

  9. Involvement of ASK1 activation in apoptosis induced by NPe6-PDT

    Science.gov (United States)

    Liu, Lei; Zhang, Zhen-zhen; Zhang, Zhigang

    2010-02-01

    Photodynamic therapy (PDT) employing photosensiter N-aspartyl chlorin e6 (NPe6) can induce lysosome disruption and initiate apoptotic pathway. Apoptosis signal-regulating kinase (ASK1) is an important regulator of apoptosis in response to various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx. In this study, we investigated the molecular mechanisms of apoptosis induced by NPe6-PDT in ASTC-a-1 cells. The results showed that the activities of ASK1 increased in response to NPe6-PDT. Over-expression of wild-type or activated mutant of ASK1 could obviously decrease cell viability and increase cell death; while inhibition of ASK1 significantly decreased cell apoptosis. These results suggested that ASK1 plays an important role in apoptosis induced by NPe6-PDT.

  10. A Triterpenoid from Thalictrum fortunei Induces Apoptosis in BEL-7402 Cells Through the P53-Induced Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Lvyi Chen

    2011-11-01

    Full Text Available Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4-β-D-fucopyranosyl(22S,24Z-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1 was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402, human colon lovo cells (LoVo, human non-small cells lung cancer NCIH-460 cells (NCIH-460 and human gastric carcinoma SGC-7901 cells (SGC-7901 after 48 h treatment in vitro, with the IC50 values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.

  11. Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis

    Directory of Open Access Journals (Sweden)

    Zhang Junjie

    2011-02-01

    Full Text Available Abstract Background Autotaxin (ATX is a secreted glycoprotein with the lysophospholipase D (lysoPLD activity to convert lysophosphatidylcholine (LPC into lysophosphatidic acid (LPA, a bioactive lysophospholipid involved in diverse biological actions. ATX is highly expressed in some cancer cells and contributes to their tumorigenesis, invasion, and metastases, while in other cancer cells ATX is silenced or expressed at low level. The mechanism of ATX expression regulation in cancer cells remains largely unknown. Results In the present study, we demonstrated that trichostatin A (TSA, a well-known HDAC inhibitor (HDACi, significantly induced ATX expression in SW480 and several other cancer cells with low or undetectable endogenous ATX expression. ATX induction could be observed when HDAC3 and HDAC7 were down-regulated by their siRNAs. It was found that HDAC7 expression levels were low in the cancer cells with high endogenous ATX expression. Exogenous over-expression of HDAC7 inhibited ATX expression in these cells in a HDAC3-dependent manner. These data indicate that HDAC3 and HDAC7 collaboratively suppress ATX expression in cancer cells, and suggest that TSA induce ATX expression by inhibiting HDAC3 and HDAC7. The biological significance of this regulation mechanism was revealed by demonstrating that TSA-induced ATX protected cancer cells against TSA-induced apoptosis by producing LPA through its lysoPLD activity, which could be reversed by BrP-LPA and S32826, the inhibitors of the ATX-LPA axis. Conclusions We have demonstrated that ATX expression is repressed by HDAC3 and HDAC7 in cancer cells. During TSA treatment, ATX is induced due to the HDAC3 and HDAC7 inhibition and functionally antagonizes the TSA-induced apoptosis. These results reveal an internal HDACi-resistant mechanism in cancer cells, and suggest that the inhibition of ATX-LPA axis would be helpful to improve the efficacy of HDACi-based therapeutics against cancer.

  12. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  13. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    Science.gov (United States)

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  14. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    Directory of Open Access Journals (Sweden)

    Linlin Fan

    Full Text Available Mannosylerythritol lipids (MELs are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC, self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS.

  15. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  16. Albumin resuscitation protects against traumatic/hemorrhagic shock-induced lung apoptosis in rats

    Institute of Scientific and Technical Information of China (English)

    Yun ZHANG; Zhong-yan LIANG; Shao-yang ZHANG; Fang-fang HUANG; Wei WU; Yuan GAO; Zuo-bing CHEN

    2008-01-01

    Objective: To determine the effects of albumin administration on lung injury and apoptosis in traumatic/hemorrhagic shock (T/HS) rats. Methods: Studies were performed on an in vivo model of spontaneously breathing rats with induced T/HS; the rats were subjected to femur fracture, ischemia for 30 min, and reperfusion for 20 rain with Ringer's lactate solution (RS) or 5% (w/v) albumin (ALB), and the left lower lobes of the lungs were resected. Results: Albumin administered during reperfusion markedly attenuated injury of the lung and decreased the concentration of lactic acid and the number of in situ TdT-mediated dUTP nick-end labelling (TUNEL)-positive cells. Moreover, immunohistochemistry performed 24 h after reperfusion revealed increases in the level of nuclear factor κB (NF-κB), and phosphorylated p38 mitogen-activated protein kinase (MAPK) in the albumin-untreated group was down-regulated by albumin treatment when compared with the sham rats. Conclusion: Resuscitation with albumin attenuates tissue injury and inhibits T/HS-induced apoptosis in the lung via the p38 MAPK signal transduction pathway that functions to stimulate the activation of NF-κB.

  17. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    Science.gov (United States)

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  18. β-Sitosterol sensitizes MDA-MB-231 cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Cheol PARK; Dong-oh MOON; Chung-ho RYU; Byung tae CHOI; Won ho LEE; Gi-young KIM; Yung hyun CHOI

    2008-01-01

    Aim:To investigate whether subtoxic concentration of β-sitosterol (SITO) com-bined with TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in TRAIL-resistant MDA-MB-231 breast cancer cells.Methods:Cell viability and growth were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphnyl-2H-tetrazolim bromide assays,chromatin condensation,release of lactate dehydrogenase (LDH),and Annexin V+ cells.The apoptosis-related proteins were detected by Western blotting.Results:Treatment with TRAIL in combination with subtoxic concen-trations of SITO sensitized MDA-MB-231 breast cancer cells to TRAIL-mediated apoptosis.The synergistic treatment induced chromatin condensation,DNA fragmentation,the release of LDH,and Annexin V cells.The indicators of apoptosis are correlated to the induction of caspase activities,which results in the cleavage ofpoly(ADP-ribose)polymerase.Both the cytotoxic effects and apoptotic characteristics induced by the synergistic treatment were significantly inhibited by a pan-caspase inhibitor z-VAD-fmk,demonstrating the important role of caspases.These results indicate that caspases are crucial regulators of apoptosis induced by the combined treatment of SITO and TRAIL in MDA-MB-231 cells.Conclusion:The synergistic treatment of SITO and TRAIL induces apoptosis,which can serve as a potential preventive and therapeutic agent.

  19. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Haigang Chang; Xiaodan Jiang; Shanshan Song; Zhongcan Chen; Yaxiao Wang; Lujun Yang; Mouxuan Du; Yiquan Ke; Ruxiang Xu; Baozhe Jin

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro-tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer’s disease. In this study, we examined the effects of transient axonal glyco-protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep-tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.

  20. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    Directory of Open Access Journals (Sweden)

    Anders P Hakansson

    Full Text Available BACKGROUND: Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. METHODOLOGY/PRINCIPAL FINDINGS: We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity to execute cell death. CONCLUSIONS/SIGNIFICANCE: Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  1. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  2. Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT, JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation

    Directory of Open Access Journals (Sweden)

    Ilmarinen-Salo Pinja

    2012-08-01

    Full Text Available Abstract Background Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS and JNK. Methods Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT by loading cells with calcein acetoxymethyl ester (AM and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA or paired t-test. Results NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA, inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h that was followed by a strong increase in pJNK levels (2 h. Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h. Conclusions Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally

  3. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  4. Gene Analysis of Arsenic Trioxide—induced Apoptosis of Lymphoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGZidong; LIWeiyu; 等

    2002-01-01

    Objective The effect of arsenic trioxide on apoptosis gene expression of Raji cell was explored when Raji cells were incubated with 0.5μmol/L of arsenic trioxide for 6h。Methods Cell culture,extraction and isolation of mRNA,preparation of probes labeled with fluorescence,hybridization technique of DNA chip(each chip containing 200 apoptosis genes,Chinese Shanghai Biostar,In.)were used.Results Arsenic trioxide induced significant changes in 10%(20/200 genes)of the apoptosis genes:18 genes were downregulated,only two upregulated.In particular,inhibitors of apoptosis protein,such as X-linked inhibitor of apoptosis protein,were significantly downregulated.P53 and the other apoptosis genes were also downregulatec.Of the upregulated genes,high expression of heat-shock protein could promote apoptosis of Raji cells.Conclusion The inhibitors of apoptosis protein play an important role in the process of arsenic trioxide-induced apoptosis of Raji cells.

  5. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  6. Overcoming Hypoxic-Resistance of Tumor Cells to TRAIL-Induced Apoptosis through Melatonin

    Directory of Open Access Journals (Sweden)

    You-Jin Lee

    2014-07-01

    Full Text Available A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

  7. Study on Taxol in Inhibiting Human Leukemia Cell Proliferation and Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵小英; 张晓红; 徐磊; 张行

    2004-01-01

    Objective: To explore the effects of Taxol in inhibiting human leukemia k562 cell proliferation and inducing apoptosis in vitro. Methods: Human leukemia K562 cells were treated with Taxol of different concentrations for 12-72 hrs. Cell proliferation was evaluated by MTT assay and morphological changes of apoptosis were examined by microscopy. Cell apoptosis was determined by flow cytometry (FCM) and DNA gel electrophoresis. Results: Growth of K562 cells was inhibited by Taxol with an IC50 value of 0.84 μg/mi.Typical nuclear condensation and apoptosis bodies were observed as early as 24 hrs after a 0.5 μg/ml Taxol treatment; Apoptotic rate of the Taxol-treated K562 cells increased from 3.7% to 24.0% in 24 hrs. No DNA ladder was observed by DNA gel electrophoresis. Conclusion: Taxol could inhibit K562 cell growth and induce apoptosis in vitro.

  8. Apoptosis during β-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons

    Institute of Scientific and Technical Information of China (English)

    Yanan Cai; Xiaodong Yuan; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro. However, because of the short survival time of the differentiated cells, clinical applications for this technique are limited. As such, we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy. The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended. Taken together, these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death. However, the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.

  9. ELDEPRYL AND RILUZOLE INHIBIT 1-METHYL-4-PHENYL -1,2,3,6-TETRAHYDROPYRIDINE (MPTP)-INDUCED NIGRAL NEURONAL APOPTOSIS IN MICE

    Institute of Scientific and Technical Information of China (English)

    陈生弟; 郭明; 刘振国; 陈红专

    2002-01-01

    Objective To investigate the possible role of apoptosis in the pathogenesis of Parkinsons disease. Methods C57BL mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), and TUNEL and flow cytometry were employed to detect neuronal apoptosis in the substantia nigra. ResultsThe results of animal experiment demonstrated that the administration of MPTP 30mg/kg for 7d could induce neuronal apoptosis in the substantia nigra. The MPTP-induced nigral neuronal apoptosis could be completely prevented by pre-treatment of Eldepryl, an inhibitor of B typed monoamine oxidase (MAO-B);and partially protected by pre-treatment of Riluzole, an antagonist of excitatory amino acid receptors. Data of cell culture experiment showed that 20mmol 1-methyl-4-phenylpyridinium ion(MPP+) induced the apoptosis of pheochromocytoma(PC12 cells), whereas 20mmol MPTP did not cause PC12 cells apoptosis. Conclusion It is concluded that the apoptotic effect of MPTP in vivo on the nigral neurons may be mediated by its intermediate metabolite MPP+. The dopaminergic neuronal apoptosis in the substantia nigra may be a common pathway of various causes that lead to the onset of Parkinson's disease.

  10. Cellular targeting of the apoptosis-inducing compound gliotoxin to fibrotic rat livers

    NARCIS (Netherlands)

    Hagens, W. I.; Beljaars, L.; Mann, D. A.; Wright, M. C.; Julien, B.; Lotersztajn, S.; Reker-Smit, C.; Poelstra, K.

    2008-01-01

    Liver fibrosis is associated with proliferation of hepatic stellate cells (HSCs) and their transformation into myofibroblastic cells that synthesize scar tissue. Several studies indicate that induction of apoptosis in myofibroblastic cells may prevent fibrogenesis. Gliotoxin (GTX) was found to induc

  11. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    JWA, a cytoskeleton associated gene, was primarily found to be regulated by all trans-retinoic acid (ATRA), 13 cis-retinoic acid (13 cis-RA) and 12-tetradecano- ylphorbol-13-acetate (TPA). Our previous data showed that JWA might be involved in both cellular differentiation and apoptosis induced by several chemicals. In this study, we addressed the possible mechanism of JWA in the regulation of cell differentiation and apoptosis in NB4, a human acute promyelocytic leukemia cell line. CD11b/CD33 expression and cell cycle were analyzed for detecting of cell differentiation and apoptosis. Both reverse-transcription polymerase chain reaction (RT-PCR) and Western blot assays were used for understanding the expressions of JWA. The results showed that under the indicated concentrations ATRA (10?6 mol/L) and As2O3 (10?6 mol/L) induced cell differentiation and apoptosis separately; while both 4HPR (10?6 mol/L) and TPA (10?7 mol/L) showed dual-directional effects on NB4 cells, they not only trigger cells' differentiation but also induce cells apoptosis at the same time. All chemicals up-regulated JWA expression whatever they trigger cells either differentiation or apoptosis; however, it seems that the chemicals have no effect on PML/RAR? in the treated NB4 cells. Anti-sense JWA oligonucleotide could partially block the ability of TPA in inducing cell differentiation and apoptosis via direct signal pathway. Interestingly, a high molecular weight JWA protein (JWAF) was identified only in de novo primary APL cells and it was also responsible for ATRA treatment. It raises questions of whether the JWAF is a novel APL specific marker and, how it was involved in the known mechanism of APL.

  12. Aminolevulinic acid-based photodynamic therapy induces apoptosis of prematurely senescent fibroblasts induced by ultraviolet B stress%氨基酮戊酸光动力疗法诱导中波紫外线应激性衰老成纤维细胞发生凋亡

    Institute of Scientific and Technical Information of China (English)

    张丽超; 张海荣; 周炳荣; 骆丹; 马立文; 张家安; 王申; 易飞; Maya Valeska Gozali

    2015-01-01

    Objective To study the effect of aminolevulinic acid-based photodynamic therapy (ALA-PDT) on oxidative damage to and apoptosis of prematurely senescent fibroblasts induced by ultraviolet B stress (UVB-SIPS-FB).Methods Both normal fibroblasts and UVB-SIPS-FB were divided into 2-hour and 6-hour groups with the duration of incubation with ALA away from light being 2 and 6 hours respectively,and each group was divided into 7 subgroups:control subgroup receiving no treatment,ALA subgroup treated with ALA alone,red laser group treated with 100 J/cm2 red laser alone,3 ALA-PDT subgroups pretreated with ALA followed by red laser radiation at 25,50 and 100 J/cm2 respectively,NAC + ALA-PDT subgroup sequentially pretreated with ALA and NAC (5 mmol/L) followed by red laser radiation at 50 J/cm2.The wavelength and power density of red laser was 635 nm and 50 mW/cm2 respectively in this study.Fluorescence microscopy and flow cytometry were performed to determine the levels of reactive oxygen species (ROS) and mitochondrial membrane potentials (MMPs),and Hoechst staining and flow cytometry to detect cell apoptosis.Statistical analysis was carried out with the software SPSS 13.0 by one-way analysis of variance (ANOVA) and q test.Results The apoptosis rate of UVB-SIPS-FB was significantly higher in the 25-,50-,100-J/cm2 ALA-PDT subgroups (2-hour group:7.34% ± 0.87%,8.39% ± 1.16% and 17.03% ± 1.29% vs.3.81% ± 0.59%,F=102.70,P< 0.05;6-hour group:13.85% ± 1.71%,23.40% ± 2.14% and 41.02% ± 2.73% vs.5.09% ± 1.64%,F=106.00,P < 0.05) than in the control subgroups,but lower in the NAC + ALA-PDT subgroups (2-hour group:5.35% ± 0.58%,6-hour group:9.97% ± 3.23%,both P < 0.05) than in the 50-J/cm2 ALA-PDT subgroups.There was no significant difference in the apoptosis rate of UVB-SIPS-FB between the ALA subgroups or red laser subgroups and control subgroups.ALA-PDT subgroups showed significantly increased ROS level and MMP,and the degree of

  13. Norcantharidin induces apoptosis in HeLa cells through caspase, MAPK, and mitochondrial pathways

    Institute of Scientific and Technical Information of China (English)

    Wei-weiAN; Xian-fengGONG; Min-weiWANG; Shin-ichiTASHIRO; SatoshiONODERA; TakashiIKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of norcantharidin (NCTD)-induced HeLa cell apoptosis. METHODS: HeLa cell growth inhibition was measured by MTT method. Apoptosis was detected by Hoechst 33258 staining and agarose gel electrophoresis. Caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of ICAD, ERK/p-ERK, JNK/p-JNK, and Bcl-X.L/Bax expression. RESULTS: Norcantharidin inhibited HeLa cell growth in a time- and dose-dependent manner. HeLa cells treated with norcantharidin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO, respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevent norcantharidin-induced apoptosis, but initiator caspase-1 inhibitor (Ac-YVAD-fmk) did not. The activities of caspase-3, -8, and -9 were up-regulated after norcantharidin treatment. Furthermore, NCTD-induced activation of caspase-3 resulted in the degradation of the inhibitor of caspase-activated DNase (ICAD). Up-regulation of mitochondrial Bax expression and down-regulation of Bcl-xLexpression also participated in the apoptosis induced by NCTD. Although p38 MAPK inhibitor (SB203580) failed to block cell death, ERK MAPK inhibitor (PD98059) and JNK MAPK inhibitor (SP600125) had marked inhibitory effects on norcantharidin-induced apoptosis. Moreover, the phosphorylation of JNK were up-regulated followed by delayed ERK phosphorylation after treatment with NCTD, suggesting that ERK and JNK were both responsible for NCTD-induced apoptosis in HeLa cells and worked at different stages. CONCLUSION: The cytotoxic effect of NCTD on HeLa cells was mainly due to apoptosis. The anti-tumor mechanism of NCTD might involve caspses, mitochondrial, and MAPKs pathways.

  14. Thiazole antibiotic thiostrepton synergize with bortezomib to induce apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Bulbul Pandit

    Full Text Available Thiazole antibiotic, thiostrepton was recently identified as proteasome inhibitor. We investigated the therapeutic potential of the combination of thiostrepton and proteasome inhibitor bortezomib (Velcade on various human tumor cell lines. Combination of sub-lethal concentrations of thiostrepton and bortezomib induced potent apoptosis and inhibition of long-term colony formation in a wide variety of human cancer cell lines. The synergistic relationship between thiostrepton and bortezomib combination was also quantitatively demonstrated by calculating their combination index values that were much lower than 1 in all studied cell lines. The synergy between these drugs was based on their proteasome inhibitory activities, because thiostrepton modification, thiostrepton methyl ester, which did not have intact quinaldic acid ring and did not inhibit proteasome activity failed to demonstrate any synergy in combination with bortezomib.

  15. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    OpenAIRE

    Martin, Lee J.; Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2008-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. B...

  16. Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

    OpenAIRE

    Li Lin; Lijun Zhang; Liangzhu Yu; Lu Han; Wanli Ji; Hui Shen; Zhenwu Hu

    2016-01-01

    Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time points after LPS treatment in a rat model of LPS-induced ALI. Materials and Methods: Sprague-Dawley ra...

  17. High-neurovirulence GDVII virus induces apoptosis in murine astrocytes through tumor necrosis factor (TNF)-receptor and TNF-related apoptosis-inducing ligand

    International Nuclear Information System (INIS)

    We carried out a study to determine if the high-neurovirulence GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) and the demyelinating, low-neurovirulence BeAn strain induced apoptosis in murine astrocytes. Astrocytes, the major glial cell population of the central nervous system, were semipermissive for GDVII virus replication. Programmed cell death, demonstrated by apoptosis-specific caspase-3 protease activity, was maximal 8 h after GDVII infection at an m.o.i. of 1. Purified TMEV capsid proteins VP1, VP2, and VP3 did not induce apoptosis but antibodies to VP1 and VP2 inhibited it. Antibody inhibition of caspase-3 activity as well as flow cytometry experiments implicated TNF-related apoptosis-inducing ligand (TRAIL) and TNF-α-receptor (TNF-R) in apoptosis signaling. Converselly, TNF-α and the TRAIL-receptor were not upregulated. Furthermore, the number of functional TNF-α receptors, but not their affinity, was increased in apoptotic GDVII virus-infected astrocytes, as confirmed in binding experiments with 125I-labeled recombinant murine TNF-α. In vivo studies showed that most of the cells loaded with the virus when injected in the brains of SJL mice were neurons but very few showed TUNEL costaining. Conversely, many of the apoptotic cells found were also positive for GFAP staining

  18. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    International Nuclear Information System (INIS)

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats

  19. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengbo [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Zhao, Bin; Zhang, Yang; Tian, Peng [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Li, Yanjun [Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Han, Zhe [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China)

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  20. Latent membrane protein 1 inhibits apoptosis induced by 60 irradiation via Survivin triggering signal-pathway

    International Nuclear Information System (INIS)

    Objective: To investigate the anti-apoptosis mechanism of EB virus encoden latent membrane protein 1 (LMP1) via the survivin signal transduction pathway after irradiation induction. Methods: Tet-on- LMP1 HNE2 cells, as a model, were detected with morphological assay, flowcytometry and Caspase 3 assay after 60Co irradiation with LMP1 induced by doxycycline. The apoptosis in the anti-sense survivin transfected cells was tested. Results: The results showed that, with LMP1 expression, the apoptosis rates from morphological assay and flowcytometry were 32.7%±2.1% and 6.3%, which showed that they were all lower than that without LMP1 expression (66.0%±3.0% and 29.6%). When anti-sense of survivin was induced, the apoptosis rates were 59.0%±3.2% and 3.0% respectively, and caspase 3 activity was 3.78 nmol/106 cells, which were higher than that of the control (26.0%±2.6%, 8.6% and 2.79 nmol/106). Survivin restrained the cell apoptosis induced by irradiation, but anti-sense of survivin could release this inhibition of cell apoptosis triggered by LMP1 expression. Conclusion: LMP1 inhibits the irradiation-induced cell apoptosis via triggering survivin expression. Survivin may be targeted in some certain therapy

  1. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells.

    Science.gov (United States)

    Guelen, Lars; Paterson, Hugh; Gäken, Joop; Meyers, Michelle; Farzaneh, Farzin; Tavassoli, Mahvash

    2004-02-01

    Apoptin has been described to induce apoptosis in various human cancer cell lines, but not in normal cells, thus making it an interesting candidate for the development of novel therapeutic strategies. Apoptin was generated and cloned into several mammalian expression vectors. Transfection or microinjection of apoptin cDNA resulted in its expression, initially in the cytoplasm with a filamentous pattern. Subsequently, apoptin entered the nucleus and efficiently induced apoptosis in several cancer cell lines. Nuclear localization was shown to be required for induction of apoptosis. Apoptin expression level was found to be an important determinant of the efficiency of induction of apoptosis. Surprisingly, expression of apoptin or GFP-apoptin cDNA induced apoptosis in some normal cells. When fused to the HIV-TAT protein transduction domain and delivered as a protein, TAT-apoptin was transduced efficiently (>90%) into normal and tumour cells. However, TAT-apoptin remained in the cytoplasm and did not kill normal 6689 and 1BR3 fibroblasts. In contrast TAT-apoptin migrated from the cytoplasm to the nucleus of Saos-2 and HSC-3 cancer cells resulting in apoptosis after 24 h. This study shows that apoptin is a powerful apoptosis-inducing protein with a potential for cancer therapy. PMID:14691460

  2. Mechanism of apoptosis of human osteosarcoma M-G63 induced by arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    XIAO Tao; LI Kang-hua; FANG Jian-zhen; WANG Wan-chun; LI Gui-yuan

    2005-01-01

    Objective To observe the apoptosis of osteosarcoma MG-63 cells induced by As2O3 and to explore its possible mechanisms. Methods The flowcytometric analysis and transmission electronmicroscope were performed to investigate the inducing apoptosis and inhibitative of As2O3 on osteosarcoma MG-63 cells. In order to study mechanism of apoptosis in MG-63 cells treated with As2 O3, microarray was performed. The down-regulated gene was confirmed by RT-PCR, Northern-blotting. Results After treated with As2O3, hypodiploid peak before G0/G1 phase was observed in MG-63 cells through FCM analysis. Loss of microvilli, condensation and fragmentation of nuclear chromatin, condensation of cytoplasmic organelles, dilatation of the endoplasmic reticulum shrinkage of cells and alterations in cell membranes and apoptosis bodies which were observed in MG-63 cells treated with As2O3 by transmission electronmicroscope. The results of microarray show that As2 O3 induced MG-63 cell apoptosis involves down-regulation of IEX-1 and the down-regulated gene is confirmed by RT-PCR and Northern-blotting.Conclusion The results show that As2 O3 selectively inhibits growth of the solid tumor MG-63 cells by triggering apoptosis and indicates MG-63 induced by As2O3 cell apoptosis may through the IEX-1 pathway.

  3. Microcystin-LR induced developmental toxicity and apoptosis in zebrafish (Danio rerio) larvae by activation of ER stress response.

    Science.gov (United States)

    Qi, Mei; Dang, Yao; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Yuan, Yongchao; Wang, Jianghua

    2016-08-01

    Recent studies have demonstrated that cyanobacteria-derived Microcystin-LR (MC-LR) can cause developmental toxicity and trigger apoptosis in zebrafish (Danio rerio) larvae, but the underlying mechanisms remain largely unknown. In this study, we tested the hypothesis that the mechanism by which MC-LR induces developmental toxicity is through activation of endoplasmic reticulum (ER) stress. MC-LR (4.0 μM) exposure through submersion caused serious developmental toxicity, such as malformation, growth delay and decreased heart rates in zebrafish larvae, which could be inhibited by ER stress blocker, tauroursodeoxycholic acid (TUDCA, 20 μM). Meanwhile, acridine orange (AO) staining showed TUDCA could rescue cell apoptosis in heart area in zebrafish larvae resulted by MC-LR exposure. Real-time polymerase chain reaction (real-time PCR) analysis demonstrated that MC-LR induced activation of ER stress which consequently triggered apoptosis in zebrafish larvae. Protein expression examined by western blot indicated that MC-LR could activate MAPK8/Bcl-2/Bax pathway and caspase-dependent apoptotic pathway in zebrafish larva and the effects were mitigated by inhibition of ER stress. Taken together, the results observed in this study suggested that ER stress plays a critical role in developmental toxicity and apoptosis in zebrafish embryos exposed to MC-LR. PMID:27219292

  4. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    Science.gov (United States)

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  5. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    Directory of Open Access Journals (Sweden)

    Rodriguez-Gallego Carlos

    2010-09-01

    Full Text Available Abstract Background DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp. Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p Conclusions An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.

  6. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions

    Institute of Scientific and Technical Information of China (English)

    LIU Bing; WANG Qin; YUAN Dong-dong; HONG Xiao-ting; TAO Liang

    2011-01-01

    Background Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC).Methods The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine.Results In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions.Conclusions These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  7. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  8. Sulindac induces apoptosis and protects against colon carcinoma in mice

    Institute of Scientific and Technical Information of China (English)

    Bao-Cun Sun; Xiu-Lan Zhao; Shi-Wu Zhang; Yi-Xin Liu; Lan Wang; Xin Wang

    2005-01-01

    AIM: To study the effect of sulindac on colon cancer induction in mice.METHODS: The chemo-preventive action of 80 ppm sulindac fed during initiation and post-initiation and 100 ppm sulindac fed during progressive stages of induction of colon carcinogenesis in mice was investigated using 1,2-dimethylhydrazine (DMH). Using the terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL)technique and PCNA immunohistochemical staining, we observed the apoptotic and proliferative cell density changes at different carcinogenic stages and the effect of sulindac on these two phenomena.RESULTS: Dietary sulindac significantly inhibited the incidence of colonic neoplasmas in mice. Compared with the control group, feeding sulindac during initiation and post-initiation stages inhibited the incidence by 46.7-50.4%,and feeding sulindac during progressive stages inhibited the incidence by 41.1%. Animals that were fed sulindac showed less serious pathological changes than those that were fed the control diet (P<0.01, H= 33.35). There was no difference in the density of proliferating cells among those groups which were or were not fed sulindac. In the same period, feeding sulindac resulted in a higher density of apoptotic cells than feeding control diet. CONCLUSION: Sulindac has an anti-carcinogenic function in mice. Its effect on preventing colon carcinogenesis is better than its effect on treating established tumors. By inducing apoptosis, sulindac inhibited the development of colon cancer and delayed canceration. Sulindac has no effect on proliferation. The anti-carcinogenic properties of sulindac are most effective in the moderate and severe stages of dysplasia and canceration.

  9. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  10. Effect of Retinoic Acid on Apoptosis and Expression of Fas Proteins in Mouse Blastocysts Cultured In Vitro

    Institute of Scientific and Technical Information of China (English)

    Yan'e XIONG; Duanlian ZHANG

    2008-01-01

    Mouse blastocysts were exposed to doses of 0,1 and 10μmol/L retinoic acid (RA) for 24h and the cytotoxic effect of RA on the mouse blastocysts in vitro was observed. FITC-labeled terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL-FITC) assay was employed to stain apoptotic cells and immunohistochemical S-P staining method was used to detect the expression of Fas protein in mouse blastocysts in vitro. The results showed that RA could induce apoptosis and increase the expression of Fas proteins of trophectoderm (TE) and inner cell mass (ICM) cells in blastocysts. Compared with the findings for the control blastocysts, exposure to RA (10μmol/L) resulted in a more significant apoptosis and higher expression level of Fas proteins (P<0.01). It was concluded that RA could induce apoptosis, which may result in a significant reduction in the average number of total cells and the trophectoderm/inner cell mass in blastocysts and an increased expression of Fas protein, suggesting that RA had a cytotoxic effect on the growth and development of early embryos in mice.

  11. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Fabien J Cousin

    Full Text Available BACKGROUND: Gastric cancer is one of the most common cancers in the world. The "economically developed countries" life style, including diet, constitutes a risk factor favoring this cancer. Diet modulation may lower digestive cancer incidence. Among promising food components, dairy propionibacteria were shown to trigger apoptosis of human colon cancer cells, via the release of short-chain fatty acids acetate and propionate. METHODOLOGY/PRINCIPAL FINDINGS: A fermented milk, exclusively fermented by P. freudenreichii, was recently designed. In this work, the pro-apoptotic potential of this new fermented milk was demonstrated on HGT-1 human gastric cancer cells. Fermented milk supernatant induced typical features of apoptosis including chromatin condensation, formation of apoptotic bodies, DNA laddering, cell cycle arrest and emergence of a subG1 population, phosphatidylserine exposure at the plasma membrane outer leaflet, reactive oxygen species accumulation, mitochondrial transmembrane potential disruption, caspase activation and cytochrome c release. Remarkably, this new fermented milk containing P. freudenreichii enhanced the cytotoxicity of camptothecin, a drug used in gastric cancer chemotherapy. CONCLUSIONS/SIGNIFICANCE: Such new probiotic fermented milk may thus be useful as part of a preventive diet designed to prevent gastric cancer and/or as a food supplement to potentiate cancer therapeutic treatments.

  12. 15d-PGJ2 induces apoptosis of mouse oligodendrocyte precursor cells

    Directory of Open Access Journals (Sweden)

    Reeves Steven A

    2007-07-01

    Full Text Available Abstract Background Prostaglandin (PG production is associated with inflammation, a major feature in multiple sclerosis (MS that is characterized by the loss of myelinating oligodendrocytes in the CNS. While PGs have been shown to have relevance in MS, it has not been determined whether PGs have a direct effect on cells within the oligodendrocyte lineage. Methods Undifferentiated or differentiated mouse oligodendrocyte precursor (mOP cells were treated with PGE2, PGF2α, PGD2 or 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2. Cell growth and survival following treatment were examined using cytotoxicity assays and apoptosis criteria. The membrane receptors for PGD2 and the nuclear receptor peroxisome proliferator-activated receptor (PPARγ, as well as reactive oxygen species (ROS in the death mechanism were examined. Results PGE2 and PGF2α had minimal effects on the growth and survival of mOP cells. In contrast, PGD2 and 15d-PGJ2 induced apoptosis of undifferentiated mOP cells at relatively low micromolar concentrations. 15d-PGJ2 was less toxic to differentiated mOP cells. Apoptosis was independent of membrane receptors for PGD2 and the nuclear receptor PPARγ. The cytotoxicity of 15d-PGJ2 was associated with the production of ROS and was inversely related to intracellular glutathione (GSH levels. However, the cytotoxicity of 15d-PGJ2 was not decreased by the free radical scavengers ascorbic acid or α-tocopherol. Conclusion Taken together, these results demonstrated that 15d-PGJ2 is toxic to early stage OP cells, suggesting that 15d-PGJ2 may represent a deleterious factor in the natural remyelination process in MS.

  13. Platelet apoptosis by cld-induced glycoportein Ibα clustering

    DEFF Research Database (Denmark)

    van der Wal, Dianne E; Du, V X; Lo, KS;

    2010-01-01

    take part in apoptosis regulation. Objectives and methods: We investigated whether GPIbα-clustering induces platelet apoptosis through 14-3-3 proteins during cold (4 h 0 °C)-rewarming (1 h 37 °C). Results: During cold-rewarming, 14-3-3 proteins associate with GPIbα and dissociate from Bad inducing Bad......-dephosphorylation and activation. This initiates pro-apoptosis changes in Bax/Bcl-xL and Bax-translocation to the mitochondria, inducing cytochrome c release. The result is activation of caspase-9, which triggers phosphatidylserine exposure and platelet phagocytosis by macrophages. Responses are prevented by N......-acetyl-d-glucosamine (GN), which blocks GPIbα-clustering, and by O-sialoglycoprotein endopeptidase, which removes extracellular GPIbα. Conclusions: Cold-rewarming triggers apoptosis through a GN-sensitive GPIbα-change indicative of receptor clustering. Attempts to improve platelet transfusion by cold-storage should focus...

  14. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed;

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  15. Apoptosis of Spodoptera litura larval hemocytes induced by heavy metal zinc

    Institute of Scientific and Technical Information of China (English)

    XIA Qiang; SUN Hongxia; HU Xinjun; SHU Yinghua; GU Dexiang; ZHANG Guren

    2005-01-01

    By adding different amount of zinc into the artificial medium of the insect larvae, the zinc-induced apoptosis of the larvae haemocytes of the herbivorous insect Spodoptera litura Fabricius was investigated with flow cytometer. The results showed that the increase of zinc dose in the artificial feed led to the accumulations of zinc in the larval hemolymph and fat body, and more zinc was accumulated in fat body than in hemolymph. The apoptosis of hemocytes was significantly induced at high zinc concentration (1000 mg·kg-1) in the insect diet, and the apoptosis rate was 63.63%, which was remarkably higher than that at control and lower concentrations (50-500 mg·kg-1). This suggests that the high dose of zinc in the artificial diet of S. Litura larvae could induce the apoptosis of the larval hemocytes of S. Litura.

  16. Overexpression of Bax sensitizes prostate cancer cells to TGF-β induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Pei Hui LIN; Zui PAN; Lin ZHENG; Na LI; David DANIELPOUR; Jian Jie MA

    2005-01-01

    NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.

  17. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  18. Induction of apoptosis by the retinoid inducible growth regulator RIG1 depends on the NC motif in HtTA cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Su-Ching

    2009-02-01

    Full Text Available Abstract Background Retinoid-inducible gene 1 (RIG1, also known as tazarotene-induced gene 3 or retinoic-acid receptor responder 3, is a growth regulator, which induces apoptosis and differentiation. RIG1 is classified into the NC protein family. This study investigated functional domains and critical amino acids associated with RIG1-mediated cell death and apoptosis. Results Using enhanced green fluorescence protein (EGFP-tagged RIG1 variants, RIG1 proteins with deletion at the NC domain significantly decreased cell death induced by RIG1, and fusion variants containing only the NC domain significantly induced apoptosis of HtTA cervical cancer cells. The EGFP-RIG1-induced apoptosis was significantly decreased in cells expressing N112C113 motif double- (NC→FG or triple- (NCR→FGE mutated RIG1 variants. Using dodecapeptides, nuclear localization and profound cell death was observed in HtTA cells expressing wild type RIG1111–123 or Leu121-mutated RIG1111–123:L→ C peptide, but peptides double- or triple-mutated at the NC motif alone, RIG1111–123:NC→FG or RIG1111–123:NCR→FGE, were cytoplasmically localized and did not induce apoptosis. The RIG1111–123 also induced apoptosis of A2058 melanoma cells but not normal human fibroblasts. Conclusion The NC domain, especially the NC motif, plays the major role in RIG1-mediated pro-apoptotic activity. The RIG1111–123 dodecapeptide exhibited strong pro-apoptotic activity and has potential as an anticancer drug.

  19. 冬凌草甲素联合丙戊酸钠对HL-60细胞的生长抑制和诱导凋亡作用研究%Growth inhibition and apoptosis induced by oridonin combined with valproic acid in HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    邹慧娟; 姜国胜

    2011-01-01

    Objective To investigate the apoptosis-inducing effect of oridonin combined with valproic acid( VPA)on leukemic cell line HL-60,and study the feasibility of oridonin combined with VPA to be used in clinical practice. Methods Oridonin of 6-12 μmol/L combined with VPA of 0. 5-1 mmol/L were added in exponential growth HL-60 cells respectively. Cell count assays were used to measure the growth inhibitory effect of oridonin combined with VPA or alone. Flow cytometry was used to evaluate apoptosis with Annexin V and propidium iodide (PI) double staining. Results Combined use of oridonin and VPA could synergistically inactivate HL-60 cells,and inhibit the cell proliferation and induce apoptosis in a dose-and time-dependent manner (P < 0.05 ). Conclusion Oridonin has a synergistic effect combined with VPA. Oridonin has a promising prospect in clinical use of leukemia.%目的 研究中药单体冬凌草甲素(ORI)联合组蛋白去乙酰化酶抑制剂丙戊酸钠(VPA)诱导急性早幼粒白血病细胞株HL-60凋亡,探讨其应用于临床的可行性.方法 在对数生长期的HL-60细胞中分别加入6~12 la,mol/L的ORI和0.5~1 mmol/L的VPA,采用细胞计数法测定ORI和VPA单独和联合应用时对细胞的生长抑制,并用Annexin V/PI双标法流式细胞术检测细胞凋亡.结果 ORI联合VPA可协同降低HL-60细胞活力,抑制细胞增殖,诱导细胞凋亡,比单独用药凋亡作用更为显著(P<0.05).结论 ORI和VPA具有协同作用,能高效杀灭白血病细胞.ORI和VPA是一种有望应用于白血病临床治疗的新型生物制剂.

  20. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    Science.gov (United States)

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  1. Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-qun; ZHANG Rui; Connie Chao; ZHANG Ji-feng; ZHANG Yuan-qiang

    2007-01-01

    Background Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells.The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized.This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells.Methods The cells were treated with TSA and analyzed by cell proliferation assay,Western blot,TUNEL assay,flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining,immunofluorescence analysis,analysis of subcellular fractionation,gene chips and real time polymerase chain reaction (PCR).Results TSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes,such as Bcl-2,Bax and survivin.Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA,and we did not observe the cleavage of poly ADP ribose polymerase(PARP)after TSA treatment too.In addition,apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay.Conclusions The apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.

  2. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Directory of Open Access Journals (Sweden)

    Vijayan Kamalakannan

    2015-04-01

    Full Text Available Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60 interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence.

  3. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Science.gov (United States)

    Kamalakannan, Vijayan; Shiny, Abijit; Babu, Subash; Narayanan, Rangarajan Badri

    2015-04-01

    Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60) interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS) induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence. PMID:25849993

  4. Calcium-Mediated Mitochondrial Permeability Transition Involved in Hydrogen Peroxide-Induced Apoptosis in Tobacco Protoplasts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we focused on whether intracellular free Ca2+ ([Ca2+]i) regulates the formation of mitochondrial permeability transition pore (MPTP) in H2O2-induced apoptosis in tobacco protoplasts. It was shown that the decrease in mitochondrial membrane potential (△Ψm) preceded the appearance of H2O2-induced apoptosis;pretreatment with the specific MPTP inhibitor cyclosporine A, which also inhibits Ca2+ cycling by the mitochondria,effectively retarded apoptosis and the decrease in △Ψm. Apoptosis and decreased △Ψm were exacerbated by CaCl2, whereas the plasma membrane voltage-dependent Ca2+ channel blocker lanthanum chloride (LaCl3)attentuated these responses. Chelation of extracellular Ca2+ with EGTA almost totally inhibited apoptosis and the decrease in △Ψm induced by H2O2. The time-course of changes in [Ca2+]i in apoptosis was detected using the Ca2+ probe Fluo-3 AM. These studies showed that [Ca2+]i was increased at the very early stage of H2O2-induced apoptosis. The EGTA evidently inhibited the increase in [Ca2+]i induced by H2O2, whereas it was only partially inhibited by LaCl3. The results suggest that H2O2 may elevate cytoplasmic free Ca2+ concentrations in tobacco protoplasts, which mainly results from the entry of extracellular Ca2+, to regulate mitochondrial permeability transition. The signaling pathway of [Ca2+]i-mediated mitochondrial permeability transition was associated with H2O2-induced apoptosis in tobacco protoplasts.

  5. N-acetyl-L-cysteine inhibits bleomycin induced apoptosis in malignant testicular germ cell tumors.

    Science.gov (United States)

    Kucuksayan, Ertan; Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Yucel, Suleyman Gultekin; Ozben, Tomris

    2013-07-01

    Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N-acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA-2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase-3, -8, -9 activities and Bcl-2, Bax, Cyt-c, Annexin V-FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50 ) and H2O2 for 24 h increased Caspase-3, -8, -9 activities, Cyt-c and Bax levels and decreased Bcl-2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2-dependent increases in Caspase-3, -8, -9 activities, Bax and Cyt-c levels and bleomycin/H2O2-dependent decrease in Bcl-2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin-induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells. PMID:23386420

  6. Decitabine and SAHA-Induced Apoptosis Is Accompanied by Survivin Downregulation and Potentiated by ATRA in p53-Deficient Cells

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2014-01-01

    Full Text Available While p53-dependent apoptosis is triggered by combination of methyltransferase inhibitor decitabine (DAC and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA in leukemic cell line CML-T1, reactive oxygen species (ROS generation as well as survivin and Bcl-2 deregulation participated in DAC + SAHA-induced apoptosis in p53-deficient HL-60 cell line. Moreover, decrease of survivin expression level is accompanied by its delocalization from centromere-related position in mitotic cells suggesting that both antiapoptotic and cell cycle regulation roles of survivin are affected by DAC + SAHA action. Addition of subtoxic concentration of all-trans-retinoic acid (ATRA increases the efficiency of DAC + SAHA combination on viability, apoptosis induction, and ROS generation in HL-60 cells but has no effect in CML-T1 cell line. Peripheral blood lymphocytes from healthy donors showed no damage induced by DAC + SAHA + ATRA combination. Therefore, combination of ATRA with DAC and SAHA represents promising tool for therapy of leukemic disease with nonfunctional p53 signalization.

  7. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Aristolochic acid induced autophagy in vivo and in vitro. • Autophagy induced by aristolochic acid could promote cell apoptosis. • Inhibition autophagy by silencing ATG5 could prevent cell from programmed cell death induced by aristolochic acid. - Abstract: Studies have found that ingestion of aristolochic acid (AA) causes nephropathy first by inducing renal tubular cell apoptosis acutely. It is currently unknown whether crosstalk between autophagy and apoptosis orchestrates the fate of tubular cells in acute AA nephropathy. We tested this hypothesis by acute administration of AA in vivo and in vitro. Autophagy was first induced in vivo through enhancing Atg5 and LC3-II expressions in kidneys of AA-I-treated rats. Punctuate LC3-GFP dots and autophagosomes were detected in this acute AA-I nephropathy rat model. We subsequently utilized normal rat renal proximal tubular epithelial cells (NRK52E) to study the autophagy mechanisms involved in acute AA-I nephropathy, with 100 μM AA-I (median lethal dose 50) given in vitro. Cleavage of poly (ADP-ribose) polymerase (PARP), nuclear condensation, and fragmentation were demonstrated in the AA-I-treated NRK52E cells. Furthermore, AA-I induced Atg5 and LC3-II expressions and punctuated LC3-GFP dots. Autophagy flux by using lysosome inhibitor E64 induced the accumulation of LC3-II, which further promoted apoptosis through enhancing PARP cleavage. Inhibition of autophagy by 3-methyl adenine also led to the attenuation of AA-I-induced apoptosis, manifesting as decreased PARP cleavage, nuclei condensation, and decreased the number of cells negative for acridine orange/ethidium bromide staining. In addition, knockdown of Atg5 by short hairpin RNA attenuated LC3-II expression and PARP cleavage in NRK52E cells. Taken together, these findings suggested that the acute phase of AA-I-induced nephropathy is associated with induction of Atg5-dependent autophagy, which promotes renal tubular cell

  8. Roscovitine sensitizes breast cancer cells to TRAIL-induced apoptosis through a pleiotropic mechanism

    Institute of Scientific and Technical Information of China (English)

    Gustavo Ortiz-Ferrón; Rosario Yerbes; Adriana Eramo; Ana I López-Pérez; Ruggero De Maria; Abelardo López-Rivas

    2008-01-01

    The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L) is a member of the TNF gene superfamily that induces apoptosis upon engagement of cognate death receptors.While TRAIL is relatively non-toxic to normal cells,it selectively induces apoptosis in many transformed cells.Nevertheless,breast tumor cells are particularly resistant to the effects of TRAIL.Here we report that,in combination with the cyclin-dependent kinase inhibitor roscovitine,exposure to TRAIL induced marked apoptosis in the majority of TRAIL-resistant breast cancer cell Iines examined.Roscovitine facilitated TRAIL death-inducing signaling complex formation and the activation of caspase-8.The cFLIPL and eFLIPs FLICE-inhibitory proteins were significantly down-regulated following exposure to roscovitine and,indeed,the knockdown of cFLIP isoforms by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis.In addition,we demonstrate that roscovitine strongly suppressed Mcl-1 expression and up-regulated E2F1 protein levels in breast tumor cells.Significantly,the silencing of Mcl-1 by siRNA sensitized breast tumor cells to TRAIL-induced apoptosis.Furthermore,the knockdown of E2F1 protein by siRNA reduced the sensitizing effect of roscovitine in TRAIL-induced apoptosis.In summary,our results reveal a pleitropic mechanism for the pro-apoptotic influence of roscovitine,highlighting its potential as an antitumor agent in breast cancer in combination with TRAIL.

  9. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  10. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  11. Potential autophagy enhancers protect against fipronil-induced apoptosis in SH-SY5Y cells.

    Science.gov (United States)

    Park, Jae Hyeon; Lee, Jeong Eun; Lee, Soo-Jin; Park, Soo Jin; Park, Kyung Hun; Jeong, Mihye; Koh, Hyun Chul

    2013-10-23

    Oxidative stress created by environmental toxicants activates several signaling pathways. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and up-regulated in response to intracellular reactive oxygen species (ROS). Recently, we reported that fipronil (FPN)-induced mitochondria-dependent apoptosis is mediated through ROS in human neuroblastoma SH-SY5Y cells. In this study, we explored the role of autophagy to prevent FPN neurotoxicity. We investigated the modulation of FPN-induced apoptosis according to autophagy regulation. FPN activated caspase-9 and caspase-3, and induced nuclear fragmentation and condensation, all of which indicate that FPN-induced cell death was due to apoptosis. In addition, we observed FPN-induced autophagic cell death by monitoring the expression of LC3-II and Beclin-1. Exposure to FPN in SH-SY5Y cells led to the production of ROS. Treatment with N-acetyl-cysteine (NAC) effectively blocked both apoptosis and autophagy. Interestingly, pretreatment with rapamycin, an autophagy inducer, significantly enhanced the viability of FPN-exposed cells; the enhancement of cell viability was partially due to alleviation of FPN-induced apoptosis via a decrease in levels of cleaved caspase-3. However, pretreatment with 3-methyladenine (3MA) a specific inhibitor for autophagy, remarkably strengthened FPN toxicity and further induced activation of caspase-3 in these cells. Our studies suggest that FPN-induced cytotoxicity is modified by autophagy regulation and that rapamycin is neuroprotective against FPN-induced apoptosis through enhancing autophagy.

  12. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Dean Y; Ramesh, Ganesan

    2014-07-01

    The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B(+/-) mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.

  13. Induction of Mitochondria-Mediated Apoptosis in Ca Ski Human Cervical Cancer Cells Triggered by Mollic Acid Arabinoside Isolated from Leea indica

    Directory of Open Access Journals (Sweden)

    Yau Hsiung Wong

    2012-01-01

    Full Text Available Leea indica is a medicinal plant traditionally used to treat cancer. Through bioassay-guided approach, we isolated mollic acid arabinoside (MAA, for the first time from Leea indica. Here, we present the apoptosis-inducing effect of MAA on Ca Ski cervical cancer cells. Based on DAPI staining, MAA-treated cells manifested nuclear shrinkage, condensation, and fragmentation. We further confirmed the fragmentation of DNA using TUNEL assay. During early apoptosis, MAA caused the perturbation of plasma membrane through externalization of PS, followed by the formation of apoptotic blebs. Prior to these events, MAA triggered rapid dissipation of the mitochondrial membrane potential. In the upstream, MAA increased the expression of Bax, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. These findings suggested that MAA induced mitochondrial-mediated apoptosis in Ca Ski cells and thus provide the scientific explanation for the traditional application of this herbal medicine in cancer treatment.

  14. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  15. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  16. The mechanism mediating nuclear translocation of the apoptosis inducing factor (AIF)

    OpenAIRE

    Cunha, Rita Isabel Costa

    2012-01-01

    Dissertação de mestrado em Genética Molecular Since the discovery that yeast cells can undergo programmed cell death in response to several different stimuli, Saccharomyces cerevisiae has gained prominence in the cell death field. Exposure of yeast cells to certain stimuli like acetic acid or hydrogen peroxide or even heterologous expression of pro-apoptotic proteins can trigger cell death by apoptosis via a mitochondrial pathway and exhibiting the typical hallmarks of apoptosi...

  17. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence

    Science.gov (United States)

    Marchal, Juan Antonio; Carrasco, Esther; Ramirez, Alberto; Jiménez, Gema; Olmedo, Carmen; Peran, Macarena; Agil, Ahmad; Conejo-García, Ana; Cruz-López, Olga; Campos, Joaquin María; García, María Ángel

    2013-01-01

    Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50) values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR) is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα) cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to significantly reduce IFNα/bozepinib-induced cell death. Finally, we observed that a minor population of caspase 3-deficient MCF-7 cells persisted during long-term treatment with lower doses of bozepinib and the bozepinib/IFNα combination. Curiously, this population showed β-galactosidase activity and a percentage of cells arrested in S phase, that was more evident in cells treated with the bozepinib/IFNα combination than in cells treated with bozepinib or IFNα alone. Considering the resistance of some cancer cells to conventional chemotherapy, combinations enhancing the diversity of the cell death outcome might succeed in delivering more effective and less toxic chemotherapy. PMID:24194639

  18. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Wen-hai FAN; Yi HOU; Fan-kai MENG; Xiao-fei WANG; Yi-nan LUO; Peng-fei GE

    2011-01-01

    Aim: Proteasome inhibitors have been found to suppress gtioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells.Methods: C6 glioma cells were used. MTF assay was used to analyze cell proliferation. Proteasome activity was assayed using Succi-nyI-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluores-cence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis.Results: MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapop-totic proteins Bcl-2 and XlAP0 up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 pmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins.Conclusion: MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.

  19. Low intensity ultrasound-induced apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Yi Feng; Zhong-Min Tian; Ming-Xi Wan; Zhao-Bin Zheng

    2008-01-01

    ALIM:To investigate the low intensity ultrasound(US)-induced apoptosis in human gastric carcinoma cells and its potential mechanism and to suggest a new therapeutic approach to gastric carcinoma.METHODS:Human SGC-7901 gastric carcinoma cells were cultured in vitro and irradiated by low intensity US for 10 min at different intensities with different incubation times after irradiation.Morphologic changes were examined under microscope with trypan blue staining and then the percentage of early apoptotic cells was detected by flow cytometry(FCM)with double staining of fluorescein isothiocyanate(FITC)-Annexin V/propidium iodide(PI).Two-dimensional electrophoresis(2DE)was used to get the protein profile and some proteins differently expressed after US irradiation were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS).Functional analysis was performed to investigate the mechanism of US-induced cell apoptosis.RESULTS:The percentage of apoptotic cells increased about 10% after US irradiation(12.0 W/cm2,12 h culture).The percentage of early apoptosis and secondary necrosis in the US-irradiated cells increased with the increased US intensity.Moreover,apoptotic cells increased with the increased culture time after US irradiation and reached its maximum at about 12 h.Several new proteins appeared after US irradiation and were up or down regulated more than 2 times.Some heat shock proteins(HSPs)were found to be associated with the signal process simulating the apoptosis of cells.CONCLUSION:Low intensity US could induce apoptosis in human gastric carcinoma cells.US-induced apoptosis is related to US intensity/culture time.US-induced apoptosis may be caspases-dependent and endoplasmic reticulum(ER)stress-triggered apoptosis may also contribute to it.Proteomic experimental system is useful in finding the protein alteration in carcinoma cells after US irradiation,helping to develop a new cancer therapy.

  20. Mitochondrial apoptosis of lymphocyte is induced in type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Xu Hui; Chen Yanbo; Li Yanxiang; Xia Fangzhen; Han Bing; Zhang Huixin; Zhai Hualing

    2014-01-01

    Background Lymphocyte function and homeostasis is associated with immune defence to infection.Apoptosis of lymphocytes might be a considerably important component which has an impact on immunity to infections in people with hyperglycemia.The aim of this study was to explore the mitochondrial apoptosis pathway of lymphocyte in diabetic patients.Methods Sixty patients with type 2 diabetes mellitus and fifty healthy volunteers were included in this study.Annexin V and propidiumiodide (Pl) were joined in the isolated lymphocytes and the rate of lymphocyte apoptosis was calculated with flow cytometry.Observation of the lymphocytes was done using transmission electron microscopy; mitochondria had been extracted and then mitochondrial membrane potential (MMP) was detected to assess mitochondrial function; the mRNA level of Bcl-2,cytochrome c (Cyt-C),caspase-9 and caspase-3 were analyzed by real-time reverse transcriptionpolymerase chain reaction (RT-PCR).Results Apoptosis rate of lymphocyte was significantly higher in diabetic group than that in normal control group (P <0.05).Transmission electron microscopy showed lymphocyte shrinkage and breakage,chromatin condensation and less mitochondria; a fall in MMP levels was also evident; Bcl-2 concentration was reduced and the expressions of caspase-9,caspase-3 and Cyt-C were elevated (P <0.05) in diabetic patients.Conclusions The rate of lymphocyte apoptosis was significantly higher in type 2 diabetic patients than that in normal population.Mitochondrial apoptosis pathway may play a very important role in decreasing function of lymphocyte in diabetes.

  1. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro.

    Science.gov (United States)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer. PMID:22546556

  2. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  3. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  4. Inhibition of p53 deSUMOylation Exacerbates Puromycin Aminonucleoside-Induced Apoptosis in Podocytes

    Directory of Open Access Journals (Sweden)

    Lingyu Wang

    2014-11-01

    Full Text Available Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1, on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.

  5. Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G

    Directory of Open Access Journals (Sweden)

    Simonson Michael S

    2005-01-01

    Full Text Available Abstract Background In type 2 diabetes, free fatty acids (FFA accumulate in microvascular cells, but the phenotypic consequences of FFA accumulation in the microvasculature are incompletely understood. Here we investigated whether saturated FFA induce apoptosis in human microvascular mesangial cells and analyzed the signaling pathways involved. Methods Saturated and unsaturated FFA-albumin complexes were added to cultured human mesangial cells, after which the number of apoptotic cells were quantified and the signal transduction pathways involved were delineated. Results The saturated FFA palmitate and stearate were apoptotic unlike equivalent concentrations of the unsaturated FFA oleate and linoleate. Palmitate-induced apoptosis was potentiated by etomoxir, an inhibitor of mitochondrial β-oxidation, but was prevented by an activator of AMP-kinase, which increases fatty acid β-oxidation. Palmitate stimulated an intrinsic pathway of pro-apoptotic signaling as evidenced by increased mitochondrial release of cytochrome-c and activation of caspase 9. A caspase 9-selective inhibitor blocked caspase 3 activation but incompletely blocked apoptosis in response to palmitate, suggesting an additional caspase 9-independent pathway. Palmitate stimulated mitochondrial release of endonuclease G by a caspase 9-independent mechanism, thereby implicating endonuclease G in caspase 9-indpendent regulation of apoptosis by saturated FFA. We also observed that the unsaturated FFA oleate and linoleate prevented palmitate-induced mitochondrial release of both cytochrome-c and endonuclease G, which resulted in complete protection from palmitate-induced apoptosis. Conclusions Taken together, these results demonstrate that palmitate stimulates apoptosis by evoking an intrinsic pathway of proapoptotic signaling and identify mitochondrial release of endonuclease G as a key step in proapoptotic signaling by saturated FFA and in the anti-apoptotic actions of unsaturated FFA.

  6. Siderocalin/Lcn2/NGAL/24p3 does not drive apoptosis through gentisic acid mediated iron withdrawal in hematopoietic cell lines.

    Directory of Open Access Journals (Sweden)

    Colin Correnti

    Full Text Available Siderocalin (also lipocalin 2, NGAL or 24p3 binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract. Siderocalin has also been proposed to alter cellular iron trafficking, for instance, driving apoptosis through iron efflux via BOCT. An endogenous siderophore composed of gentisic acid (2,5-dihydroxybenzoic acid substituents was proposed to mediate cellular efflux. However, binding studies reported herein contradict the proposal that gentisic acid forms high-affinity ternary complexes with siderocalin and iron, or that gentisic acid can serve as an endogenous siderophore at neutral pH. We also demonstrate that siderocalin does not induce cellular iron efflux or stimulate apoptosis, questioning the role siderocalin plays in modulating iron metabolism.

  7. Curcumin-Induced Apoptosis in Human Hepatocellular Carcinoma J5 Cells: Critical Role of Ca+2-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Hsun Wang

    2012-01-01

    Full Text Available The antitumor effects of curcumin, a natural biologically active compound extracted from rhizomes of Curcuma longa, have been studied in many cancer cell types including human hepatocellular carcinoma (HCC. Here, we investigated the effects of Ca2+ on curcumin-induced apoptosis in human HCC J5 cells. The abrogation of mitochondrial membrane potential (ΔΨm, the increase of reactive oxygen species (ROS production, and calcium release were demonstrated with flow cytometry as early as 15 minutes after curcumin treatment. In addition, an increase level of cytochrome c in the cytoplasm which led to DNA fragmentation was observed. To verify the role of Ca2+ in curcumin-induced apoptosis, 1,2-bis(o-aminophenoxyethane-N,N,N′,N′-tetraacetic acid (BAPTA, an intracellular calcium chelator, was applied. Cell viability was increased, but ΔΨm, ROS production, activation of caspase 3, and cell death were decreased in J5 cells pretreated with BAPTA for 2 h followed by the treatment of 25 μM curcumin. These results suggest that the curcumin-induced apoptosis in human HCC J5 cells is via mitochondria-dependent pathway and is closely related to the level of intracellular accumulation of calcium.

  8. Radiation-induced apoptosis in human lymphocytes: Potential as a biological dosimeter

    International Nuclear Information System (INIS)

    We have tested the possibility of using apoptosis (programmed cell death) in human peripheral blood lymphocytes as a short-term biological dosimeter. Lymphocytes isolated from whole blood were irradiated in culture with 250 kVp x-rays or 60Co gamma rays. Two assays were used to measure apoptosis in lymphocytes after irradiation: in situ terminal deoxynucleotidyl transferase assay and fluorescence analysis of DNA unwinding assay. Similar qualitative and quantitative results were produced by the assays, supporting the notion that the fluorescence analysis of DNA unwinding assay measured DNA fragmentation associated with apoptosis. Induction of apoptosis in lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes irradiated in vitro was proportional to dose and could be detected following exposures as low as 0.05 Gy. Lymphocytes from individual donors had reproducible dose responses. There was, however, variation between donors. X-ray and gamma-ray exposures induced similar levels of apoptosis at similar doses. The induction kinetics of apoptosis in vitro indicate a maximum is reached about 72 h after irradiation. In conclusion, the in vitro experimental evidence indicates that radiation-induced apoptosis in human lymphocytes has the kinetics, sensitivity, and reproductibility to be a potential biological dosimeter. 29 refs., 5 figs

  9. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    Science.gov (United States)

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  10. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiqing Chai; Weina Kong; Lingyun Liu; Wenguo Yu; Zhenqing Zhang; Yimin Sun

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we construct-ed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1αgene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1αrepresses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results conifrmed that rAAV-HIF-1αsigniifcant-ly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1αadministration also induced robust and prolonged HIF-1αproduction in rat hippocampus. Single rAAV-HIF-1αadministration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer’s disease rat model established by intrace-rebroventricular injection of aggregated amyloid-beta protein (25-35). Our in vitro and in vivo ifndings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurode-generative diseases using gene therapy.

  11. Expression of human TNF-related apoptosis-inducing ligand extracellular region in E.coli

    Institute of Scientific and Technical Information of China (English)

    唐蓓; HE; Fengtian; 等

    2002-01-01

    This study is conducted to clone the cDNA encoding human TNF-related apoptosis-inducing ligand(hTRAIL)extracellular region(amino acids 41-281,hTRAIL41-281)and to express it in E.coli.The hTRAIL41-281 cDNA is amplified by reverse transcription(RT)PCR from total RNA derived from human acute promyelocytic leukemia cell line HL-60.After sequenced,the cDNA is cloned into the vector pQE-80L and transformed into E.coli DH5α to express the recombinant hTRAIL41-281(rhTRAIL41-281)induced by IPTG.The recombinant protein is analyzed by SDS-PAGE.The cloned cDNA is consistent with the cDNA sequence encoding hTRAIL41-281 reported in GenBankTM.After inducing.the hTRAIL41-281 protein is expressed,and the mass of the recombinant protein is about 30% of total bacteria protein,which demonstrates that the cDNA encoding hTRAIL41-281 is successfully cloned and expressed in E.coli.

  12. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS-and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. (author)

  13. Inhibition of palmitate-induced GADD34 expression augments apoptosis in mouse insulinoma cells (MIN6).

    Science.gov (United States)

    Fransson, Liselotte; Sjöholm, Ake; Ortsäter, Henrik

    2014-07-01

    Saturated fatty acids like palmitate induce endoplasmic reticulum (ER) stress in pancreatic beta-cells, an event linked to apoptotic loss of β-cells in type 2 diabetes. Sustained activation of the ER stress response leads to expression of growth arrest and DNA damage-inducible protein 34 (GADD34), a regulatory subunit of protein phosphatase 1. In the present study, we have used small interfering RNA in order to knockdown GADD34 expression in insulin-producing MIN6 cells prior to induction of ER stress by palmitate and evaluated its consequences on RNA-activated protein kinase-like ER-localized eIF2alpha kinase (PERK) signalling and apoptosis. Salubrinal, a specific inhibitor of eukaryotic initiation factor 2α (eIF2α) dephosphorylation, was used as a comparison. Salubrinal treatment augmented palmitate-induced ER stress and increased GADD34 levels. Both GADD34 knockdown and salubrinal treatment potentiated the cytotoxic effects of palmitate as evidenced by increased DNA fragmentation and activation of caspase 3, with the fundamental difference that the former did not involve enhanced levels of GADD34. The data from this study suggest that sustained activation of PERK signalling and eIF2α phosphorylation sensitizes insulin-producing MIN6 cells to lipoapoptosis independently of GADD34 expression levels. PMID:24633916

  14. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  15. APOPTOSIS INDUCED BY HYPERTHERMIA IN HUMAN GLIOBLASTOMA CELL LINE AND MURINE GLIOBLASTOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the role of apoptosis in tumor cell of malignant glioma death following treatment with hyperthermia and calcium ionophore. Methods: The apoptosis induced by hyperthermia and calcium ionophore, A23187, in human glioblastoma cell line TJ905 and murine glioblastoma G422 was evaluated by characteristic findings in DNA agarose gel electrophresis, ultrastructural examination and flow cytometric analysis. Results: Apoptosis could be induced by moderate hyperthermia, but not by mild hyperthermia, calcium ionophore enhanced significantly the effect of mild hyperthermia on the induction of apoptosis. Conclusion: This result indicates that apoptotic cell death is one of the mechanisms of hyperthermic therapy for malignant glioma and taking measures to increase the cytolic calcium may enhance the effect of hyperthermia.

  16. THE EFFECTS OF LOW CONCENTRATIONS OF ZINC ON ETOPOSIDE INDUCED HL-60 CELLS APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    盛晓阳; 沈立松; 徐翀; 吴湘如; 陈宏新; 洪照毅

    2001-01-01

    Objective Observation of the effects of lower concentrations of zinc (20~400μmol/L), which is nearby the physiological concentration, on etoposide induced HL-60 cells apoptosis. Methods Using the flow cytometry , DNA extraction, electrophoresis , and fiuoresence microscopic observation. Results We demonstrated that the low concentrations of zinc also affect cells apoptosis. If zinc was added at early time, even 200μmol/L could inhibit VP16 induced HL-60 cell apoptosis completely in 4h. But at this concentration, zinc also seems to have cell toxicity, not prolong the time of protection effect. Conclusion Zinc plays multiple roles in cellular functions and in protecting cells from exogenous deleterious factors. Zinc plays a complex, dose- and time-dependent role in apoptosis.

  17. Role of Calcium Ion in Apoptosis of MD Cancer Cells Induced by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiuli; WANG Jintao; XU Shiwen

    2008-01-01

    In order to observe the role of calcium ion in apoptosis of MD cancer cells induced by arsenic trioxide, inhibition percentage was detected by MTT assay;morphology changes were examined by fluorescence microscope;apoptosis was examined by DNA Ladder;[Ca2+]i was investigated by spectrofluorimeter in vitro on MDCC-MSB1 cells. The results showed that As2O3 inhibited the proliferation of MDCC-MSB1 cells in concentration dependent manner (P<0.05 or P<0.01);typical apoptosis character was observed by fluorescence microscope;DNA Ladder was observed;the [Ca2+]i was elevated significantly after the treatment of As203 (P<0.05 or P<0.01) and showed a dose-dependent manner. It is concluded that the calcium may play an important role in apoptosis of MD cancer cells induced by arsenic trioxide.

  18. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta;

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  19. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway

    OpenAIRE

    Lei-Yi Zhang; Yue-Ying Zhou; Fei Chen; Bing Wang; Jing Li; You-Wen Deng; Wei-Dong Liu; Zheng-Guang Wang; Ya-Wei Li; Dong-Zhe Li; Guo-Hua Lv; Bang-Liang Yin

    2011-01-01

    Taurine has positive effects on bone metabolism. However, the effects of taurine on osteoblast apoptosis in vitro have not been reported. The aim of this study was to investigate the activity of taurine on apoptosis of mouse osteoblastic MC3T3-E1 cells. The data showed that 1, 5, 10, or 20 mM taurine resulted in 16.7, 34.2, 66.9, or 63.75% reduction of MC3T3-E1 cell apoptosis induced by the serum deprivation (serum-free α-MEM), respectively. Taurine (1, 5, or 10 mM) also reduced cytochrome c ...

  20. HUHS1015 PROMOTES AUTOPHAGIC XIAP DEGRADATION TO INDUCE APOPTOSIS OF GASTROINTESTINAL CANCER CELLS

    OpenAIRE

    Tomoyuki Nishizaki

    2016-01-01

    The present study aimed at understanding the mechanism underlying HUHS1015-induced apoptosis of MKN45 gastric cancer and Caco-2 colonic cell, Apoptosis, cancer cell lines.  HUHS1015 apparently reduced presence of mRNA protein of X-linked inhibitor of apoptosis protein (XIAP) in a treatment time Autophagy  (10-60 min)-dependent manner.   The reduction of XIAP protein was prevented by the autophagy inhibitors 3-methyladenine and bafilomycin A1.  XIAP knock-down signi...

  1. The role of osteocyte apoptosis in cancer chemotherapy-induced bone loss.

    Science.gov (United States)

    Shandala, Tetyana; Shen Ng, Yeap; Hopwood, Blair; Yip, Yuen-Ching; Foster, Bruce K; Xian, Cory J

    2012-07-01

    Intensive cancer chemotherapy leads to significant bone loss, the underlying mechanism of which remains unclear. The objective of this study was to elucidate mechanisms for effect of the commonly used anti-metabolite methotrexate (MTX) on osteocytes and on general bone homeostasis. The current study in juvenile rats showed that MTX chemotherapy caused a 4.3-fold increase in the number of apoptotic osteocytes in tibial metaphysis, which was accompanied by a 1.8-fold increase in the number of tartrate-resistant acid phosphatase-positive bone resorbing osteoclasts, and a 35% loss of trabecular bone. This was associated with an increase in transcription of the osteoclastogenic cytokines IL-6 (10-fold) and IL-11 (2-fold). Moreover, the metaphyseal bone of MTX-treated animals exhibited a 37.6% increase in the total number of osteocytes, along with 4.9-fold higher expression of the DMP-1 transcript. In cultured osteocyte-like MLO-Y4 cells, MTX treatment significantly increased caspase-3-mediated apoptosis, which was accompanied by the formation of plasma membrane-born apoptotic bodies and an increase in IL-6 (24-fold) and IL-11 (29-fold) mRNA expression. Conditioned media derived from MTX-treated MLO-Y4 cells was twice as strong as untreated media in its capacity to induce osteoclast formation in primary bone marrow osteoclast precursors. Thus, our in vivo and in vitro data suggested that MTX-induced apoptosis of osteocytes caused higher recruitment of DMP-1 positive osteocytes and increased osteoclast formation, which could contribute towards the loss of bone homeostasis in vivo. PMID:21938727

  2. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  3. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    lymphocytes. Our experiments on preB lymphocytes supported by stromal cells suggest that apoptosis is one of the mechanisms for PAH immunosuppression. It could be either due to direct effect of the PAH on the B cells, via stromal cell signaling. Ubiquitous PAH-like toxin, fluoranthene, was tested for it...

  4. Brain death induces apoptosis in donor liver of the rat

    NARCIS (Netherlands)

    van der Hoeven, JAB; Moshage, H; Schuurs, T; Nijboer, M; van Schilfgaarde, R; Ploeg, RJ

    2003-01-01

    Background. A difference in short- and long-term function between living-related and cadaveric donor organs is consistently shown in kidney- and liver-transplant studies. We hypothesize that this is caused by induction of apoptosis and inflammation of the potential graft because of the phase of brai

  5. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  6. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  7. DNA Damage, Apoptosis and Langerhans cells – Activators of UV-induced Immune Tolerance

    OpenAIRE

    Timares, Laura; Katiyar, Santosh; Elmets, Craig A.

    2008-01-01

    Solar ultraviolet radiation (UVR) is highly mutagenic but is only partially absorbed by the outer stratum corneum of the epidermis. UVR can penetrate into the deeper layers of the epidermis, depending on melanin content, where it induces DNA damage and apoptosis in epidermal cells, including those in the germinative basal layer. The cellular decision to initiate either the cellular repair processes or undergo apoptosis has evolved to balance the acute need to maintain skin barrier function wi...

  8. Apoptosis is induced in bovine satellite muscle cells after removal of available oxygen

    OpenAIRE

    Andersen, Petter Vejle

    2013-01-01

    Abstract Post-mortem tenderisation of meat is a complex process, of which all the details are far from understood. Cell death by apoptosis is recently proposed as a novel mechanism in this process. The main aim of this study was to investigate if bovine satellite muscle cells, cultivated in vitro, would induce apoptosis when oxygen was removed from the incubation medium. Satellite muscle cells was seeded out in Entactin-Collagen IV-Laminin (ECL) coated culture wells and allowed to diffe...

  9. Heparin inhibits burn-induced spleen cell apoptosis by suppressing interleukin-1 expression

    Institute of Scientific and Technical Information of China (English)

    Zhao Songfeng; Zhang Xiao; Zhang Xiaojian; Shi Xiuqin; Yu Zujiang; Kan Quancheng

    2014-01-01

    Background Epidermal burn injury may trigger significant apoptosis of the spleen cells,which might be caused by a burninduced systemic inflammatory reaction.Heparin has been shown to possess anti-inflammatory properties.Interleukin 1 (IL-1) is centrally important among pro-inflammatory cytokines.We hypothesized that heparin might inhibit burn-induced apoptosis in the spleen via suppression of the IL-1 pathway.Methods Burn injury was performed on IL-1 R+/+ (IL-1 receptor wild-type mouse) and IL-1 R-/-(IL-1 receptor knockout mouse) mice,and they were then treated with heparin,saline or IL-1 receptor antagonist IL-Ra.Apoptosis,IL-1α and IL-1β expression were assessed in the spleens and serum.Survival curve analysis was further applied to elucidate the mechanism of heparin's protective properties.Results Burn induced significant apoptosis (sham:3.6%±2.1% vs.burn:28.8%±5.9%; P <0.001)and remarkable expression o IL-1α and IL-1β in the mouse spleens and serum.Heparin reduced the burn-induced apoptosis in the spleens (heparin treated:8.6%±3.4%,P <0.005),which could be blocked by IL-1Ra.Heparin markedly decreased both IL-1α and IL-1β expression in the spleens and serum of burned mica.IL-1 R-/-mice demonstrated considerably less apoptosis in the spleens and had a higher survival rate after burns.Heparin did not significantly decrease apoptosis in the spleen and the mortality rate in IL-1 R-/-mice after burns.Conclusion Heparin inhibits burn-induced apoptosis of the spleen cells by suppressing IL-1 expression in mice.

  10. Marijuana smoke condensate induces p53-mediated apoptosis in human lung epithelial cells.

    Science.gov (United States)

    Kim, Ha Ryong; Jung, Mi Hyun; Lee, Soo Yeun; Oh, Seung Min; Chung, Kyu Hyuck

    2013-01-01

    Since the largely abused worldwide used of marijuana, there have been many ongoing debates regarding the adverse health effects of marijuana smoking. Marijuana smoking was recently proved to cause pulmonary toxicity by inducing genotoxic effects or generating reactive oxygen species. Because p53, a tumor suppressor gene, has an important pathophysiologic role in the regulation of lung epithelial cell DNA damage responses, we hypothesized that p53 may be involved in the oxidative stress-mediated apoptosis induced by marijuana smoking. First, we confirmed that marijuana smoke condensate (MSC) induces oxidative stress in BEAS-2B cells. We observed that reactive oxygen species (ROS) generation was increased by MSC in the DCFH-DA assay. Also, antioxidant enzyme (superoxide dismutase, catalase) activity and their mRNA expressions were up-regulated by MSC. Second, we investigated p53 involvement in the MSC-induced apoptotic pathway in BEAS-2B cells. The results showed that MSC increased caspase-3 activation and DNA fragmentation as markers of apoptosis. In addition, the mRNA levels of apoptosis-related genes (p53 and Bax) were increased by MSC and phospho-p53, along with the increase of Bax protein expression by MSC. Apoptosis and apoptosis-related gene expression were partially blocked by an inhibitor of p53-dependent transcriptional activation (pifithrin-α). The results indicate that p53 plays a role in MSC-induced apoptosis. Taken together, the findings of the present study suggest that MSC partially induces p53-mediated apoptosis through ROS generation in human lung epithelial cells and this may have broader implications for our understanding of pulmonary diseases. PMID:23665932

  11. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Cristhian Toruno

    Full Text Available Ionizing radiation (IR-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  12. Probiotic sonicates selectively induce mucosal immune cells apoptosis through ceramide generation via neutral sphingomyelinase.

    Directory of Open Access Journals (Sweden)

    Sandra Angulo

    Full Text Available BACKGROUND: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. METHODOLOGY/PRINCIPAL FINDINGS: Neutral sphingomyelinase (NSMase activity was measured in sonicates of the probiotic L. brevis (LB and S. thermophilus (ST and the non-probiotic E. coli (EC and E. faecalis (EF. Lamina propria mononuclear cells (LPMC were obtained from patients with Crohn's disease (CD and Ulcerative Colitis (UC, and peripheral blood mononuclear cells (PBMC from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB-induced apoptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. CONCLUSIONS: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics, and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.

  13. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  14. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  15. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-lin LIU; Li HUO; Lei WANG

    2004-01-01

    AIM: To study the effect of octreotide on cell proliferation and apoptosis in different hepatocellular carcinoma (HCC) cells and hepatocytes. METHODS: The proliferation of HCC cells (HepG2, SMMC-7721) and hepatocytes (L-02) was determined by MTT assay. Apoptosis was detected either by fluorescent staining, transmission electron microscopy or flow cytometry. The content of AFP in the supernatant of cultured HCC cells was determined by electrochemiluminescence immunoassay. The expression of SSTR subtypes was identified by RT-PCR.RESULTS: The proliferation of HCC cells and L-02 cells was inhibited significantly by octreotide (0.25, 0.5, 1.0,2.0 and 4.0 mg/L). However, the apoptosis of HCC cells markedly increased in a concentration-dependent manner.Both the apoptosis index and the percentage of apoptotic cells in L-02 cells were significantly lower than those of HepG2 and SMMC-7721 cells. The content of AFP in the supematant of cultured HepG2 cells treated with octreotide was also statistically reduced. Furthermore, SSTR2 and SSTR4 were positive in both the hepatocellular carcinoma cells and in the L-02 cells. SSTR3 was only expressed in the two heptatocellular carcinoma cells, and SSTR5 was found in the SMMC-7721 cells. No SSTR1 was detected either in HCC cells or L-02 cells. CONCLUSIONS:Apoptosis induction is a major mechanism of octreotide inhibition on hepatocellular cells. SSTR3 is expressed in the HCC cells, but not in the L-02 cells, which suggests a molecular basis for the HCC-selective effects of octreotide.

  16. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes

    OpenAIRE

    Lu, Xiao-Yu; Liu, Bing-Chen; Wang, Li-Hua; Yang, Li-li; Bao, Qing; Zhai, Yu-Jia; Alli, Abdel A.; Thai, Tiffany L.; Eaton, Douglas C.; WANG Wei-zhi; Ma, He-Ping

    2015-01-01

    Our recent studies indicate that hydrogen peroxide (H2O2) only at high concentrations can cause oxidative stress in renal epithelial cells and induce apoptosis of podocytes. Consistently, the present study shows that H2O2, even at 1 mM, failed to induce intracellular oxidative stress and apoptosis of the podocytes due to efficient activity of catalase, an enzyme which degrades H2O2 to produce water and oxygen (O2). However, H2O2 acted as a source of O2 to allow acute ethanol to induce superox...

  17. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils

    OpenAIRE

    Genestier, Anne-Laure; Michallet, Marie-Cécile; Prévost, Gilles; Bellot, Gregory; Chalabreysse, Lara; Peyrol, Simone; Thivolet, Françoise; Etienne, Jerome; Lina, Gérard; Vallette, François M.; Vandenesch, François; Genestier, Laurent

    2005-01-01

    Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus that has recently been associated with necrotizing pneumonia. In the present study, we report that in vitro, PVL induces polymorphonuclear cell death by necrosis or by apoptosis, depending on the PVL concentration. PVL-induced apoptosis was associated with a rapid disruption of mitochondrial homeostasis and activation of caspase-9 and caspase-3, suggesting that PVL-induced apoptosis is preferentially m...

  18. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.

    Science.gov (United States)

    Li, J; Liu, S; Li, W; Hu, S; Xiong, J; Shu, X; Hu, Q; Zheng, Q; Song, Z

    2012-08-01

    Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.

  19. Dioscin induces cancer cell apoptosis through elevated oxidative stress mediated by downregulation of peroxiredoxins.

    Science.gov (United States)

    Wang, Zhiyu; Cheng, Yue; Wang, Neng; Wang, Dong Mei; Li, Ying Wei; Han, Feng; Shen, Jian Gang; Yang, De Po; Guan, Xin Yuan; Chen, Jian-Ping

    2012-02-01

    Dioscin has been shown to promote anticancer activity against several forms of cancers. However, its detailed molecular mechanisms have not been clearly clarified.In this study, we demonstrate that dioscin induces apoptosis in cancer cells through the induction of oxidative stress. Treatment with cancer cells in vitro with dioscin resulted in rapid generation of reactive oxygen species (ROS) and the induction of mitochondrial pathway apoptosis in human esophageal cancer cell line Kyse510. Inhibition of oxidative stress by the antioxidant N-acetylcysteine blocked the induction of apoptosis by dioscin, indicating that ROS generation is the primary mechanism responsible for the proapoptotic activity of dioscin. Proteomic analysis and protein gel blotting further revealed peroxiredoxins 1 and 6 (PRDX 1 and 6), which are implicated in ROS metabolism and apoptosis, were associated with the anticancer effects of dioscin. Meanwhile, overexpression of PRDX 1 and 6 significantly blocked the elevated ROS and apoptosis induced by dioscin. In conclusion, we suggest that PRDX1 and PRDX6 are key targets in the process of dioscin-induced apoptosis that involves intracellular elevated ROS. PMID:22231406

  20. MECHANISM OF TAXOL-INDUCED APOPTOSIS IN HUMAN BREAST CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    Chen Lirong; Zheng Shu; MC Willingham; Fan Weimin

    1998-01-01

    Objective: To investigate the mechanism by which taxol induces apoptosis in human breast cancer cells.Methods: Cell morphology, agarose gel electrophoresis,flow cytometry, video time-lapse monitor and Western blot were performed for investigating taxol-induced apoptosis in human breast cancer cells (BCap 37).Results: BCap 37 cells treated with taxol (100 nm) underwent the arrests of cell mitosis at metaphase of mitosis and induction of apoptosis. Apoptotic cells demonstrated cell shrinkage, condensation or fragmentation of chromosomes. Nuclear DNA of apoptotic cells displayed ladder bands characteristic of internucleosomal DNA fragmentation. The expression of bcl-2, inhibitor of apotosis, was decreased with modification, while that of bax, inducer of apoptosis, increased only at early stage of the apoptotic pathway and decreased later. Conclusion:In human breast cancer cells the induction of apoptosis by taxol was closely associated with mitotic arrest of cell cycle, and altered expressions of bcl-2 and bax gene possibly played an important role in regulating taxolinduced apoptosis.

  1. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    Science.gov (United States)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  2. Lack of EGCG Effects on Radiation-Induced Apoptosis of Mice Splenocytes

    International Nuclear Information System (INIS)

    The modification of radiation-induced apoptosis by EGCG, known as antioxidants or oxidants, was studied in mice spleens irradiated with a lethal dose. Materials and Methods: Male C57BL/6 mice were divided into control, irradiation-only, and EGCG (100 mg/kg i.p. 1 h before irradiation) pretreatment groups. The mice were irradiated with a single whole-body dose of 7 Gy. The apoptosis in the spleens after irradiation of the lethal dose were analyzed by TUNEL assay. In addition, the expression levels of the Bax and Bcl-2 proteins were quantified using a Western blotting method. Results: The induction of apoptosis was detected in the splenic white pulp. The highest level of apoptosis was detected at 8 hours after irradiation. No significant difference was identified by the apoptotic index (53.9% vs. 52.1%, p=0.328) and relative Bax protein expression (0.86 vs. 0.81, p=0.335), between the irradiation-only and EGCG pretreatment group, respectively. However, a lower Bax/Bcl-2 ratio (1.64 vs. 0.97, p=0.037) and higher relative expression level of Bcl-2 protein (0.57 vs. 0.82, p=0.037) was measured in the EGCG pretreatment group. Conclusion: The EGCG pretreatment neither decreased the radiation-induced apoptosis in mice splenocytes, nor induced additional apoptosis

  3. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    International Nuclear Information System (INIS)

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.)

  4. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis.

    Science.gov (United States)

    Carr, Ryan M; Qiao, Guilin; Qin, Jianzhong; Jayaraman, Sundararajan; Prabhakar, Bellur S; Maker, Ajay V

    2016-01-01

    Colon cancer is a leading cause of cancer-related mortality for which targeted therapy is needed; however, trials using apoptosis-inducing ligand monotherapy to overcome resistance to apoptosis have not shown clinical responses. Since colon cancer cells selectively uptake and rapidly metabolize glucose, a property utilized for clinical staging, we investigated mechanisms to alter glucose metabolism in order to selectively target the cancer cells and to overcome evasion of apoptosis. We demonstrate TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) resistance in the majority of human colon cancers tested and utilize the glucose analog 2-deoxy-d-glucose to sensitize TRAIL-resistant gastrointestinal adenocarcinoma cells, and not normal gastrointestinal epithelial cells, to TRAIL-induced apoptosis through enhanced death receptor 5 expression, downstream modulation of MAPK signaling and subsequent miRNA expression modulation by increasing the expression of miR-494 via MEK activation. Further, established human colon cancer xenografts treated with this strategy experience anti-tumor responses. These findings in colon adenocarcinoma support further investigation of manipulation of cellular energetics to selectively overcome resistance to apoptosis and to impart tumor regressions in established colon cancer tumors. PMID:27648301

  5. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  6. Blocking autophagic flux enhances matrine-induced apoptosis in human hepatoma cells.

    Science.gov (United States)

    Wang, Li; Gao, Chun; Yao, Shukun; Xie, Bushan

    2013-11-25

    Autophagy, a self-defense mechanism, has been found to be associated with drug resistance in hepatocellular carcinoma (HCC). Our study was designed to investigate the role and related mechanisms of autophagy in matrine-induced apoptosis in hepatoma cells of HepG2 and Bel7402. Cell apoptosis was detected by flow cytometry analysis (Annexin V-FITC/PI double-staining assay), the activity and activating cleavages of caspase-3, -8, and -9. MTT assay and colony forming assay were used to assess the effect of matrine on growth and proliferation of HCC cells. Autophagic flux in HCC cells was analyzed using the expression of LC3BI/II and p62/SQSTM1, GFP-LC3 transfection, and transmission electron microscopy. Moreover, regarding to the associated mechanisms, the effects of matrine on the phosphoinositide 3-kinase/AKT/mTOR pathway and beclin-1 were studied. Our results showed that: (1) both autophagy and apoptosis could be induced by treatment with matrine; (2) using the autophagic inhibitor chloroquine and beclin-1 small-interfering RNA, cell apoptosis induced by matrine could be enhanced in a caspase-dependent manner; and (3) autophagy was induced via inhibition of PI3K/AKT/mTOR pathway and up-regulation of beclin-1. In conclusion, inhibition of autophagy could enhance matrine-induced apoptosis in human hepatoma cells.

  7. Blocking Autophagic Flux Enhances Matrine-Induced Apoptosis in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-11-01

    Full Text Available Autophagy, a self-defense mechanism, has been found to be associated with drug resistance in hepatocellular carcinoma (HCC. Our study was designed to investigate the role and related mechanisms of autophagy in matrine-induced apoptosis in hepatoma cells of HepG2 and Bel7402. Cell apoptosis was detected by flow cytometry analysis (Annexin V–FITC/PI double-staining assay, the activity and activating cleavages of caspase-3, -8, and -9. MTT assay and colony forming assay were used to assess the effect of matrine on growth and proliferation of HCC cells. Autophagic flux in HCC cells was analyzed using the expression of LC3BI/II and p62/SQSTM1, GFP-LC3 transfection, and transmission electron microscopy. Moreover, regarding to the associated mechanisms, the effects of matrine on the phosphoinositide 3-kinase/AKT/mTOR pathway and beclin-1 were studied. Our results showed that: (1 both autophagy and apoptosis could be induced by treatment with matrine; (2 using the autophagic inhibitor chloroquine and beclin-1 small-interfering RNA, cell apoptosis induced by matrine could be enhanced in a caspase-dependent manner; and (3 autophagy was induced via inhibition of PI3K/AKT/mTOR pathway and up-regulation of beclin-1. In conclusion, inhibition of autophagy could enhance matrine-induced apoptosis in human hepatoma cells.

  8. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Hong Zhou; Qian Cai; Guang-Xia Xiao

    2003-01-01

    AIM: To study the role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells.METHODS: Hydrogen peroxide-induced apoptosis of human intestinal epithelial cell line SW-480 was established. Cell apoptosis was determined by Annexin-V and PI doublestained flow cytometry and DNA gel electrophoresis.Morphological changes were examined with light and electron microscopy. For other observations, mitochondrial function,cytochrome c release, mitochondrial translocation and membrane potential were determined simultaneously.RESULTS: Percentage of apoptotic cells induced with 400μ mol/L hydrogen peroxide increased significantly at I h or 3h after stimulation and recovered rapidly. Meanwhile percentage of apoptotic cells induced with 4 mmol/L hydrogen peroxide increased with time. In accordance with these changes, we observed decreased mitochondrial function in 400 μmol/L H2O2-stimualted cells at 1 h or 3 h and in 4 mmol/L H2O2-stimualted cells at times examined.Correspondingly, swelling cristae and vacuole-like mitochondria were noted. Release of cytochrome c,decreased mitochondrial membrane potential and mitochondrial translocation were also found to be the early signs of apoptosis.CONCLUSION: Dysfunctional mitochondria play a role in the apoptosis of SW-480 cell line induced by hydrogen peroxide.

  9. Role of salubrinal in protecting cardiomyocytes from doxorubicin-induced apoptosis.

    Science.gov (United States)

    Gong, N; Wu, J H; Liang, Z S; Jiang, W H; Wang, X W

    2015-01-01

    We determined whether salubrinal can protect cardio-myocytes from doxorubicin-induced apoptosis and explored the related mechanisms to provide experimental evidence for exploring novel drug candidates to decrease cardiac toxicity. Neonatal rat cardiomyocytes were isolated, cultured in vitro, and pretreated with salubrinal (10, 20, or 40 μM) to observe their response to doxorubicin-induced cell apoptosis. Lactate dehydrogenase assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling staining, and flow cytometry were used to assess the extent of cardiomyocyte apoptosis. Fluorescent probes conjugated with 2',7'-dichlorofluorescein diacetate and a chemiluminescence assay were used to detect the pro-duction of reactive oxygen species. Western blotting was employed to quantify expression levels of cleaved caspase-3, cytosolic cytochrome c, and B-cell lymphoma-extra large (Bcl-xL). The mechanisms of salubrinal-related functions were also explored. Salubrinal effectively inhibited doxorubicin-induced reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activation, decreased the levels of cleaved caspase-3 and cytosol cytochrome c, and increased Bcl-xL expression, thereby protecting cardiomyocytes from doxorubicin-induced apoptosis. Furthermore, salubrinal was found to protect cardiomyocytes by decreasing the dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Salubrinal can protect cardiomyocytes from doxorubicin-induced apoptosis through its effects on eIF2α. It possibly ameliorates cardiac toxicity and can be used in clinical practice. PMID:26505387

  10. Protective effect of lithium chloride against hypoglycemia-induced apoptosis in neuronal PC12 cell.

    Science.gov (United States)

    Xu, Yuzhen; Wang, Qian; Li, Dongsheng; Wu, Zhenghua; Li, Dawei; Lu, Kaili; Zhao, Yuwu; Sun, Yongning

    2016-08-25

    Hypoglycemia is defined by an arbitrary plasma glucose level lower than 3.9mmol/L and is a most common and feared adverse effect of treatment of diabetes mellitus. Emerging evidences demonstrated that hypoglycemia could induce enhanced apoptosis. Lithium chloride (LiCl), a FDA approved drug clinically used for treatment of bipolar disorders, is recently proven having neuroprotection against various stresses in the cellular and animal models of neural disorders. Here, we have established a hypoglycemia model in vitro and assessed the neuroprotective efficacy of LiCl against hypoglycemia-induced apoptosis and the underlying cellular and molecular mechanisms. Our studies showed that LiCl protects against hypoglycemia-induced neurotoxicity in vitro. Exposure to hypoglycemia results in enhanced apoptosis and the underlying cellular and molecular mechanisms involved inhibition of the canonical Wnt signaling pathway by decreasing wnt3a levels, β-catenin levels and increasing GSK-3β levels, which was confirmed by the use of Wnt-specific activator LiCl. Hypoglycemia-induced apoptosis were significantly reversed by LiCl, leading to increased cell survival. LiCl also alters the expression/levels of the Wnt pathway genes/proteins, which were reduced due to exposed to hypoglycemia. Overall, our results conclude that LiCl provides neuroprotection against hypoglycemia-induced apoptosis via activation of the canonical Wnt signaling pathway. PMID:27241942

  11. Morin, a Flavonoid from Moraceae, Induces Apoptosis by Induction of BAD Protein in Human Leukemic Cells

    Directory of Open Access Journals (Sweden)

    Cheol Park

    2014-12-01

    Full Text Available Evidence suggests that phytochemicals can safely modulate cancer cell biology and induce apoptosis. Here, we investigated the anti-cancer activity of morin, a flavone originally isolated from members of the Moraceae family in human leukemic cells, focusing on apoptosis. An anti-cancer effect of morin was screened with several human leukemic cell lines. U937 cells were most sensitive to morin, where it induced caspase-dependent apoptosis in a dose-dependent manner. It also induced loss of MMP (ΔΨm along with cytochrome c release, down-regulated Bcl-2 protein, and up-regulated BAX proteins. The apoptotic activity of morin was significantly attenuated by Bcl-2 augmentation. In conclusion, morin induced caspase-dependent apoptosis through an intrinsic pathway by upregulating BAD proteins. In addition, Bcl-2 protein expression is also important in morin-induced apoptosis of U937 cells. This study provides evidence that morin might have anticancer properties in human leukemic cells.

  12. Curcumin Induces Apoptosis in Pre-B Acute Lymphoblastic Leukemia Cell Lines V